JP2008059908A - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP2008059908A
JP2008059908A JP2006235667A JP2006235667A JP2008059908A JP 2008059908 A JP2008059908 A JP 2008059908A JP 2006235667 A JP2006235667 A JP 2006235667A JP 2006235667 A JP2006235667 A JP 2006235667A JP 2008059908 A JP2008059908 A JP 2008059908A
Authority
JP
Japan
Prior art keywords
polymer electrolyte
solid polymer
catalyst layer
electrolyte membrane
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006235667A
Other languages
Japanese (ja)
Inventor
Michiko Horiguchi
道子 堀口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2006235667A priority Critical patent/JP2008059908A/en
Publication of JP2008059908A publication Critical patent/JP2008059908A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell capable of stably operating without generating drop in cell characteristics caused by the expansion and contraction of a solid polymer electrolyte membrane even if starting and stop are repeated. <P>SOLUTION: The polymer electrolyte fuel cell is composed of cells in which a catalyst layer 2 is arranged on both sides of a flat plate-like solid polymer electrolyte membrane 1, a diffusion layer 5 is arranged on both outer surfaces of the catalyst layer 2, the catalyst layer 2 larger than the solid polymer electrolyte membrane 1 is joined to the central part on the solid polymer electrolyte membrane 1, a frame-shaped protection film 3 surrounds the outer periphery of the catalyst layer 2 and is joined to the outer peripheral part of the solid polymer electrolyte membrane 1, and at least one slit 8 extending in the direction surrounding the catalyst layer 2 is formed in the protection film 3. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電解質に固体高分子電解質膜を用いて電気化学反応により電気エネルギーを得る固体高分子電解質型燃料電池に関し、更に詳しくは、膜―電極接合体を用いてセルが構成される固体高分子電解質型燃料電池に関する。   The present invention relates to a solid polymer electrolyte fuel cell that uses a solid polymer electrolyte membrane as an electrolyte to obtain electric energy through an electrochemical reaction, and more particularly, to a solid polymer electrolyte cell in which a cell is formed using a membrane-electrode assembly. The present invention relates to a molecular electrolyte fuel cell.

固体高分子電解質型燃料電池(PEFC:Polymer Electrolyte Fuel Cell)は、電解質に固体高分子電解質膜を用いる燃料電池であり、出力密度が高く、電池寿命が長い等の特長をもつ。
図3は、従来の固体高分子電解質型燃料電池のセルの基本構造の一例を示す断面図である。図に見られるように、中央に配置された平板状の固体高分子電解質膜31の両面に、電極となる触媒層32を形成し、さらにそれぞれの触媒層32の周囲に枠状の保護フィルム33を形成して、膜―電極接合体(MEA)34を構成している(特許文献1、あるいは特許文献2を参照)。さらに、触媒層32および保護フィルム33の外面に集電の機能とガスの拡散の機能を果たす拡散層35を接合し、これらを、ガス流通溝36aを備えたセパレータ36で挟持することによって単位セルが構成されている。なお、一般的には、上記のごとき構成の単位セルを複数枚積層して形成した燃料電池スタックにより燃料電池が構成されている。
A polymer electrolyte fuel cell (PEFC) is a fuel cell using a solid polymer electrolyte membrane as an electrolyte, and has features such as high output density and long battery life.
FIG. 3 is a cross-sectional view showing an example of a basic structure of a cell of a conventional solid polymer electrolyte fuel cell. As shown in the figure, a catalyst layer 32 serving as an electrode is formed on both surfaces of a flat solid polymer electrolyte membrane 31 disposed in the center, and a frame-shaped protective film 33 is formed around each catalyst layer 32. To form a membrane-electrode assembly (MEA) 34 (see Patent Document 1 or Patent Document 2). Furthermore, a unit cell is formed by joining a diffusion layer 35 that performs a current collecting function and a gas diffusing function to the outer surfaces of the catalyst layer 32 and the protective film 33 and sandwiching them with a separator 36 having a gas flow groove 36a. Is configured. In general, a fuel cell is constituted by a fuel cell stack formed by stacking a plurality of unit cells having the above-described configuration.

上記のごとき燃料電池の単位セル、あるいは燃料電池スタックを製造する際には、電極へのガスの供給が阻害される部分が生じたり、ガスシールが不十分で外部にリークする部分が生じたりするのを回避するために、触媒層32(電極)、拡散層35、ガス流通溝36a等の位置を正確に組み合わせなければならない。したがって、固体高分子電解質膜31の両面に触媒層32を接合したMEA34に、予め拡散層35を接合して一体化することによって組み立ての際の位置ずれを防止している。MEA34と拡散層35とを一体化する方法としては、図4に示したように、MEA34の両面に拡散層35を配し、これを一組のプレス板38A,38Bで挟持し、加熱しつつ圧着することによって接合させる方法が一般的に用いられている。触媒層32に混合されているパーフルオロスルホン酸ポリマー等の固体高分子電解質ポリマーが、加熱されてガラス転移点以上になることによって軟化し、触媒層32と拡散層35を接合するバインダーとなって両者が接合されるものと考えられている。   When manufacturing a fuel cell unit cell or fuel cell stack as described above, there may be a part where the gas supply to the electrode is obstructed or a part where the gas seal is insufficient and the part leaks to the outside. In order to avoid this, the positions of the catalyst layer 32 (electrode), the diffusion layer 35, the gas flow groove 36a, and the like must be accurately combined. Accordingly, the MEA 34 in which the catalyst layer 32 is bonded to both surfaces of the solid polymer electrolyte membrane 31 is previously bonded and integrated with the diffusion layer 35 to prevent positional deviation during assembly. As a method of integrating the MEA 34 and the diffusion layer 35, as shown in FIG. 4, the diffusion layer 35 is disposed on both sides of the MEA 34, and is sandwiched between a pair of press plates 38A and 38B and heated. The method of joining by crimping is generally used. The solid polymer electrolyte polymer such as perfluorosulfonic acid polymer mixed in the catalyst layer 32 is softened by being heated to the glass transition point or higher, and becomes a binder for joining the catalyst layer 32 and the diffusion layer 35. It is thought that both are joined.

固体高分子電解質膜31の材質は、分子中にプロトン交換基を有し、プロトン導電性電解質として機能する固体高分子であればよく、従来公知のイオン交換膜等が利用可能である。具体的には、スルホン酸基を持つポリスチレン系の陽イオン交換膜をカチオン導電性膜として使用したもの、フロロカーボンスルホン酸とポリビニリデンフロライドの混合膜、パーフルオロスルホン酸ポリマー等が使用でき、なかでも、パーフルオロスルホン酸ポリマーが好ましい。パーフルオロスルホン酸ポリマーとしては、例えば、ナフィオン(登録商標名;デュポン社製)等が好適に用いられる。   The material of the solid polymer electrolyte membrane 31 may be a solid polymer having a proton exchange group in the molecule and functioning as a proton conductive electrolyte, and a conventionally known ion exchange membrane or the like can be used. Specifically, polystyrene-based cation exchange membranes having sulfonic acid groups can be used as cationic conductive membranes, mixed membranes of fluorocarbon sulfonic acid and polyvinylidene fluoride, perfluorosulfonic acid polymers, etc. However, perfluorosulfonic acid polymers are preferred. As the perfluorosulfonic acid polymer, for example, Nafion (registered trademark; manufactured by DuPont) and the like are preferably used.

触媒層32には、白金族等の金属触媒を担持したカーボン粉末等が使用できる。この触媒を、例えばパーフルオロスルホン酸ポリマーを溶解した溶液と混合することによってペースト状にし、固体高分子電解質膜31の上に塗布することによって触媒層を形成することができる。また、ポリマーと混合してあらかじめシート化した後に、熱プレス等によって固体高分子電解質膜31と一体化してもよい。   For the catalyst layer 32, carbon powder carrying a metal catalyst such as a platinum group can be used. The catalyst layer can be formed by mixing the catalyst with, for example, a solution in which perfluorosulfonic acid polymer is dissolved, and applying the catalyst onto the solid polymer electrolyte membrane 31. Further, after mixing with a polymer to form a sheet in advance, it may be integrated with the solid polymer electrolyte membrane 31 by hot pressing or the like.

保護フィルム33には、従来公知のシート状のプラスティック、ゴム、エラストマー等を使用することができる。具体的には、ポリクロロトリフルオロエチレン、ポリフッ化ビニル、ポリフッ化ビニリデン、テトラフルオロエチレン−ヘキサフルオロプロペン共重合体、テトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体、ポリテトラフルオロエチレン等のフッ素系ポリマー、ポリエチレンテレフタレート、ポリフェニレンサルファイド、ポリエチレンナフタレート等が挙げられる。中でも、固体高分子電解質膜31がパーフルオロスルホン酸ポリマーの場合には、これと融点が近い上記のフッ素系ポリマーを用いることが望ましい。このように選定すれば、保護フィルム33と固体高分子電解質膜31を熱融着によって接合することができる。なお、特許文献3には、保護フィルムを接着層によって接合する方法が開示されている。   For the protective film 33, a conventionally known sheet-like plastic, rubber, elastomer or the like can be used. Specifically, fluorine-based materials such as polychlorotrifluoroethylene, polyvinyl fluoride, polyvinylidene fluoride, tetrafluoroethylene-hexafluoropropene copolymer, tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer, polytetrafluoroethylene, etc. Examples thereof include polymers, polyethylene terephthalate, polyphenylene sulfide, and polyethylene naphthalate. In particular, when the solid polymer electrolyte membrane 31 is a perfluorosulfonic acid polymer, it is desirable to use the above-mentioned fluorine-based polymer having a melting point close to that. If it chooses in this way, the protective film 33 and the solid polymer electrolyte membrane 31 can be joined by heat sealing | fusion. Patent Document 3 discloses a method of bonding a protective film with an adhesive layer.

拡散層35には、カーボン繊維(炭素繊維)より形成されたシート状のカーボンペーパーやカーボンクロスが使用可能である。また、拡散層35の大きさは、触媒層32の外周より大きく、保護フィルム33の外周より小さいことが望ましく、少なくとも触媒層32および拡散層35を覆う大きさであることが好ましい。この拡散層35をMEA34上の接着層に重ね合わせ、一組のプレス板38A,38Bで挟持し、加熱しつつ圧着することによって接合される。
特許第3052536号公報 特開2002−231274号公報 特開2004−319153号公報
For the diffusion layer 35, a sheet-like carbon paper or carbon cloth formed from carbon fibers (carbon fibers) can be used. Further, the size of the diffusion layer 35 is preferably larger than the outer periphery of the catalyst layer 32 and smaller than the outer periphery of the protective film 33, and preferably has a size covering at least the catalyst layer 32 and the diffusion layer 35. The diffusion layer 35 is superposed on the adhesive layer on the MEA 34, sandwiched between a pair of press plates 38A and 38B, and bonded by heating and pressure bonding.
Japanese Patent No. 3052536 JP 2002-231274 A JP 2004-319153 A

従来の固体高分子電解質型燃料電池においては、上記のごとく、固体高分子電解質膜の両面に配する触媒層の外周に枠状の保護フィルムを備えてMEAを形成し、このMEAと拡散層とを積層して熱圧着することによってセルを構成しているので、拡散層圧着の際に固体高分子電解質膜が損傷する恐れはない。しかしながら、この種の固体高分子電解質型燃料電池においては、良好な発電特性を得るために加湿された反応ガスを供給し、固体高分子電解質膜を湿潤に保持して運転されるので、燃料電池を起動させると固体高分子電解質膜が湿潤となり、運転を停止すると固体高分子電解質膜は乾燥する。したがって、燃料電池の起動停止を繰り返すと、固体高分子電解質膜は湿潤状態と乾燥状態を繰り返し経験することとなる。一方、固体高分子電解質膜は水分量の増加とともに伸長するので、湿潤状態と乾燥状態を繰り返すと伸縮を繰り返すこととなる。この固体高分子電解質膜の伸縮量がこれを取り囲む保護フィルムの伸縮量より大きいと、伸縮の繰り返しによって固体高分子電解質膜にシワが生じたり、膜切れが起きたりする。これらの現象は特に伸び率の異なる電極端部で発生しやすく、このように電極端部で電解質膜が損傷すると電池特性が低下する。したがって、起動、停止を繰り返すとともに固体高分子電解質膜の損傷が進行し、電池特性が低下することとなる。   In the conventional solid polymer electrolyte fuel cell, as described above, an MEA is formed by providing a frame-shaped protective film on the outer periphery of the catalyst layer disposed on both sides of the solid polymer electrolyte membrane, and this MEA, diffusion layer, Since the cell is formed by laminating and thermocompression bonding, there is no fear that the solid polymer electrolyte membrane is damaged during the pressure bonding of the diffusion layer. However, this type of solid polymer electrolyte fuel cell is operated by supplying a humidified reaction gas to obtain good power generation characteristics and keeping the solid polymer electrolyte membrane moist. Is activated, the solid polymer electrolyte membrane becomes wet. When the operation is stopped, the solid polymer electrolyte membrane is dried. Therefore, when the start and stop of the fuel cell are repeated, the solid polymer electrolyte membrane repeatedly experiences a wet state and a dry state. On the other hand, since the solid polymer electrolyte membrane expands with an increase in the amount of water, it repeatedly expands and contracts when the wet state and the dry state are repeated. If the amount of expansion / contraction of the solid polymer electrolyte membrane is larger than the amount of expansion / contraction of the protective film surrounding it, the solid polymer electrolyte membrane may be wrinkled or broken due to repeated expansion / contraction. These phenomena are particularly likely to occur at the electrode ends having different elongation rates. When the electrolyte membrane is damaged at the electrode ends as described above, the battery characteristics deteriorate. Therefore, starting and stopping are repeated, and damage to the solid polymer electrolyte membrane proceeds, so that battery characteristics are deteriorated.

本発明は、上記のごとき従来技術の問題点を考慮してなされたもので、本発明の目的は、起動、停止を繰り返し実施しても、固体高分子電解質膜の伸縮に起因する電池特性の低下を生じることなく安定して運転できる固体高分子電解質型燃料電池を提供することにある。   The present invention has been made in consideration of the problems of the prior art as described above, and the object of the present invention is to improve the battery characteristics due to the expansion and contraction of the solid polymer electrolyte membrane even if the start and stop are repeated. An object of the present invention is to provide a solid polymer electrolyte fuel cell that can be stably operated without causing a decrease.

上記の目的を達成するために、本発明においては、
(1)平板状の固体高分子電解質膜と、この固体高分子電解質膜の両面に接合された平板状の触媒層と、この触媒層の両外面に接合された平板状の拡散層とを備え、かつ、前記の固体高分子電解質膜より大きさの小さい前記の触媒層が固体高分子電解質膜上の中央部に接合され、枠状の保護フィルムが前記の触媒層の外周を囲んで前記の固体高分子電解質膜の外縁部に接合されて形成されたセルより構成される固体高分子電解質型燃料電池において、前記の保護フィルムに、触媒層を取り囲む方向に延伸するスリットを少なくとも1本備えることとする。
In order to achieve the above object, in the present invention,
(1) A flat solid polymer electrolyte membrane, a flat catalyst layer bonded to both surfaces of the solid polymer electrolyte membrane, and a flat diffusion layer bonded to both outer surfaces of the catalyst layer The catalyst layer having a size smaller than that of the solid polymer electrolyte membrane is bonded to the center of the solid polymer electrolyte membrane, and a frame-shaped protective film surrounds the outer periphery of the catalyst layer. In a solid polymer electrolyte fuel cell composed of cells formed by being joined to the outer edge of a solid polymer electrolyte membrane, the protective film includes at least one slit extending in a direction surrounding the catalyst layer. And

(2)さらに、上記(1)の固体高分子電解質型燃料電池において、保護フィルムに備えたスリットの幅を0.5 mm以下とする。
(3)さらに、上記(1)または(2)の固体高分子電解質型燃料電池において、保護フィルムに備えたスリットの形状を前記の触媒層の角部の外周をL字状に囲む形状とする。
(2) Further, in the solid polymer electrolyte fuel cell of (1), the width of the slit provided in the protective film is 0.5 mm or less.
(3) Further, in the solid polymer electrolyte fuel cell according to (1) or (2), the shape of the slit provided in the protective film is such that the outer periphery of the corner portion of the catalyst layer is enclosed in an L shape. .

(4)さらに、上記(1)から(3)のいずれかの固体高分子電解質型燃料電池において、前記の保護フィルムと固体高分子電解質膜を熱圧着により接合させて形成することとする。   (4) Further, in the solid polymer electrolyte fuel cell according to any one of (1) to (3), the protective film and the solid polymer electrolyte membrane are joined by thermocompression bonding.

平板状の固体高分子電解質膜と、その両面に接合された平板状の触媒層と、この触媒層の両外面に接合された平板状の拡散層とを備え、かつ、触媒層が固体高分子電解質膜上の中央部に接合され、枠状の保護フィルムが触媒層の外周を囲んで固体高分子電解質膜の外縁部に接合されて形成されたセルより構成される固体高分子電解質型燃料電池において、上記の(1)のように、前記の保護フィルムに、触媒層を取り囲む方向に延伸するスリットを少なくとも1本備えることとすれば、保護フィルムは固体高分子電解質膜の中央部から外縁部に分割して接することとなる。したがって、燃料電池の起動、停止に伴なって生じる湿潤、乾燥に起因する保護フィルムの伸縮量が緩和されるので、電極端部でのシワよりや膜切れが防止され、電池特性の低下が抑制される。   A flat solid polymer electrolyte membrane, a flat catalyst layer bonded to both surfaces thereof, and a flat diffusion layer bonded to both outer surfaces of the catalyst layer, and the catalyst layer is a solid polymer A solid polymer electrolyte fuel cell composed of a cell formed by joining a central protective layer on an electrolyte membrane and a frame-shaped protective film surrounding the outer periphery of the catalyst layer and joined to the outer edge of the solid polymer electrolyte membrane If the protective film is provided with at least one slit extending in the direction surrounding the catalyst layer as in (1) above, the protective film is formed from the central portion of the solid polymer electrolyte membrane to the outer edge portion. It will be divided and touched. Therefore, the amount of expansion and contraction of the protective film caused by wetting and drying caused by starting and stopping of the fuel cell is alleviated, so that film breakage is prevented more than wrinkles at the electrode end, and deterioration of battery characteristics is suppressed. Is done.

また、上記(2)のごとく、保護フィルムに備えるスリットの幅を0.5 mm以下とすれば、後述の実施例に記したごとく電池特性の低下が確実に抑制されることとなる。また、上記(3)のごとく、このスリットの形状を前記の触媒層の角部の外周をL字状に囲む形状とすれば、中央部から外縁部に至る距離がもっとも長くなる角部の保護フィルムが分割されて固体高分子電解質膜に接することとなり、保護フィルムとしての機能を損なうことなく、かつ、効果的に伸縮量を緩和できるので、スリットの形状として特に好適である。また、上記のごとき保護フィルムにスリットを備えた効果は、(4)のごとく、保護フィルムと固体高分子電解質膜を熱圧着により接合させてセルを形成する固体高分子電解質型燃料電池において、特に有効である。   Moreover, if the width | variety of the slit with which a protective film is provided is 0.5 mm or less as said (2), as described in the below-mentioned Example, the fall of a battery characteristic will be suppressed reliably. Further, as described in (3) above, if the slit is shaped so as to surround the outer periphery of the corner portion of the catalyst layer in an L shape, the corner portion with the longest distance from the center portion to the outer edge portion is protected. Since the film is divided and comes into contact with the solid polymer electrolyte membrane, the expansion and contraction amount can be effectively relaxed without impairing the function as the protective film, and therefore, it is particularly suitable as a slit shape. In addition, as described in (4) above, the effect of providing the protective film with a slit as described above is particularly advantageous in a solid polymer electrolyte fuel cell in which a cell is formed by joining the protective film and the solid polymer electrolyte membrane by thermocompression bonding. It is valid.

本発明の固体高分子電解質型燃料電池の最良の実施形態は、平板状の固体高分子電解質膜と、この固体高分子電解質膜の両面に接合された平板状の触媒層と、この触媒層の両外面に接合された平板状の拡散層とを備え、かつ、前記の固体高分子電解質膜より大きさの小さい前記の触媒層が固体高分子電解質膜上の中央部に接合され、枠状の保護フィルムが前記の触媒層の外周を囲んで配された前記の固体高分子電解質膜に接合されて形成されたセルより構成される固体高分子電解質型燃料電池において、前記の保護フィルムに、触媒層を取り囲む方向に延伸するスリット、例えば、前記の触媒層の外周をL字状に囲む形状を備えたスリットで、例えば幅が5mm以下のスリットを少なくとも1本備えて形成した形態にある。   The best mode of the solid polymer electrolyte fuel cell of the present invention includes a flat solid polymer electrolyte membrane, a flat catalyst layer bonded to both surfaces of the solid polymer electrolyte membrane, A flat diffusion layer bonded to both outer surfaces, and the catalyst layer having a size smaller than that of the solid polymer electrolyte membrane is bonded to a central portion on the solid polymer electrolyte membrane, In a solid polymer electrolyte fuel cell comprising a cell formed by bonding a protective film to the solid polymer electrolyte membrane disposed around the outer periphery of the catalyst layer, the catalyst is formed on the protective film. A slit extending in a direction surrounding the layer, for example, a slit having a shape surrounding the outer periphery of the catalyst layer in an L shape, for example, at least one slit having a width of 5 mm or less is formed.

図1は、本発明の固体高分子電解質型燃料電池の実施例を示すセルの図で、(a)はセルを構成するMEAの平面図、(b)はセルの断面図である。図に見られるように、平板状の固体高分子電解質膜1の両面に、固体高分子電解質膜1より大きさの小さい触媒層2と、この触媒層2の外周を囲む枠状の保護フィルム3を配してMEA4が形成され、さらにその両外面に拡散層5を配してMEA−拡散層接合体が形成されている。本実施例のセルの特徴は、図1(a)に見られるように、保護フィルム3に触媒層2を取り囲む方向に延伸するスリット8が備えられている点にある。   FIG. 1 is a diagram of a cell showing an embodiment of a solid polymer electrolyte fuel cell of the present invention, wherein (a) is a plan view of an MEA constituting the cell, and (b) is a cross-sectional view of the cell. As shown in the figure, a catalyst layer 2 having a size smaller than that of the solid polymer electrolyte membrane 1 and a frame-like protective film 3 surrounding the outer periphery of the catalyst layer 2 are formed on both sides of the flat solid polymer electrolyte membrane 1. MEA 4 is formed, and diffusion layers 5 are further arranged on both outer surfaces to form an MEA-diffusion layer assembly. The feature of the cell of this example is that the protective film 3 is provided with a slit 8 extending in a direction surrounding the catalyst layer 2 as seen in FIG.

本実施例のセルの製作方法は以下のとおりである。160mm×160mmのパーフルオロスルホン酸ポリマー(デュポン社製:商品名ナフィオン117、厚さ 183 μm)を固体高分子電解質膜1として用い、その両面に、枠状の保護フィルム3として、内周が100mm×100mm、幅が30mm、厚さが50μmのテトラフルオロエチレン/パーフルオロアルキルビニルエーテル共重合体(PFA)フィルムを重ねた。この枠状の保護フィルム3には、図1(a)に見られるように、あらかじめ幅0.5mmのスリット8を3本形成した。このスリット8は、触媒層2を設置する空間を取り囲む方向に延伸するよう形成されており、枠の各辺のそれぞれ20mmの領域を残して、5mm置きに3本配置されている。次いで、白金担持カーボンとパーフルオロスルホン酸ポリマー溶液(ナフィオン溶液)とを混合したペーストを、上記の固体高分子電解質膜1上の保護フィルム3の枠内に熱圧着させることによって触媒層2を形成した。このようにして形成したMEAと拡散層5を一体化し、MEA−拡散層接合体を得た。   The manufacturing method of the cell of this example is as follows. A perfluorosulfonic acid polymer (manufactured by DuPont: trade name Nafion 117, thickness 183 μm) of 160 mm × 160 mm is used as the solid polymer electrolyte membrane 1, and the inner periphery is 100 mm as a frame-shaped protective film 3 on both sides. A tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) film having a size of 100 mm, a width of 30 mm, and a thickness of 50 μm was stacked. As shown in FIG. 1A, three slits 8 having a width of 0.5 mm were formed in the frame-shaped protective film 3 in advance. The slits 8 are formed so as to extend in a direction surrounding the space in which the catalyst layer 2 is installed, and three slits 8 are arranged every 5 mm, leaving 20 mm regions on each side of the frame. Next, a catalyst layer 2 is formed by thermocompression bonding a paste obtained by mixing platinum-supporting carbon and a perfluorosulfonic acid polymer solution (Nafion solution) into the frame of the protective film 3 on the solid polymer electrolyte membrane 1. did. The MEA thus formed and the diffusion layer 5 were integrated to obtain an MEA-diffusion layer assembly.

上記の実施例のごとくスリット8を備えた保護フィルム3の効果を調べるため、製作したMEA−拡散層接合体について起動/停止試験を行い、セル電圧の変化を調べた。本起動/停止試験では、1サイクル3時間とし、電流密度は0■0.3A/cm2 の範囲で操作し、セル温度は 25■80℃、湿度は 25■100%の範囲で変化させた。図2は、起動/停止を繰り返した後のセル電圧の変化を従来例と比較して示した特性図である。図中、縦軸は初期電圧で規格化した測定電圧の値を5個のセルの平均値として示したもので、実線で示した特性Aが実施例のセルの特性、点線で示した特性Bが従来の製法によるセルの特性である。図に見られるように、従来の製法によるセルでは起動/停止を 100 回繰り返すとセル電圧が当初の電圧の 55 %まで低下していたのに対して、上記の実施例の製法によるセルでは起動/停止を 100 回繰り返しても当初の電圧の 95 %が維持されており、実施例のごとく保護シートにスリットを備えることにより、電極端部へのシワよりや膜切れの集中が回避され、電池特性が維持されることがわかる。   In order to investigate the effect of the protective film 3 provided with the slits 8 as in the above examples, the start / stop test was performed on the manufactured MEA-diffusion layer assembly to examine the change in the cell voltage. In this start / stop test, one cycle was 3 hours, the current density was operated in the range of 00.3 A / cm2, the cell temperature was changed to 25-80 ° C, and the humidity was changed in the range of 25100%. FIG. 2 is a characteristic diagram showing a change in cell voltage after repeated start / stop in comparison with a conventional example. In the figure, the vertical axis shows the measured voltage value normalized by the initial voltage as an average value of five cells. The characteristic A shown by the solid line is the characteristic of the cell of the example, and the characteristic B shown by the dotted line. These are the characteristics of the cell by the conventional manufacturing method. As can be seen in the figure, the cell with the manufacturing method in the above example was started up while the cell voltage dropped to 55% of the original voltage after 100 times of starting / stopping. / 95% of the initial voltage is maintained even after repeating 100 times, and by providing a slit in the protective sheet as in the example, concentration of film breakage and wrinkles on the electrode edge is avoided, and the battery It can be seen that the characteristics are maintained.

なお、本実施例では、保護シートに備えるスリットの幅を 0.5 mm に選定し、このスリットを 5 mm 間隔で3本配置しているが、スリットの幅が広くなれば広くなるほど保護シートの機械強度が弱くなり、MEAが破損しやすくなるので、スリットの幅は狭いほどよく、本実施例で選定されている 0.5 mm を越えない幅とすればよい。また、スリットの本数を多くすれば、保護シートの伸縮量が緩和されるので、電極端部でのシワよりや膜切れの防止により効果があるが、スリットの本数を多くしすぎると保護シートの機械強度が弱くなるので、この機械強度を考慮する必要がある。本実施例のごとく、幅 0.5 mm以下のスリットを 5 mm 以上の間隔をとって配置すれば、機械的な損傷を生じることなく、安定した発電運転ができる。   In this embodiment, the width of the slit provided in the protective sheet is selected to be 0.5 mm, and three slits are arranged at intervals of 5 mm. However, the wider the slit width, the greater the mechanical strength of the protective sheet. However, the narrower the slit, the better. The width should not exceed 0.5 mm selected in this embodiment. In addition, if the number of slits is increased, the amount of expansion and contraction of the protective sheet is reduced, which is more effective in preventing wrinkles at the end of the electrode and preventing film breakage. However, if the number of slits is increased excessively, Since mechanical strength becomes weak, it is necessary to consider this mechanical strength. As in this embodiment, if the slits having a width of 0.5 mm or less are arranged with an interval of 5 mm or more, stable power generation operation can be performed without causing mechanical damage.

以上述べたように、本発明においては、請求項1に記載のごとく、固体高分子電解質型燃料電池のセルを構成する保護フィルムに触媒層を取り囲む方向に延伸するスリットを少なくとも1本備えて構成することとしたので、燃料電池の起動/停止に伴って生じる湿潤、乾燥に起因する保護フィルムの伸縮量が緩和されて電極端部でのシワよりや膜切れが防止されることとなり、起動/停止を繰り返しても電池特性の低下が少ない燃料電池が得られることとなった。したがって、本発明は、各種の固体高分子電解質型燃料電池に効果的に適用することができる。   As described above, in the present invention, as described in claim 1, the protective film constituting the cells of the solid polymer electrolyte fuel cell is provided with at least one slit extending in the direction surrounding the catalyst layer. Therefore, the amount of expansion and contraction of the protective film caused by wetting and drying caused by the start / stop of the fuel cell is alleviated, and wrinkles at the end of the electrode are prevented and film breakage is prevented. A fuel cell with little deterioration in battery characteristics even after repeated stops was obtained. Therefore, the present invention can be effectively applied to various solid polymer electrolyte fuel cells.

また、請求項2,3、あるいは4に記載のごとくとすれば、保護フィルムに備えたスリットがより効果的に機能することとなるので、起動/停止を繰り返しても電池特性の低下が少ない固体高分子電解質型燃料電池として好適である。   Moreover, since the slit with which the protective film was equipped will function more effectively if it is as described in Claim 2, 3, or 4, it is a solid with little deterioration of a battery characteristic even if it starts / stops repeatedly. It is suitable as a polymer electrolyte fuel cell.

本発明の固体高分子電解質型燃料電池の実施例を示すセルの図で、(a)はセルを構成するMEA(膜―電極接合体)の平面図、(b)はセルの断面図BRIEF DESCRIPTION OF THE DRAWINGS It is a figure of the cell which shows the Example of the solid polymer electrolyte fuel cell of this invention, (a) is a top view of MEA (membrane-electrode assembly) which comprises a cell, (b) is sectional drawing of a cell 実施例のセルの起動/停止を繰り返した後のセル電圧の変化を従来例と比較して示した特性図The characteristic view which showed the change of the cell voltage after repeating starting / stopping of the cell of an Example compared with the prior art example 従来の固体高分子電解質型燃料電池のセルの基本構造の一例を示す断面図Sectional drawing which shows an example of the basic structure of the cell of the conventional solid polymer electrolyte fuel cell 熱プレスによるMEAと拡散層との一体化方法の説明図Explanatory drawing of integration method of MEA and diffusion layer by hot press

符号の説明Explanation of symbols

1 固体高分子電解質膜
2 触媒層
3 保護フィルム
4 MEA(膜―電極接合体)
5 拡散層
8 スリット
DESCRIPTION OF SYMBOLS 1 Solid polymer electrolyte membrane 2 Catalyst layer 3 Protective film 4 MEA (membrane-electrode assembly)
5 Diffusion layer 8 Slit

Claims (4)

平板状の固体高分子電解質膜と、該固体高分子電解質膜の両面に接合された平板状の触媒層と、該触媒層の両外面に接合された平板状の拡散層とを備え、かつ、前記固体高分子電解質膜より大きさの小さい前記触媒層が前記固体高分子電解質膜上の中央部に接合され、枠状の保護フィルムが前記触媒層の外周を囲んで前記固体高分子電解質膜の外縁部に接合されて形成されたセルより構成される固体高分子電解質型燃料電池において、前記の保護フィルムが、前記触媒層を取り囲む方向に延伸するスリットを少なくとも1本備えていることを特徴とする固体高分子電解質型燃料電池。 A flat solid polymer electrolyte membrane, a flat catalyst layer bonded to both surfaces of the solid polymer electrolyte membrane, and a flat diffusion layer bonded to both outer surfaces of the catalyst layer, and The catalyst layer having a size smaller than that of the solid polymer electrolyte membrane is bonded to the center of the solid polymer electrolyte membrane, and a frame-shaped protective film surrounds the outer periphery of the catalyst layer. In the solid polymer electrolyte fuel cell constituted by cells formed by being joined to an outer edge portion, the protective film includes at least one slit extending in a direction surrounding the catalyst layer. Solid polymer electrolyte fuel cell. 保護フィルムが備えた前記スリットの幅が0.5 mm以下である請求項1に記載の固体高分子電解質型燃料電池。 The solid polymer electrolyte fuel cell according to claim 1, wherein the slit provided in the protective film has a width of 0.5 mm or less. 保護フィルムが備えた前記スリットが前記触媒層の角部の外周をL字状に囲む形状に設けられている請求項1または2に記載の固体高分子電解質型燃料電池。 3. The solid polymer electrolyte fuel cell according to claim 1, wherein the slit provided in the protective film is provided in a shape surrounding an outer periphery of a corner portion of the catalyst layer in an L shape. 前記保護フィルムと前記固体高分子電解質膜が熱圧着により接合されている請求項1から3のいずれかに記載の固体高分子電解質型燃料電池。 The solid polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the protective film and the solid polymer electrolyte membrane are joined by thermocompression bonding.
JP2006235667A 2006-08-31 2006-08-31 Polymer electrolyte fuel cell Pending JP2008059908A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235667A JP2008059908A (en) 2006-08-31 2006-08-31 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235667A JP2008059908A (en) 2006-08-31 2006-08-31 Polymer electrolyte fuel cell

Publications (1)

Publication Number Publication Date
JP2008059908A true JP2008059908A (en) 2008-03-13

Family

ID=39242400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235667A Pending JP2008059908A (en) 2006-08-31 2006-08-31 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP2008059908A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049926A (en) * 2008-08-21 2010-03-04 Toyota Motor Corp Manufacturing method of membrane-electrode assembly of fuel cell
JP2014093251A (en) * 2012-11-06 2014-05-19 Dainippon Printing Co Ltd Catalyst layer-electrolytic membrane laminate with reinforcements, solid polymer type fuel cell, and manufacturing method of catalyst layer-electrolytic membrane laminate with reinforcements

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010049926A (en) * 2008-08-21 2010-03-04 Toyota Motor Corp Manufacturing method of membrane-electrode assembly of fuel cell
JP2014093251A (en) * 2012-11-06 2014-05-19 Dainippon Printing Co Ltd Catalyst layer-electrolytic membrane laminate with reinforcements, solid polymer type fuel cell, and manufacturing method of catalyst layer-electrolytic membrane laminate with reinforcements

Similar Documents

Publication Publication Date Title
JP6104050B2 (en) Electrolyte membrane / electrode structure for fuel cells
JP6105072B2 (en) Membrane electrode assembly, fuel cell having such a membrane electrode assembly, and automobile having a fuel cell
JP6092060B2 (en) Electrolyte membrane / electrode structure with resin frame for fuel cells
CN106910921B (en) Fuel cell and method for manufacturing fuel cell
JP5683433B2 (en) Fuel cell stack
JP2019153585A (en) Electrolyte membrane-electrode structure with frame and method of manufacturing the same, and fuel cell
JP2007035621A (en) Fuel cell system for high temperatures
KR101856311B1 (en) Membrane electrode assembly and fuel cell comprising the same
JP2004319153A (en) Solid polyelectrolyte fuel cell and its manufacturing method
JP5162884B2 (en) Solid polymer electrolyte fuel cell
JP5181678B2 (en) Membrane electrode assembly for fuel cell and method for producing the same
JP2009252504A (en) Unit cell assembly, fuel cell, and method for manufacturing unit cell assembly
JP5707825B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and method for producing the same
JP2008059908A (en) Polymer electrolyte fuel cell
JP4760027B2 (en) Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
JP2013258096A (en) Production method of electrolyte membrane/electrode structure with resin frame for fuel cell
JP2010003470A (en) Fuel cell
JP6856003B2 (en) Fuel cell manufacturing method
JP6255720B2 (en) Membrane electrode structure and manufacturing method thereof
JP5604404B2 (en) Fuel cell
JP2006066161A (en) Manufacturing method of fuel cell film/electrode junction
KR20170040443A (en) Membrane-electrode assembly and preparation method thereof
JP5273541B2 (en) Polymer fuel cell
JP5286896B2 (en) FUEL CELL MANUFACTURING METHOD, FUEL CELL, AND SEPARATOR
KR102512283B1 (en) Membrane-electrode assembly and preparation method thereof

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219