JP2008059749A - Manufacturing method of perpendicular magnetic recording medium - Google Patents

Manufacturing method of perpendicular magnetic recording medium Download PDF

Info

Publication number
JP2008059749A
JP2008059749A JP2007280472A JP2007280472A JP2008059749A JP 2008059749 A JP2008059749 A JP 2008059749A JP 2007280472 A JP2007280472 A JP 2007280472A JP 2007280472 A JP2007280472 A JP 2007280472A JP 2008059749 A JP2008059749 A JP 2008059749A
Authority
JP
Japan
Prior art keywords
magnetic recording
perpendicular magnetic
layer
recording medium
grain boundary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007280472A
Other languages
Japanese (ja)
Inventor
Greaves Simon
グリーブス サイモン
Yuko Nakayama
祐子 中山
Kenji Yamanaka
賢治 山中
Yoshitsugu Miura
義從 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2007280472A priority Critical patent/JP2008059749A/en
Publication of JP2008059749A publication Critical patent/JP2008059749A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a perpendicular magnetic recording medium having a high S/N ratio and high thermal agitation resistance and to provide a manufacturing method thereof. <P>SOLUTION: A perpendicular magnetic recording layer as a magnetic layer is provided with magnetic crystal grains and a crystal grain boundary interposed between the magnetic crystal grains and composed of a non-magnetic layer. In the manufacturing method of the perpendicular magnetic recording medium for forming at least the magnetic layer on a substrate, a correlation between the thickness of the grain boundary and a magnetization inversion nucleation field Hn is previously calculated, the thickness of the grain boundary for a prescribed magnetization inversion nucleation field Hn is determined based on the correlation and the medium is manufactured with the determined thickness of the grain boundary. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、ハードディスクドライブ(磁気ディスク装置)などに搭載される磁気ディスク用磁気記録媒体にかかり、より詳細には、磁気ディスク用垂直磁気記録媒体に関するものである。   The present invention relates to a magnetic recording medium for a magnetic disk mounted in a hard disk drive (magnetic disk device) or the like, and more particularly to a perpendicular magnetic recording medium for a magnetic disk.

近年の情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に、磁気記録技術を用いたハードディスクドライブの面記録密度は、近年、〜100%/年の割合で増加し続けている。高面記録密度を達成するためには、当然のこととして、情報信号を記録するための媒体、いわゆる磁気記録媒体と、情報信号を記録再生するための磁気ヘッドの両者の性能向上が必要不可欠である。特に、磁気記録媒体において、その性能向上、すなわち高面記録密度で充分なS/N比を確保するためには、情報信号の記録を担う強磁性層の結晶粒子を微細化すると共に、その層厚の低減を図る必要がある。   Various information recording techniques have been developed with the recent increase in information processing capacity. In particular, the surface recording density of a hard disk drive using magnetic recording technology has been increasing at a rate of ˜100% / year in recent years. In order to achieve a high surface recording density, it is naturally essential to improve the performance of both a medium for recording information signals, a so-called magnetic recording medium, and a magnetic head for recording and reproducing information signals. is there. In particular, in order to improve the performance of a magnetic recording medium, that is, to secure a sufficient S / N ratio at a high surface recording density, the magnetic layer of the ferromagnetic layer responsible for recording information signals is made finer and the layer It is necessary to reduce the thickness.

従来、磁気記録媒体の記録方式として、面内記録方式(水平記録方式、長手記録方式とも呼称される)が採用されてきた。しかし、面内記録方式においては、高記録密度化への対応から、磁性結晶粒子の微細化と磁性層膜厚の低減が進展した結果、超常磁性現象による熱擾乱耐性の低下が起こるようになり、結果として、記録された情報信号が時間の経過と共に消失する問題が発生するようになってきた。
これを打開する方法として、幾つかの方法が提案されているが、その一つに垂直磁気記録方式がある。この垂直磁気記録方式は、高面記録密度領域において、良好な熱擾乱耐性を維持しつつ、かつ十分なS/N比を達成できる方法として着目されている。
Conventionally, an in-plane recording system (also called a horizontal recording system or a longitudinal recording system) has been adopted as a recording system for magnetic recording media. However, in the in-plane recording method, as a result of progress in the miniaturization of magnetic crystal grains and the reduction in the thickness of the magnetic layer in response to the increase in recording density, the resistance to thermal disturbance due to the superparamagnetic phenomenon has come to occur. As a result, there has been a problem that the recorded information signal disappears with the passage of time.
Several methods have been proposed to overcome this, and one of them is a perpendicular magnetic recording method. This perpendicular magnetic recording system is attracting attention as a method that can achieve a sufficient S / N ratio while maintaining good thermal disturbance resistance in a high surface recording density region.

従来の垂直磁気記録方式に用いられている記録媒体について、図2及び図3を用いて説明する。図2及び図3は、従来の垂直磁気記録媒体の断面形状概略図であり、図2は、いわゆる単層型垂直磁気記録媒体、図3は、いわゆる2層型垂直磁気記録媒体である。図中、21及び31はガラスあるいはAl合金等から成る基板、22はTiあるいはTi合金膜等から成る結晶軸制御層(非磁性下地層)、23及び34はCoCrPt合金膜等から成る垂直磁気記録層、24及び35はC膜等から成る保護層、32はCoNbZr非晶質合金膜等から成る下地軟磁性層、33は下地軟磁性層32と垂直磁気記録層34との磁気的交換結合を遮断するための中間層、25及び36は潤滑層、である。   A recording medium used in a conventional perpendicular magnetic recording system will be described with reference to FIGS. 2 and 3 are schematic sectional views of a conventional perpendicular magnetic recording medium. FIG. 2 is a so-called single-layer perpendicular magnetic recording medium, and FIG. 3 is a so-called two-layer perpendicular magnetic recording medium. In the figure, 21 and 31 are substrates made of glass or Al alloy, 22 is a crystal axis control layer (nonmagnetic underlayer) made of Ti or Ti alloy film, 23 and 34 are perpendicular magnetic recording made of CoCrPt alloy film, etc. Layers, 24 and 35 are protective layers made of a C film, 32 is a base soft magnetic layer made of a CoNbZr amorphous alloy film, etc., 33 is a magnetic exchange coupling between the base soft magnetic layer 32 and the perpendicular magnetic recording layer 34. The intermediate layers 25 and 36 for blocking are lubricating layers.

これらの図に示すような垂直磁気記録層は、長手記録媒体の場合と同様、微細結晶粒子の集合である多結晶体である。しかし結晶粒子の平均的磁化容易軸方向は、基板面法線方向に略平行である。情報信号は、垂直磁気記録層の磁化方向の位置変化として記録される。   The perpendicular magnetic recording layer as shown in these figures is a polycrystalline body that is an aggregate of fine crystal grains, as in the case of the longitudinal recording medium. However, the average easy axis of magnetization of the crystal grains is substantially parallel to the normal direction of the substrate surface. The information signal is recorded as a change in position in the magnetization direction of the perpendicular magnetic recording layer.

垂直磁気記録媒体の場合、その記録ビット内における平均磁化方向が、基板面に対し垂直の上下方向であるのに対し、長手記録媒体場合には、その平均磁化方向が、基板面内でかつ円周方向に平行であり、記録ヘッドの走行方向、もしくはその反対方向となる。この記録状態における磁化方向の差異が、前述した垂直磁気記録方式の特徴、良好な熱擾乱耐性を維持しつつ充分なS/N比を達成できる所以である。(参考文献:H.N.Bertram and M.Williams, “SNR and Density Limit Estimations : A Comparison of Longitudinal and Perpendicular Recording”, IEEE Trans. Magn., vol.36, pp4-9 (2000))   In the case of a perpendicular magnetic recording medium, the average magnetization direction in the recording bit is the vertical direction perpendicular to the substrate surface, whereas in the case of a longitudinal recording medium, the average magnetization direction is in the substrate surface and circular. It is parallel to the circumferential direction and is the running direction of the recording head or the opposite direction. This difference in the magnetization direction in the recording state is the reason why a sufficient S / N ratio can be achieved while maintaining the characteristics of the perpendicular magnetic recording method described above and good thermal disturbance resistance. (Reference: H.N. Bertram and M. Williams, “SNR and Density Limit Estimations: A Comparison of Longitudinal and Perpendicular Recording”, IEEE Trans. Magn., Vol.36, pp4-9 (2000))

しかしながら、従来の垂直磁気記録媒体においては、その磁気特性上の問題点により、前述した垂直磁気記録方式の有するポテンシャルを充分に引き出すことはできなかった。以下、本発明が解決しようとする問題点、すなわち、従来の垂直磁気記録媒体の有する問題点を、図4及び図5を用いて説明する。
図4は、垂直磁気記録層の記録状態における微視的構造を示す概略図である。図中において、41は垂直磁気記録層、42は垂直磁気記録層を形成する結晶粒子、43は磁化遷移線、44及び45は各記録ビット内における平均的磁化方向を表す矢印、46は各記録ビット内において、平均的磁化方向と異なる方向を向く逆磁区である。
However, in the conventional perpendicular magnetic recording medium, the potential of the perpendicular magnetic recording method described above could not be sufficiently extracted due to problems with the magnetic characteristics. Hereinafter, problems to be solved by the present invention, that is, problems of the conventional perpendicular magnetic recording medium will be described with reference to FIGS.
FIG. 4 is a schematic diagram showing a microscopic structure in a recording state of the perpendicular magnetic recording layer. In the figure, 41 is a perpendicular magnetic recording layer, 42 is a crystal grain forming the perpendicular magnetic recording layer, 43 is a magnetization transition line, 44 and 45 are arrows indicating the average magnetization direction in each recording bit, 46 is each recording In the bit, the reverse magnetic domain is oriented in a direction different from the average magnetization direction.

一般的に、垂直磁気記録媒体におけるノイズ源は、(1)不規則な磁化遷移線形状と(2)逆磁区の発生、にあることが知られている。すなわち、高S/N媒体を開発する際には、直線性の良好な磁化遷移線と逆磁区発生頻度の極小化を図ることが肝要である。特に、磁化遷移線の直線性を確保するためには、結晶粒子間に働く磁気的交換相互作用の遮断を図ることが必要不可欠である。
以上説明したように、垂直磁気記録方式の優れたポテンシャルを引き出すための、垂直磁気記録層の要点は、逆磁区発生の抑圧と粒間交換相互作用の遮断である。
In general, it is known that noise sources in a perpendicular magnetic recording medium are (1) irregular magnetization transition line shape and (2) occurrence of reverse magnetic domain. In other words, when developing a high S / N medium, it is important to minimize the magnetization transition lines with good linearity and the frequency of occurrence of reverse magnetic domains. In particular, in order to ensure the linearity of the magnetization transition line, it is indispensable to cut off the magnetic exchange interaction acting between crystal grains.
As described above, the main points of the perpendicular magnetic recording layer for extracting the excellent potential of the perpendicular magnetic recording system are suppression of reverse magnetic domain generation and interruption of intergranular exchange interaction.

逆磁区の発生傾向及び粒間交換相互作用の大きさについては、MH曲線の形状により評価できる。図5に従来の垂直磁気記録媒体に係るMH曲線を掲げる。
図5中、Hcは保磁力、Msは飽和磁化、Mrは残留磁化、Hnは磁化反転核生成磁界を表す。
Hnは、保磁力HcにおけるMH曲線の接線(磁化量は磁界の1次関数として表現される)において、磁化量が飽和磁化Msとなるときの磁界の値として求められる。
逆磁区の発生傾向はMr/Ms比(以下、角型比と記す)によって評価することができる。この角型比が小さいほど、逆磁区の発生頻度が高い。逆磁区防止の観点からは、角型比は1に近い方が好ましい。
The occurrence tendency of the reverse magnetic domain and the magnitude of the intergranular exchange interaction can be evaluated by the shape of the MH curve. FIG. 5 shows an MH curve relating to a conventional perpendicular magnetic recording medium.
In FIG. 5, Hc is a coercive force, Ms is a saturation magnetization, Mr is a residual magnetization, and Hn is a magnetization reversal nucleation magnetic field.
Hn is obtained as the value of the magnetic field when the magnetization amount becomes the saturation magnetization Ms at the tangent line of the MH curve at the coercive force Hc (the magnetization amount is expressed as a linear function of the magnetic field).
The tendency to generate reverse magnetic domains can be evaluated by the Mr / Ms ratio (hereinafter referred to as squareness ratio). The smaller the squareness ratio, the higher the frequency of occurrence of reverse magnetic domains. From the viewpoint of preventing reverse magnetic domains, the squareness ratio is preferably close to 1.

粒界交換相互作用の大きさは、保磁力HcにおけるMH曲線の傾きによって評価することができる。保磁力HcにおけるMH曲線の傾きが大きいほど、粒間交換相互作用が大きい。粒界交換相互作用を抑止するためには、保磁力HcにおけるMH曲線の傾きの理論的下限である1/(4π)(πは円周率、CGS単位系)に近いほど好ましいとされる。
また、熱擾乱耐性と前記Hnとは一定の関係があることが知られており、Hnが小さいほど、熱擾乱耐性が高くなる傾向にある。従って、熱擾乱耐性を向上させるためには、なるべく小さい値であることが好ましい。
しかしながら、従来の垂直磁気記録媒体において、上述の、(1)逆磁区、(2)粒界交換相互作用、(3)熱擾乱耐性の各々に求められる好ましい特性を同時に両立させることができなかった。
The magnitude of the grain boundary exchange interaction can be evaluated by the slope of the MH curve at the coercive force Hc. The larger the slope of the MH curve in the coercive force Hc, the greater the intergranular exchange interaction. In order to suppress the grain boundary exchange interaction, the closer to 1 / (4π) (π is the circularity, CGS unit system), which is the theoretical lower limit of the slope of the MH curve in the coercive force Hc, is preferable.
Further, it is known that the thermal disturbance resistance and the Hn have a certain relationship, and the smaller the Hn is, the higher the thermal disturbance resistance tends to be. Therefore, in order to improve thermal disturbance tolerance, it is preferable that the value be as small as possible.
However, in the conventional perpendicular magnetic recording medium, the above-mentioned preferable characteristics required for each of (1) reverse magnetic domain, (2) grain boundary exchange interaction, and (3) resistance to thermal disturbance cannot be simultaneously achieved. .

本発明の目的は、垂直磁気記録媒体において、(1)逆磁区、(2)粒界交換相互作用、(3)熱擾乱耐性の各々に求められる好ましい特性を同時に両立させて、高S/N比でかつ、熱擾乱耐性に優れた、磁気ディスク用垂直磁気記録媒体及びその製造方法を提供することである。   An object of the present invention is to achieve a high S / N ratio in a perpendicular magnetic recording medium by simultaneously satisfying desirable characteristics required for (1) reverse magnetic domain, (2) grain boundary exchange interaction, and (3) resistance to thermal disturbance. The present invention provides a perpendicular magnetic recording medium for a magnetic disk and a method for manufacturing the same, which is excellent in thermal disturbance resistance.

前記課題を解決し、所望の目的を達成するために、本発明は、次のように構成される。
(1)基板上に、少なくとも磁性層を有する垂直磁気記録媒体において、
前記磁性層を構成する磁性結晶粒子の粒径は5nm〜20nmであって、
前記磁性結晶粒子間に介在する非磁性体からなる結晶粒界厚は0.5nm以上である、垂直磁気記録媒体とした。
(2)基板上に、少なくとも磁性層を有する垂直磁気記録媒体において、
磁化反転核生成磁界はHn<0、角型比は0.75以上、保磁力HcにおけるMH曲線の傾きは略1/(4π)である、垂直磁気記録媒体とした。
In order to solve the above problems and achieve a desired object, the present invention is configured as follows.
(1) In a perpendicular magnetic recording medium having at least a magnetic layer on a substrate,
The magnetic crystal grains constituting the magnetic layer have a particle size of 5 nm to 20 nm,
A perpendicular magnetic recording medium having a grain boundary thickness of 0.5 nm or more made of a non-magnetic material interposed between the magnetic crystal grains was used.
(2) In a perpendicular magnetic recording medium having at least a magnetic layer on a substrate,
A perpendicular magnetic recording medium having a magnetization reversal nucleation magnetic field of Hn <0, a squareness ratio of 0.75 or more, and a slope of the MH curve with a coercive force Hc of approximately 1 / (4π) was used.

(3)(1)の垂直磁気記録媒体において、
磁化反転核生成磁界はHn<0、角型比は0.75以上、保磁力HcにおけるMH曲線の傾きは略1/(4π)である、垂直磁気記録媒体とした。
(3) In the perpendicular magnetic recording medium of (1),
A perpendicular magnetic recording medium having a magnetization reversal nucleation magnetic field of Hn <0, a squareness ratio of 0.75 or more, and a slope of the MH curve with a coercive force Hc of approximately 1 / (4π) was used.

(4)基板上に、少なくとも磁性層を形成する垂直磁気記録媒体の製造方法であって、
前記磁性層は、磁性結晶粒子と、磁性結晶粒子間に介在する非磁性体からなる結晶粒界とを備え、
予め、前記結晶粒界厚と磁化反転核生成磁界Hnとの相関関係を求めておき、
前記相関関係に基づいて、所定の磁化反転核生成磁界Hnが得られる結晶粒界厚を選定し、前記選定した結晶粒界厚となるよう製造する、垂直磁気記録媒体の製造方法とした。
(4) A method of manufacturing a perpendicular magnetic recording medium in which at least a magnetic layer is formed on a substrate,
The magnetic layer includes magnetic crystal grains and a crystal grain boundary made of a nonmagnetic material interposed between the magnetic crystal grains,
In advance, a correlation between the grain boundary thickness and the magnetization reversal nucleation magnetic field Hn is obtained,
Based on the correlation, a crystal grain boundary thickness at which a predetermined magnetization reversal nucleation magnetic field Hn is obtained is selected, and the perpendicular magnetic recording medium manufacturing method is manufactured to achieve the selected crystal grain boundary thickness.

なお、これら本発明による垂直磁気記録媒体では、前記非磁性体により前記磁性結晶粒子間の磁気的交換相互作用が遮断されているよう構成されており、さらに、前記磁性層の材料は、CoとCr, Ptとを含むこととして構成されてもよい。   These perpendicular magnetic recording media according to the present invention are configured so that the magnetic exchange interaction between the magnetic crystal grains is blocked by the non-magnetic material, and the material of the magnetic layer is Co and It may be configured to contain Cr and Pt.

本発明により、高いS/N比と良好な熱擾乱耐性とを備える磁気ディスク用垂直磁気記録媒体を提供することができる。   According to the present invention, it is possible to provide a perpendicular magnetic recording medium for a magnetic disk having a high S / N ratio and good thermal disturbance resistance.

本発明者らが前述の目的に鑑み、鋭意研究を行なったところ、垂直磁気記録媒体において、前述の磁化反転核生成磁界Hn、角型比Mr/Ms、保磁力HcにおけるMH曲線の傾きの各々の特性は、磁性層(垂直磁気記録層)の磁性結晶粒子の粒界に形成される非磁性体の厚さ、即ち結晶粒界厚と密接な関係があることを発見した。この知見に基づき研究を進めたところ、磁性結晶粒子の粒径が5nm〜20nmであって、前記結晶粒界厚が0.5nm以上とした場合、磁化反転核生成磁界Hn、角型比Mr/Ms、保磁力HcにおけるMH曲線の傾きのそれぞれを同時に、前述した好適な値にできることを発見した。
本発明によれば、Hn<0とすることができ、Mr/Msを0.75以上とすることができ、保磁力HcにおけるMH曲線の傾きを略1/(4π)(CGS単位系) とすることができるので好適である。
本研究者らの実験に基づくと、本発明による垂直磁気記録媒体は、高いS/N比と優れた熱擾乱耐性性が得られるようになるので、高記録密度化に適した垂直磁気記録媒体を得ることができ好適である。
本発明者らの研究によれば、本発明で得られる作用効果は、次のように考察されている。
The inventors of the present invention have made extensive studies in view of the above-mentioned object. As a result, in the perpendicular magnetic recording medium, each of the magnetization reversal nucleation magnetic field Hn, the squareness ratio Mr / Ms, and the slope of the MH curve at the coercive force Hc. It has been found that the above characteristics are closely related to the thickness of the nonmagnetic material formed at the grain boundary of the magnetic crystal grains in the magnetic layer (perpendicular magnetic recording layer), that is, the grain boundary thickness. As a result of research based on this knowledge, when the grain size of the magnetic crystal grains is 5 nm to 20 nm and the grain boundary thickness is 0.5 nm or more, the magnetization reversal nucleation magnetic field Hn, the squareness ratio Mr / Ms It was discovered that each of the slopes of the MH curve at the coercive force Hc can be simultaneously set to the above-described preferred value.
According to the present invention, Hn <0, Mr / Ms can be 0.75 or more, and the slope of the MH curve at the coercive force Hc is approximately 1 / (4π) (CGS unit system). This is preferable.
Based on experiments by the present researchers, the perpendicular magnetic recording medium according to the present invention can obtain a high S / N ratio and excellent thermal disturbance resistance, so that the perpendicular magnetic recording medium suitable for high recording density can be obtained. Is preferable.
According to the study by the present inventors, the effects obtained by the present invention are considered as follows.

以下、本発明による成る解決手段を図6を用いて説明する。図6は、垂直磁気記録媒体の膜構造を示す概略側断面図である。図中、61は基板、62は非磁性下地層、63はCo基多結晶合金膜から成る垂直磁気記録層、64は垂直磁気記録層63を構成する磁性結晶粒子、65は結晶粒子間に存在する非磁性結晶粒界である。なお、非磁性下地層62は、垂直磁気記録層63の結晶軸の優先配向性、あるいは結晶粒子63の大きさを制御する、等の機能を有するものであり、必ずしも単一の非磁性層である必要はなく、複数の薄膜が積層された、いわゆる多層構成も採り得る。
このとき、配置される前記非磁性結晶粒界65は、前記磁性結晶粒子64を隔てる多数の非磁性結晶粒界65の間隔(最短距離)の平均値として、非磁性体平均配置間隔を有しており、これを「結晶粒界65の厚さ」と呼んでもよい。
Hereinafter, the solution according to the present invention will be described with reference to FIG. FIG. 6 is a schematic sectional side view showing the film structure of the perpendicular magnetic recording medium. In the figure, 61 is a substrate, 62 is a nonmagnetic underlayer, 63 is a perpendicular magnetic recording layer made of a Co-based polycrystalline alloy film, 64 is a magnetic crystal particle constituting the perpendicular magnetic recording layer 63, and 65 is between the crystal grains. It is a nonmagnetic grain boundary. The nonmagnetic underlayer 62 has functions such as controlling the preferential orientation of the crystal axes of the perpendicular magnetic recording layer 63 or the size of the crystal grains 63, and is not necessarily a single nonmagnetic layer. There is no need, and a so-called multilayer structure in which a plurality of thin films are laminated may be employed.
At this time, the nonmagnetic crystal grain boundaries 65 to be arranged have a nonmagnetic average arrangement interval as an average value of the intervals (shortest distances) between the nonmagnetic crystal grain boundaries 65 separating the magnetic crystal grains 64. This may be called “the thickness of the crystal grain boundary 65”.

本発明の構成に関して発明者らが行なった研究結果に基づき、発明者らはシミュレーションによる数値解析を行った。結果は図7に掲げる。図7の横軸は、非磁性体からなる結晶粒界厚であり、縦軸は磁化反転核生成磁界(Hn)及び保磁力(Hc)である。図7における曲線71は、Hnについての解析結果を示したものであり、曲線72はHcについての解析結果を示したものである。ここで、磁性結晶粒子間の交換相互作用は働かないものとし、また、Ms:300emu/cc、結晶磁気異方性エネルギー:1×10-6erg/cc、磁性結晶粒子の粒径:10nm、磁性結晶粒子の垂直方向高さ30nmと仮定して数値解析シミュレーションを行った。
本発明者らの解析結果から、同図に示したように、磁化反転核生成磁界Hnは、非磁性体からなる結晶粒界の平均厚さとともに、ゼロ未満の小さい値となっていき、また保磁力Hcは増大していく相関関係が算出された。
Based on the results of research conducted by the inventors regarding the configuration of the present invention, the inventors conducted numerical analysis by simulation. The results are listed in FIG. The horizontal axis in FIG. 7 is the grain boundary thickness made of a non-magnetic material, and the vertical axis is the magnetization reversal nucleation magnetic field (Hn) and the coercive force (Hc). A curve 71 in FIG. 7 shows the analysis result for Hn, and a curve 72 shows the analysis result for Hc. Here, exchange interaction between magnetic crystal grains does not work, Ms: 300 emu / cc, magnetocrystalline anisotropy energy: 1 × 10 −6 erg / cc, magnetic crystal grain size: 10 nm, Numerical simulation was performed assuming that the vertical height of magnetic crystal grains was 30 nm.
From the analysis results of the present inventors, as shown in the same figure, the magnetization reversal nucleation magnetic field Hn becomes a small value less than zero along with the average thickness of the crystal grain boundary made of a non-magnetic material. The increasing correlation of the coercive force Hc was calculated.

本シミュレーション結果は、定性的には以下のように理解できる。すなわち、前述したように、磁化を有しているのは磁性結晶粒子64のみであり、非磁性結晶粒界65は磁化を有していない。従って、非磁性体からなる結晶粒界厚が零の場合には、垂直磁気記録層63としてみた飽和磁化の値は磁性結晶粒子64の飽和磁化の値Ms、に一致するが、非磁性結晶粒界厚の増加と共に減少することになる。その結果、式(1)に示す関係から、磁化反転核生成磁界Hn、は負側に増大することになる。
なお、図7に示した結果は、単なる一例であり、磁化反転核生成磁界Hnと保磁力Hcの結晶粒界厚依存性は本質的なものであり、特定の結晶粒子64の大きさ、飽和磁化Ms、及び結晶磁気異方性エネルギーにのみに現れる特異な現象ではない。
The simulation results can be understood qualitatively as follows. That is, as described above, only the magnetic crystal grains 64 have magnetization, and the nonmagnetic crystal grain boundary 65 has no magnetization. Therefore, when the grain boundary thickness made of a non-magnetic material is zero, the saturation magnetization value viewed as the perpendicular magnetic recording layer 63 matches the saturation magnetization value Ms of the magnetic crystal grain 64, but the non-magnetic crystal grain It decreases with increasing field thickness. As a result, the magnetization reversal nucleation magnetic field Hn increases from the relationship shown in Expression (1) to the negative side.
The result shown in FIG. 7 is merely an example, and the dependence of the magnetization reversal nucleation magnetic field Hn and the coercive force Hc on the grain boundary thickness is essential, and the size and saturation of a specific crystal grain 64 It is not a unique phenomenon that appears only in magnetization Ms and magnetocrystalline anisotropy energy.

本発明の構成においては、非磁性体からなる結晶粒界厚を所定の範囲とすることで、磁性結晶粒子間の交換相互作用は、殆ど抑制されているか、完全に遮断されているので、MH曲線の傾きは、ほぼ1/(4π)に抑えることができると考えられる。
従来は、垂直磁気記録媒体において、本発明者等が知見した、非磁性体である結晶粒界厚と、磁化反転核生成磁界との相関関係について明らかにされていなかった。
従って、Hn<0、角型比は0.75以上、保磁力HcにおけるMH曲線の傾きが略1/(4π)の条件を同時に実現する手段は提供されていなかった。
In the configuration of the present invention, by setting the grain boundary thickness made of a non-magnetic material within a predetermined range, the exchange interaction between the magnetic crystal grains is almost suppressed or completely blocked. It is considered that the slope of the curve can be suppressed to approximately 1 / (4π).
Conventionally, in the perpendicular magnetic recording medium, the correlation between the grain boundary thickness, which is a non-magnetic material, and the magnetization reversal nucleation magnetic field, which the present inventors have found, has not been clarified.
Therefore, no means for simultaneously realizing the condition that Hn <0, the squareness ratio is 0.75 or more, and the slope of the MH curve at the coercive force Hc is approximately 1 / (4π) has not been provided.

その理由を詳述すると、MH曲線の傾きを小さく押さえる場合、前述のように磁性粒子64間の交換相互作用を抑制することが肝要であるが、垂直磁気記録媒体において、前記交換相互作用が無いと仮定した場合、磁化反転核生成磁界Hnは、これをcgs単位系にて表現すれば、近似的に(1)によってあたえられることがしられていた。   The reason will be described in detail. When the slope of the MH curve is kept small, it is important to suppress the exchange interaction between the magnetic particles 64 as described above. However, the perpendicular magnetic recording medium does not have the exchange interaction. Assuming that, the magnetization reversal nucleation magnetic field Hn is approximately given by (1) when expressed in the cgs unit system.

Figure 2008059749
式(1)において、πは円周率である。
Figure 2008059749
In equation (1), π is the circumference ratio.

通常、保磁力Hcは、異方性磁界Hkの1/4〜1/3であるので、Hc=(1/3)×Hkとし、ここで(1)式にHn<0となる条件を代入すると、(2)が得られる。   Normally, the coercive force Hc is 1/4 to 1/3 of the anisotropy magnetic field Hk, so Hc = (1/3) × Hk, and here, the condition that Hn <0 is substituted into the equation (1). Then, (2) is obtained.

Figure 2008059749
Figure 2008059749

垂直磁気記録層は六方最密充填構造を有するCo基合金(例えば、CoCr系合金や、CoPt系合金など)が用いられているが、これらCo基合金の場合、Msを減少させると、これに連動して、Hkも減少してしまう。このため、実用上、(2)式条件を満足することができないと考えられていた。   For the perpendicular magnetic recording layer, a Co-based alloy having a hexagonal close-packed structure (for example, a CoCr-based alloy or a CoPt-based alloy) is used. In the case of these Co-based alloys, if Ms is reduced, In conjunction with this, Hk also decreases. For this reason, it was considered that the condition of the formula (2) could not be satisfied practically.

本発明においてはHnの特性について、前述した数値解析結果を踏まえ、非磁性体の平均厚さ(結晶粒界厚)の観点に着目して研究開発し、この知見に基づく発明を完成させたものである。   In the present invention, the characteristics of Hn have been researched and developed from the viewpoint of the average thickness (grain boundary thickness) of the non-magnetic material based on the above-described numerical analysis results, and the invention based on this knowledge has been completed. It is.

本発明において、好適な特性が得られる理由の一つには、前記数値解析の結果からわかるように、Hnの改善(数値は低下)とともに、Hcが向上(数値は増大)する方向に作用しており、Hnを更に改善する方向に作用する点も挙げられる。   In the present invention, one of the reasons why a suitable characteristic is obtained is that, as can be seen from the result of the numerical analysis, Hc improves (numerical value decreases) and Hc increases (numerical value increases). It can also be mentioned that it acts in the direction of further improving Hn.

本発明において非磁性体である結晶粒界の平均厚さとしては、0.5nm〜10nmであると更に好ましく、望ましくは、1.5nm〜5nmであることが望ましい。0.5nm未満では、Hnの改善(低下)効果が不十分であり、また、磁性結晶粒子間の交換相互作用を遮断する効果が不十分でなく、MH曲線の傾きが増大する領域に入るので好ましくない。また、10nmを超えると飽和磁化の減少が顕著となり、記録信号の再生出力が低下傾向となるので好ましくない。この場合、十分なS/Nを得ることが困難になる場合がある。   In the present invention, the average thickness of the crystal grain boundary, which is a nonmagnetic material, is more preferably 0.5 nm to 10 nm, and more preferably 1.5 nm to 5 nm. If it is less than 0.5 nm, the effect of improving (decreasing) Hn is insufficient, and the effect of blocking the exchange interaction between magnetic crystal grains is not sufficient, and it is preferable because it enters the region where the slope of the MH curve increases. Absent. On the other hand, if it exceeds 10 nm, the saturation magnetization is remarkably reduced, and the reproduction output of the recording signal tends to be lowered. In this case, it may be difficult to obtain a sufficient S / N.

なお、本発明になる垂直磁気記録媒体の磁性結晶粒子の粒径は、特に5〜20nmであることが好ましい。5nm未満では、熱擾乱耐性が劣化するので好ましくなく、20nmを超えると媒体ノイズが増大しS/Nが劣化し易い。S/Nの観点からは15nm以下とすると特に好適である。
また、垂直磁気記録媒体の垂直磁気記録層(磁性層)の膜厚は、10〜50nmであることが好ましく、さらに10〜30nm、より好ましくは、20〜30nmであることが望ましい。10nm未満では、熱擾乱耐性が劣化し、50nmを超えるとS/N比が劣化し易い。
The particle diameter of the magnetic crystal grains of the perpendicular magnetic recording medium according to the present invention is particularly preferably 5 to 20 nm. If it is less than 5 nm, the thermal disturbance resistance deteriorates, which is not preferable. If it exceeds 20 nm, medium noise increases and S / N tends to deteriorate. From the viewpoint of S / N, it is particularly preferable that the thickness is 15 nm or less.
The thickness of the perpendicular magnetic recording layer (magnetic layer) of the perpendicular magnetic recording medium is preferably 10 to 50 nm, more preferably 10 to 30 nm, and more preferably 20 to 30 nm. If it is less than 10 nm, the resistance to thermal disturbance deteriorates, and if it exceeds 50 nm, the S / N ratio tends to deteriorate.

なお、本発明の構成によって得られる磁化反転核生成磁界Hnは、前述の理由から0未満の負の値であることが望ましい。特に、60Gbit/inch以上の高記録密度媒体においては、熱揺らぎと媒体ノイズとの関係から、-0.5kOe以下であることが望ましい。本発明において、角型比(Mr/Ms比)は、0.75以上であることが好ましく、さらには0.90以上であることが望ましい。この場合、逆磁区の発生がほぼ抑制されており好適である。 The magnetization reversal nucleation magnetic field Hn obtained by the configuration of the present invention is desirably a negative value less than 0 for the reasons described above. In particular, in a high recording density medium of 60 Gbit / inch 2 or more, it is desirable that it is −0.5 kOe or less from the relationship between thermal fluctuation and medium noise. In the present invention, the squareness ratio (Mr / Ms ratio) is preferably 0.75 or more, and more preferably 0.90 or more. In this case, the occurrence of reverse magnetic domains is substantially suppressed, which is preferable.

本発明において、保磁力HcにおけるMH曲線の傾きは略1/(4π)であることが好ましい。本発明の構成においては、垂直磁気記録層の材料は、高記録密度化が可能という点において、Co系合金、特に、CoCr系合金やCoPt系合金あるいはCoCrPt系合金が好ましい。CoにCrを含有させるのは、磁性結晶粒子間に非磁性体を形成するのを促進し、またPtを含有させるのは、高保磁力化を容易とするので、媒体ノイズの低減と熱揺らぎ耐性の向上にも有利である。この観点から、本発明で提供する60Gbit/inch以上を可能とする垂直磁気記録媒体に対しては、双方が含まれるCoCrPt系は特に有用性に優れている。 In the present invention, the slope of the MH curve at the coercive force Hc is preferably approximately 1 / (4π). In the configuration of the present invention, the material of the perpendicular magnetic recording layer is preferably a Co-based alloy, particularly a CoCr-based alloy, a CoPt-based alloy, or a CoCrPt-based alloy in that a high recording density can be achieved. Inclusion of Cr in Co promotes the formation of non-magnetic material between magnetic crystal grains, and inclusion of Pt facilitates high coercivity, thus reducing media noise and resistance to thermal fluctuations. It is also advantageous for improvement. From this point of view, the CoCrPt system including both of them is particularly useful for the perpendicular magnetic recording medium capable of 60 Gbit / inch 2 or more provided in the present invention.

この系統の合金材料としては、CoCrPtB系合金はS/N比が特に高くなるので好ましい。磁性結晶粒子間に配置される、粒界を形成する非磁性体の材料としては、Crや、Si,Cu,Ag,Au,B,C等が含有されている材料、或いはこれらの酸化物・窒化物が好ましい。何故ならば、これらの物質と前記磁性層の材料となる物質とを同時に成膜すると、前記磁性層の材料からなる磁性粒子の周囲に、前記非磁性体からなる結晶粒界が形成された垂直磁気記録層が形成されるからである。   As an alloy material of this system, a CoCrPtB alloy is preferable because the S / N ratio is particularly high. Nonmagnetic materials that form grain boundaries and are arranged between magnetic crystal grains include materials containing Cr, Si, Cu, Ag, Au, B, C, etc., or oxides thereof. Nitride is preferred. This is because when these substances and the substance that is the material of the magnetic layer are formed at the same time, a vertical boundary in which a crystal grain boundary made of the non-magnetic material is formed around the magnetic particles made of the material of the magnetic layer. This is because a magnetic recording layer is formed.

本発明の構成では、高記録密度化の効果をさらに促進するために、基板と垂直磁気記録層との間に、垂直磁気記録層の垂直配向性を高める結晶軸制御層(非磁性下地層)を形成するのが好ましく、また、この場合、前記結晶軸制御層と垂直磁気記録層との間に、結晶軸制御層と垂直磁気記録層との格子結合性を高める中間層とするのも好ましい。結晶軸制御層の材料としては、垂直磁気記録層の垂直配向性を高める効果の大きい、hcp構造をもつTiまたはTi系合金が好ましい。Ti系合金としてはTiCr系合金等が挙げられる。また、前記中間層の材料としてはCoCrTa系合金が好ましい。前記結晶軸制御層の膜厚は特に制限されないが、垂直配向性の観点から、5nm〜20nmであることが好ましい。   In the configuration of the present invention, in order to further promote the effect of increasing the recording density, a crystal axis control layer (nonmagnetic underlayer) that increases the perpendicular orientation of the perpendicular magnetic recording layer between the substrate and the perpendicular magnetic recording layer. In this case, an intermediate layer that enhances the lattice coupling between the crystal axis control layer and the perpendicular magnetic recording layer is also preferably provided between the crystal axis control layer and the perpendicular magnetic recording layer. . As a material for the crystal axis control layer, Ti or a Ti-based alloy having an hcp structure, which has a large effect of improving the perpendicular orientation of the perpendicular magnetic recording layer, is preferable. Examples of Ti-based alloys include TiCr-based alloys. The material for the intermediate layer is preferably a CoCrTa alloy. The film thickness of the crystal axis control layer is not particularly limited, but is preferably 5 nm to 20 nm from the viewpoint of vertical alignment.

また、本発明において、垂直磁気記録層とは別に、基板側に軟磁性層を設けても良い。この軟磁性層は、垂直磁気記録媒体において、記録時の磁気回路を適切に制御するものである。この軟磁性層の材料としては、CoNbZr等の非晶質系材料や、FeMn,InMn,NiMi,NiFe等の材料が挙げられる。前記軟磁性層を設けた場合は、軟磁性層と垂直磁気記録層との磁性的交換相互作用を遮断する中間層を設けてもよい。以上の説明から分かるように、本発明は、単層型垂直磁気記録媒体あるいは二重型垂直磁気記録媒体などの限定を受けずに適用することができる。   In the present invention, a soft magnetic layer may be provided on the substrate side separately from the perpendicular magnetic recording layer. This soft magnetic layer appropriately controls a magnetic circuit during recording in a perpendicular magnetic recording medium. Examples of the material of the soft magnetic layer include amorphous materials such as CoNbZr, and materials such as FeMn, InMn, NiMi, and NiFe. When the soft magnetic layer is provided, an intermediate layer for blocking the magnetic exchange interaction between the soft magnetic layer and the perpendicular magnetic recording layer may be provided. As can be seen from the above description, the present invention can be applied without being limited to a single layer type perpendicular magnetic recording medium or a double type perpendicular magnetic recording medium.

本発明において、基板は特に限定されない。ガラス基板やAl合金系基板、カーボン基板やセラミックス基板・シリコン基板等を使用することができる。ガラス基板としては、化学強化ガラス基板や結晶化ガラス基板が挙げられる。ガラス基板は、平坦性・平滑性・剛性に優れているので、本発明が提供する60Gbit/inch以上のような高記録密度領域において特に好ましい。さらに、ガラス基板は、耐熱性が高いので、高温における成膜・製造であり、高記録密度化に有用性が高い。ガラス基板の硝種としては、アルミノシリケートガラス・ソーダライムガラス・アルミノポロシリケートガラス・ポロシリケートガラス・結晶化ガラス・石英ガラス等が挙げられる。 In the present invention, the substrate is not particularly limited. A glass substrate, an Al alloy substrate, a carbon substrate, a ceramic substrate, a silicon substrate, or the like can be used. Examples of the glass substrate include a chemically strengthened glass substrate and a crystallized glass substrate. Since the glass substrate is excellent in flatness, smoothness, and rigidity, it is particularly preferable in a high recording density region such as 60 Gbit / inch 2 or more provided by the present invention. Furthermore, since the glass substrate has high heat resistance, the glass substrate is formed and manufactured at a high temperature, and is highly useful for increasing the recording density. Examples of the glass type of the glass substrate include aluminosilicate glass, soda lime glass, aluminoporosilicate glass, polosilicate glass, crystallized glass, and quartz glass.

本発明において、成膜方法は特には限定されないが、高記録密度化の容易なスパッタリング法が好ましい。スパッタリング法においては、DCスパッタリング法・RFスパッタリング法の何れであっても良い。また、インライン型・枚葉型等の何れの製造方法であってもよい。前記非磁性体の平均厚さ(結晶粒界厚)は、磁性層成膜用のスパッタリングターゲットに含有させる、垂直磁気記録層用の材料と非磁性体用の材料との配合比によって制御できる。含有方法は、直接スパッタリングターゲットに含有させてもよく、或いはペレット化した非磁性体の材料をスパッタリングターゲット上に載置してもよい。また、成膜速度・成膜温度・成膜時の真空度・バイアス印加等の成膜方法によっても、前記非磁性体の平均厚さを適宜制御できる。   In the present invention, the film forming method is not particularly limited, but a sputtering method that can easily increase the recording density is preferable. The sputtering method may be either a DC sputtering method or an RF sputtering method. Moreover, any manufacturing method such as an inline type or a single wafer type may be used. The average thickness (crystal grain boundary thickness) of the nonmagnetic material can be controlled by the blending ratio of the material for the perpendicular magnetic recording layer and the material for the nonmagnetic material, which is contained in the sputtering target for forming the magnetic layer. For the inclusion method, the sputtering target may be included directly, or a non-magnetic material pelletized may be placed on the sputtering target. Further, the average thickness of the non-magnetic material can be appropriately controlled by a film forming method such as a film forming speed, a film forming temperature, a degree of vacuum during film forming, and bias application.

前記非磁性体を酸化物あるいは窒化物とする場合は、前記スパッタリングターゲットに含有させるか、あるいは、成膜時に酸素含有ガス(酸素ガス・オゾンガス・水・二酸化炭素ガス・一酸化窒素ガス・二酸化窒素ガスなど)や窒素含有ガス(窒素ガス・一酸化窒素ガス・二酸化窒素ガス・シアンガス・アンモニアガス等)やスパッタリングガス(アルゴンガスなど)に混合させ、混合量を制御することにより制御する。前記非磁性体を酸化物或いは窒化物とすると、良好に粒界が形成されるので有用性が高い。   When the non-magnetic material is an oxide or nitride, it is included in the sputtering target, or an oxygen-containing gas (oxygen gas, ozone gas, water, carbon dioxide gas, nitrogen monoxide gas, nitrogen dioxide) during film formation. Gas, etc.), nitrogen-containing gas (nitrogen gas, nitrogen monoxide gas, nitrogen dioxide gas, cyanide gas, ammonia gas, etc.) and sputtering gas (argon gas etc.) are mixed and controlled by controlling the mixing amount. When the nonmagnetic material is an oxide or a nitride, grain boundaries are well formed, which is highly useful.

なお、本発明において、必要に応じて、磁性層上に保護層・潤滑層を形成することができる。保護層は、磁性層を磁気ヘッドによる接触から保護し、信頼性を向上させる目的で形成する。潤滑層は、磁気ヘッドと媒体との摺動抵抗を軽減するために設けられ、例えば、PFPE(パーフルオロポリエーテル)系潤滑剤等がある。塗布方法は、ディップ法・スピンコート法・スプレイ法等の公知の方法を使用することができる。   In the present invention, if necessary, a protective layer and a lubricating layer can be formed on the magnetic layer. The protective layer is formed for the purpose of protecting the magnetic layer from contact with the magnetic head and improving reliability. The lubrication layer is provided to reduce the sliding resistance between the magnetic head and the medium, and examples thereof include a PFPE (perfluoropolyether) lubricant. As a coating method, a known method such as a dip method, a spin coating method, or a spray method can be used.

以下、実施例を用いて、本発明についてより具体的に詳述するが、以下に示すものは本発明の単なる一実施例に過ぎず、本発明の技術的範囲を何ら限定するものではない。
<実施例1>
本発明の実施例1について、図1を用いて説明する。図1は、本発明により成る垂直磁気記録媒体の構成を示す概略断面図である。図中、11は化学強化されたアルミノシリケートガラスからなる円板状ガラス基板、12はTiからなる非磁性下地層(結晶軸制御層)、13はCr:32at%、Ta:3at%、Co:bal.から成るCoCrTa合金の中間層、14はCr:17at%、Pt:15at%、B:8at%、Co:bal.から成るCoCrPtB合金垂直磁気記録層(磁性層)、15はCから成る保護層である。 Ti層12は、CoCrTa合金層13、及びCoCrPtB合金垂直磁気記録層14のC軸優先配向性を促進することを目的として設けられた結晶制御層であり、その層厚は10nmである。CoCrTa合金層13は非磁性体で、CoCrPtB合金記録層14との格子定数の整合を図り、磁気特性の劣悪な初期成長層(図示せず)の発生を抑圧するために設けられた中間層である。また、その層厚は10nmである。CoCrPtB合金垂直磁気記録層14の層厚は30nm,C(カーボン)保護層の層厚は5nmである。そして、16はPFPEからなる潤滑層(層厚0.9nm)である。以下、該垂直磁気記録媒体の製造方法について説明する。
Hereinafter, the present invention will be described in more detail with reference to examples. However, the following is merely an example of the present invention and does not limit the technical scope of the present invention.
<Example 1>
A first embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic sectional view showing the structure of a perpendicular magnetic recording medium according to the present invention. In the figure, 11 is a disk-shaped glass substrate made of chemically strengthened aluminosilicate glass, 12 is a nonmagnetic underlayer (crystal axis control layer) made of Ti, 13 is Cr: 32 at%, Ta: 3 at%, Co: CoCrTa alloy intermediate layer consisting of bal., 14 is Cr: 17 at%, Pt: 15 at%, B: 8 at%, CoCrPtB alloy perpendicular magnetic recording layer (magnetic layer) consisting of Co: bal., 15 is a protection consisting of C Is a layer. The Ti layer 12 is a crystal control layer provided for the purpose of promoting the C-axis preferential orientation of the CoCrTa alloy layer 13 and the CoCrPtB alloy perpendicular magnetic recording layer 14, and the layer thickness is 10 nm. The CoCrTa alloy layer 13 is a non-magnetic material, and is an intermediate layer provided to match the lattice constant with the CoCrPtB alloy recording layer 14 and suppress the generation of an initial growth layer (not shown) having poor magnetic properties. is there. The layer thickness is 10 nm. The CoCrPtB alloy perpendicular magnetic recording layer 14 has a thickness of 30 nm, and the C (carbon) protective layer has a thickness of 5 nm. Reference numeral 16 denotes a lubricating layer (layer thickness: 0.9 nm) made of PFPE. Hereinafter, a method for manufacturing the perpendicular magnetic recording medium will be described.

まず、基板11に、RFスパッタリング法により、純Ar雰囲気中でTi層12を形成した。その後、同様にRFスパッタリング法により、純Ar雰囲気中でCoCrTa合金層13、CoCrPtB合金垂直磁気記録層14(磁性層)を順次形成した。最後に、(Ar+H2)混合雰囲気中で、C保護層15を形成した。なお、ここでは成膜方法としてRFスパッタリング法を用いているが、他の方法として例えばCVD法やDCスパッタ法などを用いても勿論よい。この後に、ディップ法でPFPEからなる潤滑層16を0.9 nm形成する First, the Ti layer 12 was formed on the substrate 11 in a pure Ar atmosphere by RF sputtering. Thereafter, similarly, a CoCrTa alloy layer 13 and a CoCrPtB alloy perpendicular magnetic recording layer 14 (magnetic layer) were sequentially formed in a pure Ar atmosphere by RF sputtering. Finally, the C protective layer 15 was formed in a mixed atmosphere of (Ar + H 2 ). Here, although the RF sputtering method is used as the film forming method, for example, a CVD method, a DC sputtering method, or the like may be used as another method. Thereafter, a lubricating layer 16 made of PFPE is formed by 0.9 nm by dipping.

次に、上記により得られた垂直磁気記録媒体の結晶構造と優先配向性をX線回折により評価した。その結果、CoCrPtB合金垂直磁気記録層が六方最密充填構造であり、そのc軸が基板面法線方向に概ね配向していることを確認した。その配向度の分散(Δθ50)は約6°であった。次に上記により得られた垂直磁気記録媒体のCoCrPtB合金垂直磁気記録層部を透過型電子顕微鏡により観察した結果、磁性結晶粒子の結晶粒径は10nm、非磁性体からなる結晶粒界厚は1.5nmであった。
また次に、上記により得られた垂直磁気記録媒体の巨視的な磁気特性(MH曲線)を振動試料磁力計(VSM)により測定した。MH曲線から得られるMr/Ms比は0.93、保持力HcにおけるMH曲線の傾きは、略1/(4π)(π:円周率、CGS単位系)、磁化反転核生成磁界Hnは-1kOeであった。
Next, the crystal structure and preferential orientation of the perpendicular magnetic recording medium obtained as described above were evaluated by X-ray diffraction. As a result, it was confirmed that the CoCrPtB alloy perpendicular magnetic recording layer had a hexagonal close-packed structure, and the c-axis was generally oriented in the normal direction of the substrate surface. The dispersion of the degree of orientation (Δθ 50 ) was about 6 °. Next, the CoCrPtB alloy perpendicular magnetic recording layer portion of the perpendicular magnetic recording medium obtained as described above was observed with a transmission electron microscope. As a result, the crystal grain size of the magnetic crystal grains was 10 nm, and the grain boundary thickness of the nonmagnetic material was 1.5 nm. nm.
Next, the macroscopic magnetic properties (MH curve) of the perpendicular magnetic recording medium obtained as described above were measured with a vibrating sample magnetometer (VSM). The Mr / Ms ratio obtained from the MH curve is 0.93, the slope of the MH curve with coercive force Hc is approximately 1 / (4π) (π: pi, CGS unit system), and the magnetization reversal nucleation magnetic field Hn is −1 kOe. there were.

<比較例>
それから、本実施例1より成る垂直磁気記録媒体の記録再生特性を、磁化反転核生成磁界Hn、が+2kOe、Mr/Ms比:0.6、保持力HcにおけるMH曲線の傾き:略1/(4π)(π:円周率、CGS単位系)である比較例の垂直磁気記録媒体の記録再生特性と比較した。記録ヘッドはリング型ヘッド(トラック幅:3μm)で、再生にはGMRヘッド(トラック幅:0.5μm)を用いた。
また、ここで云う比較例の垂直磁気記録媒体とは、CoCrPtB合金層14の組成のみが、Cr:17at%、Pt:15at%、B:3at%、Co:bal.と異なっているものであり、その他の膜構成は図1に示したものと同様であり、かつ製造方法も、前述した本発明により成る実施例1の垂直磁気記録媒体と同様である。また、比較例の垂直磁気記録媒体の磁性結晶粒子の結晶粒径は11nm、非磁性体からなる結晶粒界厚は0.3nmであった。
そして、線速度:9.8m/s、線記録密度:500kFCI(記録周波数:96.45MHz)で記録した場合、本発明により成る実施例1の垂直磁気記録媒体のS/Nは14dB、一方比較例の垂直磁気記録媒体のS/Nは12dBであり、2dBのS/N改善が認められた。なお、この場合のSは500kFCIにおける出力で、Nは積分ノイズ(積分帯域:1〜120MHz)である。
<Comparative example>
Then, the recording / reproduction characteristics of the perpendicular magnetic recording medium according to Example 1 are as follows. The magnetization reversal nucleation magnetic field Hn is +2 kOe, the Mr / Ms ratio is 0.6, and the slope of the MH curve at the holding force Hc is approximately 1 / (4π. ) (Π: Circumference ratio, CGS unit system) and the recording / reproduction characteristics of the perpendicular magnetic recording medium of the comparative example. The recording head was a ring-type head (track width: 3 μm), and a GMR head (track width: 0.5 μm) was used for reproduction.
Further, the perpendicular magnetic recording medium of the comparative example referred to here is one in which only the composition of the CoCrPtB alloy layer 14 is different from Cr: 17 at%, Pt: 15 at%, B: 3 at%, and Co: bal. The other film configurations are the same as those shown in FIG. 1, and the manufacturing method is the same as that of the perpendicular magnetic recording medium according to the first embodiment of the present invention. Further, the crystal grain size of the magnetic crystal grains of the perpendicular magnetic recording medium of the comparative example was 11 nm, and the grain boundary thickness made of the nonmagnetic material was 0.3 nm.
When recording was performed at a linear velocity of 9.8 m / s and a linear recording density of 500 kFCI (recording frequency: 96.45 MHz), the S / N of the perpendicular magnetic recording medium of Example 1 according to the present invention was 14 dB. The S / N of the perpendicular magnetic recording medium was 12 dB, and 2 dB S / N improvement was observed. In this case, S is an output at 500 kFCI, and N is an integration noise (integration band: 1 to 120 MHz).

更に、75℃で50kFCIにおける信号出力の経時変化を、記録後1秒から10000秒の範囲で測定した結果、本発明による成る実施例1の垂直磁気記録媒体の減衰率は0.5%/decadeであったのに対し、比較例の垂直磁気記録媒体は2.5%/decadeであった。本結果より、本発明により成る実施例1の垂直磁気記録媒体の信号減衰率は、比較例の垂直磁気記録媒体の1/5となり、熱擾乱耐性が改善されていることが確認された。   Furthermore, as a result of measuring the time-dependent change in signal output at 75 ° C. and 50 kFCI in the range of 1 to 10,000 seconds after recording, the attenuation factor of the perpendicular magnetic recording medium of Example 1 according to the present invention was 0.5% / decade. In contrast, the perpendicular magnetic recording medium of the comparative example was 2.5% / decade. From this result, it was confirmed that the signal attenuation rate of the perpendicular magnetic recording medium of Example 1 according to the present invention was 1/5 that of the perpendicular magnetic recording medium of the comparative example, and the thermal disturbance resistance was improved.

<実施例2>
本発明の実施例2として、Cr:17at%、Pt:15at%、B:4at%、Cu:4at%、Co:bal.から成るCoCrPtBCu合金垂直磁気記録層を用い、実施例1に記載した垂直磁気記録媒体と同型の媒体を作成した。媒体作成条件も実施例1に記載されたものと同一である。
本CoCrPtBCu合金垂直磁気記録層を用いた垂直磁気記録媒体の結晶構造と優先配向特性をX線回折により評価した。結晶構造は六方最密充填構造であり、そのc軸が基板面法線方向に概ね配向していることを確認した。その配向度の分散(Δθ50)は6°であった。次に上記により得られた垂直磁気記録媒体のCoCrPtBCu合金膜垂直磁気記録層部を透過型電子顕微鏡により調査した。その結果、平均粒子径は10nmで、非磁性体からなる結晶粒界厚は2nmであった。
<Example 2>
As Example 2 of the present invention, a perpendicular magnetic recording layer of CoCrPtBCu alloy composed of Cr: 17 at%, Pt: 15 at%, B: 4 at%, Cu: 4 at%, Co: bal. A medium of the same type as the magnetic recording medium was created. The medium creation conditions are also the same as those described in the first embodiment.
The crystal structure and preferred orientation characteristics of perpendicular magnetic recording media using this CoCrPtBCu alloy perpendicular magnetic recording layer were evaluated by X-ray diffraction. The crystal structure was a hexagonal close-packed structure, and it was confirmed that the c-axis was generally oriented in the normal direction of the substrate surface. The dispersion of the degree of orientation (Δθ 50 ) was 6 °. Next, the CoCrPtBCu alloy film perpendicular magnetic recording layer portion of the perpendicular magnetic recording medium obtained as described above was examined with a transmission electron microscope. As a result, the average particle size was 10 nm, and the grain boundary thickness made of nonmagnetic material was 2 nm.

次に上記により得られた垂直磁気記録媒体の巨視的な磁気特性(MH曲線)を、振動試料磁力計(VSM)により測定した。MH曲線から得られるMr/Ms比は0.95、保持力HcにおけるMH曲線の傾きは 略1/(4π)(π:円周率、CGS単位系)、磁化反転核生成磁界Hnは-1.5kOeであった。
実施例2の垂直磁気記録媒体の記録再生特性について、比較例の垂直磁気記録媒体と比較評価した。評価方法は、実施例1記載の方法と同様である。その結果、本実施例2により成る垂直磁気記録媒体のS/Nは14.5dBで、比較例の垂直磁気記録媒体に比べて、S/N比で2.5dBの改善が認められた。また、放置時間に対する信号減衰率は0.5%/decadeで比較例の垂直磁気記録媒体の1/5であった。
Next, the macroscopic magnetic properties (MH curve) of the perpendicular magnetic recording medium obtained as described above were measured with a vibrating sample magnetometer (VSM). The Mr / Ms ratio obtained from the MH curve is 0.95, the slope of the MH curve at coercive force Hc is approximately 1 / (4π) (π: pi, CGS unit system), and the magnetization reversal nucleation magnetic field Hn is −1.5 kOe. there were.
The recording / reproduction characteristics of the perpendicular magnetic recording medium of Example 2 were compared and evaluated with the perpendicular magnetic recording medium of the comparative example. The evaluation method is the same as the method described in Example 1. As a result, the S / N of the perpendicular magnetic recording medium according to Example 2 was 14.5 dB, and an improvement of 2.5 dB in the S / N ratio was recognized as compared with the perpendicular magnetic recording medium of the comparative example. The signal decay rate with respect to the standing time was 0.5% / decade, which was 1/5 of the perpendicular magnetic recording medium of the comparative example.

<実施例3>
本発明の実施例3として、Cr:17at%、Pt:15at%、B:4at%、Ag:4at%、Co:bal.から成るCoCrPtBAg合金垂直磁気記録層を用い、実施例1に記載した垂直磁気記録媒体と同型の媒体を作成した。媒体作成条件も実施例1に記載されたものと同一である。
本CoCrPtBAg合金垂直磁気記録層を用いた垂直磁気記録媒体に関して、本CoCrPtBAg合金垂直磁気記録層部の結晶構造、c軸優先配向性、磁気特性、結晶粒子径、及び非磁性体からなる結晶粒界厚を、実施例1、実施例2に記載したものと同様の方法で評価した結果、実施例2記載のCoCrPtBCu合金垂直磁気記録層を用いた場合とほぼ同様の結果が得られた。また、電磁変換特性に関しても、実施例2に記載されたCoCrPtBCu合金垂直磁気記録層を用いた場合と同様の結果が得られた。
<Example 3>
As Example 3 of the present invention, a perpendicular magnetic recording layer of CoCrPtBAg alloy composed of Cr: 17 at%, Pt: 15 at%, B: 4 at%, Ag: 4 at%, Co: bal. A medium of the same type as the magnetic recording medium was created. The medium creation conditions are also the same as those described in the first embodiment.
Regarding the perpendicular magnetic recording medium using this CoCrPtBAg alloy perpendicular magnetic recording layer, the crystal structure of the CoCrPtBAg alloy perpendicular magnetic recording layer, the c-axis preferred orientation, the magnetic properties, the crystal grain size, and the grain boundaries consisting of non-magnetic materials As a result of evaluating the thickness by the same method as described in Example 1 and Example 2, almost the same result as that obtained when the CoCrPtBCu alloy perpendicular magnetic recording layer described in Example 2 was used was obtained. Further, regarding the electromagnetic conversion characteristics, the same results as those obtained when the CoCrPtBCu alloy perpendicular magnetic recording layer described in Example 2 was used were obtained.

<実施例4>
本発明の実施例4として、(CoCrPt)95(SiO2)5から成るCoCrPt-SiO2混合系垂直磁気記録層を用い、実施例1に記載した垂直磁気記録媒体と同型の媒体を作成した。なお、CoCrPt合金の組成は、Cr:15at%、Pt:13at%、Co:bal.である。以下、該磁気記録媒体の製造方法について説明する。
まず、円板状のアルミノシリケートガラスからなる化学強化ガラス基板11に、RFスパッタリング法により純Ar雰囲気中で実施例1と同様にTiからなる非磁性下地層12を形成した。その後、同様にRFスパッタリング法により純Ar雰囲気中で実施例1と同様にCoCrTa合金からなる中間層13を形成した。次に、CoCrPt-SiO2混合系から成る垂直磁気記録層14(磁性層)を順次形成した。なお、同垂直磁気記録層の組成は、CoCrPt合金ターゲット上に貼り付けるSiO2ペレットの個数により調整した。
<Example 4>
As Example 4 of the present invention, a medium of the same type as the perpendicular magnetic recording medium described in Example 1 was prepared using a CoCrPt—SiO 2 mixed perpendicular magnetic recording layer made of (CoCrPt) 95 (SiO 2 ) 5 . The composition of the CoCrPt alloy is Cr: 15 at%, Pt: 13 at%, and Co: bal. Hereinafter, a method for manufacturing the magnetic recording medium will be described.
First, a nonmagnetic underlayer 12 made of Ti was formed on a chemically strengthened glass substrate 11 made of a disk-like aluminosilicate glass in the pure Ar atmosphere by RF sputtering in the same manner as in Example 1. Thereafter, an intermediate layer 13 made of a CoCrTa alloy was formed in the same manner as in Example 1 in a pure Ar atmosphere by RF sputtering. Next, the perpendicular magnetic recording layer 14 (magnetic layer) made of a CoCrPt—SiO 2 mixed system was sequentially formed. The composition of the perpendicular magnetic recording layer was adjusted by the number of SiO 2 pellets to be stuck on the CoCrPt alloy target.

CoCrPt-SiO2混合系から成る垂直磁気記録層を用いた垂直磁気記録媒体の結晶配向特性を、X線回折によって評価した。結果、垂直磁気記録層の結晶構造は六方最密充填構造であり、そのc軸が基板面法線方向に概ね配向していることを確認した。その配向度の分散(Δθ50)は8°であった。次に、上記により得られた垂直磁気記録媒体のCoCrPt-SiO2混合系から成る垂直磁気記録層部を、透過型電子顕微鏡により観察した。その結果、平均粒子径は12nmで、非磁性体からなる結晶粒界厚は3.5nmであった。 The crystal orientation characteristics of a perpendicular magnetic recording medium using a perpendicular magnetic recording layer composed of a CoCrPt—SiO 2 mixed system were evaluated by X-ray diffraction. As a result, it was confirmed that the crystal structure of the perpendicular magnetic recording layer was a hexagonal close-packed structure, and the c-axis was generally oriented in the normal direction of the substrate surface. The dispersion of the degree of orientation (Δθ 50 ) was 8 °. Next, the perpendicular magnetic recording layer portion made of the CoCrPt—SiO 2 mixed system of the perpendicular magnetic recording medium obtained as described above was observed with a transmission electron microscope. As a result, the average particle diameter was 12 nm, and the grain boundary thickness made of nonmagnetic material was 3.5 nm.

次に上記により得られた垂直磁気記録媒体の巨視的な磁気特性(MH曲線)を、振動試料磁力計(VSM)により測定した。MH曲線から得られるMr/Ms比は0.98、保持力HcにおけるMH曲線の傾きは 略1/(4π)(π:円周率、CGS単位系)、磁化反転核生成磁界Hnは約-2kOeであった。
実施例4の垂直磁気記録媒体の記録再生特性について、比較例記載の垂直磁気記録媒体と比較評価した。その結果、本実施例4により成る垂直磁気記録媒体は13.5dBで比較例の垂直磁気記録媒体に比べて、S/N比で1.5dBの改善が認められた。また、信号減衰量は0.6%/decadeで比較例の垂直磁気記録媒体の1/4であった。
Next, the macroscopic magnetic properties (MH curve) of the perpendicular magnetic recording medium obtained as described above were measured with a vibrating sample magnetometer (VSM). The Mr / Ms ratio obtained from the MH curve is 0.98, the slope of the MH curve at coercive force Hc is approximately 1 / (4π) (π: pi, CGS unit system), and the magnetization reversal nucleation magnetic field Hn is about −2 kOe. there were.
The recording / reproduction characteristics of the perpendicular magnetic recording medium of Example 4 were compared and evaluated with the perpendicular magnetic recording medium described in the comparative example. As a result, the perpendicular magnetic recording medium according to Example 4 showed an improvement of 1.5 dB in S / N ratio as compared with the perpendicular magnetic recording medium of the comparative example at 13.5 dB. The signal attenuation was 0.6% / decade, which was 1/4 of the perpendicular magnetic recording medium of the comparative example.

<実施例5>
本発明の実施例5として、(CoCrPt)95(SiN)5から成るCoCrPt-SiN混合系垂直磁気記録層を用い、実施例1に記載した垂直磁気記録媒体と同型の媒体を作成した。なお、CoCrPt合金の組成は、実施例4と同様のCr:15at%、Pt:13at%、Co:bal.である。
媒体作成方法も実施例4と同様であり、本実施例においては、CoCrPt合金ターゲット上に貼り付けるSiNペレットの個数を調整することにより、CoCrPt-SiN混合系垂直磁気記録層の組成を調整した。実施例1〜4に記載された方法で、CoCrPt-SiN混合系垂直磁気記録層の結晶構造、優先配向性、微細構造を評価した結果、結晶構造は六方最密充填構造であり、そのc軸が基板面法線方向に概ね配向していることを確認した。その配向度の分散(Δθ50)は7°であった。また、結晶粒子径は12nmで、非磁性体からなる結晶粒界厚は3.5nmであった。
<Example 5>
As Example 5 of the present invention, a medium of the same type as the perpendicular magnetic recording medium described in Example 1 was prepared using a CoCrPt-SiN mixed perpendicular magnetic recording layer made of (CoCrPt) 95 (SiN) 5 . The composition of the CoCrPt alloy is Cr: 15 at%, Pt: 13 at%, and Co: bal.
The medium preparation method is the same as in Example 4. In this example, the composition of the CoCrPt—SiN mixed system perpendicular magnetic recording layer was adjusted by adjusting the number of SiN pellets to be pasted on the CoCrPt alloy target. As a result of evaluating the crystal structure, preferential orientation and fine structure of the CoCrPt-SiN mixed perpendicular magnetic recording layer by the method described in Examples 1 to 4, the crystal structure is a hexagonal close-packed structure, and its c-axis It was confirmed that was generally oriented in the normal direction of the substrate surface. The dispersion of the degree of orientation (Δθ 50 ) was 7 °. The crystal grain size was 12 nm, and the grain boundary thickness made of nonmagnetic material was 3.5 nm.

次に上記により得られた垂直磁気記録媒体の巨視的な磁気特性(MH曲線)を振動試料磁力計(VSM)により測定した。MH曲線から得られるMr/Ms比は0.98、保持力HcにおけるMH曲線の傾きは 略1/(4π)(π:円周率、CGS単位系)、磁化反転核生成磁界Hnは-2kOeであった。
実施例5の垂直磁気記録媒体の記録再生特性について、比較例記載の垂直磁気記録媒体と比較評価した。その結果、本実施例5により成る垂直磁気記録媒体は13dBであった。比較例の垂直磁気記録媒体に比べて、S/N比で1dBの改善が認められた。また、放置時間に対する信号減衰率は0.5%/decadeで比較例の垂直磁気記録媒体の1/5であった。
Next, the macroscopic magnetic properties (MH curve) of the perpendicular magnetic recording medium obtained as described above were measured with a vibrating sample magnetometer (VSM). The Mr / Ms ratio obtained from the MH curve is 0.98, the slope of the MH curve at coercive force Hc is approximately 1 / (4π) (π: pi, CGS unit system), and the magnetization reversal nucleation magnetic field Hn is −2 kOe. It was.
The recording / reproduction characteristics of the perpendicular magnetic recording medium of Example 5 were compared and evaluated with the perpendicular magnetic recording medium described in the comparative example. As a result, the perpendicular magnetic recording medium of Example 5 was 13 dB. Compared with the perpendicular magnetic recording medium of the comparative example, an improvement of 1 dB in S / N ratio was recognized. The signal decay rate with respect to the standing time was 0.5% / decade, which was 1/5 of the perpendicular magnetic recording medium of the comparative example.

本発明より成る垂直磁気記録媒体の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the perpendicular magnetic recording medium which consists of this invention. 従来の単層型垂直磁気記録媒体の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional single layer type perpendicular magnetic recording medium. 従来の2層型垂直磁気記録媒体の構成を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the conventional 2 layer type | mold perpendicular magnetic recording medium. 垂直磁気垂直磁気記録層の記録状態における微視的構造を示す概略図である。It is the schematic which shows the microscopic structure in the recording state of a perpendicular magnetic perpendicular magnetic recording layer. 従来の垂直磁気記録層のMH曲線である。It is MH curve of the conventional perpendicular magnetic recording layer. 本発明による垂直磁気記録媒体の膜構造を示す概略側断面図である。1 is a schematic sectional side view showing a film structure of a perpendicular magnetic recording medium according to the present invention. 本発明による、非磁性体からなる結晶粒界厚と磁化反転核生成磁界と保磁力との関係について示した図である。It is the figure which showed the relationship between the grain boundary thickness which consists of a nonmagnetic material, a magnetization reversal nucleation magnetic field, and a coercive force by this invention.

符号の説明Explanation of symbols

11 ガラス基板
12 Ti層
13 非磁性CoCrTa合金層
14 CoCrPtB合金膜垂直磁気記録層
15 C保護層
16 潤滑層
21 基板
22 結晶軸制御層
23 垂直磁気記録層
24 保護層
25 潤滑層
31 基板
32 下地軟磁性層
33 中間層
34 垂直磁気記録層
35 保護層
36 潤滑層
41 垂直磁気記録層
42 垂直磁気記録層を形成する結晶粒子
43 磁化遷移線
44 各記録ビットにおける平均的磁化方向を表す矢印
45 各記録ビッにおける平均的磁化方向を表す矢印
46 各記録ビットにおいて、平均的磁化方向と異なる方向を向く逆磁区
61 基板
62 下地層
63 垂直磁気記録層
64 磁性結晶粒子
65 非磁性結晶粒界
71 磁化反転核生成磁界の結晶粒界厚依存性
72 保磁力の結晶粒界厚依存性
DESCRIPTION OF SYMBOLS 11 Glass substrate 12 Ti layer 13 Nonmagnetic CoCrTa alloy layer 14 CoCrPtB alloy film perpendicular magnetic recording layer 15 C protective layer 16 Lubricating layer 21 Substrate 22 Crystal axis control layer 23 Perpendicular magnetic recording layer 24 Protective layer 25 Lubricating layer 31 Substrate 32 Underlayer soft Magnetic layer 33 Intermediate layer 34 Perpendicular magnetic recording layer 35 Protective layer 36 Lubricating layer 41 Perpendicular magnetic recording layer 42 Crystal grains forming perpendicular magnetic recording layer 43 Magnetization transition line 44 Arrow representing average magnetization direction in each recording bit 45 Each recording An arrow representing an average magnetization direction in the bit 46 In each recording bit, a reverse magnetic domain facing the direction different from the average magnetization direction 61 substrate 62 underlayer 63 perpendicular magnetic recording layer 64 magnetic crystal grain 65 nonmagnetic crystal grain boundary 71 magnetization reversal nucleus Dependence of generated magnetic field on grain boundary thickness 72 Dependence of coercive force on grain boundary thickness

Claims (8)

基板上に、少なくとも磁性層を形成する垂直磁気記録媒体の製造方法であって、
前記磁性層である垂直磁気記録層は、磁性結晶粒子と、磁性結晶粒子間に介在する非磁性層からなる結晶粒界とを備え、
予め、前記結晶粒界厚と磁化反転核生成磁界Hnとの相関関係を求めておき、
前記相関関係に基づいて、所定の磁化反転核生成磁界Hnが得られる結晶粒界厚を選定し、前記選定した結晶粒界厚となるよう製造する、ことを特徴とする垂直磁気記録媒体の製造方法。
A method of manufacturing a perpendicular magnetic recording medium, wherein at least a magnetic layer is formed on a substrate,
The perpendicular magnetic recording layer, which is the magnetic layer, includes magnetic crystal grains and a crystal grain boundary composed of a nonmagnetic layer interposed between the magnetic crystal grains,
In advance, a correlation between the grain boundary thickness and the magnetization reversal nucleation magnetic field Hn is obtained,
A perpendicular magnetic recording medium is manufactured, wherein a grain boundary thickness at which a predetermined magnetization reversal nucleation magnetic field Hn is obtained is selected based on the correlation, and the selected grain boundary thickness is produced. Method.
前記垂直磁気記録層の磁性結晶粒子間に介在する非磁性体からなる結晶粒界厚が0.5〜10nm以上であることを特徴とする請求項1に記載の垂直磁気記録媒体の製造方法。   2. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein a grain boundary thickness made of a non-magnetic material interposed between magnetic crystal grains of the perpendicular magnetic recording layer is 0.5 to 10 nm or more. 前記磁性結晶粒子の粒径が5〜20nmであることを特徴とする請求項1または2に記載の垂直磁気記録媒体の製造方法。   3. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the magnetic crystal particles have a particle size of 5 to 20 nm. 前記磁性層の材料がCoCrPtを含むことを特徴とする請求項1乃至3のいずれか1項に記載の垂直磁気記録媒体の製造方法。   The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the material of the magnetic layer contains CoCrPt. 前記非磁性層の材料が、Cr、Si、Cu、Ag、Au、B、Cのいずれかまたはその複数が含有されている材料、または、これらの酸化物もしくは窒化物であることを特徴とする請求項1乃至4のいずれか1項に記載の垂直磁気記録媒体の製造方法。   The material of the nonmagnetic layer is a material containing any one or more of Cr, Si, Cu, Ag, Au, B, and C, or an oxide or nitride thereof. The method for manufacturing a perpendicular magnetic recording medium according to claim 1. 前記基板と前記垂直磁気記録層との間に、TiCrを含む非磁性下地層を形成することを特徴とする請求項1乃至5いずれか1項に記載の垂直磁気記録媒体の製造方法。   6. The method of manufacturing a perpendicular magnetic recording medium according to claim 1, wherein a nonmagnetic underlayer containing TiCr is formed between the substrate and the perpendicular magnetic recording layer. 前記基板と前記垂直磁気記録層との間に非磁性下地層を形成し、
前記非磁性下地層と前記垂直磁気記録層との間に、CoCrTaを含む中間層を形成することを特徴とする請求項1乃至6のいずれか1項に記載の垂直磁気記録媒体の製造方法。
Forming a nonmagnetic underlayer between the substrate and the perpendicular magnetic recording layer;
7. The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein an intermediate layer containing CoCrTa is formed between the nonmagnetic underlayer and the perpendicular magnetic recording layer.
前記基板がガラス基板であることを特徴とする請求項1乃至7のいずれか1項に記載の垂直磁気記録媒体の製造方法。   The method for manufacturing a perpendicular magnetic recording medium according to claim 1, wherein the substrate is a glass substrate.
JP2007280472A 2007-10-29 2007-10-29 Manufacturing method of perpendicular magnetic recording medium Pending JP2008059749A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007280472A JP2008059749A (en) 2007-10-29 2007-10-29 Manufacturing method of perpendicular magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007280472A JP2008059749A (en) 2007-10-29 2007-10-29 Manufacturing method of perpendicular magnetic recording medium

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002223937A Division JP2004063050A (en) 2002-07-31 2002-07-31 Magnetic recording medium for magnetic disk and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2008059749A true JP2008059749A (en) 2008-03-13

Family

ID=39242261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007280472A Pending JP2008059749A (en) 2007-10-29 2007-10-29 Manufacturing method of perpendicular magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2008059749A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11110730A (en) * 1997-09-30 1999-04-23 Toshiba Corp Magnetic recording medium
JP2002358615A (en) * 2001-02-28 2002-12-13 Showa Denko Kk Magnetic recording medium, manufacturing method therefor and magnetic recording and reproducing device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11110730A (en) * 1997-09-30 1999-04-23 Toshiba Corp Magnetic recording medium
JP2002358615A (en) * 2001-02-28 2002-12-13 Showa Denko Kk Magnetic recording medium, manufacturing method therefor and magnetic recording and reproducing device

Similar Documents

Publication Publication Date Title
US8603650B2 (en) Perpendicular magnetic recording disk and manufacturing method thereof
JP5103097B2 (en) Perpendicular magnetic recording medium and magnetic recording / reproducing apparatus using the same
JP4380577B2 (en) Perpendicular magnetic recording medium
JP2006268972A (en) Perpendicular magnetic recording disk and its manufacturing method
JP4219941B2 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2011248969A (en) Perpendicular magnetic disk
JP2012009086A (en) Perpendicular magnetic recording medium and method for manufacturing the same
JP2011216141A (en) Method for manufacturing perpendicular magnetic disk
JP2007179598A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2006155861A (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2009116930A (en) Vertical magnetic recording medium and magnetic recording and reproducing device using the same
WO2010064409A1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording device
JPWO2009014205A1 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2005251373A (en) Magnetic recording medium, manufacturing method of the same, and magnetic storage device
JP2005032352A (en) Magnetic recording medium using particle dispersion type film for base, method for manufacturing the same, and magnetic recording/reproducing device
WO2006134952A1 (en) Perpendicular magnetic recording medium, production process thereof, and magnetic recording and reproducing apparatus
JP2002334424A (en) Magnetic recording medium, method for manufacturing the same and magnetic recording and reproducing device
JP2006120231A (en) Perpendicular magnetic recording medium
JP2005004945A (en) Perpendicular magnetic recording medium and its manufacturing method
JP2008192249A (en) Vertical magnetic recording medium, method for manufacturing the same, and magnetic recording and reproducing device
JP2006099951A (en) Magnetic recording medium, its manufacturing method, and magnetic recording and reproducing device
JP2007073136A (en) Magnetic recording medium and magnetic recording/reproducing device
JP2004227618A (en) Disk substrate for perpendicular magnetic recording medium, perpendicular magnetic recording disk and their manufacturing method
JP2005302109A (en) Manufacturing method of multilayer film vertical magnetic recording medium
JP2012226792A (en) Magnetic recording medium

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20090929

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100601

A521 Written amendment

Effective date: 20100622

Free format text: JAPANESE INTERMEDIATE CODE: A523

A711 Notification of change in applicant

Effective date: 20100706

Free format text: JAPANESE INTERMEDIATE CODE: A711

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101022

A02 Decision of refusal

Effective date: 20101201

Free format text: JAPANESE INTERMEDIATE CODE: A02