JP2008060764A - Horizontal polarization omnidirectional antenna - Google Patents

Horizontal polarization omnidirectional antenna Download PDF

Info

Publication number
JP2008060764A
JP2008060764A JP2006233201A JP2006233201A JP2008060764A JP 2008060764 A JP2008060764 A JP 2008060764A JP 2006233201 A JP2006233201 A JP 2006233201A JP 2006233201 A JP2006233201 A JP 2006233201A JP 2008060764 A JP2008060764 A JP 2008060764A
Authority
JP
Japan
Prior art keywords
antenna
horizontal plane
line
omnidirectional antenna
element support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006233201A
Other languages
Japanese (ja)
Other versions
JP4795898B2 (en
Inventor
Motokazu Hamano
元和 濱野
Toru Sakamoto
徹 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maspro Denkoh Corp
Original Assignee
Maspro Denkoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maspro Denkoh Corp filed Critical Maspro Denkoh Corp
Priority to JP2006233201A priority Critical patent/JP4795898B2/en
Publication of JP2008060764A publication Critical patent/JP2008060764A/en
Application granted granted Critical
Publication of JP4795898B2 publication Critical patent/JP4795898B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna excellent in omnidirectionality on a horizontal plane and having a firm structure against flexure or vibration. <P>SOLUTION: A horizontal plane omnidirectional antenna includes: coaxial lines having a prescribed length composed of at least central conductors and external conductors concentrically arranged with the axis of the central conductors; element support members which have ground lines to be connected to the external conductors at one end side of the coaxial lines and power feeding lines to be connected to the central conductors of the coaxial lines, and arrayed by connection in an axial direction along a plane substantially in parallel with the axial line of the coaxial lines; and folded dipoles 100 which are connected between the power feeding lines and the ground lines formed in the element support members, and which are formed in a circular or polygonal shape along a plane substantially vertical with respect to the axial line of the coaxial lines. The plurality of horizontal plane omnidirectional antennas are serially connected in a vertical direction, which includes: the coaxial lines; the element support members; and the folded dipoles 100. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は,主に移動体通信システムの基地局に利用される水平偏波無指向性アンテナに関し,詳しくはその水平偏波無指向性アンテナの構成に関する。
The present invention relates to a horizontally polarized omnidirectional antenna mainly used in a base station of a mobile communication system, and more particularly to the configuration of the horizontally polarized omnidirectional antenna.

従来の水平偏波無指向性アンテナは,垂直方向に支持された長方形板の長辺に沿って端部表裏に平行な一対の給電線路を形成したアンテナ基板と,上記一対の給電線路に沿って接続配列された複数のリング状に形成されたダイポールアンテナと,上記アンテナ基板の基部に形成され,上記一対の給電線路に直列給電を行わせる平衡/不平衡変換部とを備えた水平偏波無指向性アンテナが提案されている。
(例えば,特許文献1参照)
A conventional horizontally polarized omnidirectional antenna includes an antenna substrate formed with a pair of feed lines parallel to the front and back of the end along the long side of a rectangular plate supported in the vertical direction, and the pair of feed lines. A horizontally polarized non-polarization antenna having a plurality of connected dipole antennas formed in a ring shape and a balanced / unbalanced conversion unit formed on the base of the antenna substrate for performing series feeding on the pair of feeding lines. Directional antennas have been proposed.
(For example, see Patent Document 1)

特開2005−167705号公報JP 2005-167705 A

しかし,従来の水平偏波無指向性アンテナによると,アンテナ間の伝送線路をプリント基板上に形成した一対の給電線路で実現しているため,この給電線路の伝送損失を少なくするためには,伝送損失の少ない高価な材質のプリント基板を使用する必要がありコストが高くなると言った問題があった。また,必要とする性能によってはプリント基板上に複数のダイポールアンテナを支持する必要があるので,プリント基板は非常に長いものとなり,プリント基板の強度を維持するためには,硬めで十分な厚みのある基板が必要となり,この点においても素材のコストアップが避けられなかった。
また,アンテナを構成する素子がダイポールアンテナから構成されているので,アンテナの基部には,上記一対の給電線路に直列給電を行わせる平衡/不平衡変換部を備えさせる必要が生じることになり,プリント基板がさらに大きくなるといった問題もあった。
一方,このように構成されたアンテナは垂直方向に長くなるので,風などの影響によってアンテナを構成する素子を被うレドームが撓ったり振動したりする。この結果,アンテナを構成するプリント基板にはそのストレスが加わることになる。ところが,従来技術の発明に示されているように,プリント基板の短辺の長さがリング状のダイポールアンテナの外径と同じか小さくなるように形成されており,長辺方向の寸法が短辺に比べて極めて長い状態を考えると,レドームが風などによって撓ったり共振して振動したりすることによって,例えばプリント基板が大きく撓んだり,振動が加わったりする状況が考えられる。そこで,アンテナの電気的特性を安定させ,且つ強度的にも信頼性を得ようとすると,プリント基板の周り等に,プリント基板を保持するための保持手段を設けることで,プリント基板の振動を抑えることはできるものの,レドーム全体が撓むことで生じるストレスには対応できなかった。そこで本願においては,こうした問題点を解決するためになされたものであり,
その目的は,簡単な構成で高性能な水平偏波無指向性アンテナを提供することを課題とする。
他の目的は,アンテナ全体の外径がスリムな水平偏波無指向性アンテナを提供することを課題とする。
他の目的は,特に風などによって発生する撓みや振動などに対する信頼性に優れた水平偏波無指向性アンテナを提供することを課題とする。
他の目的は,コストの安価な水平偏波無指向性アンテナを提供することを課題とする。
他の目的は,チルト角の最適化が簡単にできる水平偏波無指向性アンテナを提供することを課題とする。
However, according to the conventional horizontally polarized omnidirectional antenna, the transmission line between the antennas is realized by a pair of feed lines formed on a printed circuit board. To reduce the transmission loss of this feed line, There is a problem that it is necessary to use an expensive printed circuit board with a small transmission loss, which increases the cost. In addition, depending on the required performance, it is necessary to support multiple dipole antennas on the printed circuit board, so the printed circuit board becomes very long, and it is hard and has a sufficient thickness to maintain the strength of the printed circuit board. A certain substrate was required, and the cost of the material was unavoidable in this respect.
In addition, since the elements constituting the antenna are composed of dipole antennas, it is necessary to equip the base of the antenna with a balanced / unbalanced conversion unit that performs series feeding on the pair of feeding lines. There is also a problem that the printed circuit board becomes larger.
On the other hand, since the antenna configured in this manner is elongated in the vertical direction, the radome covering the elements constituting the antenna bends or vibrates due to the influence of wind or the like. As a result, the stress is applied to the printed circuit board constituting the antenna. However, as shown in the prior art invention, the length of the short side of the printed circuit board is formed to be equal to or smaller than the outer diameter of the ring-shaped dipole antenna, and the dimension in the long side direction is short. Considering an extremely long state as compared with the side, it can be considered that the radome is bent by a wind or resonates and vibrates, for example, so that the printed circuit board is largely bent or vibration is applied. Therefore, in order to stabilize the electrical characteristics of the antenna and to obtain reliability in terms of strength, vibration of the printed circuit board can be reduced by providing a holding means for holding the printed circuit board around the printed circuit board. Although it could be suppressed, it could not cope with the stress caused by bending of the entire radome. Therefore, in this application, it was made to solve these problems.
The purpose is to provide a high-performance horizontally polarized omnidirectional antenna with a simple configuration.
Another object is to provide a horizontally polarized omnidirectional antenna with a slim outer diameter.
Another object of the present invention is to provide a horizontally polarized omnidirectional antenna excellent in reliability with respect to bending and vibration caused by wind.
Another object is to provide a low-cost horizontally polarized omnidirectional antenna.
Another object is to provide a horizontally polarized omnidirectional antenna that can easily optimize the tilt angle.

上記課題を解決するために,請求項1の発明は,水平面無指向性アンテナにおいて,
少なくとも,中心導体と該中心導体の軸心と同心に配設された外部導体からなる所定の長さの同軸線路と,
前記同軸線路の一端側の外部導体と接続される接地線路と同軸線路の中心導体と接続される給電線路を備え,前記同軸線路の軸線に略並行な平面に沿って軸線方向に配列接続されたエレメント支持部材と,
前記エレメント支持部材に形成された前記給電線路と前記接地線路間に接続され,前記同軸線路の軸線に略垂直な平面に沿って円形もしくは多角形に形成されたフォールデッドダイポールと,を具備するように構成される。
In order to solve the above problems, the invention of claim 1 is a horizontal plane omnidirectional antenna,
A coaxial line of a predetermined length comprising at least a central conductor and an outer conductor disposed concentrically with the central axis of the central conductor;
A ground line connected to the outer conductor on one end side of the coaxial line and a feed line connected to the central conductor of the coaxial line are arranged and connected in an axial direction along a plane substantially parallel to the axis of the coaxial line An element support member;
A folded dipole connected between the feeder line formed on the element support member and the ground line, and formed in a circular or polygonal shape along a plane substantially perpendicular to the axis of the coaxial line. Configured.

請求項2の発明は,請求項1に記載の水平面無指向性アンテナにおいて,前記同軸線路と前記エレメント支持部材と前記フォールデッドダイポールからなる水平面無指向性アンテナを垂直方向に直列に複数個接続して構成される。

According to a second aspect of the present invention, in the horizontal plane omnidirectional antenna according to the first aspect, a plurality of horizontal plane omnidirectional antennas comprising the coaxial line, the element support member, and the folded dipole are connected in series in the vertical direction. Configured.
.

請求項3の発明は,請求項1または請求項2のいずれか一項に記載の水平面無指向性アンテナにおいて,前記フォールデッドダイポールは,使用周波数の0.4から0.6波長のアンテナ長を有するように構成される。
According to a third aspect of the present invention, in the horizontal omnidirectional antenna according to any one of the first or second aspects, the folded dipole has an antenna length of 0.4 to 0.6 wavelength of the operating frequency. Configured to have.

請求項4の発明は,前記同軸線路の軸線に略直交する方向の前記エレメント支持部材の外形寸法は前記フォールデッドダイポールの外形寸法より僅かに大きいことを特徴とした請求項1から請求項3のいずれか一項に記載の水平面無指向性アンテナ。
According to a fourth aspect of the present invention, the outer dimension of the element support member in a direction substantially orthogonal to the axis of the coaxial line is slightly larger than the outer dimension of the folded dipole. The horizontal plane omnidirectional antenna as described in any one of Claims.

請求項5の発明は,請求項1から請求項4のいずれか一項に記載の水平面無指向性アンテナにおいて,前記同軸線路の長さと,前記エレメント支持部材に形成された前記給電線路の長さにより,前記給電線路の軸線方向と略直交する面に対する放射のチルト角度を最適化して設定するように構成される。
A fifth aspect of the present invention is the horizontal plane omnidirectional antenna according to any one of the first to fourth aspects, wherein the length of the coaxial line and the length of the feeder line formed on the element support member are as follows. Thus, the tilt angle of radiation with respect to a plane substantially perpendicular to the axial direction of the feeder line is optimized and set.

請求項6の発明は,請求項1から請求項5のいずれか一項に記載の水平面無指向性アンテナにおいて,前記同軸線路は同軸ケーブルからなるように構成される。
According to a sixth aspect of the present invention, in the horizontal plane omnidirectional antenna according to any one of the first to fifth aspects, the coaxial line is constituted by a coaxial cable.

請求項1の発明によれば,構造が簡単であって,且つ給電線路の損失を小さくすることができることで電気的特性の優れたアンテナを提供できるばかりでなく,フォールデッドダイポールを直列給電する主たる給電線路を同軸線路で構成したので,アンテナ全体の外径をスリムにできるばかりでなく,アンテナの機械的強度をきわめて強固にすることができる。
According to the first aspect of the present invention, not only can an antenna with an excellent electrical characteristic be provided by having a simple structure and reducing the loss of the feed line, but also a main feature of feeding a folded dipole in series. Since the feed line is composed of a coaxial line, not only the outer diameter of the entire antenna can be made slim, but also the mechanical strength of the antenna can be made extremely strong.

請求項2の発明によれば,同軸線路とエレメント支持部材とフォールデッドダイポールからなる水平面無指向性アンテナを,所要の電気的特性に合わせて垂直方向に直列に複数個接続すればよいので構成部品が少ないアンテナ構成であってもきわめて汎用性の高い水平偏波無指向性アンテナとすることができる。
According to the invention of claim 2, a plurality of horizontal plane omnidirectional antennas comprising a coaxial line, an element support member and a folded dipole may be connected in series in the vertical direction according to the required electrical characteristics. Even if the antenna configuration is small, it can be a highly versatile horizontal polarization omnidirectional antenna.

請求項3の発明によれば,特に周波数の高い電波を使用する,例えばPHS基地局用のアンテナに用いれば,フォールデッドダイポールの小型化が実現でき,結果的にアンテナをスリムにすることができ,ビルの屋上や電柱の上部への設置における容易性を有したアンテナを提供することができる。
According to the third aspect of the present invention, when a radio wave having a high frequency is used, for example, for an antenna for a PHS base station, the folded dipole can be reduced in size, and as a result, the antenna can be made slim. Therefore, it is possible to provide an antenna having ease of installation on the roof of a building or the upper part of a utility pole.

請求項4の発明によれば,レドームの内径をエレメント支持部材の幅寸法より僅かに大きく形成すれば,エレメント支持部材の両側側辺は,組み上がったアンテナをレドームに収納するときのガイドの役目をして,フォールデッドダイポールがレドームの内壁に接触して変形するのを防止すると共に,レドームの撓みや振動に対してレドームとフォールデッドダイポールとの適切な間隔を保つスペーサとして動作させることができる。
According to the invention of claim 4, if the inner diameter of the radome is formed to be slightly larger than the width dimension of the element support member, both side sides of the element support member serve as guides when the assembled antenna is housed in the radome. Thus, the folded dipole can be prevented from coming into contact with the inner wall of the radome and deformed, and the spacer can be operated as a spacer that maintains an appropriate distance between the radome and the folded dipole against the bending and vibration of the radome. .

請求項5の発明は,請求項1から請求項4のいずれか一項に記載の水平面無指向性アンテナの効果に加えて,例えば,前記エレメント支持部材に形成された前記給電線路を経路長の異なる複数の線路からなるように構成し,必要に応じて給電線路の経路を選択的に選ぶように構成することで,前記給電線路の軸線方向と略直交するする面に対する放射のチルト角度を任意の角度に最適化して設定することができる優位性の高いアンテナを提供することができる。
According to a fifth aspect of the present invention, in addition to the effect of the horizontal omnidirectional antenna according to any one of the first to fourth aspects, for example, the feed line formed on the element support member is configured to have a path length. By configuring it so that it consists of a plurality of different lines and selectively selecting the path of the feed line as necessary, the tilt angle of radiation with respect to a plane substantially perpendicular to the axial direction of the feed line can be arbitrarily set It is possible to provide a highly advantageous antenna that can be set to be optimized for the angle.

請求項6の発明によれば,同軸線路が一般的に市販されている同軸ケーブルで実現できるので生産性の効率がよいアンテナを提供できる。また,主たる給電線路を同軸ケーブルで構成すると共に,例えばプリント基板を用いて構成されるエレメント支持部材はできる限り小さくなるように形成されているので,レドームが風などにより全体的に撓んだり振動したりしても,アンテナを構成する同軸ケーブルが有する柔軟性がそのストレスを吸収することができ,機械的強度に対する極めて信頼性の高いアンテナを提供できる。
According to the invention of claim 6, since the coaxial line can be realized by a generally available coaxial cable, an antenna with high productivity efficiency can be provided. In addition, the main feeder line is composed of a coaxial cable, and the element support member composed of, for example, a printed circuit board is formed to be as small as possible. Even so, the flexibility of the coaxial cable constituting the antenna can absorb the stress, and an extremely reliable antenna with respect to mechanical strength can be provided.

以下に,本発明を具体化した実施形態の例を,図面を基に詳細に説明する。
図1は本発明にかかる水平偏波無指向性アンテナの概略図面であり,(a)は正面図,(b)は背面図,(c)は上面図である。図2は本発明にかかる水平偏波無指向性アンテナの要部を拡大した斜視図である。図3は本発明にかかる水平偏波無指向性アンテナの全体の構成を示す概略図である。尚,以下に示す具体例において方向を示す場合は,同軸線路の軸線方向を上下方向とする。また,以下の実施例では本発明のアンテナはPHSの基地局アンテナに対応させた例を示すものであるが,特にPHSに限定されるものではない。
Hereinafter, an example of an embodiment embodying the present invention will be described in detail with reference to the drawings.
FIG. 1 is a schematic drawing of a horizontally polarized omnidirectional antenna according to the present invention, where (a) is a front view, (b) is a rear view, and (c) is a top view. FIG. 2 is an enlarged perspective view of a main part of the horizontally polarized omnidirectional antenna according to the present invention. FIG. 3 is a schematic diagram showing the overall configuration of a horizontally polarized omnidirectional antenna according to the present invention. In the following specific examples, when the direction is indicated, the axial direction of the coaxial line is the vertical direction. In the following embodiments, the antenna according to the present invention is an example corresponding to a PHS base station antenna, but is not limited to the PHS.

図において1は本発明にかかる水平偏波無指向性アンテナであり,所定の長さに形成された同軸線路としての同軸ケーブル5と,前記同軸ケーブル5の一端側の外部導体7と接続される接地線路35と同軸ケーブル5の中心導体9と接続される給電線路31を備え,前記同軸ケーブル5の軸線に略並行な平面に沿って軸線方向に配列接続されたエレメント支持部材30と,前記エレメント支持部材30に形成された前記給電線路31と前記接地線路35間に接続され,前記同軸ケーブル5の軸線に略垂直な平面に沿って略円形に形成されたフォールデッドダイポール100とから構成されたエレメント部を基本構成とし,必要に応じてこのエレメント部を直列に複数個を配列接続して水平偏波無指向性アンテナ1が構成される。
In the figure, reference numeral 1 denotes a horizontally polarized omnidirectional antenna according to the present invention, which is connected to a coaxial cable 5 as a coaxial line formed in a predetermined length and an external conductor 7 on one end side of the coaxial cable 5. An element support member 30 provided with a feed line 31 connected to the ground conductor 35 and the central conductor 9 of the coaxial cable 5 and arranged and connected in the axial direction along a plane substantially parallel to the axis of the coaxial cable 5; A folded dipole 100 connected between the feeder line 31 and the ground line 35 formed on the support member 30 and formed in a substantially circular shape along a plane substantially perpendicular to the axis of the coaxial cable 5 is formed. The horizontal polarization omnidirectional antenna 1 is configured by using an element portion as a basic configuration and arranging a plurality of the element portions in series as necessary.

本発明の実施例に使用されている同軸ケーブル5は,一般的に市販されている特性インピーダンスが50Ωである8D−2Vを所定長に切断したものであり,その両端部はそれぞれ所定の加工を施してある。尚,本発明の実施例では同軸ケーブル5の寸法は,波形短縮率等を勘案して使用周波数の0.4から0.6波長の長さである。
The coaxial cable 5 used in the embodiment of the present invention is obtained by cutting a commercially available 8D-2V having a characteristic impedance of 50Ω into a predetermined length, and both ends thereof are subjected to predetermined processing. It has been given. In the embodiment of the present invention, the size of the coaxial cable 5 is 0.4 to 0.6 wavelengths of the operating frequency in consideration of the waveform shortening rate and the like.

このように形成された同軸ケーブル5の一方側端部には,エレメント支持部材30が前記同軸ケーブル5の軸線に略並行な平面に沿って軸線方向に配列接続されている。本発明の実施例ではエレメント支持部材30は板厚1.6mmのガラスコンポジット材(CEM−3,比誘電率=4,2)のプリント基板2から構成されている。このプリント基板2は両面に導電材を備えた両面基板であり,表面および裏面とは必要個所に設けられたスルーホールによって接続されている。
ここで更に詳しくエレメント支持部材30について説明する。図1および図2によく示されるように,プリント基板2の表面側には,プリント基板2の下方から上方にかけて形成された,同軸ケーブル5の中心導体9と接続される前記給電線路31に加え,後述のフォールデッドダイポール100をプリント基板に固着するためのランドである表側止着ランド32aが形成されている。また,プリント基板2の裏面側には,プリント基板の下方から上方にかけて形成された,同軸ケーブル5の外部導体7と接続される接地線路35に加え,前記表側止着ランド32aと対向する位置に裏側止着ランド32bが形成されている。本発明の実施例では接地線路35はプリント基板2の接地導体であり,スルーホールによって,表面側の接地導体と接続されている。また,表側止着ランド32aと裏側止着ランド32bもスルーホールで電気的に接続されている。
At one end of the coaxial cable 5 formed in this way, element support members 30 are arrayed and connected in the axial direction along a plane substantially parallel to the axis of the coaxial cable 5. In the embodiment of the present invention, the element support member 30 is composed of a printed circuit board 2 made of a glass composite material (CEM-3, relative dielectric constant = 4, 2) having a thickness of 1.6 mm. This printed circuit board 2 is a double-sided board provided with a conductive material on both sides, and is connected to the front and back surfaces by through holes provided at necessary places.
Here, the element support member 30 will be described in more detail. As well shown in FIGS. 1 and 2, on the surface side of the printed circuit board 2, in addition to the feeder line 31 connected to the central conductor 9 of the coaxial cable 5 formed from the lower side to the upper side of the printed circuit board 2. A front side fixing land 32a, which is a land for fixing a folded dipole 100 described later to the printed circuit board, is formed. Further, in addition to the ground line 35 connected to the outer conductor 7 of the coaxial cable 5 formed on the back surface side of the printed circuit board 2 from the lower side to the upper side of the printed circuit board 2, the printed circuit board 2 is located at a position facing the front side fixing land 32a. A back side fastening land 32b is formed. In the embodiment of the present invention, the ground line 35 is a ground conductor of the printed circuit board 2 and is connected to the surface side ground conductor by a through hole. The front side fastening land 32a and the back side fastening land 32b are also electrically connected through a through hole.

給電線路31は,同軸ケーブル5の中心導体9の先端部を接続する接続ランド31aと,後述のフォールデッドダイポール100の給電点を固着するための支持ランド31bと,プリント基板2のさらに上側に接続される同軸ケーブル5の中心導体9の先端部を接続する接続ランド31cとを結ぶ所定の線路長を有する伝送経路からなり,この線路長は,同軸ケーブルの線路長と共に,アンテナのチルト角に応じて最適化されている。以上のようにプリント基板2に所定の加工がなされてエレメント支持部材30が形成されている。
尚,上記説明は同軸ケーブル5間に介設するエレメント支持部材30(図には30Bで示される)について説明したものであり,最も上段に位置するエレメント支持部材30(図には30Aで示される)は,給電線路31の長さがフォールデッドダイポール100を取り付けるだけの給電線路があれば良く,図1(a)正面図に示されるように接続ランド31などのフォールデッドダイポールより上側に位置する線路はなくても良い。以下の説明でエレメント支持部材30と記載されたものは,特に明記されない限り,図に示される同軸ケーブル5間に介設するエレメント支持部材30Bについての説明である。
The feed line 31 is connected to a connection land 31a for connecting the tip of the central conductor 9 of the coaxial cable 5, a support land 31b for fixing a feed point of a folded dipole 100, which will be described later, and the printed circuit board 2 further above. A transmission path having a predetermined line length connecting the connection land 31c connecting the tip of the center conductor 9 of the coaxial cable 5 to be connected, and this line length depends on the tilt angle of the antenna together with the line length of the coaxial cable. Have been optimized. As described above, the printed circuit board 2 is subjected to predetermined processing to form the element support member 30.
The above explanation is for the element support member 30 (shown by 30B in the figure) interposed between the coaxial cables 5, and the element support member 30 located at the uppermost stage (shown by 30A in the figure). ) Need only have a feed line in which the length of the feed line 31 is sufficient to attach the folded dipole 100, and is located above the folded dipole such as the connection land 31 as shown in the front view of FIG. There is no need for a track. In the following description, what is described as the element support member 30 is an explanation of the element support member 30B interposed between the coaxial cables 5 shown in the drawings unless otherwise specified.

次に,フォールデッドダイポール100について説明する。本発明の実施例におけるフォールデッドダイポール100は,略半円形に形成された第1のエレメント部材10と,該第1のエレメント部材10と相対向するように略半円形に形成された第2のエレメント部材20とから構成されており,エレメント支持部材30の表側と裏側に取り付けたときに略円形のフォールデッドダイポール100を形成するように構成されている。それぞれのエレメント部材は弾性を有する導電材を金型等によって打ち抜き加工して湾曲状に成型したものである。尚,本発明の実施例ではエレメント部材は板厚0.5mmのバネ用銅合金から構成されている。
Next, the folded dipole 100 will be described. The folded dipole 100 according to the embodiment of the present invention includes a first element member 10 formed in a substantially semicircular shape, and a second element formed in a substantially semicircular shape so as to face the first element member 10. The element member 20 is configured to form a substantially circular folded dipole 100 when the element support member 30 is attached to the front side and the back side. Each element member is formed by bending an elastic conductive material with a die or the like into a curved shape. In the embodiment of the present invention, the element member is made of a copper alloy for springs having a plate thickness of 0.5 mm.

第1のエレメント部材10は,略半円形の下側素子11と,該下側素子11に略平行配置された略半径の上側素子13と,下側素子11と上側素子13の一方側先端部を接続する折り返し部17が一体的に構成されている。また,下側素子11の他方側先端部12には下側素子11の先端部12を内側に折り返した形成した支持基部15が一体的に備えられている。この支持基部15にはエレメント支持部材30に向かって突設した第1のエレメント部材10の位置決め用の固着爪15aが形成されている。さらに,上側素子13の他端側先端部14には上側素子13の先端部14を内側に折り返し形成した接続片16が備えられている。
第2エレメント部材20も同様な構成をしており,前記第1エレメント部材10に相対向するように略半円形の下側素子21と,該下側素子21に略平行配置された略半円形の上側素子23と,下側素子21と上側素子23の一方側先端部を接続する折り返し部27が一体的に構成されている。また,下側素子21の他方側先端部22には下側素子21の先端部22を内側に折り返し形成した支持基部25が一体的に備えられている。この支持基部25にはエレメント支持部材30に向かって突設した第2のエレメント部材20の位置決め用の固着爪25aが形成されている。この固着爪25aの軸線と前記第1のエレメント部材10に形成された固着爪15aの軸線とは,第1のエレメント部材10と第2のエレメント部材をエレメント支持部材30に取り付けたときに,相互に重合しないように互い違いの位置に形成されている。さらに,上側素子23の他端側先端部24には上側素子23の先端部24を内側に折り返し形成した接続片26が備えられている。
The first element member 10 includes a substantially semicircular lower element 11, an upper element 13 having a substantially radius arranged substantially in parallel with the lower element 11, and one end of the lower element 11 and the upper element 13. The folding | returning part 17 which connects is integrally comprised. In addition, a support base portion 15 formed integrally by folding the distal end portion 12 of the lower element 11 inward is integrally provided at the other distal end portion 12 of the lower element 11. The support base 15 is formed with a fixing claw 15 a for positioning the first element member 10 protruding toward the element support member 30. Further, a connecting piece 16 is provided at the tip 14 of the other end of the upper element 13 so that the tip 14 of the upper element 13 is folded inward.
The second element member 20 has a similar configuration, and is a substantially semicircular lower element 21 so as to face the first element member 10, and a substantially semicircular shape arranged substantially parallel to the lower element 21. The upper element 23, and the folded portion 27 that connects one end of the lower element 21 and the upper element 23 are integrally formed. In addition, a support base portion 25 is integrally provided at the other end portion 22 of the lower element 21 so that the distal end portion 22 of the lower element 21 is folded inside. The support base 25 is formed with a fixing claw 25 a for positioning the second element member 20 protruding toward the element support member 30. The axis of the fixing claw 25a and the axis of the fixing claw 15a formed on the first element member 10 are mutually connected when the first element member 10 and the second element member are attached to the element support member 30. It is formed in a staggered position so as not to polymerize. Further, a connecting piece 26 is provided at the tip 24 of the other end of the upper element 23 so that the tip 24 of the upper element 23 is folded inward.

ここで,エレメント支持部材30に対して第1および第2のエレメント部材を取り付ける手順を説明する。まず第1のエレメント部材10の支持基部15に形成された固着爪15aを,エレメント支持部材30に形成された位置決め孔2aに挿入し,支持基部15を前記支持ランド部31bに当接させる。そして,例えば半田付け等の周知の方法で支持ランド31bと支持基部15とを固着すれば第1のエレメント部材10は同軸線路の軸線方向に略垂直な平面に沿って取り付けられる。この固着が完了したなら,上側素子13の他端側先端部14を折り返して形成された接続片16は,表側止着ランド32aに対向して配置されているので,例えば半田付け等の周知の方法で,接続片16を表側止着ランド32aに固着することによって第1のエレメント部材10の取り付けが完了する。
次に第2のエレメント部材20を取り付ける。エレメント支持部材30には第2のエレメント部材20の位置決め用の位置決め孔2bが形成されているので,この位置決め孔2bに対して第2のエレメント部材20に形成された固着爪25aを挿入し,支持基部25をエレメント支持部材30の裏面に形成された接地線路35に当接させる。そして,例えば半田付け等の周知の方法で支持基部25を接地線路35に対して固着する。さらに上側素子23の他端側先端部24を折り返して形成された接続片26は,裏側止着ランド32bに対向して配置されているので,例えば半田付け等の周知の方法で接続片26を裏側止着ランド32bに固着することによって第2のエレメント部材20の取り付けが完了する。
Here, a procedure for attaching the first and second element members to the element support member 30 will be described. First, the fixing claw 15a formed in the support base 15 of the first element member 10 is inserted into the positioning hole 2a formed in the element support member 30, and the support base 15 is brought into contact with the support land 31b. If the support land 31b and the support base 15 are fixed by a known method such as soldering, the first element member 10 is attached along a plane substantially perpendicular to the axial direction of the coaxial line. When this fixing is completed, the connection piece 16 formed by folding the tip 14 on the other end side of the upper element 13 is disposed to face the front side fastening land 32a. With the method, the attachment of the first element member 10 is completed by fixing the connecting piece 16 to the front side fixing land 32a.
Next, the second element member 20 is attached. Since the positioning hole 2b for positioning the second element member 20 is formed in the element support member 30, the fixing claw 25a formed in the second element member 20 is inserted into the positioning hole 2b. The support base 25 is brought into contact with a ground line 35 formed on the back surface of the element support member 30. Then, the support base 25 is fixed to the ground line 35 by a known method such as soldering. Further, since the connection piece 26 formed by folding the tip 24 on the other end side of the upper element 23 is disposed so as to face the back-side fastening land 32b, the connection piece 26 is connected by a known method such as soldering. The attachment of the second element member 20 is completed by adhering to the back side fastening land 32b.

このようにして取り付けられた第1および第2のエレメント部材は,第1のエレメント部材10の支持基部15,下側素子11,折り返し部17,上側素子13,接続片16と,エレメント支持部材30に形成された止着ランド32a,32bを介して,第2のエレメント部材20の接続片26,上側素子23,折り返し部27,下側素子21,支持基部25とからなる略円形状の,エレメント支持部材30に形成された前記給電線路31と前記接地線路35間に同軸ケーブルの軸線に略直交する平面に沿うように配列接続されたフォールデッドダイポール100が構成される。
尚,本発明の実施例ではフォールデッドダイポール100は略円形状となるように構成したが,例えば四角形状のような多角形に形成しても所望の特性が得られればよく,その形状は実施例に限定されるものではない。
The first and second element members attached in this way are the support base portion 15, the lower element 11, the folded portion 17, the upper element 13, the connection piece 16, and the element support member 30 of the first element member 10. A substantially circular element composed of a connection piece 26 of the second element member 20, an upper element 23, a folded portion 27, a lower element 21, and a support base 25 via fastening lands 32 a and 32 b formed on A folded dipole 100 is arranged between the feeder line 31 formed on the support member 30 and the ground line 35 so as to be arranged and connected along a plane substantially orthogonal to the axis of the coaxial cable.
In the embodiment of the present invention, the folded dipole 100 is configured to have a substantially circular shape. However, it is sufficient that desired characteristics can be obtained even if it is formed in a polygonal shape such as a square shape. It is not limited to examples.

エレメント支持部材30にフォールデッドダイポール100の取り付けがすんだなら,同軸線路としての前記同軸ケーブル5とエレメント支持部材30とを取り付ける。
プリント基板2の下方と上方には切欠部4が形成されている。この切欠部4の大きさはは同軸ケーブルの外部導体7をプリント基板2の表面側から切欠部4に対して当て付けたときに,同軸ケーブル5の中心導体9が接続ランド31a(または,接続ランド31c)にちょうど接触するように外部導体7の外径よりわずかに小さい幅で形成されている(図1(c)上面図参照)。同軸ケーブル5の先端部の加工は同軸ケーブル5の外部導体7部を切欠部4に当接させると共に,同軸ケーブル5の外部導体7および内部絶縁体8の先端部を切欠部4の底部分に当接させた時に,中心導体9が接続ランド31a(または,接続ランド31c)にちょうど接触し,外部絶縁体6がプリント基板2と重合しないような寸法に加工すればよい。
そして,切欠部4に対して同軸ケーブル5を当て付けたなら,プリント基板2の表側の切欠部4を挟んで両側に備えられた十分に広い幅を持った接地導体36に半田付け等の周知の技術でもって強固に接続することによってアンテナの基本構成であるエレメント部が完成する。
When the folded dipole 100 is attached to the element support member 30, the coaxial cable 5 as the coaxial line and the element support member 30 are attached.
Notches 4 are formed below and above the printed circuit board 2. The size of the notch 4 is such that when the outer conductor 7 of the coaxial cable is applied to the notch 4 from the surface side of the printed circuit board 2, the central conductor 9 of the coaxial cable 5 is connected to the connection land 31a (or the connection land 31a). A width slightly smaller than the outer diameter of the outer conductor 7 is formed so as to be just in contact with the land 31c) (see the top view in FIG. 1C). The processing of the front end portion of the coaxial cable 5 brings the outer conductor 7 portion of the coaxial cable 5 into contact with the cutout portion 4, and the front end portions of the outer conductor 7 and the inner insulator 8 of the coaxial cable 5 are formed at the bottom portion of the cutout portion 4. What is necessary is just to process it to the dimension which the center conductor 9 just contacts the connection land 31a (or connection land 31c), and the external insulator 6 does not overlap with the printed circuit board 2 when it makes contact.
Then, if the coaxial cable 5 is applied to the notch 4, the well-known grounding conductor 36 having a sufficiently wide width provided on both sides of the notch 4 on the front side of the printed circuit board 2 is known. The element part, which is the basic structure of the antenna, is completed by firmly connecting with this technique.

このように構成されたエレメント部を複数直列に接続してなるアンテナ1の全体構成を図3に示す。同軸ケーブル5を介して配設されたエレメント支持部材30に対して,第1および第2のエレメント部材10,20を対にして水平方向に配設することで複数のフォールデッドダイポール100が同軸線路5の軸線方向に沿って配列され,中心導体9と給電線路31からなる給電線路と,外部導体7と接地線路35からなる給電線路により直列給電されている。アンテナの基部側にはその先端部にコネクタ50が接続された給電線が接続されている。
本発明の実施例ではエレメント支持部材30の水平方向の寸法は,略円形状に形成されたフォールデッドダイポール100の外径よりわずかに大きくなるような寸法に設定されている。そして,図には示されないレドームの内径をエレメント支持部材30の水平方向の寸法より僅かに大きく形成することによって,前記エレメント支持部材30の両側側辺は,組み上がったアンテナをレドームに収納するときのガイドの役目をして,フォールデッドダイポール100がレドームの内壁に接触して変形するのを防止すると共に,レドームの撓みや振動に対してレドームとフォールデッドダイポール100との適切な間隔を保つスペーサとして動作するのである。
FIG. 3 shows an overall configuration of the antenna 1 formed by connecting a plurality of element portions configured in this manner in series. By arranging the first and second element members 10 and 20 in a pair in the horizontal direction with respect to the element support member 30 disposed via the coaxial cable 5, a plurality of folded dipoles 100 are formed on the coaxial line. 5, and is fed in series by a feed line composed of the central conductor 9 and the feed line 31 and a feed line composed of the external conductor 7 and the ground line 35. A feed line having a connector 50 connected to the tip thereof is connected to the base side of the antenna.
In the embodiment of the present invention, the horizontal dimension of the element support member 30 is set to be slightly larger than the outer diameter of the folded dipole 100 formed in a substantially circular shape. Then, by forming the inner diameter of the radome (not shown) slightly larger than the horizontal dimension of the element support member 30, the sides on both sides of the element support member 30 are used when the assembled antenna is stored in the radome. To prevent the folded dipole 100 from coming into contact with the inner wall of the radome and deforming it, and to maintain an appropriate distance between the radome and the folded dipole 100 against the bending and vibration of the radome. It works as.

ここで,このアンテナを中心周波数が1902.2MHz(波長λ=157.7mm)のPHS基地局用アンテナとして構成した具体的な寸法を示す。
同軸線路5の線路長は,同軸ケーブル8D−2V(波長短縮率=66%)を用いて71mm(0.45λ)である。
第1および第2のエレメント部材10,20は,下側素子・上側素子・折り返し部が共に3mmの幅であり,下側阻止と上側素子の間隔が3mmであるように折り返し形成されており,フォールデッドダイポール100としてのその直径は略25mm(0.16λ),周囲長は71.5mm(0.45λ)である略円形に形成されている。
フォールデッドダイポール100の相互の間隔はそれぞれ86mm(0.54λ)だけ離隔して取り付けられており,この条件で垂直面のチルト角が−5°であるアンテナが構成されている。
Here, the specific dimension which comprised this antenna as an antenna for PHS base stations whose center frequency is 1902.2 MHz (wavelength (lambda) = 157.7 mm) is shown.
The line length of the coaxial line 5 is 71 mm (0.45λ) using a coaxial cable 8D-2V (wavelength reduction rate = 66%).
The first and second element members 10 and 20 are folded so that the lower element, the upper element, and the folded portion are both 3 mm wide, and the distance between the lower blocking and the upper element is 3 mm. The folded dipole 100 is formed in a substantially circular shape having a diameter of approximately 25 mm (0.16λ) and a perimeter of 71.5 mm (0.45λ).
The distances between the folded dipoles 100 are attached to each other by 86 mm (0.54λ). Under these conditions, an antenna having a vertical plane tilt angle of −5 ° is configured.

このアンテナの実測データを図4から図6に示す。この図において図4は電圧定在波比(以下,VSWRと記載する。)であり,図5は水平偏波垂直面指向性であり,図6は水平偏波水平面指向性である。
図4はPHS帯の周波数帯域である1884.5〜1919.9MHzのVSWRの値が良く判るようにこの帯域を中心として65MHz範囲にわたってVSWRの測定値が示されている。この結果によれば,下限周波数の1884.5MHzにおいてVSWR=1.27,中心周波数である1902,2MHzにおいてVSWR=1,11,上限周波数の1919.9MHzにおいてVSWR=1.12であり目標とするVSWR=1.5に対して充分にマージンを有した値が得られている。
図5の水平偏波垂直面指向性のデータによれば上記の条件に基づいたアンテナの垂直面のチルト角は周波数が1902.2MHzにおいてアンテナの下方向に丁度−5°となるように最適化され,PHS基地局アンテナとして求められているアンテナ性能の内の1つに適合している。
図6の水平偏波水平面指向性のデータによれば,上記の条件に基づいたアンテナの水平面偏差は周波数が1902.2MHzにおいて目標とする1.5dB以内に対して1.3dBであり充分に目標を満足している。
The measured data of this antenna is shown in FIGS. 4 is a voltage standing wave ratio (hereinafter referred to as VSWR), FIG. 5 is a horizontal polarization vertical plane directivity, and FIG. 6 is a horizontal polarization horizontal plane directivity.
FIG. 4 shows measured values of VSWR over a 65 MHz range centered on this band so that the value of VSWR of 1884.5 to 1919.9 MHz, which is the frequency band of the PHS band, can be clearly understood. According to this result, VSWR = 1.27 at the lower limit frequency of 1884.5 MHz, VSWR = 1,11 at the center frequency of 1902,2 MHz, and VSWR = 1.12 at the upper limit frequency of 1919.9 MHz, which are the targets. A value having a sufficient margin with respect to VSWR = 1.5 is obtained.
According to the horizontal polarization vertical plane directivity data in FIG. 5, the tilt angle of the vertical plane of the antenna based on the above conditions is optimized to be just −5 ° in the downward direction of the antenna at a frequency of 1902.2 MHz. It is suitable for one of the antenna performances required as a PHS base station antenna.
According to the horizontal polarization horizontal plane directivity data in FIG. 6, the horizontal plane deviation of the antenna based on the above conditions is 1.3 dB with respect to the target within 1.5 dB at a frequency of 1902.2 MHz, which is a sufficient target. Is satisfied.

以上,本発明の水平偏波無指向性アンテナによれば,構造が簡単であって,且つ給電線路の損失を小さくすることができることで,電気的特性の優れたアンテナを提供できる。また,フォールデッドダイポール100を直列給電する主たる給電線路を同軸線路で構成したので,アンテナ全体の外径をスリムにできるばかりでなく,アンテナの機械的強度をきわめて強固にすることができる。また,このアンテナを特に周波数の高い電波を使用する,例えばPHS基地局用のアンテナなどに用いれば,フォールデッドダイポール100が小さくできると共に,このフォールデッドダイポール100が略円形状に形成されていることによってスリム化が実現でき,結果的にアンテナをスリムにすることになり,ビルの屋上や電柱の上部への設置における容易性を有したアンテナを提供することができる。また,フォールデッドダイポール100を用いたことにより平衡不平衡変換を備えることなく給電線を引き出すことができるので,アンテナ構造が簡単になる。
As described above, according to the horizontally polarized omnidirectional antenna of the present invention, an antenna having an excellent electrical characteristic can be provided because the structure is simple and the loss of the feed line can be reduced. In addition, since the main feed line that feeds the folded dipole 100 in series is a coaxial line, not only the outer diameter of the entire antenna can be made slim, but also the mechanical strength of the antenna can be made extremely strong. Further, if this antenna is used for a radio wave having a particularly high frequency, for example, an antenna for a PHS base station, the folded dipole 100 can be made small and the folded dipole 100 is formed in a substantially circular shape. As a result, the antenna can be slimmed down, and as a result, the antenna can be slimmed, and an antenna having ease of installation on the roof of a building or the upper part of a utility pole can be provided. In addition, since the folded dipole 100 is used, the feeder line can be drawn out without providing a balance-unbalance conversion, so that the antenna structure is simplified.

また,同軸線路として一般的に市販されている同軸ケーブルを使うことで,生産性のよいアンテナを提供できる。またこのように,主たる給電線路を同軸ケーブルで構成すると共に,フォールデッドダイポール100を支持するエレメント支持部材30の寸法をできる限り小さくなるように形成したので,レドームが風などにより全体的に撓んだり振動したりしても,それらによって発生するストレスを同軸ケーブルが有する柔軟性によって吸収することができ,機械的強度に対する極めて信頼性の高いアンテナを提供できる。
In addition, a highly productive antenna can be provided by using a commercially available coaxial cable as a coaxial line. Further, in this way, the main feeder line is constituted by a coaxial cable, and the element support member 30 that supports the folded dipole 100 is formed so as to be as small as possible. Therefore, the radome is bent entirely by wind or the like. Even if it vibrates or vibrates, the stress generated by them can be absorbed by the flexibility of the coaxial cable, and an extremely reliable antenna with respect to mechanical strength can be provided.

そして,前記レドームの内径をエレメント支持部材30の幅寸法より僅かに大きく形成すれば,エレメント支持部材30の両側側辺は,組み上がったアンテナをレドームに収納するときのガイドの役目をして,フォールデッドダイポール100がレドームの内壁に接触して変形するのを防止すると共に,レドームの撓みや振動に対してレドームとフォールデッドダイポール100との適切な間隔を保つスペーサとして動作させることができる。
Then, if the inner diameter of the radome is formed slightly larger than the width dimension of the element support member 30, both sides of the element support member 30 serve as a guide when the assembled antenna is stored in the radome. The folded dipole 100 can be prevented from coming into contact with the inner wall of the radome and deformed, and can be operated as a spacer that keeps an appropriate distance between the radome and the folded dipole 100 against the bending and vibration of the radome.

さらに加えて,例えば,前記エレメント支持部材30に形成された前記給電線路を経路長の異なる複数の線路からなるように構成し,必要に応じて給電線路の経路を選択的に選ぶように構成することで,前記給電線路の軸線方向と略直交するする面に対する放射のチルト角度を任意の角度に最適化して設定することができる,優れたアンテナを提供することができる。
In addition, for example, the feed line formed on the element support member 30 is configured to include a plurality of lines having different path lengths, and the path of the feed line is selectively selected as necessary. Thus, it is possible to provide an excellent antenna capable of optimizing and setting a radiation tilt angle with respect to a plane substantially orthogonal to the axial direction of the feed line.

尚,本発明は上記実施の形態に限定されるものではなく,例えば,フォールデッドダイポールの形状を四角形などの多角形状に形成しても良いし,それらの配列間隔や配列数は所要性能に合わせて適宜に変更しても良い。また,実施例とした1900MHz帯を使ったPHS基地局用アンテナとしてばかりでなく,それ以外の周波数帯や用途に提供するように構成しても良いなど,本発明の趣旨を逸脱しない範囲で各部の構成を適宜に変更して実施することも可能である。
The present invention is not limited to the above embodiment. For example, the folded dipole may be formed in a polygonal shape such as a quadrangle, and the arrangement interval and the number of arrangements may be adjusted to the required performance. May be changed as appropriate. In addition to the PHS base station antenna using the 1900 MHz band according to the embodiment, it may be configured to be provided for other frequency bands and uses, and so on, without departing from the spirit of the present invention. It is also possible to implement by appropriately changing the configuration.

本発明にかかる水平偏波無指向性アンテナの概略図面であり,(a)は正面図,(b)は背面図,(c)は上面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a schematic drawing of the horizontal polarization omnidirectional antenna concerning this invention, (a) is a front view, (b) is a rear view, (c) is a top view. 本発明にかかる水平偏波無指向性アンテナの要部を拡大した斜視図である。It is the perspective view which expanded the principal part of the horizontal polarization omnidirectional antenna concerning this invention. 本発明にかかる水平偏波無指向性アンテナの全体の構成を示す概略図である。It is the schematic which shows the whole structure of the horizontal polarization omnidirectional antenna concerning this invention. 本発明にかかる水平偏波無指向性アンテナの電圧定在波比の実測データである。It is actual measurement data of the voltage standing wave ratio of the horizontal polarization omnidirectional antenna concerning the present invention. 本発明にかかる水平偏波無指向性アンテナの水平偏波垂直面指向性の実測データである。It is actual measurement data of the horizontal polarization vertical plane directivity of the horizontal polarization omnidirectional antenna concerning this invention. 本発明にかかる水平偏波無指向性アンテナの水平偏波水平面指向性の実測データである。It is actual measurement data of the horizontal polarization horizontal plane directivity of the horizontal polarization omnidirectional antenna concerning this invention.

符号の説明Explanation of symbols

1…水平偏波無指向性アンテナ,2…プリント基板,2a…位置決め孔,2b…位置決め孔,4…切欠部,5…同軸ケーブル,6…外部絶縁体,7…外部導体,8…内部絶縁体,9…中心導体,10…第1のエレメント部材,11…下側素子,12…先端部,13…上側素子,14…先端部,15…支持基部,15a…固着爪,16…接続片,17…折り返し部,20…第2のエレメント部材,21…下側素子,22…先端部,23…上側素子,24…先端部,25…支持基部,25a…固着爪,26…接続片,27…折り返し部,30…エレメント支持部材,31…給電線路,32…止着ランド,35…接地線路,36…接地導体,50…コネクタ,100…フォールデッドダイポール。
DESCRIPTION OF SYMBOLS 1 ... Horizontally polarized omnidirectional antenna, 2 ... Printed circuit board, 2a ... Positioning hole, 2b ... Positioning hole, 4 ... Notch part, 5 ... Coaxial cable, 6 ... External insulator, 7 ... External conductor, 8 ... Internal insulation Body: 9 ... Center conductor, 10 ... First element member, 11 ... Lower element, 12 ... Tip part, 13 ... Upper element, 14 ... Tip part, 15 ... Support base, 15a ... Fixing claw, 16 ... Connection piece , 17 ... folded portion, 20 ... second element member, 21 ... lower element, 22 ... tip part, 23 ... upper element, 24 ... tip part, 25 ... support base, 25a ... fixing claw, 26 ... connection piece, 27: Folded part, 30 ... Element support member, 31 ... Feed line, 32 ... Fastening land, 35 ... Ground line, 36 ... Ground conductor, 50 ... Connector, 100 ... Folded dipole.

Claims (6)

水平面無指向性アンテナにおいて,
少なくとも,中心導体と該中心導体の軸心と同心に配設された外部導体からなる所定の長さの同軸線路と,
前記同軸線路の一端側の外部導体と接続される接地線路と同軸線路の中心導体と接続される所定の長さの給電線路を備え,前記同軸線路の軸線に略並行な平面に沿って軸線方向に配列接続されたエレメント支持部材と,
前記エレメント支持部材に形成された前記給電線路と前記接地線路間に接続され,前記同軸線路の軸線に略垂直な平面に沿って円形もしくは多角形に形成されたフォールデッドダイポールと,
を具備したことを特徴とする水平面無指向性アンテナ。
In horizontal plane omnidirectional antenna,
A coaxial line of a predetermined length comprising at least a central conductor and an outer conductor disposed concentrically with the central axis of the central conductor;
A ground line connected to the outer conductor on one end side of the coaxial line and a feed line of a predetermined length connected to the central conductor of the coaxial line, and an axial direction along a plane substantially parallel to the axis of the coaxial line Element support members arranged and connected to each other,
A folded dipole connected between the feeder line and the ground line formed on the element support member, and formed in a circular or polygonal shape along a plane substantially perpendicular to the axis of the coaxial line;
A horizontal plane omnidirectional antenna comprising:
前記同軸線路と前記エレメント支持部材と前記フォールデッドダイポールからなる水平面無指向性アンテナを垂直方向に直列に複数個接続したことを特徴とする請求項1に記載の水平面無指向性アンテナ。
The horizontal plane omnidirectional antenna according to claim 1, wherein a plurality of horizontal plane omnidirectional antennas including the coaxial line, the element support member, and the folded dipole are connected in series in a vertical direction.
前記フォールデッドダイポールは,使用周波数の0.4から0.6波長のアンテナ長を有することを特徴とした請求項1または請求項2のいずれか一項に記載の水平面無指向性アンテナ。
The horizontal plane omnidirectional antenna according to any one of claims 1 and 2, wherein the folded dipole has an antenna length of 0.4 to 0.6 wavelengths of a used frequency.
前記同軸線路の軸線に略直交する方向の前記エレメント支持部材の外形寸法は前記フォールデッドダイポールの外形寸法より僅かに大きいことを特徴とした請求項1から請求項3のいずれか一項に記載の水平面無指向性アンテナ。
4. The outer dimension of the element support member in a direction substantially orthogonal to the axis of the coaxial line is slightly larger than the outer dimension of the folded dipole. 5. Horizontal plane omnidirectional antenna.
前記同軸線路の長さと,前記エレメント支持部材に形成された前記給電線路の長さにより,前記給電線路の軸線方向と略直交する面に対する放射のチルト角度を最適化して設定することを特徴とする請求項1から請求項4のいずれか一項に記載の水平面無指向性アンテナ。
The radiation tilt angle with respect to a plane substantially perpendicular to the axial direction of the feed line is optimized and set according to the length of the coaxial line and the length of the feed line formed on the element support member. The horizontal plane omnidirectional antenna as described in any one of Claims 1-4.
前記同軸線路は同軸ケーブルからなることを特徴とした請求項1から請求項5のいずれか一項に記載の水平面無指向性アンテナ。
The horizontal plane omnidirectional antenna according to any one of claims 1 to 5, wherein the coaxial line includes a coaxial cable.
JP2006233201A 2006-08-30 2006-08-30 Horizontally polarized omnidirectional antenna Expired - Fee Related JP4795898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006233201A JP4795898B2 (en) 2006-08-30 2006-08-30 Horizontally polarized omnidirectional antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006233201A JP4795898B2 (en) 2006-08-30 2006-08-30 Horizontally polarized omnidirectional antenna

Publications (2)

Publication Number Publication Date
JP2008060764A true JP2008060764A (en) 2008-03-13
JP4795898B2 JP4795898B2 (en) 2011-10-19

Family

ID=39243040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006233201A Expired - Fee Related JP4795898B2 (en) 2006-08-30 2006-08-30 Horizontally polarized omnidirectional antenna

Country Status (1)

Country Link
JP (1) JP4795898B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161495A (en) * 2009-01-06 2010-07-22 Kddi Corp Antenna device and array antenna
JP2011010009A (en) * 2009-06-25 2011-01-13 Kddi Corp Antenna device
JP2011217109A (en) * 2010-03-31 2011-10-27 Kddi Corp Antenna device
JP2012049864A (en) * 2010-08-27 2012-03-08 Denki Kogyo Co Ltd Nondirectional antenna

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615327U (en) * 1992-07-22 1994-02-25 日本無線株式会社 Folded dipole antenna
JPH07283651A (en) * 1994-04-13 1995-10-27 Nippon Antenna Co Ltd Nondirectional antenna, nondirectional vhf antenna, nondirectional uhf antenna, and nondirectional vhf/uhf antenna
JP2005167705A (en) * 2003-12-03 2005-06-23 Harada Ind Co Ltd Horizontal polarization omnidirectional array antenna
JP2005223404A (en) * 2004-02-03 2005-08-18 Dx Antenna Co Ltd Multi-frequency antenna

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615327U (en) * 1992-07-22 1994-02-25 日本無線株式会社 Folded dipole antenna
JPH07283651A (en) * 1994-04-13 1995-10-27 Nippon Antenna Co Ltd Nondirectional antenna, nondirectional vhf antenna, nondirectional uhf antenna, and nondirectional vhf/uhf antenna
JP2005167705A (en) * 2003-12-03 2005-06-23 Harada Ind Co Ltd Horizontal polarization omnidirectional array antenna
JP2005223404A (en) * 2004-02-03 2005-08-18 Dx Antenna Co Ltd Multi-frequency antenna

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010161495A (en) * 2009-01-06 2010-07-22 Kddi Corp Antenna device and array antenna
JP2011010009A (en) * 2009-06-25 2011-01-13 Kddi Corp Antenna device
JP2011217109A (en) * 2010-03-31 2011-10-27 Kddi Corp Antenna device
JP2012049864A (en) * 2010-08-27 2012-03-08 Denki Kogyo Co Ltd Nondirectional antenna

Also Published As

Publication number Publication date
JP4795898B2 (en) 2011-10-19

Similar Documents

Publication Publication Date Title
US10910700B2 (en) Omnidirectional antenna for mobile communication service
KR101304929B1 (en) Triple band dual Polarization Dipole Antenna including balun based on Printed Circuit Board
JPH10150319A (en) Dipole antenna with reflecting plate
JP2008085587A (en) Radiator, and antenna device including the same
JP4795898B2 (en) Horizontally polarized omnidirectional antenna
JP4905239B2 (en) Antenna device
JP2014150374A (en) Orthogonal yagi-uda antenna
EP1947737A1 (en) Omni-directional high gain dipole antenna
JP2017188850A (en) Multi-frequency common antenna assembly
JP4878024B2 (en) antenna
KR101286073B1 (en) The Structure of Dual Polarization Dipole Antenna
US20230361475A1 (en) Base station antennas having compact dual-polarized box dipole radiating elements therein that support high band cloaking
JP2011087241A (en) Antenna, and array antenna
JP2007006062A (en) Omnidirectional antenna
JP2009005167A (en) Antenna unit and horizontal plane omnidirectional antenna for horizontal polarized wave
JP2008153967A (en) Antenna device
JP2006229646A (en) Antenna system for horizontal polarization
JP4589821B2 (en) Antenna device
JP2018067860A (en) antenna
JP5407067B2 (en) Antenna device
JP2006014152A (en) Plane antenna
JP2002198731A (en) Frequency common use non-directional antenna, and array antenna
KR101021478B1 (en) Multi-band omnidirectional antenna
JP4235068B2 (en) Horizontally polarized omnidirectional antenna device
JP3116501U (en) Modified batwing antenna device for digital terrestrial broadcasting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090804

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110125

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110728

R150 Certificate of patent or registration of utility model

Ref document number: 4795898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees