JP2008060043A - Conductive composition - Google Patents

Conductive composition Download PDF

Info

Publication number
JP2008060043A
JP2008060043A JP2006238967A JP2006238967A JP2008060043A JP 2008060043 A JP2008060043 A JP 2008060043A JP 2006238967 A JP2006238967 A JP 2006238967A JP 2006238967 A JP2006238967 A JP 2006238967A JP 2008060043 A JP2008060043 A JP 2008060043A
Authority
JP
Japan
Prior art keywords
weight
parts
solid electrolyte
conductive
conductive composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006238967A
Other languages
Japanese (ja)
Other versions
JP4889413B2 (en
Inventor
Shiro Yamauchi
四郎 山内
Mitsuhito Kamei
光仁 亀井
Chieko Nishida
智恵子 西田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006238967A priority Critical patent/JP4889413B2/en
Publication of JP2008060043A publication Critical patent/JP2008060043A/en
Application granted granted Critical
Publication of JP4889413B2 publication Critical patent/JP4889413B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Conductive Materials (AREA)
  • Inert Electrodes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To prepare an electrode capable of detecting a material even with a small amount of detected materials or capable of handling and retaining a large amount of the treated materials although the electrode has the same degree of size as that of a conventional one. <P>SOLUTION: A conductive composition contains a solid electrolyte having hydrogen ion conductivity, alkaline metal ion conductivity, and anion conductivity or the like, an adsorbing agent such as zeolite, alumina, and silica, and a conductive metal of which the conductivity ((ion+electron) conductivity) at 20°C is at least 5 Ω<SP>-1</SP>m<SP>-1</SP>, and furthermore the conductive composition contains a catalyst such as a platinum group metal, a nickel compound, a cobalt compound, a tungsten compound, and a molybdenum compound. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、導電性組成物に関し、詳しくはガスセンサ、燃料電池などの各種の電気化学装置、なかでも電気化学素子における電極の形成材として好適な導電性組成物に関するものである。   The present invention relates to a conductive composition, and more particularly to a conductive composition suitable as a material for forming various types of electrochemical devices such as gas sensors and fuel cells, and in particular, electrochemical devices.

上記電気化学素子における電極の形成材としては、後記の特許文献1にはハロゲンガスセンサ用の電極として、固体電解質膜の一側面にハロゲン化金属と固体電解質との混合組成物からなる電極が開示されている。また後記の特許文献2には、SF、SOF、HF、SOなどのSF6の分解ガスを検知するガスセンサ用として、固体電解質膜の一側面に上記分解ガスと反応し難い不活性物質、例えば金からなる電極が開示されている。 As a material for forming an electrode in the electrochemical device, Patent Document 1 described below discloses an electrode made of a mixed composition of a metal halide and a solid electrolyte on one side of a solid electrolyte membrane as an electrode for a halogen gas sensor. ing. Further, in Patent Document 2 described later, an inert substance that hardly reacts with the decomposition gas on one side surface of a solid electrolyte membrane is used for a gas sensor that detects a decomposition gas of SF 6 such as SF 4 , SOF 2 , HF, and SO 2. For example, an electrode made of gold is disclosed.

ところで、上記した従来の上記電極は、その構成材料がハロゲン化金属と固体電解質との混合組成物や金などと言った単純な組成のものであって、このために電極における電気化学反応は、当該電極の表面でしか、換言すると平面的にしか生じない。このために被検出物質が多量に存在する場合には、当該電極の面積を大きくする必要があって、電気化学素子を大型化する必要があって、大型化による電気化学素子の生産コストの増大や設置スペ−スの確保の問題があった。また電気化学素子において処理対象とする反応物質量の時間的変動が大きい場合、目的の電気化学反応を行わせるには電気化学素子に印加する電圧、または通電する電流を最適に制御する必要があった。またさらに電気化学素子を燃料電池などのように、その電極において燃料などの物質の必要量を必要時間、保持することが要求されるが、従来の電気化学素子では電極におけるかかる物質の保持容量が極めて小さいので、従来の電気化学素子は、そのような用途には不向きであった。
特開昭62−207952号公報 特開平10−26602号公報
By the way, the above-mentioned conventional electrode has a simple composition such as a mixed composition of metal halide and solid electrolyte, gold, or the like, and for this reason, the electrochemical reaction in the electrode is as follows. It occurs only on the surface of the electrode, in other words, only in a plane. For this reason, when a large amount of a substance to be detected exists, it is necessary to increase the area of the electrode, and it is necessary to increase the size of the electrochemical element, which increases the production cost of the electrochemical element due to the increase in size. There was a problem of securing installation space. In addition, when the amount of reactants to be processed in the electrochemical device varies greatly over time, it is necessary to optimally control the voltage applied to the electrochemical device or the current to be applied in order to perform the target electrochemical reaction. It was. Furthermore, the electrochemical element is required to hold the required amount of a substance such as fuel at the electrode for a necessary time, such as a fuel cell, but the conventional electrochemical element has a holding capacity of the substance at the electrode. Since it is extremely small, conventional electrochemical devices are not suitable for such applications.
JP-A 62-207952 JP-A-10-26602

本発明は、斯界における前述の問題に鑑みて、従来と同程度の大きさの電極でありながら、一層少量の被検出物質にてもそれの検出が可能な、あるいは多量の被処理物質の取り扱いや保持が可能な、電極を作成し得る導電性組成物を提供することを課題とするものである。   In view of the above-mentioned problems in the field, the present invention is capable of detecting even a smaller amount of a substance to be detected, or handling a large amount of a substance to be processed, although it is an electrode of the same size as a conventional electrode. It is an object of the present invention to provide a conductive composition capable of forming an electrode that can be retained.

本発明は、固体電解質、ガス吸着剤、導電性金属を含むことを特徴とする導電性組成物(以下、第一導電性組成物と称す。)、および固体電解質、ガス吸着剤、導電性金属、触媒を含むことを特徴とする導電性組成物(以下、第二導電性組成物と称す。)である。   The present invention relates to a conductive composition containing a solid electrolyte, a gas adsorbent and a conductive metal (hereinafter referred to as a first conductive composition), and a solid electrolyte, a gas adsorbent and a conductive metal. And a conductive composition containing a catalyst (hereinafter referred to as a second conductive composition).

本発明の第一導電性組成物は、固体電解質と導電性金属と含むので、各種の電気化学素子における電極としての導電性を、就中、後記の実施例で明らかにされるように低周波数下において良好なイオン導電性を有する。加えて吸着剤をも含むので、このために当該吸着剤の存在に基づいて導電性組成物内部での反応表面積が三次元的となり、この反応表面積の立体化に基づく増大により、電気化学反応が平面的にしか生じなかった従来の電極と異なって、格段に大量の被反応物の扱いが可能な電極の作成が可能となる。   Since the first conductive composition of the present invention contains a solid electrolyte and a conductive metal, the conductivity as an electrode in various electrochemical devices is low frequency as will be clarified in the examples below. Underneath has good ionic conductivity. In addition, because it also contains an adsorbent, the reaction surface area inside the conductive composition becomes three-dimensional based on the presence of the adsorbent, and the increase in the reaction surface area based on the three-dimensionalization results in an electrochemical reaction. Unlike a conventional electrode that occurs only in a planar manner, it is possible to create an electrode that can handle an extremely large amount of reactants.

実施の形態
電気化学素子として例えばメタノ−ル燃料電池の例を考えると、その場合には燃料となるメタノ−ル水溶液を電極に保持させる必要があるが、それは吸着剤を含む本発明の第一導電性組成物で形成された電極により工業的に可能となるのみならず、メタノ−ル燃料電池の大幅な小型化も実現する。また電気化学素子として六フッ化ガスを充填したガス絶縁開閉装置に設置するHFガスセンサの例を考えると、従来のこの種のガスセンサは、測定時における瞬間風速的なHFガス濃度しか測定できなかったが、HFガスセンサの電極を本発明の第一導電性組成物で形成すると、それは多量のHFガスを吸着保持可能、換言するとHFガスを蓄積保持可能であるので、ガス絶縁開閉装置の運転経過時間とその間に発生した合計HFガス量、即ちHFガス量の時間対する積分値を定量可能であって、それによりガス絶縁開閉装置の一層確度の高い寿命判定が行える。
Embodiment Considering an example of a methanol fuel cell as an electrochemical element, in this case, it is necessary to hold an aqueous methanol solution as a fuel in an electrode, which is the first of the present invention including an adsorbent. The electrode formed of the conductive composition not only makes it industrially possible, but also realizes a significant downsizing of the methanol fuel cell. Considering an example of an HF gas sensor installed in a gas insulated switchgear filled with hexafluoride gas as an electrochemical element, this type of conventional gas sensor can measure only the HF gas concentration at the instantaneous wind speed at the time of measurement. However, when the electrode of the HF gas sensor is formed of the first conductive composition of the present invention, it can adsorb and hold a large amount of HF gas, in other words, can accumulate and hold HF gas. The total amount of HF gas generated between them, that is, the integral value of the HF gas amount with respect to time, can be quantified, whereby the life of the gas insulated switchgear can be determined with higher accuracy.

本発明の第二導電性組成物は、固体電解質、吸着剤、導電性金属の他に、さらに触媒を含むので、本発明の第一導電性組成物が有する上記効果に加えて、触媒により電気化学素子の電極における各種の電気化学反応を促進する作用がある。例えば前記メタノ−ル燃料電池の例を考えると、メタノ−ルの分解反応が促進されるのでメタノ−ル燃料電池の発電効率が向上する。   Since the second conductive composition of the present invention further includes a catalyst in addition to the solid electrolyte, the adsorbent, and the conductive metal, in addition to the above-described effects of the first conductive composition of the present invention, It has the effect of promoting various electrochemical reactions at the electrodes of chemical elements. For example, considering the example of the methanol fuel cell, since the decomposition reaction of methanol is promoted, the power generation efficiency of the methanol fuel cell is improved.

本発明で用いられる固体電解質としては、一般的には融点より低い温度でイオン導電性を示す従来から公知あるいは周知のものであってよく、例えばHMo12PO40・29HO、HW12PO・29HO、HUOPO・4HO、SrCe0.95Yb0.053−α、HClO・4HO、Sb・4HO、C12(HSO1.5、Li(N)SO、KOH、CsHSO、H+−β’’−Al、NH +−H+β’’−Al、NH +−β/β’’−Ga、HxWO(但しXは0〜1、以下同様)、HxMoO、(ThO0.85(Y0.15、La0.96Ca0.04YO3−α(但しαは0〜1、以下同様)、SrCe0.95Yb0.053−α、BaCe0.90Nd0.103−α、BaCa1.18Nb1.829−α、固体高分子電解質(例えばデュポン社製の商品名;ナフィオン117)、などの水素イオン導電性の固体電解質、LiN、Li14Zn(GeO、Li3.6Si0.60.4、NaO・11Al、NaO・5.33Al、NaZrSiPO、KO・5.2Fe0.8ZnO、などのアルカリ金属イオン導電性の固体電解質、7CuBr・C12CHBr、RbCu16Cl13、α−AgI、RbAgI、AgI−AgWO、などの、1b属元素イオン導電性の固体電解質、CaF、LaF、(CeF0.95(CaF0.05、SnCll2、PbCl(+3%KCl)、(ZrO0.9(Y0.1、(CeO0.8(Gd0.2、(Bi0.75(Y0.25、La0.8Sr0.2Ga0.8Mg0.23−α、などの陰イオン導電性の固体電解質類などの一種または二種以上が用いられる。 The solid electrolyte used in the present invention may be a conventionally known or well-known one that generally exhibits ionic conductivity at a temperature lower than the melting point. For example, H 3 Mo 12 PO 40 / 29H 2 O, H 3 W 12 PO 4 · 29H 2 O , H 3 UO 2 PO 4 · 4H 2 O, SrCe 0.95 Yb 0.05 O 3-α, HClO 4 · 4H 2 O, Sb 2 O 5 · 4H 2 O, C 6 H 12 N 2 (H 2 SO 4) 1.5, Li (N 2 H 5) SO 4, KOH, CsHSO 4, H 3 O + -β '' - Al 2 O 3, NH 4 + -H 3 O + β ″ -Al 2 O 3 , NH 4 + -β / β ″ -Ga 2 O 3 , HxWO 3 (where X is 0 to 1, the same applies hereinafter), HxMoO 3 , (ThO 2 ) 0.85 (Y 2 O 3) 0.15, La 0.96 Ca 0.04 YO 3-α ( And alpha is 0-1, hereinafter the same), SrCe 0.95 Yb 0.05 O 3 -α, BaCe 0.90 Nd 0.10 O 3-α, Ba 3 Ca 1.18 Nb 1.82 O 9- α , a solid polymer electrolyte (for example, trade name manufactured by DuPont; Nafion 117), etc., a hydrogen ion conductive solid electrolyte, Li 3 N, Li 14 Zn (GeO 4 ) 4 , Li 3.6 Si 0.6 P 0.4, Na 2 O · 11Al 2 O 3, Na 2 O · 5.33Al 2 O 3, Na 3 Zr 2 Si 2 PO 4, K 2 O · 5.2Fe 2 O 3 0.8ZnO, such as Alkali metal ion conductive solid electrolyte, 7CuBr · C 6 H 12 N 4 CH 2 Br, Rb 4 Cu 16 I 7 Cl 13 , α-AgI, RbAg 4 I 5 , AgI-Ag 2 WO 4 , etc. Genus element Io Conductive solid electrolyte, CaF 2, LaF 3, ( CeF 3) 0.95 (CaF 2) 0.05, SnCl l2, PbCl 2 (+ 3% KCl), (ZrO 2) 0.9 (Y 2 O 3 ) 0.1 , (CeO 2 ) 0.8 (Gd 2 O 3 ) 0.2 , (Bi 2 O 3 ) 0.75 (Y 2 O 3 ) 0.25 , La 0.8 Sr 0.2 One kind or two or more kinds of anionic conductive solid electrolytes such as Ga 0.8 Mg 0.2 O 3-α are used.

吸着剤としては、固気界面で気体を物理的にあるいは化学的に吸着あるいは収着する従来から公知あるいは周知のものであってよく、例えば、方沸石、ゼオライトP、リョウ沸石、毛沸石、ゼオライトX、ゼオライトY、ソーダ沸石、モルデナイト、チャバサイト、エリオナイトなどの天然産のゼオライト類、陽イオンがKとNaである合成ゼオライト、陽イオンがNaである合成ゼオライト、陽イオンがCaとNaである合成ゼオライトなどの合成ゼオライト、などのゼオライト、さらにアルミナ、シリカゲル、骨炭、活性白土、モレキュラシーピングカーボンなどのその他の吸着剤が例示され、それら一種または二種以上が用いられる。   The adsorbent may be a conventionally known or well-known one that physically or chemically adsorbs or sorbs a gas at a solid-gas interface. For example, zeolitic, zeolite P, rhyolite, chorzeite, zeolite Naturally produced zeolites such as X, zeolite Y, soda zeolite, mordenite, chabasite, erionite, synthetic zeolites whose cations are K and Na, synthetic zeolites whose cations are Na, cations are Ca and Na Other adsorbents such as synthetic zeolite such as a certain synthetic zeolite, zeolite such as alumina, silica gel, bone charcoal, activated clay, and molecular shaping carbon are exemplified, and one or more of these are used.

導電性金属としては、20℃における導電率が、少なくとも5Ω−1・m−1の金属、例えば白金、オスミウム、ロジウム、イリジュウム、パラジウム、などの白金属金属、金、銀、銅、ニッケル、コバルト、錫、など一種または二種以上が用いられる。 As the conductive metal, a metal having a conductivity at 20 ° C. of at least 5Ω −1 · m −1 , for example, white metal such as platinum, osmium, rhodium, iridium, palladium, gold, silver, copper, nickel, cobalt , Tin or the like is used alone or in combination.

反応触媒としては、一般的には反応の活性化エネルギーを低くし速やかに平衡にまで進める機能あるいは作用を有する物質であって、例えばルテニウム、オスミウム、ロジウム、イリジュウム、パラジウム、白金などの白金属の金属あるいはそれらの酸化物、Ni、NiFe、NiFe、NiFe、NiFe、NiFe、NiFe、NiFe、NiCo、NiCo、NiCo、NiTi、NiTi、NiW、NiW、NiMo、NiMo、NiOx(但しXは、0〜1)、NiMnO、Ni1.5Mn1.5、NiMn、Ni0.8Cu0.2Mn、Ni0.8Cu0.5Mn、Ni0.33Al0.67Ox、Ni0.80Al0.20Ox、Ni0.87Al0.13Ox、Ni0.89Cu0.11Ox、Ni0.77Sn0.23Ox、NiFeO、Ni1.5Fe1.5、NiFe、NiCr、などのニッケル化合物、Co、CoFe、CoFe、CoFe、CoTi、CoTi、CoTi、CoTi、CoW、CoW、Co、Co、CoMO、CoMO、CoMO、CoCu、CoCu、CoCu、CoSi、などのコバルト化合物、W、WB、WB、W、などのタングステン化合物、Mo、MoB、MoSi、などのモリブデン化合物、NbB、TaB、TaB、ZrB、FeSi、などのその他の化合物など一種または二種以上が用いられる。 The reaction catalyst is generally a substance having a function or an action that lowers the activation energy of the reaction and promptly reaches equilibrium. For example, white metals such as ruthenium, osmium, rhodium, iridium, palladium, and platinum are used. Metal or oxide thereof, Ni, Ni 4 Fe, Ni 3 Fe, Ni 2 Fe, Ni 3 Fe 7 , NiFe, NiFe 3 , NiFe 5 , Ni 2 Co, NiCo, NiCo 2 , Ni 3 Ti, NiTi, Ni 3 W, NiW, Ni 4 Mo, Ni 3 Mo, NiOx (where X is 0 to 1), Ni 2 MnO 4 , Ni 1.5 Mn 1.5 O 4 , NiMn 2 O 4 , Ni 0.8 Cu 0.2 Mn 2 O 4, Ni 0.8 Cu 0.5 Mn 2 O 4, Ni 0.33 Al 0.67 Ox, Ni 0.80 Al 0.2 Ox, Ni 0.87 Al 0.13 Ox, Ni 0.89 Cu 0.11 Ox, Ni 0.77 Sn 0.23 Ox, Ni 2 FeO 4, Ni 1.5 Fe 1.5 O 4, NiFe 2 Nickel compounds such as O 4 and NiCr 2 O 4 , Co, Co 3 Fe, CoFe, CoFe 3 , Co 9 Ti, Co 2 Ti, CoTi, CoTi 2 , Co 9 W, Co 3 W, Co 7 W 6 , Co 4 W 6 , Co 3 MO, Co 7 MO 6 , CoMO, Co 9 Cu, Co 3 Cu, CoCu, CoSi 2 , and other cobalt compounds, W, WB, W 2 B, W 2 B 5 , etc. compounds, Mo, MoB, MoSi 2, molybdenum compounds such as, NbB, TaB, TaB 2, ZrB 2, FeSi 2, one such other compounds, such as or More seed is used.

上記導電性組成物の構成材料例から分かる通り、ニッケル、コバルト、および白金属金属は、導電性金属並びに触媒としての両機能を有するので、本発明の第一導電性組成物および第二導電性組成物を製造する際での使用材料種の調達上や後記する導電性組成物の製造プロセスの簡素化上から特に好ましい。   As can be seen from the constituent material examples of the conductive composition, nickel, cobalt, and white metal have both functions as a conductive metal and a catalyst. Therefore, the first conductive composition and the second conductive of the present invention are used. This is particularly preferable from the viewpoint of procurement of the type of material used in manufacturing the composition and simplification of the manufacturing process of the conductive composition described later.

本発明の第一導電性組成物および第二導電性組成物は、固体電解質、吸着剤、導電性金属、および触媒の各少なくとも1種または2種以上を用いて混合することにより製造可能であるが、その混合方法としては、機械的混合、スパッタリングなどの通常の方法が例示される。なお、本発明の上記導電性組成物が、一層優れた吸着性と低周波電界下におけるイオン導電性とを有するためには、第一導電性組成物および第二導電性組成物が成形物などの一固体として取り扱いが可能な程に、その構成成分同士が良好に互いに近接して存在していることが望ましい。   The first conductive composition and the second conductive composition of the present invention can be produced by mixing using at least one or two or more of a solid electrolyte, an adsorbent, a conductive metal, and a catalyst. However, examples of the mixing method include ordinary methods such as mechanical mixing and sputtering. In addition, in order for the conductive composition of the present invention to have more excellent adsorptivity and ionic conductivity under a low-frequency electric field, the first conductive composition and the second conductive composition are molded articles, etc. It is desirable that the constituents be present in close proximity to each other so that they can be handled as one solid.

以下に、上記成形物を得る具体的方法の若干例を説明する。なお本発明の導電性組成物における構成材料は、一部の固体電解質を除き、全て無機物であるので、無機固体電解質を採用する場合と有機固体電解質を採用する場合とに分けて成形物を得る方法を説明する。   Hereinafter, some examples of specific methods for obtaining the molded product will be described. The constituent materials in the conductive composition of the present invention are all inorganic except a part of the solid electrolyte, so that a molded product is obtained separately when the inorganic solid electrolyte is employed and when the organic solid electrolyte is employed. The method will be described.

先ず、構成材料が全て無機物である場合には、各構成材料の粉末を機械的に均一に混合して機械的混合物を得、次いでこの機械的混合物を高圧下、例えば50kg/cm〜1000kg/cm程度の圧力で圧縮する高圧圧縮法、上記機械的混合物を表面エネルギーの減少に基づく物質移動にて粒子間に結合が生じる程度に焼結する第一焼結法、上記高圧圧縮法で得られた圧縮物を上記と同様に焼結する第二焼結法、各構成材料のそれぞれの粉末あるいは固形片を各ターゲットとし、各ターゲットを板状に集合した集合ターゲットに対してスパッタリングするスパッタリング法、などがある。 First, when the constituent materials are all inorganic, the powders of the constituent materials are mixed mechanically and uniformly to obtain a mechanical mixture, and then the mechanical mixture is subjected to high pressure, for example, 50 kg / cm 2 to 1000 kg / Obtained by the high pressure compression method in which compression is performed at a pressure of about cm 2, the first sintering method in which the mechanical mixture is sintered to such an extent that bonding between particles is caused by mass transfer based on the reduction of surface energy, and the high pressure compression method described above. A second sintering method in which the compressed material is sintered in the same manner as described above, and a sputtering method in which each target material powder or solid piece is used as a target and each target is sputtered onto a collective target assembled in a plate shape. ,and so on.

上記機械的混合に供される各構成材料の粉末としては、粒径が0.01μm〜1μm程度の微粒子が好ましい。本発明において、上記粒径は、全てWiegnerの粒度分析器で測定された平均粒径値である。一般的に前記した各種の電気化学素子における電極は、その厚みが数0.1μm〜100μm程度の薄いものであって、かかる薄ものは、上記のいずれの方法で得たものであっても、それをスライスしてさらに分割することは可能ではあっても、工業的にそれを行うには高度の技術と高価な装置を要して経済的に不利であるので、スライスしなくても所望の厚みを有するシート状、フィルム状などの薄膜状の一固体物が得られるように、上記一固体物形成方法に供される機械的混合物の量を調整するとよい。   As the powder of each constituent material subjected to the mechanical mixing, fine particles having a particle size of about 0.01 μm to 1 μm are preferable. In the present invention, the above particle diameters are all average particle diameter values measured with a Wiegner particle size analyzer. In general, the electrodes in the various electrochemical devices described above are thin with a thickness of about several 0.1 μm to 100 μm, and such a thin one can be obtained by any of the above methods. Although it is possible to slice it and further divide it, it is economically disadvantageous to do it industrially because it requires high technology and expensive equipment, so it can be desired without slicing. It is good to adjust the quantity of the mechanical mixture with which the said 1 solid-material formation method is provided so that thin-film-like 1 solid things, such as a sheet form and film shape which have thickness, may be obtained.

上記の第二焼結法は、上記高圧圧縮法で得られた圧縮物を焼結するので、当該圧縮物における各構成材料同士のコンパクト化が一層向上するので好ましい。上記スパッタリング法においては、上記集合ターゲットを一方に回転せしめた状態で、例えばアルゴンイオンなどの一次イオンを衝突させることにより上記円板状の集合ターゲットに含まれている各構成材料の混合物が得られるが、その際に当該円板状集合ターゲットにおける構成材料の存在量比を調整することにより、スパッタリングで得られる混合物における構成材料の量比を調整することができる。   Since said 2nd sintering method sinters the compression thing obtained by the said high pressure compression method, since compactization of each constituent material in the said compression thing improves further, it is preferable. In the sputtering method, a mixture of constituent materials contained in the disk-shaped collective target is obtained by colliding primary ions such as argon ions with the collective target rotated in one direction. However, the amount ratio of the constituent material in the mixture obtained by sputtering can be adjusted by adjusting the abundance ratio of the constituent material in the disk-shaped collective target at that time.

なお、上記機械的混合および焼結の場合、導電性金属と吸着剤とは、互いに別々に上記の各混合過程に投入してもよく、あるいは予め吸着剤の吸着内外面に導電性金属を予め無電解メッキなどによりメッキして、吸着剤と導電性金属との一体物として取り扱うようにしてもよい。なお上記一体物として取り扱う場合、上記一体物が本発明の導電性組成物に良好に分散されていると、導電性金属は、導電性金属と吸着剤とを別々に投入混合する場合と比較して、少量で必要な導電性が得られる利点がある。またその反面、吸着剤の一部の吸着面を導電性金属にて覆うので、吸着剤の吸着能を低下せしめることになる。よって、本発明の導電性組成物の吸着能と導電性の双方から試行錯誤的に最良の性能が得られるように、メッキの程度を決定すればよい。吸着剤と導電性金属との上記取り扱いやメッキの程度などは、後記する有機固体電解質を使用する場合にも同様のことが言える。   In the case of the mechanical mixing and sintering, the conductive metal and the adsorbent may be put into the above mixing processes separately from each other, or the conductive metal is previously applied to the adsorption inner and outer surfaces of the adsorbent. Plating by electroless plating or the like may be performed as an integrated body of the adsorbent and the conductive metal. In addition, when handling as the integral, if the integral is well dispersed in the conductive composition of the present invention, the conductive metal is compared with the case where the conductive metal and the adsorbent are separately charged and mixed. Thus, there is an advantage that necessary conductivity can be obtained with a small amount. On the other hand, since a part of the adsorbing surface of the adsorbent is covered with the conductive metal, the adsorbing ability of the adsorbent is lowered. Therefore, what is necessary is just to determine the grade of plating so that the best performance can be obtained by trial and error from both the adsorption ability and electroconductivity of the electrically conductive composition of this invention. The same can be said for the handling of the adsorbent and the conductive metal, the degree of plating, and the like when an organic solid electrolyte described later is used.

次に、有機固体電解質を使用する場合に就き説明する。この場合には、当該有機固体電解質を適当な有機溶媒に溶解あるいは分散させてペースト状とし、それに導電性金属と吸着剤、あるいは導電性金属がメッキされた吸着剤、および触媒を分散させたものを適当な板体、例えば本発明の導電性組成物を各種の電気化学素子における電極形成材として利用する場合には、陽陰両極間に介在せしめられる固体電解質膜に塗布し、乾燥あるいは焼結する方法がよい。勿論、有機固体電解質を使用する場合でも、前記した高圧圧縮法、第一焼結法、第二焼結法、およびスパッタリング法も有効である。   Next, the case where an organic solid electrolyte is used will be described. In this case, the organic solid electrolyte is dissolved or dispersed in a suitable organic solvent to form a paste, and then a conductive metal and adsorbent, or an adsorbent plated with a conductive metal, and a catalyst are dispersed therein. Is applied to a solid electrolyte membrane interposed between the positive and negative electrodes, and dried or sintered, for example, when the conductive composition of the present invention is used as an electrode forming material in various electrochemical devices. The way to do is good. Of course, even when an organic solid electrolyte is used, the above-described high-pressure compression method, first sintering method, second sintering method, and sputtering method are also effective.

本発明における構成成分の配合量比は、本発明の前記した発明課題が達成される限り特に制限はないが、一般的な配合量比に就き、固体電解質100重量部あたりの他成分の配合量比にて説明すると、導電性金属は、それが吸着剤にメッキされずに使用される場合は、0.1〜100重量部、好ましくは1〜20重量部であり、吸着剤にメッキされて使用される場合は、0.1〜50重量部、好ましくは0.5〜10重量部である。吸着剤は、1〜100重量部、好ましくは5〜20重量部である。触媒は、1〜500重量部、好ましくは10〜100重量部である。   The blending ratio of the constituent components in the present invention is not particularly limited as long as the above-described invention object of the present invention is achieved. However, the blending ratio of other components per 100 parts by weight of the solid electrolyte is a general blending ratio. In terms of ratio, the conductive metal is 0.1 to 100 parts by weight, preferably 1 to 20 parts by weight, when it is used without being plated on the adsorbent, When used, it is 0.1 to 50 parts by weight, preferably 0.5 to 10 parts by weight. The adsorbent is 1 to 100 parts by weight, preferably 5 to 20 parts by weight. The catalyst is 1 to 500 parts by weight, preferably 10 to 100 parts by weight.

本発明の第一導電性組成物および第二導電性組成物は、各種の電気化学素子における電極の形成に利用される際、多くの場合において第一導電性組成物や第二導電性組成物に含まれている固体電解質と同じ材料からなる、あるいは他の材料からなる固体電解質の膜(以下当該膜を素子中膜と称する。)の一面あるいは両面に電気的に結合した状態で固定される。その結合の方法は、上記の方法で得られた薄膜状成形物と上記素子中膜とを重ねて高圧で圧縮する、あるいは焼結する、などの方法で可能である。また第一導電性組成物や第二導電性組成物中の固体電解質が有機物である場合には、それら組成物の有機溶媒ペーストを素子中膜に塗布し、焼結する方法で可能である。   When the first conductive composition and the second conductive composition of the present invention are used for forming electrodes in various electrochemical devices, the first conductive composition and the second conductive composition are often used. It is fixed in a state where it is electrically coupled to one or both surfaces of a solid electrolyte film made of the same material as that contained in the solid electrolyte, or made of other materials (hereinafter, the film is referred to as an element intermediate film). . The bonding can be performed by a method in which the thin film-like molded product obtained by the above-described method and the above-mentioned element intermediate film are stacked and compressed at a high pressure, or sintered. Further, when the solid electrolyte in the first conductive composition or the second conductive composition is an organic substance, an organic solvent paste of these compositions is applied to the film in the device and sintered.

以下、実施例および比較例により本発明を一層詳細に説明する。なお、以下の実施例および比較例において使用された材料としては、市販品を用い、必要に応じてそれを擂り鉢にて微細化して使用されている。   Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. In addition, as a material used in the following examples and comparative examples, a commercial item is used, and it is used by refining it in a mortar if necessary.

実施例1.
固体電解質としての粒径約0.5μmのHMo12PO40・29HOを、吸着剤としてゼオライトの1種である粒径約1.5μmのエリオナイトを、導電性金属として白金を用いた。なおエリオナイトは、次の条件で白金を無電解メッキした。無電解メッキ液は、ジニトロジアミン白金0.5g、28重量%濃度のアンモニア水50ミリリットル、および水250ミリリットルを加温下で溶解し、次いでそれに50重量%濃度のヒドロキシルアミン塩酸塩水溶液10ミリリットル、80重量%濃度のヒドラジン水和物5ミリリットル、を加え、さらに全量が400ミリリットルとなるように水を加えて調整したpH11.7のものである。温度24℃の当該無電解メッキ液400ミリリットルに上記エリオナイトの1gを20分間攪拌下に浸漬して無電解白金メッキを施し、次いで濾過し、イオン交換水で十分に洗浄し、乾燥して、白金メッキ層を有するエリオナイトを得た。白金メッキされる前のエリオナイト100重量部は、白金メッキ後では1重量部に増量していたので、増量分1重量部は白金メッキの重量に基づく。
次に、上記HMo12PO40・29HO100重量部に対して上記白金メッキエリオナイト20重量部の割合で混合し1000kg/cmの圧力下で高圧圧縮し、厚さ50μmの試験片を得た。
Example 1.
Using H 3 Mo 12 PO 40 / 29H 2 O with a particle size of about 0.5 μm as a solid electrolyte, erionite with a particle size of about 1.5 μm as a kind of adsorbent, and platinum as a conductive metal It was. Elionite was electrolessly plated with platinum under the following conditions. The electroless plating solution was prepared by dissolving 0.5 g of dinitrodiamine platinum, 50 ml of 28% strength by weight ammonia water, and 250 ml of water under heating, and then adding 10 ml of 50% strength by weight aqueous hydroxylamine hydrochloride solution, The pH is 11.7 adjusted by adding 5 ml of hydrazine hydrate having a concentration of 80% by weight and further adding water so that the total amount becomes 400 ml. 1 g of the above erionite is immersed in 400 ml of the electroless plating solution at a temperature of 24 ° C. with stirring for 20 minutes to perform electroless platinum plating, then filtered, thoroughly washed with ion-exchanged water, and dried. An erionite having a platinum plating layer was obtained. Since 100 parts by weight of erionite before platinum plating was increased to 1 part by weight after platinum plating, 1 part by weight of the increased amount is based on the weight of platinum plating.
Next, 20 parts by weight of the platinum-plated erionite is mixed with 100 parts by weight of the H 3 Mo 12 PO 40 / 29H 2 O, and the mixture is high-pressure compressed under a pressure of 1000 kg / cm 2 , and a specimen having a thickness of 50 μm. Got.

実施例2.
固体電解質としての粒径約0.3μmのHClO・4HOを、吸着剤としてゼオライトの1種である粒径約5μmの陽イオンがKとNaである合成ゼオライト(日揮ユニバーサル社の商品名MFI300)を、導電性金属として金を用いた。なお上記合成ゼオライトは、次の条件で金を無電解メッキした。無電解メッキ液はシアノ金(I)カリウム液0.02M、シアン化カリウム0.2M、水酸化カリウム0.2M、ホウ水素化カリウム0.4Mの成分を500ミリリットルを加温下で溶解したものである。
温度24℃の当該無電解メッキ液400ミリリットルに上記合成ゼオライト1gを20分間攪拌下に浸漬して無電解金メッキを施し、次いで濾過し、イオン交換水で十分に洗浄し、乾燥して、金メッキ層を有する合成ゼオライトを得た。金メッキされる前の合成ゼオライト100重量部は、金メッキ後では118重量部に増量していたので、増量分18重量部は金メッキの重量に基づく。次に、上記HClO・4HO100重量部に対して上記金メッキ合成ゼオライト20重量部の割合で混合し1000kg/cmの圧力下で高圧圧縮し、厚さ50μmの試験片を得た。
Example 2.
HClO 4 · 4H 2 O with a particle size of about 0.3 μm as a solid electrolyte, synthetic zeolite with a cation with a particle size of about 5 μm as an adsorbent, K and Na (trade name of JGC Universal) MFI 300) was used gold as the conductive metal. The synthetic zeolite was electrolessly plated with gold under the following conditions. The electroless plating solution is prepared by dissolving 500 ml of components of 0.02M cyano gold (I) potassium solution, 0.2M potassium cyanide, 0.2M potassium hydroxide and 0.4M potassium borohydride under heating. .
1 g of the above synthetic zeolite is immersed in 400 ml of the electroless plating solution at a temperature of 24 ° C. for 20 minutes with stirring, followed by electroless gold plating, followed by filtration, washing thoroughly with ion-exchanged water, drying, and a gold plating layer A synthetic zeolite having Since 100 parts by weight of the synthetic zeolite before gold plating was increased to 118 parts by weight after gold plating, the 18 parts by weight of the increase was based on the weight of the gold plating. Next, 20 parts by weight of the gold-plated synthetic zeolite was mixed with 100 parts by weight of the above HClO 4 .4H 2 O and high-pressure compressed under a pressure of 1000 kg / cm 2 to obtain a test piece having a thickness of 50 μm.

実施例3.
固体電解質として固体高分子電解質(デュポン社製の商品名;ナフィオン117)を、吸着剤としてゼオライトの1種である粒径約1μmのゼオライトPを、導電性金属として銀を用いた。なお上記ゼオライトPは、次の条件で銀を無電解メッキした。即ち、無電解メッキ液としてシアン化銀ナトリウム2g/L、塩化アンモニウム75g/L、クエン酸ナトリウム50g/L、次亜燐酸ナトリウム10g/Lを加温下で溶解したものである。当該無電解メッキ液400ミリリットルに上記ゼオライトPの1gを20分間攪拌下に浸漬して無電解銀メッキを施し、次いで濾過し、イオン交換水で十分に洗浄し、乾燥して、銀メッキ層を有するゼオライトPを得た。銀メッキされる前のゼオライトP100重量部は、銀メッキ後では112重量部に増量していたので、増量分12重量部は銀メッキの重量に基づく。
次に、上記固体高分子電解質100重量部あたり0.1リットルのアルキルベンゼン油(20℃の粘度:18c.sts)を用いて固体高分子電解質のアルキルベンゼン油ペースト得、ついで当該ペーストに上記固体高分子電解質100重量部あたり上記銀メッキゼオライトP20重量部の割合で投入混合して、混合ペーストを得、さらに当該混合ペーストを別途用意した上記固体高分子電解質と同じ材料の膜の片面上に塗布し、350℃の条件で当該塗布物を焼結し、当該塗布物の厚さ30μmの焼結膜を得た。
Example 3.
A solid polymer electrolyte (trade name manufactured by DuPont; Nafion 117) was used as the solid electrolyte, zeolite P having a particle diameter of about 1 μm, which is a kind of zeolite, and silver as the conductive metal. The zeolite P was electrolessly plated with silver under the following conditions. That is, as an electroless plating solution, 2 g / L of silver cyanide, 75 g / L of ammonium chloride, 50 g / L of sodium citrate, and 10 g / L of sodium hypophosphite are dissolved under heating. 1 g of the above zeolite P is immersed in 400 ml of the electroless plating solution with stirring for 20 minutes to give electroless silver plating, then filtered, washed thoroughly with ion-exchanged water, and dried to form a silver plating layer. Zeolite P having was obtained. Since 100 parts by weight of zeolite P before silver plating was increased to 112 parts by weight after silver plating, the 12 parts by weight of the increase was based on the weight of silver plating.
Next, 0.1 liter of alkylbenzene oil (viscosity at 20 ° C .: 18 c.sts) per 100 parts by weight of the solid polymer electrolyte was used to obtain an alkylbenzene oil paste of the solid polymer electrolyte, and then the solid polymer was added to the paste. Injecting and mixing the silver-plated zeolite P at a ratio of 20 parts by weight per 100 parts by weight of the electrolyte to obtain a mixed paste, and further applying the mixed paste onto one side of the film made of the same material as the solid polymer electrolyte separately prepared, The coated material was sintered under the condition of 350 ° C., and a sintered film having a thickness of 30 μm was obtained.

実施例4.
固体電解質としての粒径約13μmのNaO・11AlOを、吸着剤としてゼオライトの1種である粒径約18μmの陽イオンがCaとNaである合成ゼオライト(日揮ユニバーサル社製品)を、導電性金属として銅を用いた。なお上記合成ゼオライトは、次の条件で銅を無電解メッキした。無電解メッキ液は、硫酸銅五水和物15g/L、EDTA-4Naを45g/L、ホルムルデヒド15g/L、添加剤としてジピリジルとシアン化ニッケルカリウムを所定量加え、pH12.5に調整したものを用いた。温度60℃の当該無電解メッキ液400ミリリットルに上記合成ゼオライト1gを20分間攪拌下に浸漬して無電解銅メッキを施し、次いで濾過し、イオン交換水で十分に洗浄し、乾燥して、銅メッキ層を有する合成ゼオライトを得た。銅メッキされる前の合成ゼオライト100重量部は、銅メッキ後では119重量部に増量していたので、増量分19重量部は銅メッキの重量に基づく。次に、上記NaO・11Al100重量部に対して上記銅メッキ合成ゼオライト20重量部の割合で混合し、1000kg/cmの圧力下で高圧圧縮し、厚さ30μmの試験片を得た。
Example 4
Synthetic zeolite (product of JGC Universal Co., Ltd.) with Na 2 O · 11Al 2 O 3 with a particle size of about 13 μm as a solid electrolyte and a cation with a particle size of about 18 μm, Ca and Na, which is a kind of zeolite as an adsorbent. Copper was used as the conductive metal. The synthetic zeolite was electrolessly plated with copper under the following conditions. The electroless plating solution was adjusted to pH 12.5 by adding copper sulfate pentahydrate 15 g / L, EDTA-4Na 45 g / L, formaldehyde 15 g / L, and predetermined amounts of dipyridyl and nickel potassium cyanide as additives. Things were used. 1 g of the above synthetic zeolite is immersed in 400 ml of the electroless plating solution at a temperature of 60 ° C. with stirring for 20 minutes to perform electroless copper plating, then filtered, thoroughly washed with ion-exchanged water, dried, and copper A synthetic zeolite having a plating layer was obtained. Since 100 parts by weight of the synthetic zeolite before the copper plating was increased to 119 parts by weight after the copper plating, the 19 parts by weight of the increase was based on the weight of the copper plating. Next, 20 parts by weight of the copper-plated synthetic zeolite is mixed with 100 parts by weight of the Na 2 O · 11Al 2 O 3 , and high-pressure compression is performed under a pressure of 1000 kg / cm 2 to obtain a test piece having a thickness of 30 μm. Got.

実施例5.
固体電解質としての粒径約17μmの7CuBr・CH12NCHBrを、吸着剤としてゼオライトの1種である粒径約18μmのモルデナイトを、導電性金属として白金を用いた。なお上記モルデナイトは、前記実施例1における場合と同じ方法および条件で白金を無電解メッキした。白金メッキされる前のモルデナイト100重量部は、白金メッキ後では118重量部に増量していたので、増量分18重量部は白金メッキの重量に基づく。次に、上記7CuBr・C12CHBr100重量部に対して上記白金メッキモルデナイト20重量部の割合で混合し、1000kg/mmの圧力下で高圧圧縮し、厚さ80μmの試験片を得た。
Example 5.
7CuBr · C 6 H 12 N 4 CH 2 Br having a particle size of about 17 μm as a solid electrolyte, mordenite having a particle size of about 18 μm, which is a kind of zeolite, as an adsorbent, and platinum as a conductive metal were used. The mordenite was electrolessly plated with platinum by the same method and conditions as in Example 1. Since 100 parts by weight of mordenite before platinum plating was increased to 118 parts by weight after platinum plating, 18 parts by weight of the increased amount is based on the weight of platinum plating. Next, 20 parts by weight of the platinum-plated mordenite is mixed with 100 parts by weight of the 7CuBr · C 6 H 12 N 4 CH 2 Br, and high-pressure compression is performed under a pressure of 1000 kg / mm 2 , and the test has a thickness of 80 μm. I got a piece.

実施例6.
固体電解質としての粒径約20μmのLaFを、吸着剤としてゼオライトの1種である粒径約18μmの陽イオンがNaである合成ゼオライト(日揮ユニバーサル社製品)を、導電性金属として白金を用いた。なお上記合成ゼオライトは、前記実施例1における場合と同じ方法および条件で白金を無電解メッキした。白金メッキされる前の合成ゼオライト100重量部は、白金メッキ後では118重量部に増量していたので、増量分18重量部は白金メッキの重量に基づく。次に、上記LaF100重量部に対して上記白金メッキ合成ゼオライト20重量部の割合で混合し、1000kg/cmの圧力下で高圧圧縮し、厚さ90μmの試験片を得た。
Example 6
LaF 3 with a particle size of about 20 μm as a solid electrolyte, synthetic zeolite (product of JGC Universal) with a cation with a particle size of about 18 μm, which is a kind of zeolite as an adsorbent, and platinum as a conductive metal It was. The synthetic zeolite was electrolessly plated with platinum by the same method and conditions as in Example 1. Since 100 parts by weight of the synthetic zeolite before the platinum plating was increased to 118 parts by weight after the platinum plating, the increased part of 18 parts by weight is based on the weight of the platinum plating. Next, 20 parts by weight of the platinum-plated synthetic zeolite was mixed with 100 parts by weight of LaF 3 and compressed under a high pressure of 1000 kg / cm 2 to obtain a test piece having a thickness of 90 μm.

実施例7.
固体電解質としての粒径約20μmのLi14Zn(GeO)を、吸着剤として粒径約20μmのアルミナを、導電性金属として金を用いた。なお上記アルミナは、前記実施例2における方法と同じ条件で金を無電解メッキした。金メッキされる前のアルミナ100重量部は、金メッキ後では116重量部に増量していたので、増量分16重量部は白金メッキの重量に基づく。
次に、上記Li14Zn(GeOと上記金メッキ・アルミナとを個別に各1000kg/cmの圧力にて高圧圧縮して厚さ500μmのスパッタリング用ターゲットを得、さらに当該両ターゲットから半径5mmの円板状集合ターゲットを得た。当該円板状集合ターゲットにおけるLi14Zn(GeOの面積:金メッキ・アルミナの面積の比は、80対20とした。上記円板状集合ターゲットを回転した状態でアルゴンイオンを衝突させるスパッタリング法により、Li14Zn(GeO80重量部に対して金メッキ・アルミナ20重量部の割合で混合されてなる厚さ3μmの試験片を得た。
Example 7.
Li 14 Zn (GeO 4 ) 4 having a particle size of about 20 μm as a solid electrolyte, alumina having a particle size of about 20 μm as an adsorbent, and gold as a conductive metal were used. The alumina was electrolessly plated with gold under the same conditions as in Example 2. Since 100 parts by weight of alumina before gold plating was increased to 116 parts by weight after gold plating, the increased part of 16 parts by weight is based on the weight of platinum plating.
Next, the Li 14 Zn (GeO 4 ) 4 and the gold plating / alumina are individually compressed with high pressure at a pressure of 1000 kg / cm 2 to obtain a sputtering target having a thickness of 500 μm. A 5 mm disk-shaped collective target was obtained. The ratio of the area of Li 14 Zn (GeO 4 ) 4 in the disk-shaped aggregate target: the area of gold plating / alumina was 80:20. Thickness of 3 μm formed by mixing gold plating / alumina at a ratio of 20 parts by weight with respect to 80 parts by weight of Li 14 Zn (GeO 4 ) 4 by a sputtering method in which argon ions collide with the disk-shaped aggregate target rotated. The test piece was obtained.

実施例8.
固体電解質としての粒径約20μmのRbCu16ICl13を、吸着剤として粒径約20μmのシリカを、導電性金属として銀を用いた。なお上記シリカは、前記実施例3における方法と同じ条件で銀を無電解メッキした。銀メッキされる前のシリカ100重量部は、銀メッキ後では114重量部に増量していたので、増量分14重量部は銀メッキの重量に基づく。次に、上記RbCu16Cl13100重量部に対して上記銀メッキ・シリカ20重量部の割合で混合し、1000kg/cmの圧力下で高圧圧縮し、次いで800℃の条件で焼結して厚さ50μmの試験片を得た
Example 8.
Rb 4 Cu 16 I 7 Cl 13 having a particle size of about 20 μm as a solid electrolyte, silica having a particle size of about 20 μm as an adsorbent, and silver as a conductive metal were used. The silica was electrolessly plated with silver under the same conditions as in Example 3. Since 100 parts by weight of silica before silver plating was increased to 114 parts by weight after silver plating, the 14 parts by weight of the increase was based on the weight of silver plating. Next, 100 parts by weight of the Rb 4 Cu 16 I 7 Cl 13 is mixed at a ratio of 20 parts by weight of the silver-plated silica and compressed under a pressure of 1000 kg / cm 2 and then at 800 ° C. A specimen having a thickness of 50 μm was obtained by sintering.

実施例9.
固体電解質としての粒径約20μmの(ZrO)0.9(YO)0.1を、吸着剤として粒径約15μmのエリオナイトを、導電性金属として銅を用いた。なお上記エリオナイトは、次の条件で銅を無電解メッキした。即ち、無電解メッキ液として硫酸銅五水和物10g/L、酒石酸ナトリウムカリウム40g/L、水酸化ナトリウム(pH12.5)、ホルムアルデヒド13g/L、添加剤チオ尿素0.1〜2mg/L温度20℃のものを用い、当該無電解メッキ液400ミリリットルに上記エリオナイト粒子2gを20分間攪拌下に浸漬して無電解銅メッキを施し、次いで濾過し、イオン交換水で十分に洗浄し、乾燥して、銅メッキ層を有するエリオナイトを得た。銅メッキされる前のエリオナイト100重量部は、銅メッキ後では121重量部に増量していたので、増量分21重量部は銅メッキの重量に基づく。次に、上記(ZrO0.9(Y0.1100重量部に対してと上記銅メッキ・エリオナイト20重量部の割合で混合し、900kg/cmの圧力下で高圧圧縮し、厚さ100μmの試験片を得た。
Example 9.
(ZrO 2 ) 0.9 (Y 2 O 3 ) 0.1 having a particle size of about 20 μm as a solid electrolyte, erionite having a particle size of about 15 μm as an adsorbent, and copper as a conductive metal were used. The erionite was electrolessly plated with copper under the following conditions. That is, as an electroless plating solution, copper sulfate pentahydrate 10 g / L, potassium potassium tartrate 40 g / L, sodium hydroxide (pH 12.5), formaldehyde 13 g / L, additive thiourea 0.1-2 mg / L Using a 20 ° C. solution, 2 g of the above erionite particles are immersed in 400 ml of the electroless plating solution with stirring for 20 minutes to perform electroless copper plating, then filtered, washed thoroughly with ion-exchanged water, and dried. Thus, erionite having a copper plating layer was obtained. Since 100 parts by weight of erionite before copper plating was increased to 121 parts by weight after copper plating, 21 parts by weight of the increase was based on the weight of copper plating. Next, with respect to 100 parts by weight of the (ZrO 2 ) 0.9 (Y 2 O 3 ) 0.1 and 20 parts by weight of the copper plating erionite, the mixture is mixed under a pressure of 900 kg / cm 2. A test piece having a thickness of 100 μm was obtained by high-pressure compression.

実施例10.
固体電解質としての粒径約20μmのH3Mo12PO40・29H2Oを、吸着剤として粒径約15μmのエリオナイトを、導電性金属として金を、さらに触媒として粒径約1μmのNiFeOを用いた。なおエリオナイトは、前記実施例2における場合と同じ方法および条件で金を無電解メッキした。金メッキされる前のエリオナイト100重量部は、金メッキ後では118重量部に増量していたので、増量分18重量部は金メッキの重量に基づく。次に、上記HMo12PO40・29HO100重量部に対して上記金メッキエリオナイト20重量部の割合で混合し、900kg/cmの圧力下で高圧圧縮し、厚さ100μmの試験片を得た。
Example 10.
H 3 Mo 12 PO 40 / 29H 2 O having a particle size of about 20 μm as a solid electrolyte, erionite having a particle size of about 15 μm as an adsorbent, gold as a conductive metal, and Ni 2 having a particle size of about 1 μm as a catalyst. FeO 4 was used. The erionite was electrolessly plated with gold by the same method and conditions as in Example 2. Since 100 parts by weight of erionite before gold plating was increased to 118 parts by weight after gold plating, the 18 parts by weight of the increase was based on the weight of gold plating. Next, 20 parts by weight of the gold-plated erionite is mixed with 100 parts by weight of the H 3 Mo 12 PO 40 / 29H 2 O, and the mixture is high-pressure compressed under a pressure of 900 kg / cm 2 to obtain a test piece having a thickness of 100 μm. Got.

実施例11.
前記実施例2とは、 触媒として粒径約0.5μmのNiFeを用い対外は同様の方法にて、HClO・4HO100重量部に対して金メッキ合成ゼオライト粒子の20重量部、NiFe20の重量部の割合で混合し、800kg/cmの圧力下で高圧圧縮し、厚さ100μmの試験片を得た。
Example 11.
In Example 2, Ni 4 Fe having a particle diameter of about 0.5 μm was used as a catalyst in the same manner as in the outside, but 20 parts by weight of gold-plated synthetic zeolite particles with respect to 100 parts by weight of HClO 4 · 4H 2 O, Ni 4 Fe20 was mixed at a weight part ratio and compressed at a high pressure under a pressure of 800 kg / cm 2 to obtain a test piece having a thickness of 100 μm.

実施例12.
前記実施例3とは、触媒として粒径約0.5μmのCoFeを用いた以外は同様の方法および条件にて、前記固体高分子電解質100重量部あたり銀メッキゼオライトP20重量部、CoFe40重量部の割合で用いて塗布、焼結し、塗布物の厚さ120μmの焼結膜を得た。
Example 12.
Example 3 is the same as in Example 3 except that CoFe having a particle size of about 0.5 μm was used as a catalyst, and 20 parts by weight of silver-plated zeolite P and 40 parts by weight of CoFe per 100 parts by weight of the solid polymer electrolyte. Application and sintering were carried out at a ratio to obtain a sintered film having a coating thickness of 120 μm.

実施例13.
前記実施例4とは、触媒として粒径約0.5μmのMoBを用いた以外は同様の方法および条件にて、前記固体高分子電解質100重量部あたり銅メッキゼオライトP20重量部、MoB40重量部の割合で用いて塗布、焼結し、塗布物の厚さ100μmの焼結膜を得た。
Example 13.
Example 4 is the same as in Example 4 except that MoB having a particle size of about 0.5 μm was used as a catalyst, and 20 parts by weight of copper-plated zeolite P and 40 parts by weight of MoB per 100 parts by weight of the solid polymer electrolyte. Application and sintering were carried out at a ratio to obtain a sintered film having a thickness of 100 μm.

実施例14.
前記実施例5とは、 触媒として粒径約0.3μmのNiCoを用いた以外は同様の方法にて7CuBr・C12CHBr100重量部に対して白金メッキモルデナイト20重量部の割合で混合し1000kg/cmの圧力下で高圧圧縮し、厚さ80μmの試験片を得た。
Example 14.
In the same manner as in Example 5, except that NiCo 2 having a particle size of about 0.3 μm was used as a catalyst, 20 parts by weight of platinized mordenite with respect to 100 parts by weight of 7CuBr · C 6 H 12 N 4 CH 2 Br Were mixed at a rate of 1000 kg / cm 2 and compressed under high pressure to obtain a test piece having a thickness of 80 μm.

実施例15.
前記実施例6とは、触媒として粒径約0.5μmのNiCoを用いた以外は同様の方法および条件にてLaF100重量部に対して白金メッキ合成ゼオライトモルデナイト20重量部の割合で混合し、900kg/cmの圧力下で高圧圧縮し、厚さ100μmの試験片を得た。
Example 15.
Example 6 is the same as in Example 6 except that NiCo 2 having a particle size of about 0.5 μm was used and mixed at a ratio of 20 parts by weight of platinum-plated synthetic zeolite mordenite to 100 parts by weight of LaF 3. Then, high-pressure compression was performed under a pressure of 900 kg / cm 2 to obtain a test piece having a thickness of 100 μm.

実施例16.
前記実施例7とは、触媒として粒径約0.3μmのCoTiを用いた以外は同様の方法および条件にてLi14Zn(GeO100重量部に対して金メッキアルミナ20重量部、CoTi40重量部の割合とし、同様のスパッタリング法により厚さ1μmの試験片を得た。
Example 16.
In Example 7, 20 parts by weight of gold-plated alumina with respect to 100 parts by weight of Li 14 Zn (GeO 4 ) 4 in the same manner and conditions except that Co 9 Ti having a particle size of about 0.3 μm was used as a catalyst. Co 9 Ti was 40 parts by weight, and a test piece having a thickness of 1 μm was obtained by the same sputtering method.

実施例17.
前記実施例8とは、触媒として粒径約0.5μmのMoSiを用いた以外は同様の方法および条件にて、RbCu16Cl13100重量部に対して銀メッキ・シリカ20重量部、MoSi30重量部の割合で混合し、高圧圧縮および焼結して厚さ厚さ50μmの試験片を得た。
Example 17.
Example 8 is the same as in Example 8 except that MoSi 2 having a particle size of about 0.5 μm was used as a catalyst. Silver plating / silica 20 with respect to 100 parts by weight of Rb 4 Cu 16 I 7 Cl 13 was used. A test piece having a thickness of 50 μm was obtained by mixing at a ratio of 30 parts by weight with 30 parts by weight of MoSi 2 and compressing and sintering under high pressure.

実施例18.
前記実施例9とは、触媒として粒径約0.2μmのNiWを用い、(ZrO0.9(Y0.1100重量部に対して銅メッキ・エリオナイト20重量部、NiW30重量部の割合で混合し、800kg/cmの圧力下で高圧圧縮し、厚さ100μmの試験片を得た。
Example 18.
In Example 9, Ni 3 W having a particle size of about 0.2 μm was used as a catalyst, and copper-plated erionite 20 was added to 100 parts by weight of (ZrO 2 ) 0.9 (Y 2 O 3 ) 0.1. Part by weight and 30 parts by weight of Ni 3 W were mixed and high-pressure compressed under a pressure of 800 kg / cm 2 to obtain a test piece having a thickness of 100 μm.

比較例1.
比較例1は、前記実施例1とはエリオナイトを使用しない点で異なり、それ以外は実施例1と同じであって、但しHMo12PO40・29HO100重量部に対して粒度0.1μmの白金を実施例1の場合と同量となる3.4重量部の割合で混合し、1000kg/cmの圧力下で高圧圧縮し、厚さ50μmの試験片を得た。
Comparative Example 1.
Comparative Example 1 is different from Example 1 in that no erionite is used, and is otherwise the same as Example 1, except that the particle size is 0 with respect to 100 parts by weight of H 3 Mo 12 PO 40 · 29H 2 O. 0.1 μm of platinum was mixed at a ratio of 3.4 parts by weight, which was the same amount as in Example 1, and high-pressure compressed under a pressure of 1000 kg / cm 2 to obtain a specimen having a thickness of 50 μm.

比較例2.
比較例2は、前記実施例3とはゼオライトPを使用しない点で異なり、それ以外は実施例3と同じであって、但し実施例3におけるペーストに前記固体高分子電解質100重量部あたり粒度0.1μmの銀粒子を実施例3の場合と同量となる3.6重量部の割合で投入混合して、混合ペーストを得、さらに当該混合ペーストを別途用意した上記固体高分子電解質と同じ材料の膜の片面上に塗布し、350℃の条件で当該塗布物を焼結し、当該塗布物の厚さ30μmの焼結膜を得た。
Comparative Example 2.
Comparative Example 2 is different from Example 3 in that zeolite P is not used, and is otherwise the same as Example 3, except that the paste in Example 3 has a particle size of 0 per 100 parts by weight of the solid polymer electrolyte. .1 μm of silver particles are charged and mixed at a ratio of 3.6 parts by weight, which is the same amount as in Example 3, to obtain a mixed paste, and the same material as the solid polymer electrolyte prepared separately. The coated material was applied on one side of the film, and the coated material was sintered at 350 ° C. to obtain a sintered film having a thickness of 30 μm.

比較例3.
比較例3は、前記実施例8とはシリカを使用しない点で異なり、それ以外は実施例8と同じであって、但しRbCu16Cl13100重量部に対して粒度0.1μmの銀粒子を実施例8の場合と同量となる3.4重量部の割合で混合し、1000kg/cmの圧力下で高圧圧縮し、次いで800℃の条件で焼結して厚さ50μmの試験片を得た。
Comparative Example 3.
Comparative Example 3 differs from Example 8 in that silica is not used, and is otherwise the same as Example 8, except that the particle size is 0.1 μm with respect to 100 parts by weight of Rb 4 Cu 16 I 7 Cl 13. The silver particles were mixed at a ratio of 3.4 parts by weight, which was the same amount as in Example 8, compressed at a high pressure under a pressure of 1000 kg / cm 2 , and then sintered at 800 ° C. to a thickness of 50 μm. The test piece was obtained.

比較例4.
比較例4は、前記実施例16とはアルミナを使用しない点で異なり、それ以外は実施例16と同じであって、但しLi14Zn(GeO100重量部に対して粒度0.1μの金粒子を実施例16の場合と同量となる16重量部、およびCoTi40重量部の割合として、同様のスパッタリング法により厚さ1μmの試験片を得た。
Comparative Example 4.
Comparative Example 4 differs from Example 16 in that alumina is not used, and is otherwise the same as Example 16, except that the particle size is 0.1 μm with respect to 100 parts by weight of Li 14 Zn (GeO 4 ) 4. A test piece having a thickness of 1 μm was obtained by the same sputtering method with a proportion of 16 parts by weight of the same gold particles as in Example 16 and 40 parts by weight of Co 9 Ti.

前記実施例1〜18、および前記比較例1〜4で得た各成形物に就き、下記の試験条件にて、イオン導電性、ガス吸着能、および水分吸着能を測定し、それらの測定結果を図1の表にまとめて示す。
(イオン+電子)導電性:温度20℃、周波数1kHzにおける導電度(Ω−1・m−1)を測定。イオン導電性:Tubandt法によりイオン電流の割合を測定し求めた。
ガス吸着能:試験片を100℃で、真空度0.1mmHg以上の高真空下で2時間真空処理し、ついで当該高真空下の室温に2時間保持して冷却し、かく乾燥された上記試験片を温度20℃のNOガス中に2時間保持し、当該2時間保持前後における上記試験片の重量差を測定し、当該重量差をもってNOガスのガス吸着能とした。
水分吸着能:試験片を100℃で、真空度0.1mmHg以上の高真空下で2時間真空処理し、ついで当該高真空下の室温に2時間保持して冷却し、かく乾燥された上記試験片を温度20℃、相対湿度50%の室内に2時間保持し、当該2時間保持前後における上記試験片の重量差を測定し、当該重量差をもって水分吸着能とした。
With respect to each molded product obtained in Examples 1 to 18 and Comparative Examples 1 to 4, ionic conductivity, gas adsorbing ability, and moisture adsorbing ability were measured under the following test conditions, and the measurement results thereof. Are summarized in the table of FIG.
(Ion + Electron) Conductivity: Conductivity (Ω −1 · m −1 ) measured at a temperature of 20 ° C. and a frequency of 1 kHz. Ionic conductivity: Determined by measuring the ratio of ion current by Tubandt method.
Gas adsorption capacity: The test piece was vacuum-treated at 100 ° C. under a high vacuum of 0.1 mmHg or higher for 2 hours, then kept at room temperature under the high vacuum for 2 hours to cool and dry. The piece was held in NO 2 gas at a temperature of 20 ° C. for 2 hours, the weight difference of the test piece before and after the 2 hour holding was measured, and the weight difference was taken as the gas adsorption capacity of NO 2 gas.
Moisture adsorption ability: The test piece was vacuum-treated at 100 ° C. under a high vacuum of 0.1 mmHg or higher for 2 hours, then kept at room temperature under the high vacuum for 2 hours to cool and dry. The piece was held in a room at a temperature of 20 ° C. and a relative humidity of 50% for 2 hours, and the weight difference of the test piece before and after the 2 hour holding was measured.

図1から、比較例1〜4は、吸着剤を含まないのでその分、導電性金属の配合比率が高くなるのでイオン導電性においては実施例1〜18より優れてはいるが、ガス吸着能および水分吸着能が極めて低い欠点がある。これに対して、実施例1〜18では、イオン導電性においては比較例1〜4に劣るが、それでも電気化学素子用の電極と使用する上では十分な値を有し、しかも従来の電気化学素子用の電極には到底みられない高度のガス吸着能および水分吸着能を有していることがわかる。   From FIG. 1, since Comparative Examples 1 to 4 do not contain an adsorbent, the proportion of the conductive metal increases accordingly, so that the ionic conductivity is superior to that of Examples 1 to 18, but the gas adsorption capacity. In addition, there is a disadvantage that the moisture adsorption capacity is extremely low. On the other hand, in Examples 1-18, although it is inferior to Comparative Examples 1-4 in ionic conductivity, it still has sufficient value for using with the electrode for electrochemical elements, and also the conventional electrochemical It can be seen that the device electrode has a high level of gas adsorbing ability and moisture adsorbing ability that cannot be found at all.

以上、本発明を実施の形態1〜18および比較例1〜4により説明したが、本発明はそれらの実施の形態に限定されるものではなく、本発明における課題および解決手段の精神に沿った種々の変形形態を包含する。例えば固体電解質、吸着剤、導電性金属、および触媒としては、実施の形態1〜18で使用した以外のものであってもよく、また実施の形態1〜18では固体電解質、吸着剤、導電性金属、および触媒としていずれも一種類の材料を用いたが、2種以上の固体電解質、2種以上の吸着剤、2種以上の導電性金属、および2種以上の触媒を配合したものであってもよい。   As mentioned above, although this invention was demonstrated by Embodiment 1-18 and Comparative Examples 1-4, this invention is not limited to those embodiment, The subject in this invention and the mind of a solution means were followed. Various variations are included. For example, the solid electrolyte, the adsorbent, the conductive metal, and the catalyst may be those other than those used in Embodiments 1 to 18, and in Embodiments 1 to 18, the solid electrolyte, the adsorbent, and the conductivity. One type of material was used for both the metal and the catalyst, but it was a mixture of two or more solid electrolytes, two or more adsorbents, two or more conductive metals, and two or more catalysts. May be.

本発明の導電性組成物は、前記実施例において示したNOと水分以外にも、各種のNOxガス、アンモニアガス、ハロゲンガス、SFの各種分解ガス等のガス類、各種の無機化合物およびその水溶液、アルコール、低級炭化水素油、あるいはその他の各種液体を吸着する機能を有するので、先に例示したメタノ−ル燃料電池やHFガスセンサ以外にも、NOx検出センサ、メタノ−ル燃料電池以外の各種燃料電池、室内の湿度検出および調整装置、あるいはその他の電気化学装置や素子における電極形成材としての利用が期待される。 The conductive composition of the present invention includes various NOx gas, ammonia gas, halogen gas, various gases such as SF 6 decomposition gas, various inorganic compounds, in addition to NO 2 and moisture shown in the above examples. Since it has a function of adsorbing the aqueous solution, alcohol, lower hydrocarbon oil, or other various liquids, in addition to the methanol fuel cell and the HF gas sensor exemplified above, other than the NOx detection sensor and the methanol fuel cell. It is expected to be used as an electrode forming material in various fuel cells, indoor humidity detection and adjustment devices, or other electrochemical devices and elements.

本発明の実施例1〜実施例18のイオン導電性、ガス吸着能、および水分吸着能を示す表である。It is a table | surface which shows the ionic conductivity, gas adsorption ability, and water | moisture-content adsorption capacity of Example 1- Example 18 of this invention.

Claims (6)

固体電解質、吸着剤、導電性金属を含むことを特徴とする導電性組成物。   A conductive composition comprising a solid electrolyte, an adsorbent, and a conductive metal. 上記固体電解質は、水素イオン導電性の固体電解質、アルカリ金属イオン導電性の固体電解質、1b属金属イオン導電性の固体電解質、および陰イオン導電性の固体電解質から選ばれる少なくとも一種である請求項1記載の導電性組成物。   2. The solid electrolyte is at least one selected from a hydrogen ion conductive solid electrolyte, an alkali metal ion conductive solid electrolyte, a group 1b metal ion conductive solid electrolyte, and an anion conductive solid electrolyte. The electroconductive composition as described. 上記吸着剤は、ゼオライト、アルミナ、およびシリカから選ばれる少なくとも一種である請求項1記載の導電性組成物。   2. The conductive composition according to claim 1, wherein the adsorbent is at least one selected from zeolite, alumina, and silica. 上記導電性金属は、20℃における導電率が少なくとも5Ω−1−1のものである請求項1記載の導電性組成物。 2. The conductive composition according to claim 1, wherein the conductive metal has a conductivity at 20 ° C. of at least 5Ω −1 m −1 . 触媒を含む請求項1〜4記載の導電性組成物。   The electrically conductive composition of Claims 1-4 containing a catalyst. 上記触媒は、白金族金属、白金族金属化合物、ニッケル、ニッケル化合物、コバルト、コバルト化合物、タングステン、タングステン化合物、モリブデン、およびモリブデン化合物から選ばれる少なくとも一種である請求項5記載の導電性組成物。
6. The conductive composition according to claim 5, wherein the catalyst is at least one selected from platinum group metals, platinum group metal compounds, nickel, nickel compounds, cobalt, cobalt compounds, tungsten, tungsten compounds, molybdenum, and molybdenum compounds.
JP2006238967A 2006-09-04 2006-09-04 Conductive composition Active JP4889413B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238967A JP4889413B2 (en) 2006-09-04 2006-09-04 Conductive composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238967A JP4889413B2 (en) 2006-09-04 2006-09-04 Conductive composition

Publications (2)

Publication Number Publication Date
JP2008060043A true JP2008060043A (en) 2008-03-13
JP4889413B2 JP4889413B2 (en) 2012-03-07

Family

ID=39242512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238967A Active JP4889413B2 (en) 2006-09-04 2006-09-04 Conductive composition

Country Status (1)

Country Link
JP (1) JP4889413B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261040A (en) * 2009-05-04 2010-11-18 Laird Technologies Inc Method for uniformly and more highly filling polymer matrix using highly porous host material with metal filler
CN114471590A (en) * 2022-01-20 2022-05-13 浙江大学 Ping-pong chrysanthemum-shaped porous micro-nano non-noble metal inter-compound catalyst and preparation and application thereof
WO2023017602A1 (en) * 2021-08-12 2023-02-16 千代田化工建設株式会社 Proton conductor and method for producing same
WO2023017601A1 (en) * 2021-08-12 2023-02-16 千代田化工建設株式会社 Electrochemical cell, power generation method using electrochemical cell, and method for producing hydrogen gas using electrochemical cell

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115950941B (en) * 2023-03-13 2023-06-20 华北理工大学 Lithium ion conductor solid electrolyte type low-temperature sensor and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
WO2003023883A1 (en) * 2001-09-10 2003-03-20 Asahi Kasei Kabushiki Kaisha Electrode catalyst layer for fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246033A (en) * 2001-02-14 2002-08-30 Toshiba Corp Electrode, electrode composition, fuel cell using the same and electrode producing method
WO2003023883A1 (en) * 2001-09-10 2003-03-20 Asahi Kasei Kabushiki Kaisha Electrode catalyst layer for fuel cell

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010261040A (en) * 2009-05-04 2010-11-18 Laird Technologies Inc Method for uniformly and more highly filling polymer matrix using highly porous host material with metal filler
US8663506B2 (en) 2009-05-04 2014-03-04 Laird Technologies, Inc. Process for uniform and higher loading of metallic fillers into a polymer matrix using a highly porous host material
WO2023017602A1 (en) * 2021-08-12 2023-02-16 千代田化工建設株式会社 Proton conductor and method for producing same
WO2023017601A1 (en) * 2021-08-12 2023-02-16 千代田化工建設株式会社 Electrochemical cell, power generation method using electrochemical cell, and method for producing hydrogen gas using electrochemical cell
TWI816332B (en) * 2021-08-12 2023-09-21 日商千代田化工建設股份有限公司 Electrochemical unit, power generation method using electrochemical unit, and hydrogen production method using electrochemical unit
AU2021460215B2 (en) * 2021-08-12 2024-01-25 Chiyoda Corporation Electrochemical cell, power generation method using electrochemical cell, and method for producing hydrogen gas using electrochemical cell
AU2021460215B9 (en) * 2021-08-12 2024-02-15 Chiyoda Corporation Electrochemical cell, power generation method using electrochemical cell, and method for producing hydrogen gas using electrochemical cell
JP7499419B2 (en) 2021-08-12 2024-06-13 千代田化工建設株式会社 Electrochemical cell, power generation method using electrochemical cell, and method for producing hydrogen gas using electrochemical cell
CN114471590A (en) * 2022-01-20 2022-05-13 浙江大学 Ping-pong chrysanthemum-shaped porous micro-nano non-noble metal inter-compound catalyst and preparation and application thereof
CN114471590B (en) * 2022-01-20 2023-01-10 浙江大学 Ping-pong chrysanthemum-shaped porous micro-nano non-noble metal inter-compound catalyst and preparation and application thereof

Also Published As

Publication number Publication date
JP4889413B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
Wu et al. Regulating the oxidation state of nanomaterials for electrocatalytic CO 2 reduction
Yang et al. Active site identification and evaluation criteria of in situ grown CoTe and NiTe nanoarrays for hydrogen evolution and oxygen evolution reactions
Wang et al. Heterostructured intermetallic CuSn catalysts: high performance towards the electrochemical reduction of CO 2 to formate
Vilian et al. Hexagonal Co 3 O 4 anchored reduced graphene oxide sheets for high-performance supercapacitors and non-enzymatic glucose sensing
Guan et al. Rational design of metal‐organic framework derived hollow NiCo2O4 arrays for flexible supercapacitor and electrocatalysis
Kwon et al. Current status of self‐supported catalysts for robust and efficient water splitting for commercial electrolyzer
JP4889413B2 (en) Conductive composition
Abroshan et al. Ultrathin cobalt oxide overlayer promotes catalytic activity of cobalt nitride for the oxygen reduction reaction
CN106471669B (en) Air electrode with separator for metal-air battery
WO2014181873A1 (en) Fuel cell electrode catalyst and method for activating catalyst
Ramirez et al. Effect of different zeolite as Pt supports for methanol oxidation reaction
Zhao et al. Interfacial proton enrichment enhances proton-coupled electrocatalytic reactions
KR20150074822A (en) Electrode material for capacitive deionization, methods of producing the same and capacitive deionization apparatus including the same
Topçu et al. Flexible gold nanoparticles/rGO and thin film/rGO papers: novel electrocatalysts for hydrogen evolution reaction
Ganjali et al. A novel nano-composite Tb3+ carbon paste electrode
WO2007063851A1 (en) Nickel powder, method for producing same, and polymer ptc device using such nickel powder
KR101697984B1 (en) Catalyst for electrode, composition for forming gas diffusion electrode, gas diffusion electrode, film-electrode assembly, and fuel cell stack
Wang et al. Copper selenide–derived copper oxide nanoplates as a durable and efficient electrocatalyst for oxygen evolution reaction
JP5956312B2 (en) Electrode material, membrane electrode assembly, fuel cell stack, and method for producing electrode material
Priamushko et al. Incorporation of Cu/Ni in Ordered Mesoporous Co‐Based Spinels to Facilitate Oxygen Evolution and Reduction Reactions in Alkaline Media and Aprotic Li− O2 Batteries
JP4609829B2 (en) Electrode material and capacitor
Zheng et al. Susceptible CoSnO 3 nanoboxes with p-type response for triethylamine detection at low temperature
KR20170085135A (en) Electrode catalyst, gas diffusion electrode-forming composition, gas diffusion electrode, membrane electrode assembly, and fuel cell stack
EP3145008B1 (en) Electrode catalyst, composition for forming gas diffusion electrode, gas diffusion electrode, membrane-electrode assembly, fuel cell stack and method for producing electrode catalyst
JP4217271B2 (en) Conductive fine particles and anisotropic conductive materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111213

R151 Written notification of patent or utility model registration

Ref document number: 4889413

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250