JP2008060506A - Inductor and method of manufacturing the same - Google Patents

Inductor and method of manufacturing the same Download PDF

Info

Publication number
JP2008060506A
JP2008060506A JP2006238824A JP2006238824A JP2008060506A JP 2008060506 A JP2008060506 A JP 2008060506A JP 2006238824 A JP2006238824 A JP 2006238824A JP 2006238824 A JP2006238824 A JP 2006238824A JP 2008060506 A JP2008060506 A JP 2008060506A
Authority
JP
Japan
Prior art keywords
magnetic metal
inductor
powder
soft magnetic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006238824A
Other languages
Japanese (ja)
Other versions
JP4868583B2 (en
Inventor
Teruo Yasuoka
照夫 安岡
Teruhiko Fujiwara
照彦 藤原
Tadao Katahira
忠夫 片平
Hiroyuki Matsumoto
裕之 松元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2006238824A priority Critical patent/JP4868583B2/en
Publication of JP2008060506A publication Critical patent/JP2008060506A/en
Application granted granted Critical
Publication of JP4868583B2 publication Critical patent/JP4868583B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Soft Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a low-height inductor which is improved in density variation and dimensional accuracy of the products and is formed by using a magnetic-alloy forming method not relying on compression molding, and a method of manufacturing the same. <P>SOLUTION: The inductor is formed by combining magnetic metal films and a coil composed of a conductor, wherein the magnetic metal films are formed of at least one kind selected from carbonyl iron dust having high saturation magnetization, Fe-Si-Al alloy powder, and Fe-Si alloy powder, using an aerosol deposition method. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、インダクタ及びその製造方法に関し、特に軟磁性金属粉末をエアロゾル化し、エアロゾルデポジション法を用いて形成される磁性体と、導体からなるコイルを有するインダクタ及びその製造方法に関する。   The present invention relates to an inductor and a method for manufacturing the same, and more particularly to an inductor having a magnetic body formed by aerosolizing soft magnetic metal powder and using an aerosol deposition method, and a method for manufacturing the same.

従来、インダクタは軟磁性金属粉末とバインダーを混合し圧縮成形することで磁性体コアを製造し、その磁性体コアとコイルの複合体によりインダクタを形成する手法が多く用いられてきた。さらに、より高性能なインダクタを得るために、磁性粉末やバインダー、コイル、金型、潤滑剤等の組成的、構造的な様々の研究が行われてきた。   Conventionally, an inductor has been often used in which a magnetic core is manufactured by mixing and compression molding a soft magnetic metal powder and a binder, and the inductor is formed by a composite of the magnetic core and a coil. Furthermore, in order to obtain a higher performance inductor, various compositional and structural studies on magnetic powders, binders, coils, molds, lubricants and the like have been conducted.

また、同じく、フェライトの焼結体も透磁率が高く比抵抗も大きい値を示すため、コイルとの複合体により、インダクタとして用いられており、フェライト焼結体もインダクタ用の磁性体コアの材料として数多く研究されてきた。   Similarly, since a ferrite sintered body also has a high magnetic permeability and a large specific resistance, it is used as an inductor by a composite with a coil. A ferrite sintered body is also a material for a magnetic core for an inductor. Has been studied a lot.

しかし、近年のノートパソコンやPDAに使用されるCPUの高速化、小型化に伴いインダクタにも顕著な低背化、大電流化という強い要求があるが、フェライトの焼結体では、これらの用途のインダクタ用の磁性体コアの材料として、要求を満たすことができなくなくなってきた。   However, with the recent increase in CPU speeds and downsizing of CPUs used in notebook personal computers and PDAs, there is a strong demand for inductors with a noticeably lower profile and higher current. As a material for magnetic cores for inductors, it is no longer possible to meet the requirements.

軟磁性金属粉末を用いたインダクタについては、飽和磁化の向上などを目的として、なおも検討がなされている。特許文献1には、その一例として、軟磁性金属粉末とバインダーの複合体からなる磁性体コアの中にコイルを内蔵させたインダクタの開発内容が開示されている。   Inductors using soft magnetic metal powder are still being studied for the purpose of improving saturation magnetization. Patent Document 1 discloses, as an example, the development of an inductor in which a coil is built in a magnetic core made of a composite of soft magnetic metal powder and a binder.

また、近年、微粒子を分散させたエアロゾルを基板に噴射することにより、スパッタ法やMO−CVD法では得ることが困難であった10μm以上の厚膜を作製する技術が検討され、実用化されつつある。この技術はエアロゾルデポジション法と称され、例えば、この方法で得られるPZT厚膜は緻密な構造を有し、優れた圧電特性を示す。   In recent years, a technique for producing a thick film having a thickness of 10 μm or more, which has been difficult to obtain by a sputtering method or an MO-CVD method, by spraying an aerosol in which fine particles are dispersed is being studied and put into practical use. is there. This technique is called an aerosol deposition method. For example, a PZT thick film obtained by this method has a dense structure and exhibits excellent piezoelectric characteristics.

特開2004−363466号公報JP 2004-363466 A

上記のCPUの高速化、小型化に伴う、インダクタに対する顕著な低背化、大電流化という要求に対して、軟磁性金属粉末とバインダーの複合体からなる磁性体コアの中にコイルを内蔵させたインダクタでも、必ずしも対処することができていない。   In response to the demands for significantly lower inductors and higher currents associated with higher CPU speeds and miniaturization, a coil is built in a magnetic core composed of a composite of soft magnetic metal powder and binder. Even inductors have not always dealt with them.

例えば、1mm以下にまで低背化されるインダクタを軟磁性体粉末の圧縮成形により製造し、高特性を得るためには、製品の密度バラツキ管理や寸法精度をうまくコントロールしなければならない。このようなインダクタを製作することは非常に難しい。さらに薄型となると、成形用金型も精密な部分が多くなり、本圧縮成形では高圧力が必要なため、薄型の金型となると金型寿命も短くなり、コスト高になるという問題点がある。   For example, in order to manufacture an inductor whose height is reduced to 1 mm or less by compression molding of soft magnetic powder and obtain high characteristics, it is necessary to control the density variation of the product and to control the dimensional accuracy well. It is very difficult to manufacture such an inductor. As the mold becomes thinner, the molding die also has more precise parts, and high pressure is required in this compression molding, so there is a problem that the life of the mold is shortened and the cost is increased when the mold is thin. .

スパッタ技術等で薄膜の磁性体を製造することは可能であるが、単純に薄ければ良いというものではなく、充分な特性とある程度の厚みを備えた磁性体が要求される。スパッタ技術で対応できるのは数μmであって、100μm単位の要求には対応が難しい。印刷技術においては100μm単位の厚膜の製造にも対応が可能であるが、この場合、密度を上げるのが難しく特性の面で対応できない。   Although it is possible to produce a thin film magnetic body by sputtering technology or the like, it is not simply a thin film, and a magnetic body having sufficient characteristics and a certain thickness is required. Sputtering technology can cope with several μm, and it is difficult to meet the requirement of 100 μm unit. In the printing technology, it is possible to cope with the production of a thick film having a thickness of 100 μm.

エアロゾルデポジション法は厚膜製造が可能な技術ではあるが、従来行われているPZT等のセラミックスは脆性材料であり、破砕されやすいことからエアロゾルデポジション法による成膜が行われるものと考えられる。しかしながら、金属のような延性材料は、エアロゾルデポジション法の成膜原理を考慮した場合、PZT等のセラミックに比べて破砕されにくいことから、成膜は簡単では無いと考えられる。   Although the aerosol deposition method is a technology capable of producing a thick film, the conventional ceramics such as PZT are brittle materials and are likely to be crushed, so it is considered that the film is formed by the aerosol deposition method. . However, a ductile material such as a metal is less likely to be crushed compared to a ceramic such as PZT when the deposition principle of the aerosol deposition method is taken into consideration.

本発明の課題は、従来と同等以上の特性を有しながら、従来技術による製造が困難であった低背型のインダクタとその製造方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a low-profile inductor and a method for manufacturing the same, which have characteristics equal to or better than those of the prior art and have been difficult to manufacture by the prior art.

本発明者らは、金属材料の中でも比較的密度の高い鉄系の金属材料からなる粒径の細かい粉末を原料とすることで、容易に粉末に高い運動エネルギーを持たせることができ、比較的容易に特性の良い磁性金属膜が製作できることを見出した。この鉄系の軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法において、良好な磁性金属膜の製造条件を実験によって確立し、高効率で、低背化した高性能のインダクタを提供することを可能とした。   The present inventors can use a powder with a fine particle size made of a ferrous metal material having a relatively high density among metal materials as a raw material, so that the powder can easily have high kinetic energy. It was found that a magnetic metal film having good characteristics can be easily manufactured. In the aerosol deposition method using aerosols of iron-based soft magnetic metal powders, we have established experimental conditions for producing good magnetic metal films to provide high-efficiency, low-profile, high-performance inductors. It was possible.

すなわち、本発明によれば、コイル全体が磁性金属膜で覆われてなるインダクタにおいて、前記磁性金属膜が基板上に軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法により形成されてなることを特徴とするインダクタが得られる。   That is, according to the present invention, in an inductor in which the entire coil is covered with a magnetic metal film, the magnetic metal film is formed on a substrate by an aerosol deposition method using an aerosol of soft magnetic metal powder. A characteristic inductor is obtained.

また、本発明によれば、磁性金属膜が基板上に成膜され、コイルを挟んでさらに前記磁性金属膜が成膜されてなるインダクタにおいて、前記磁性金属膜が基板上に軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法により形成されてなることを特徴とするインダクタが得られる。   According to the present invention, in the inductor in which the magnetic metal film is formed on the substrate and the magnetic metal film is further formed with the coil interposed therebetween, the magnetic metal film is formed of the soft magnetic metal powder on the substrate. An inductor characterized by being formed by an aerosol deposition method using aerosol is obtained.

また、本発明によれば、磁性金属膜にコイルを巻き廻してなるインダクタにおいて、前記磁性金属膜が基板上に軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法により形成されてなることを特徴とするインダクタが得られる。   According to the present invention, in the inductor formed by winding a coil around a magnetic metal film, the magnetic metal film is formed on a substrate by an aerosol deposition method using an aerosol of soft magnetic metal powder. Is obtained.

また、本発明によれば、前記軟磁性金属粉末が、カルボニル鉄粉、Fe−Si−Al合金粉末、Fe−Si合金粉末から選ばれる少なくとも1種であることを特徴とするインダクタが得られる。   According to the present invention, there is obtained an inductor characterized in that the soft magnetic metal powder is at least one selected from carbonyl iron powder, Fe—Si—Al alloy powder, and Fe—Si alloy powder.

また、本発明によれば、前記軟磁性金属粉末として表面がSiO2層で被覆された軟磁性金属粉末を用いたことを特徴とするインダクタが得られる。 According to the present invention, there is obtained an inductor characterized in that a soft magnetic metal powder whose surface is coated with a SiO 2 layer is used as the soft magnetic metal powder.

また、本発明によれば、前記磁性金属膜が磁気異方性を有することを特徴とするインダクタが得られる。   In addition, according to the present invention, an inductor is obtained in which the magnetic metal film has magnetic anisotropy.

また、本発明によれば、前記軟磁性金属粉末の平均粒径が0.5〜10μmであることを特徴とするインダクタが得られる。   According to the present invention, an inductor is obtained in which the soft magnetic metal powder has an average particle size of 0.5 to 10 μm.

また、本発明は、コイル全体が磁性金属膜で覆われてなるインダクタの製造方法において、前記磁性金属膜を基板上に軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法により形成することを特徴とするインダクタの製造方法である。   According to another aspect of the present invention, there is provided an inductor manufacturing method in which an entire coil is covered with a magnetic metal film, wherein the magnetic metal film is formed on a substrate by an aerosol deposition method using an aerosol of soft magnetic metal powder. And an inductor manufacturing method.

また、本発明は、磁性金属膜にコイルを巻き廻してなるインダクタの製造方法において、前記磁性金属膜を基板上に軟磁性粉末のエアロゾルを用いたエアロゾルデポジション法により形成することを特徴とするインダクタの製造方法である。   According to another aspect of the present invention, there is provided an inductor manufacturing method in which a coil is wound around a magnetic metal film, wherein the magnetic metal film is formed on a substrate by an aerosol deposition method using an aerosol of soft magnetic powder. It is a manufacturing method of an inductor.

また、本発明は、前記軟磁性金属粉末は、カルボニル鉄粉、Fe−Si−Al合金粉末、Fe−Si合金粉末から選ばれる少なくとも1種であることを特徴とするインダクタの製造方法である。   In addition, the present invention provides the inductor manufacturing method, wherein the soft magnetic metal powder is at least one selected from carbonyl iron powder, Fe—Si—Al alloy powder, and Fe—Si alloy powder.

また、本発明は、前記軟磁性金属粉末は、表面がSiO2層で被覆されていることを特徴とするインダクタの製造方法である。 Further, the present invention is the method for manufacturing an inductor, characterized in that the soft magnetic metal powder has a surface coated with a SiO 2 layer.

また、本発明は、前記磁性金属膜が形状磁気異方性を有することを特徴とするインダクタの製造方法である。   The present invention is also a method for manufacturing an inductor, wherein the magnetic metal film has shape magnetic anisotropy.

また、本発明は、前記軟磁性金属粉末の平均粒径が、0.5〜10μmであることを特徴とするインダクタの製造方法である。   In addition, the present invention provides the inductor manufacturing method, wherein the soft magnetic metal powder has an average particle size of 0.5 to 10 μm.

本発明は、エアロゾルデポジション法を用いて、高い飽和磁化を有するカルボニル鉄粉、Fe−Si−Al(Si9.5重量%、Al5.5重量%)合金粉末、Fe−Si(Si3重量%)合金粉末等を原料粉末とし、高磁気特性の軟磁性金属膜を形成することにより、厚膜磁性体を用いたインダクタが高効率で製造可能である。しかも、圧粉成形体と同程度に特性が高く低背化されたインダクタを得ることができ、金型を用いた圧縮成形に依らないで磁性膜が形成できることから、金型寿命の低下が起こりえず、低コスト化を図ることが可能である。   The present invention uses an aerosol deposition method to produce carbonyl iron powder having high saturation magnetization, Fe—Si—Al (Si 9.5 wt%, Al 5.5 wt%) alloy powder, Fe—Si (Si 3 wt%). By using an alloy powder or the like as a raw material powder and forming a soft magnetic metal film having high magnetic properties, an inductor using a thick film magnetic body can be manufactured with high efficiency. In addition, it is possible to obtain a low profile inductor with properties as high as those of a compacted body, and a magnetic film can be formed without relying on compression molding using a mold, resulting in a decrease in mold life. First, it is possible to reduce the cost.

エアロゾルデポジション法を磁性膜に適用すると、短時間で厚膜が得られ、特性の良い磁性金属膜が製作できる。この軟磁性金属粉末を用いたエアロゾルデポジション法により製作した磁性金属膜とコイルを組み合わせてインダクタを形成する。   When the aerosol deposition method is applied to a magnetic film, a thick film can be obtained in a short time, and a magnetic metal film with good characteristics can be manufactured. An inductor is formed by combining a magnetic metal film and a coil manufactured by an aerosol deposition method using this soft magnetic metal powder.

図1に、本発明の第1の実施の形態に係るインダクタの説明図を示し、図2に、そのインダクタの製作工程の説明図を示す。第1の実施の形態に係るインダクタは、次の2つの例が考えられる。第1の例としては、エアロゾルを用いたエアロゾルデポジション法により、基板3上に成膜された磁性金属膜上にコイル14を乗せ、さらにその上にエアロゾルデポジション法により軟磁性金属膜13a,13bを成膜することで、基板3上にインダクタが形成される。第2の例としては、同じくエアロゾルを用いたエアロゾルデポジション法により、基板3上に成膜された軟磁性金属膜13b上にコイル14を乗せ、同じく、エアロゾルデポジション法により基板3(図2では省略)上に成膜した軟磁性金属膜13aを重ねて貼り合わせることによりインダクタが形成される。   FIG. 1 is an explanatory view of an inductor according to the first embodiment of the present invention, and FIG. 2 is an explanatory view of a manufacturing process of the inductor. The following two examples of the inductor according to the first embodiment are conceivable. As a first example, the coil 14 is placed on the magnetic metal film formed on the substrate 3 by the aerosol deposition method using aerosol, and the soft magnetic metal film 13a, An inductor is formed on the substrate 3 by depositing 13b. As a second example, the coil 14 is placed on the soft magnetic metal film 13b formed on the substrate 3 by the aerosol deposition method using the aerosol, and the substrate 3 (FIG. 2) is similarly formed by the aerosol deposition method. The inductor is formed by stacking and laminating the soft magnetic metal film 13a formed thereon.

次いで、図3に、本発明の第2の実施の形態に係るインダクタの説明図を示す。第2の実施の形態の例としては、軟磁性粉末のエアロゾルを用いたエアロゾルデポジション法により、基板3上に軟磁性金属膜13aを成膜し、基板3と軟軟磁性膜13aの周りにコイル14を巻き廻し、最後に基板3の下部両端に端子15を付けてインダクタが形成される。   Next, FIG. 3 shows an explanatory diagram of the inductor according to the second embodiment of the present invention. As an example of the second embodiment, a soft magnetic metal film 13a is formed on the substrate 3 by an aerosol deposition method using an aerosol of soft magnetic powder, and around the substrate 3 and the soft soft magnetic film 13a. The inductor 14 is formed by winding the coil 14 and finally attaching terminals 15 to both lower ends of the substrate 3.

エアロゾルデポジション法による成膜の説明として、まず、本発明の実施の形態で使用するエアロゾルデポジション装置から説明する。図4は、軟磁性金属膜13a,13bの成膜を行うエアロゾルデポジション装置を示す模式図である。成膜チャンバー1には、ノズル2が取り付けられ、ノズル2の先には基板3を固定するフレーム4が取り付けられている。   As an explanation of the film formation by the aerosol deposition method, first, the aerosol deposition apparatus used in the embodiment of the present invention will be described. FIG. 4 is a schematic diagram showing an aerosol deposition apparatus for forming the soft magnetic metal films 13a and 13b. A nozzle 2 is attached to the film forming chamber 1, and a frame 4 for fixing the substrate 3 is attached to the tip of the nozzle 2.

流量コントローラ8によって、流量をコントロールされた搬送ガス9および軟磁性金属粉末が、エアロゾル発生装置7に注入される。成膜チャンバー1は減圧されており、生成されたエアロゾルはノズル2まで進み、軟磁性金属膜粉末のエアロゾルがノズル2を通して減圧された成膜チャンバー1に吹き出される。エアロゾル化された軟磁性金属粉末は、基板へ衝突し、堆積することにより成膜される。   The carrier gas 9 and the soft magnetic metal powder whose flow rate is controlled by the flow rate controller 8 are injected into the aerosol generator 7. The film forming chamber 1 is depressurized, and the generated aerosol proceeds to the nozzle 2, and the aerosol of the soft magnetic metal film powder is blown out through the nozzle 2 into the film forming chamber 1 having been depressurized. The aerosolized soft magnetic metal powder collides with the substrate and deposits to form a film.

軟磁性金属粉末としては、具体的に、カルボニル鉄粉、Fe−Si−Al合金粉末、及びFe−Si合金粉を用いて成膜するのが良い。Fe−Si−Al合金粉末の場合はSi9.5重量%、Al5.5重量%のものが、Fe−Si合金粉末の場合はSi3重量%のものが磁気特性が良好なので、磁気インダクタ用として望ましい。   Specifically, the soft magnetic metal powder is preferably formed using carbonyl iron powder, Fe—Si—Al alloy powder, and Fe—Si alloy powder. In the case of Fe-Si-Al alloy powder, Si 9.5% by weight and Al 5.5% by weight are preferable for magnetic inductors, and in the case of Fe-Si alloy powder, Si 3% by weight has good magnetic characteristics. .

まず、平均粒径4.1μmを有するカルボニル鉄粉をエアロゾル発生装置7に投入し、エアロゾルデポジション法を用い、表1の条件に従い60minで成膜を行った場合について説明する。   First, a case will be described in which carbonyl iron powder having an average particle size of 4.1 μm is charged into the aerosol generator 7 and film formation is performed for 60 minutes according to the conditions shown in Table 1 using the aerosol deposition method.

図5に得られた膜の走査型電子顕微鏡による表面写真を、図6に走査型電子顕微鏡による断面写真をそれぞれ示す。図5と図6に示されるように、エアロゾルデポジション法を用いた軟磁性金属膜13a,13bにおいては、SiO2基板上にカルボニル鉄粉の緻密な磁性金属膜を形成できている。 FIG. 5 shows a surface photograph of the obtained film by a scanning electron microscope, and FIG. 6 shows a sectional photograph by a scanning electron microscope. As shown in FIGS. 5 and 6, in the soft magnetic metal films 13a and 13b using the aerosol deposition method, a dense magnetic metal film of carbonyl iron powder can be formed on the SiO 2 substrate.

さらに、4.1μmの平均粒径を有するカルボニル鉄粉と、このカルボニル鉄粉にSiO2被覆を形成した粉末を用意し、各々の粉末を母粉末として、表1の条件に従い成膜を行った場合について説明する。図7に、成膜時間変化に対するカルボニル鉄粉を用いた場合の磁性合金膜厚変化を示す。 Further, carbonyl iron powder having an average particle diameter of 4.1 μm and powders in which SiO 2 coating was formed on this carbonyl iron powder were prepared, and film formation was performed according to the conditions in Table 1 using each powder as a mother powder. The case will be described. FIG. 7 shows changes in the thickness of the magnetic alloy when carbonyl iron powder is used with respect to changes in the film formation time.

図7によると、カルボニル鉄粉及びSiO2被覆を施されたカルボニル鉄粉それぞれにおいて成膜時間の増加と共に膜厚が増加していることがわかる。このことから、磁性金属粉末にバインダーを混合し圧縮成形により磁性体合金を得るという従来の方法に加えて、エアロゾルデポジション法を用いても成膜時間を制御することで厚みのある磁性体合金を得ることが可能であり、さらにSiO2被覆により絶縁性を高めた磁性体合金の作製が可能となる。 According to FIG. 7, it can be seen that the film thickness increases as the film formation time increases in each of the carbonyl iron powder and the carbonyl iron powder coated with SiO 2 . Therefore, in addition to the conventional method of obtaining a magnetic alloy by compression molding by mixing a binder with magnetic metal powder, a thick magnetic alloy can be obtained by controlling the film formation time even by using the aerosol deposition method. In addition, it is possible to produce a magnetic alloy with improved insulation by coating with SiO 2 .

次いで、平均粒径5μmを有するFe−Si−Al(Si9.5重量%、Al5.5重量%)合金、Fe−Si(Si3重量%)合金粉末についても前記同様の場合について説明する。図8に成膜時間の変化に対するFe−Si−Al(Si9.5重量%、Al5.5重量%)合金粉を用いた場合の磁性合金膜厚変化を、図9に成膜時間の変化に対するFe−Si(Si3重量%)合金粉を用いた場合の磁性合金膜厚変化を示す。   Next, the same case as described above will be described for Fe—Si—Al (Si 9.5 wt%, Al 5.5 wt%) alloy and Fe—Si (Si 3 wt%) alloy powder having an average particle diameter of 5 μm. FIG. 8 shows the change in film thickness of the magnetic alloy when using Fe-Si-Al (Si 9.5 wt%, Al 5.5 wt%) alloy powder with respect to the change in the film formation time, and FIG. The magnetic alloy film thickness change at the time of using Fe-Si (Si3 weight%) alloy powder is shown.

図8によると、Fe−Si−Al(Si9.5重量%、Al5.5重量%)合金粉末、及びSiO2被覆を施したFe−Si−Al(Si9.5重量%、Al5.5重量%)合金粉末において、成膜時間の増加に従い膜厚が増加しており、前記のカルボニル鉄粉だけでなく、Fe−Si−Al(Si9.5重量%、Al5.5重量%)合金においてもエアロゾルデポジション法を用いた厚みのある磁性体合金の作製が可能となる。 According to FIG. 8, Fe—Si—Al (Si 9.5 wt%, Al 5.5 wt%) alloy powder, and Fe—Si—Al coated with SiO 2 (Si 9.5 wt%, Al 5.5 wt%). ) In the alloy powder, the film thickness increases as the film formation time increases. In addition to the carbonyl iron powder, the aerosol is not only in the Fe—Si—Al (Si 9.5 wt%, Al 5.5 wt%) alloy. It is possible to produce a thick magnetic alloy using the deposition method.

また、図9によると、Fe−Si(Si3重量%)合金及びSiO2被覆を施したFe−Si(Si3重量%)合金粉末においても、前記のカルボニル鉄粉、Fe−Si−Al(Si9.5重量%、Al5.5重量%)合金粉末同様に厚膜の作製が可能であることがわかる。 Further, according to FIG. 9, the Fe-Si (Si 3 wt.%) Alloy and the Fe-Si (Si 3 wt.%) Alloy powder coated with SiO 2 also have the above carbonyl iron powder, Fe-Si-Al (Si9. 5 wt%, Al 5.5 wt%) It can be seen that a thick film can be produced similarly to the alloy powder.

次に、平均粒径の異なる粉末を用いて成膜を行ったときの膜厚の違いを検討するために、平均粒径D50=0.5,1.0,2.0,4.1,8.0,10,12μmを有するカルボニル鉄粉、平均粒径D50=2.0,5.0,8.3,10.0,12.5μmを有するFe−Si−Al(Si9.5重量%、Al5.5重量%)合金粉末及び平均粒径D50=2.5,5.1,8.2,9.6,11.8μmを有するFe−Si(Si3重量%)合金粉末について表1の条件にて60minの成膜を行った場合について説明する。図10に平均粒径変化に対する膜厚変化を示す。 Next, in order to examine the difference in film thickness when film formation is performed using powders having different average particle diameters, the average particle diameter D 50 = 0.5, 1.0, 2.0, 4.1. , 8.0, 10, 12 μm, carbonyl iron powder, average particle size D 50 = 2.0, 5.0, 8.3, 10.0, 12.5 μm Fe—Si—Al (Si 9.5) % By weight, Al 5.5% by weight) alloy powder and Fe—Si (Si 3% by weight) alloy powder having an average particle diameter D 50 = 2.5, 5.1, 8.2, 9.6, 11.8 μm A case where a film is formed for 60 minutes under the conditions in Table 1 will be described. FIG. 10 shows the film thickness change with respect to the average particle diameter change.

図10によると、カルボニル鉄粉、Fe−Si−Al(Si9.5重量%、Al5.5重量%)合金粉末及びFe−Si(Si3重量%)合金粉末において、5μm以下の平均粒径を有する軟磁性金属粉末では60minの成膜時間で10×3mmの範囲に15μm以上の軟磁性金属膜が得られていることがわかる。それに対して、10μmを超える平均粒径を有する軟磁性金属粉末になると1μm以下の軟磁性金属膜しか得られていないため軟磁性金属粉末の平均粒径の上限値は10μmであると判断できる。一方で、現時点では、平均粒径が0.5μm以下の軟磁性金属粉末を得るのが実質的に不可能であることから、平均粒径の最適範囲は0.5〜10μmであると判断できる。   According to FIG. 10, carbonyl iron powder, Fe—Si—Al (Si 9.5 wt%, Al 5.5 wt%) alloy powder and Fe—Si (Si 3 wt%) alloy powder have an average particle size of 5 μm or less. It can be seen that the soft magnetic metal powder has a soft magnetic metal film of 15 μm or more in a range of 10 × 3 mm in a film formation time of 60 min. On the other hand, when a soft magnetic metal powder having an average particle size exceeding 10 μm is obtained, only the soft magnetic metal film of 1 μm or less is obtained, so that the upper limit of the average particle size of the soft magnetic metal powder can be determined to be 10 μm. On the other hand, since it is substantially impossible to obtain a soft magnetic metal powder having an average particle size of 0.5 μm or less at the present time, it can be determined that the optimum range of the average particle size is 0.5 to 10 μm. .

エアロゾルデポジション法を用いたインダクタの試作を行った場合について説明する。一例として、コイルには線径0.1mmの銅線を7.5turnに成形したものを使用し、エアロゾルデポジション法を用いてカルボニル鉄粉からなる磁性合金膜をコイル14全体に覆うように形成し、3×3×1mmのインダクタを製作した。また、上記同様の方法にてFe−Si−Al(Si9.5重量%、Al5.5重量%)磁性金属膜、Fe−Si(Si3重量%)磁性金属膜からなる3×3×1mmのインダクタを製作した。製作したインダクタについてそれぞれの密度を測定し、その密度の真密度に対する割合を粉末充填率として算出する。続いて、1MHzにおけるインダクタンスの値を測定した。表3に得られた結果を示す。また、特性の比較を行うために、圧縮成形により得られたインダクタの特性も表3に記載する。   The case where the prototype of the inductor using the aerosol deposition method is manufactured will be described. As an example, a coil formed by forming a copper wire having a wire diameter of 0.1 mm to 7.5 turn is used, and a magnetic alloy film made of carbonyl iron powder is formed to cover the entire coil 14 by using an aerosol deposition method. Then, a 3 × 3 × 1 mm inductor was manufactured. In addition, a 3 × 3 × 1 mm inductor made of Fe—Si—Al (Si 9.5 wt%, Al 5.5 wt%) magnetic metal film and Fe—Si (Si 3 wt%) magnetic metal film by the same method as above. Was made. The density of each manufactured inductor is measured, and the ratio of the density to the true density is calculated as the powder filling rate. Subsequently, the value of inductance at 1 MHz was measured. Table 3 shows the results obtained. Table 3 also shows the characteristics of the inductor obtained by compression molding in order to compare the characteristics.

表2に示すように、エアロゾルデポジション法を用いて得られたインダクタは圧縮成形により得られたインダクタと比較しても、非常に高い粉末充填率を示す緻密な構造を有し、高いインダクタンスが得られていることは明らかである。このような低背型のインダクタを圧縮成形により作るのは工業的には限界であるため、本発明により得られるインダクタ及びその製造方法は非常に有益である。   As shown in Table 2, the inductor obtained using the aerosol deposition method has a dense structure showing a very high powder filling rate even when compared with the inductor obtained by compression molding, and has a high inductance. It is clear that it has been obtained. Since it is industrially limited to produce such a low-profile inductor by compression molding, the inductor obtained by the present invention and its manufacturing method are very useful.

次に、エアロゾルデポジション法に使用するガス流量を3〜9(L/min)まで変化させて、前記同様にインダクタ製作を行った場合について説明する。表3に得られたインダクタの特性を示す。   Next, the case where the inductor is manufactured in the same manner as described above by changing the gas flow rate used in the aerosol deposition method from 3 to 9 (L / min) will be described. Table 3 shows the characteristics of the obtained inductor.

表3の結果よると、ガス流量が増加しても粉末充填率の増加傾向は見られないにも関わらず、インダクタンスLの値はガス流量の増加に伴って改善される傾向にある。また、図6のエアロゾルデポジション膜の走査型電子顕微鏡による断面写真からも分かるように、軟磁性金属膜13a,13bは、ある程度成膜方向に垂直な方向へ層状の膜を形成しており、エアロゾルデポジション法を用いて形成された軟磁性金属膜13a,13bは、ある程度の異方性を有していると考えられる。   According to the results of Table 3, the value of the inductance L tends to be improved as the gas flow rate increases, even though the powder filling rate does not increase even when the gas flow rate increases. Further, as can be seen from a cross-sectional photograph of the aerosol deposition film of FIG. 6 by a scanning electron microscope, the soft magnetic metal films 13a and 13b form a layered film in a direction perpendicular to the film forming direction to some extent, The soft magnetic metal films 13a and 13b formed using the aerosol deposition method are considered to have a certain degree of anisotropy.

また、前述と同様に、コイル14全体をエアロゾルデポジション法を用いて形成された軟磁性金属膜13a,13bで挟んで作製したインダクタや、同じく、エアロゾルデポジション法を用いて形成された軟磁性金属膜13a,13bにコイル14を巻き廻したインダクタを製作して、圧縮成形により作製した磁性金属膜を用いたインダクタと比較したが、同程度のインダクタの特性を得ることができた。   Similarly to the above, an inductor produced by sandwiching the entire coil 14 between soft magnetic metal films 13a and 13b formed by using an aerosol deposition method, and a soft magnet formed by using an aerosol deposition method. An inductor in which the coil 14 is wound around the metal films 13a and 13b was manufactured and compared with an inductor using a magnetic metal film manufactured by compression molding, but the same characteristics of the inductor could be obtained.

以上の項目に説明したように、本発明により得られる軟磁性金属膜13a,13bは非常に緻密な構造を有し、高い特性を有すことから、本発明がインダクタの低背化に資するところは極めて大きく、工業上有益である。   As explained in the above items, the soft magnetic metal films 13a and 13b obtained by the present invention have a very dense structure and high characteristics, and therefore the present invention contributes to a reduction in the height of the inductor. Is very large and industrially beneficial.

なお、本発明は、前記の実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲の設計変更があっても、本発明に含まれる。   It should be noted that the present invention is not limited to the above-described embodiment, and any design changes that do not depart from the gist of the present invention are included in the present invention.

本発明の第1の実施の形態に係るインダクタの説明図。Explanatory drawing of the inductor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係るインダクタの製作工程の説明図。Explanatory drawing of the manufacturing process of the inductor which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係るインダクタの説明図。磁性金属膜が基板上に成膜され、コイルを挟んでさらに前記磁性金属膜が成膜されてなるインダクタを示す図。Explanatory drawing of the inductor which concerns on the 2nd Embodiment of this invention. The figure which shows the inductor by which a magnetic metal film is formed on a board | substrate and the said magnetic metal film is further formed into a film on both sides of the coil. 磁性体厚膜の成膜を行うエアロゾルデポジション装置を示す模式図。The schematic diagram which shows the aerosol deposition apparatus which forms a magnetic body thick film into a film. 走査型電子顕微鏡による表面写真。The surface photograph by a scanning electron microscope. 走査型電子顕微鏡による断面写真。Cross-sectional photograph taken with a scanning electron microscope. 成膜時間変化に対するカルボニル鉄粉を用いた場合の磁性合金膜厚変化の図。The figure of a magnetic alloy film thickness change at the time of using carbonyl iron powder with respect to film-forming time change. 成膜時間の変化に対するFe−Si−Al合金粉を用いた場合の磁性合金膜厚変化の図。The figure of a magnetic alloy film thickness change at the time of using the Fe-Si-Al alloy powder with respect to the change of film-forming time. 成膜時間の変化に対するFe−Si合金粉を用いた場合の磁性合金膜厚変化の図。The figure of a magnetic alloy film thickness change at the time of using the Fe-Si alloy powder with respect to the change of film-forming time. 平均粒径変化に対する膜厚変化の図。The figure of the film thickness change with respect to an average particle diameter change.

符号の説明Explanation of symbols

1 成膜チャンバー
2 ノズル
3 基板
4 フレーム
5 真空配管
6 真空ポンプ
7 エアロゾル発生装置
8 流量コントローラ
9 搬送ガス
10 カルボニル鉄合金膜の表面
11 カルボニル鉄合金膜の断面
12 SiO2基板
13a,13b 軟磁性金属膜
14 コイル
15 端子
DESCRIPTION OF SYMBOLS 1 Deposition chamber 2 Nozzle 3 Substrate 4 Frame 5 Vacuum pipe 6 Vacuum pump 7 Aerosol generator 8 Flow rate controller 9 Carrier gas 10 Surface of carbonyl iron alloy film 11 Cross section of carbonyl iron alloy film 12 SiO 2 substrate
13a, 13b Soft magnetic metal film 14 Coil 15 Terminal

Claims (13)

コイル全体が磁性金属膜で覆われてなるインダクタにおいて、前記磁性金属膜が基板上に軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法により形成されてなることを特徴とするインダクタ。   An inductor in which an entire coil is covered with a magnetic metal film, wherein the magnetic metal film is formed on a substrate by an aerosol deposition method using an aerosol of soft magnetic metal powder. 磁性金属膜が基板上に成膜され、コイルを挟んでさらに前記磁性金属膜が成膜されてなるインダクタにおいて、前記磁性金属膜が基板上に軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法により形成されてなることを特徴とするインダクタ。   In an inductor in which a magnetic metal film is formed on a substrate and the magnetic metal film is further formed across a coil, an aerosol deposition method using an aerosol of soft magnetic metal powder on the substrate as the magnetic metal film An inductor formed by the method described above. 磁性金属膜にコイルを巻き廻してなるインダクタにおいて、前記磁性金属膜が基板上に軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法により形成されてなることを特徴とするインダクタ。   An inductor in which a coil is wound around a magnetic metal film, wherein the magnetic metal film is formed on a substrate by an aerosol deposition method using an aerosol of soft magnetic metal powder. 前記軟磁性金属粉末が、カルボニル鉄粉、Fe−Si−Al合金粉末、Fe−Si合金粉末から選ばれる少なくとも1種であることを特徴とする、請求項1ないし請求項3のいずれか1項に記載のインダクタ。   4. The soft magnetic metal powder according to claim 1, wherein the soft magnetic metal powder is at least one selected from carbonyl iron powder, Fe-Si-Al alloy powder, and Fe-Si alloy powder. The inductor described in 1. 前記軟磁性金属粉末として表面がSiO2層で被覆された軟磁性金属粉末を用いたことを特徴とする、請求項1ないし請求項4のいずれか1項に記載のインダクタ。 5. The inductor according to claim 1, wherein a soft magnetic metal powder whose surface is coated with a SiO 2 layer is used as the soft magnetic metal powder. 6. 前記磁性金属膜が形状磁気異方性を有することを特徴とする、請求項1ないし請求項5のいずれか1項に記載のインダクタ。   The inductor according to any one of claims 1 to 5, wherein the magnetic metal film has shape magnetic anisotropy. 前記軟磁性金属粉末の平均粒径が、0.5〜10μmであることを特徴とする、請求項1ないし請求項6のいずれか1項に記載のインダクタ。   7. The inductor according to claim 1, wherein an average particle diameter of the soft magnetic metal powder is 0.5 to 10 μm. コイル全体が磁性金属膜で覆われてなるインダクタの製造方法において、前記磁性金属膜が基板上に軟磁性金属粉末のエアロゾルを用いたエアロゾルデポジション法により形成することを特徴とするインダクタの製造方法。   A method for manufacturing an inductor in which the entire coil is covered with a magnetic metal film, wherein the magnetic metal film is formed on a substrate by an aerosol deposition method using an aerosol of soft magnetic metal powder. . 磁性金属膜にコイルを巻き廻してなるインダクタの製造方法において、前記磁性金属膜を基板上に軟磁性粉末のエアロゾルを用いたエアロゾルデポジション法により形成することを特徴とするインダクタの製造方法。   A method for manufacturing an inductor comprising a coil around a magnetic metal film, wherein the magnetic metal film is formed on a substrate by an aerosol deposition method using an aerosol of soft magnetic powder. 前記軟磁性金属粉末は、カルボニル鉄粉、Fe−Si−Al合金粉末、Fe−Si合金粉末から選ばれる少なくとも1種であることを特徴とする、請求項8または請求項9に記載のインダクタの製造方法。   10. The inductor according to claim 8, wherein the soft magnetic metal powder is at least one selected from carbonyl iron powder, Fe—Si—Al alloy powder, and Fe—Si alloy powder. 11. Production method. 前記軟磁性金属粉末は、表面がSiO2層で被覆されていることを特徴とする、請求項8または請求項9に記載のインダクタの製造方法。 10. The method of manufacturing an inductor according to claim 8, wherein the soft magnetic metal powder has a surface coated with a SiO 2 layer. 11. 前記磁性金属膜が形状磁気異方性を有することを特徴とする、請求項8ないし請求項11のいずれか1項に記載のインダクタの製造方法。   The method of manufacturing an inductor according to claim 8, wherein the magnetic metal film has shape magnetic anisotropy. 前記軟磁性金属粉末の平均粒径は、0.5〜10μmであることを特徴とする、請求項8ないし請求項12のいずれか1項に記載のインダクタの製造方法。   13. The method of manufacturing an inductor according to claim 8, wherein an average particle diameter of the soft magnetic metal powder is 0.5 to 10 μm.
JP2006238824A 2006-09-04 2006-09-04 Inductor and manufacturing method thereof Active JP4868583B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238824A JP4868583B2 (en) 2006-09-04 2006-09-04 Inductor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238824A JP4868583B2 (en) 2006-09-04 2006-09-04 Inductor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008060506A true JP2008060506A (en) 2008-03-13
JP4868583B2 JP4868583B2 (en) 2012-02-01

Family

ID=39242858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238824A Active JP4868583B2 (en) 2006-09-04 2006-09-04 Inductor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4868583B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060539A1 (en) * 2008-09-08 2010-03-11 Tomohiro Suetsuna Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, and antenna device
JP2010062484A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, device apparatus, and antenna assembly
JP2010062485A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, method of manufacturing core shell type magnetic material, device apparatus, and antenna assembly
JP2012121753A (en) * 2010-12-08 2012-06-28 Doshisha Method for producing metal silicide thin film
CN102543345A (en) * 2011-12-08 2012-07-04 德清森腾电子科技有限公司 Low power consumption Fe-Si-Al alloy material with magnetic conductivity mu=26 and preparation method thereof
JP2014023224A (en) * 2012-07-13 2014-02-03 Jtekt Corp Motor stator core, and method of manufacturing the same
CN114255952A (en) * 2022-03-02 2022-03-29 天通控股股份有限公司 Low-loss powder for integrally formed inductor and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282317A (en) * 2002-03-25 2003-10-03 Nec Tokin Corp Alloy powder surface treatment method and dust core
JP2003297628A (en) * 2002-03-29 2003-10-17 Sony Corp Magnetic film and its forming method
JP2004186360A (en) * 2002-12-03 2004-07-02 Jfe Steel Kk Flat magnetic element and its manufacturing method
JP2004296609A (en) * 2003-03-26 2004-10-21 National Institute Of Advanced Industrial & Technology Permanent magnet film
JP2005060805A (en) * 2003-08-20 2005-03-10 Hitachi Metals Ltd Amorphous alloy member, its production method, and component obtained by using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003282317A (en) * 2002-03-25 2003-10-03 Nec Tokin Corp Alloy powder surface treatment method and dust core
JP2003297628A (en) * 2002-03-29 2003-10-17 Sony Corp Magnetic film and its forming method
JP2004186360A (en) * 2002-12-03 2004-07-02 Jfe Steel Kk Flat magnetic element and its manufacturing method
JP2004296609A (en) * 2003-03-26 2004-10-21 National Institute Of Advanced Industrial & Technology Permanent magnet film
JP2005060805A (en) * 2003-08-20 2005-03-10 Hitachi Metals Ltd Amorphous alloy member, its production method, and component obtained by using the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100060539A1 (en) * 2008-09-08 2010-03-11 Tomohiro Suetsuna Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, and antenna device
JP2010062484A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, device apparatus, and antenna assembly
JP2010062485A (en) * 2008-09-08 2010-03-18 Toshiba Corp Core shell type magnetic material, method of manufacturing core shell type magnetic material, device apparatus, and antenna assembly
JP2010087462A (en) * 2008-09-08 2010-04-15 Toshiba Corp Core shell-type magnetic material, method of manufacturing the same, device apparatus, and antenna device
US8289222B2 (en) 2008-09-08 2012-10-16 Kabushiki Kaisha Toshiba Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, antenna device, and portable device
US8305281B2 (en) 2008-09-08 2012-11-06 Kabushiki Kaisha Toshiba Core-shell magnetic material, method of manufacturing core-shell magnetic material, device, and antenna device
JP2012121753A (en) * 2010-12-08 2012-06-28 Doshisha Method for producing metal silicide thin film
CN102543345A (en) * 2011-12-08 2012-07-04 德清森腾电子科技有限公司 Low power consumption Fe-Si-Al alloy material with magnetic conductivity mu=26 and preparation method thereof
JP2014023224A (en) * 2012-07-13 2014-02-03 Jtekt Corp Motor stator core, and method of manufacturing the same
CN114255952A (en) * 2022-03-02 2022-03-29 天通控股股份有限公司 Low-loss powder for integrally formed inductor and preparation method thereof
CN114255952B (en) * 2022-03-02 2022-05-17 天通控股股份有限公司 Low-loss powder for integrally formed inductor and preparation method thereof
WO2023165096A1 (en) * 2022-03-02 2023-09-07 天通控股股份有限公司 Low-loss powder for integrally formed inductor and preparation method therefor

Also Published As

Publication number Publication date
JP4868583B2 (en) 2012-02-01

Similar Documents

Publication Publication Date Title
JP4868583B2 (en) Inductor and manufacturing method thereof
JP4872833B2 (en) Powder magnetic core and manufacturing method thereof
JP5032711B1 (en) Magnetic material and coil component using the same
US7498080B2 (en) Ferromagnetic powder for dust core
JP4308864B2 (en) Soft magnetic alloy powder, green compact and inductance element
US20080258102A1 (en) Powder magnetic core and the method of manufacturing the same
US20210142933A1 (en) Soft magnetic composite materials and methods and powders for producing the same
JP2007019134A (en) Method of manufacturing composite magnetic material
JP2006351946A (en) Method for manufacturing soft magnetic compact
JP2007134381A (en) Composite magnetic material, dust core using the same, and magnetic element
JP2007214425A (en) Powder magnetic core and inductor using it
CN112435822B (en) Preparation method of high-efficiency Fe-Si-Al magnetic powder core and prepared Fe-Si-Al magnetic powder core
JP4678783B2 (en) Soft magnetic thick film and inductor using the same
US9859044B2 (en) Powder magnetic core and reactor using the same
JP2022028777A (en) Alloy powder composition, molded body and its manufacturing method, as well as inductor
JPH0682577B2 (en) Fe-Si alloy dust core and method of manufacturing the same
JP5472694B2 (en) Composite sintered body of aluminum oxide and iron, and method for producing the same
JP2007012999A (en) Magnetic core manufacturing method
JP2006100292A (en) Dust core manufacturing method and dust core manufactured thereby
TW201915189A (en) Alloy powder and manufacturing method thereof, and soft magnetic material and manufacturing method thereof wherein an alloy formulation comprising a primary element group and a secondary element group is provided
JP2010092989A (en) Dust core, and method of manufacturing the same
JP2005136358A (en) Magnetic core and soft magnetic iron-based powder
JP2011228456A (en) Method of manufacturing reactor, and reactor
WO2005038829A1 (en) Process for producing soft magnetism material, soft magnetism material and powder magnetic core
JP2004014614A (en) METHOD FOR PRODUCING Fe-Si BASED SOFT MAGNETISM SINTERED ALLOY HAVING HIGH DENSITY AND HIGH PERMEABILITY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110323

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110520

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111109

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111114

R150 Certificate of patent or registration of utility model

Ref document number: 4868583

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141125

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250