JP2008057323A - Exposed steel frame plinth structure - Google Patents

Exposed steel frame plinth structure Download PDF

Info

Publication number
JP2008057323A
JP2008057323A JP2007298733A JP2007298733A JP2008057323A JP 2008057323 A JP2008057323 A JP 2008057323A JP 2007298733 A JP2007298733 A JP 2007298733A JP 2007298733 A JP2007298733 A JP 2007298733A JP 2008057323 A JP2008057323 A JP 2008057323A
Authority
JP
Japan
Prior art keywords
column
base plate
column base
bending moment
plasticizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007298733A
Other languages
Japanese (ja)
Other versions
JP4683571B2 (en
Inventor
Harukatsu Kadoya
治克 角屋
Toru Watanabe
亨 渡辺
Takaaki Hirayama
貴章 平山
Shinichi Yokoyama
眞一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okabe Co Ltd
Original Assignee
Okabe Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okabe Co Ltd filed Critical Okabe Co Ltd
Priority to JP2007298733A priority Critical patent/JP4683571B2/en
Publication of JP2008057323A publication Critical patent/JP2008057323A/en
Application granted granted Critical
Publication of JP4683571B2 publication Critical patent/JP4683571B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exposed steel frame plinth structure capable of realizing reduction in material costs by reasonably miniaturizing component members and capable of avoiding abrupt collapse of a building and being applied to a wide variety of buildings, by well balancing loads distributed to plinths and columns as a whole at the time of an earthquake and effectively using the bearing force of the component members to prepare for the collapse of the building. <P>SOLUTION: In the exposed steel frame plinth structure, a column member 1 is designed to have a height ratio of point of contraflexure of 0.3-0.6 via the steel frame plinth structure of an exposed type, a plasticizing member 8 which yields to a bending moment acting on the column member 1 before an anchor bolt 5 and is plasticized is interposed between a base plate 4 and the bottom end of the column member 1, and the height from the top face of the base plate 4 up to the joint section 9 of the plasticizing member 8 and the column member 1 is set to 1.5 times the diameter or the length of a side of the column member 1 or more. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、大地震の際に、アンカーボルトの降伏より先に、柱脚金物の柱材との結合部より下方部にて塑性化が確実に始り、地震エネルギを効率よく吸収させるための鉄骨造の露出型柱脚構造に関する。   In the present invention, in the event of a large earthquake, before the yielding of the anchor bolt, plasticization starts reliably at the lower part than the joint part of the column base metal with the column material, and the seismic energy is efficiently absorbed. The present invention relates to a steel structure exposed column base structure.

建築構造物の耐震設計においては、いずれかの構造部材の塑性変形によって地震エネルギを吸収することにより、稀に発生する大地震に対して建物の倒壊を防ぐという構造設計が行われている。建築構造物の柱脚構造として露出型柱脚構造を採用した場合に、地震時に最初に塑性化して地震エネルギを吸収させる構造部材として選定可能な構造部材は、アンカーボルト、柱脚金物あるいは柱材のいずれかである。   In the seismic design of a building structure, a structural design is performed to prevent collapse of a building against a rare large earthquake by absorbing seismic energy by plastic deformation of any structural member. When an exposed column base structure is used as the column base structure of a building structure, the structural members that can be selected as the structural member that first plasticizes and absorbs the seismic energy during an earthquake are anchor bolts, column base hardware, or column materials. One of them.

ところで、ベースプレートの上部に形成した立上がり部に断面欠損部を形成し、その断面欠損部の耐力を柱の設計耐力と等しくすることにより、地震時等における塑性化を、柱脚金物を構成するベースプレートと柱材との間に確実に誘導するようにした技術が知られている(特許文献1参照)。この従来技術では、柱脚金物の立上がり部に形成する断面欠損部として、幅8mm、深さ4mmの溝部を形成した場合を例示している。しかしながら、地震エネルギを吸収するためには、柱脚部に作用する曲げモーメントによって生じる塑性化もかなり広い範囲にわたることが一般的であり、前記従来技術の溝部のように狭い塑性化領域の場合には、塑性化の始りを前記溝部に誘導することはできても、その塑性化領域が小さいため、地震の規模によっては地震エネルギを吸収しきれずに、返って応力集中により断面欠損部から破壊が生じるおそれもあった。さらに、前記従来技術における柱脚金物の立上がり部の高さ寸法はせいぜい柱材の幅の半分程度であり、柱材との溶接位置も低くなるため、柱脚部に作用する曲げモーメントの影響を大きく受けやすく、過大な応力集中により溶接接合部から破断する可能性も問題であった。因みに、柱脚金物は、鍛造あるいは鋳造による製作が一般的であるが、鍛造による場合には、ベースプレートの上方に突出する立上がり部を有する柱脚金物を製作することは技術的に困難であり、仮に製作が可能であっても、溝や孔からなる断面欠損部の形成は機械加工に頼らざるを得ないことから、コストが増大してしまうという技術的な問題があった。また、鋳造による場合には、鋳型から鋳物としての柱脚金物を抜くための勾配が必要であり、同様に溝や孔からなる断面欠損部の形成は機械加工に頼らざるを得ないことから、やはりコストが増大してしまうという技術的な問題があった。
実用新案登録第2567435号公報
By the way, by forming a cross-sectional defect at the rising part formed at the upper part of the base plate and making the proof strength of the cross-sectional defect equal to the design proof strength of the column, the base plate that constitutes the column base metal is made plastic during an earthquake, etc. There is known a technique that reliably guides between a cylinder and a pillar material (see Patent Document 1). In this prior art, a case where a groove portion having a width of 8 mm and a depth of 4 mm is formed as a cross-sectional defect portion formed in the rising portion of the column base metal is illustrated. However, in order to absorb seismic energy, the plasticization caused by the bending moment acting on the column base is generally also in a fairly wide range. Although the initiation of plasticization can be guided to the groove, the plasticization region is small, so depending on the magnitude of the earthquake, it cannot absorb the seismic energy, but returns from the cross-sectional defect due to stress concentration. There was also a risk of occurrence. In addition, the height of the rising portion of the column base metal in the prior art is at most about half the width of the column material, and the welding position with the column material is also low. It was also easy to receive, and the possibility of fracture from the welded joint due to excessive stress concentration was also a problem. Incidentally, column base hardware is generally manufactured by forging or casting, but in the case of forging, it is technically difficult to manufacture a column base metal having a rising portion protruding above the base plate, Even if it can be manufactured, there is a technical problem in that the cost increases because the formation of the cross-sectional defect portion formed of a groove or a hole must be relied upon for machining. In addition, in the case of casting, it is necessary to have a gradient for extracting the column base metal as a casting from the mold, and similarly, the formation of a cross-sectional defect portion consisting of grooves and holes must be relied on machining, There was also a technical problem that the cost would increase.
Utility Model Registration No. 2567435

その他の従来技術として、柱材に比べて断面性能の低い部材を柱材最下端とベースプレートの間に配設し、ある値以上の曲げモーメントが作用すると、柱材、アンカーボルト及びベースプレートに先行してその低断面性能部材が降伏し、塑性ヒンジを形成するようにした技術が知られている(特許文献2参照)。しかしながら、この従来技術で採用した柱脚構造は、あくまでピン柱脚としての問題点を改善したものであって、柱脚部の固定度が低いことから、柱脚部に作用する曲げモーメントは小さいものの、柱頭部に作用する曲げモーメントは大きいため、その分柱材の耐力を大きなものとしなければならず、割高なものとなった。しかも、ピン柱脚構造とはいっても実際には柱脚部に少なからず曲げモーメントが作用するため、これが大地震の際の建物倒壊の原因の一つになりかねないといったおそれもあった。したがって、前記従来技術は、柱脚部に作用する曲げモーメントがあまり大きな問題とならないピン柱脚構造の設計方式が適合する柱間のスパンの広い大スパン建造物などに適用できるものであり、その適用範囲には大きな制約が伴った。
特開平10−183759号公報
As another conventional technique, when a member having a lower cross-sectional performance than the column material is arranged between the bottom end of the column material and the base plate, and a bending moment exceeding a certain value acts, it precedes the column material, anchor bolt and base plate. A technique is known in which the low-section member yields and a plastic hinge is formed (see Patent Document 2). However, the column base structure adopted in this prior art is merely an improvement of the problem as a pin column base, and since the fixing degree of the column base is low, the bending moment acting on the column base is small. However, since the bending moment acting on the column head was large, the proof strength of the split column material had to be increased, which was expensive. Moreover, even if it is a pin column structure, a bending moment acts on the column base part in reality, which may cause one of the causes of building collapse in the event of a large earthquake. Therefore, the prior art can be applied to a large-span building having a wide span between columns to which the design method of the pin column base structure in which the bending moment acting on the column base does not become a big problem, and the like. The scope of application was very limited.
Japanese Patent Laid-Open No. 10-183759

本発明は、以上のような従来の技術的状況に鑑みて発明したもので、地震時に柱脚部や柱部が分担する負荷を総合的にバランスよく分配し、各構成部材の耐力を有効に活用して建物の倒壊に備えるように構成することにより、各構成部材を合理的に縮小化して材料コストの削減を図ることができ、しかも建物の急激な倒壊を回避し得る、各種の建物に広く適用することの可能な鉄骨造露出型柱脚構造を提供することを目的とする。   The present invention was invented in view of the conventional technical situation as described above, and distributes the load shared by the column base and column in a comprehensive manner in a well-balanced manner, effectively increasing the strength of each component. By making use of it to prepare for the collapse of buildings, it is possible to reduce the cost of materials by rationally reducing each component, and in addition to various buildings that can avoid sudden collapse of buildings An object of the present invention is to provide an exposed steel column base structure that can be widely applied.

本発明では、前記課題を解決するため、基礎コンクリート中に定着したアンカーボルトにより固定されるベースプレートに対して柱材の下部を固定することにより柱材を立設する鉄骨造露出型柱脚構造において、その柱脚構造を介して前記柱材の反曲点高比が0.3〜0.6になるように設定するとともに、前記ベースプレートと前記柱材の下端部との間に、柱材に作用する曲げモーメントに対して前記アンカーボルトより先に降伏して塑性化する塑性化部材を介在させ、かつ前記ベースプレートの上面から前記塑性化部材と前記柱材との接続部までの高さを前記柱材の直径ないし一辺の長さの少なくとも1.5倍に設定するという技術手段を採用した。本発明によれば、柱材の反曲点高比が0.3〜0.6となる半固定状態の柱脚構造を基本構造として採用したので、ピン柱脚構造や固定柱脚構造に比べて、地震作用により生じる曲げモーメントが柱部と柱脚部にバランスよく分配されるとともに、さらに柱材の下部にアンカーボルトより先に降伏して塑性化する塑性化部材を介在させて前記柱脚部を紡錘型の履歴特性に移行させるように構成したので、地震エネルギの吸収能力が大幅に向上され、地震作用による建物の急激な倒壊を回避できることから、柱部や柱脚部を構成するベースプレート及びアンカーボルトなどの各構成部材を総合的に縮小化し、しかも耐震性能の優れた柱脚構造を提供することができる。さらに、本発明では、ベースプレートの上面から前記塑性化部材と柱材との接続部までの高さを柱材の直径ないし一辺の長さの少なくとも1.5倍に設定したので、地震エネルギに対する十分な吸収領域を確保し得るとともに、塑性化部材と柱材との接続部に過大な力が作用して接続部から破壊することは回避される。   In the present invention, in order to solve the above-described problem, in a steel structure exposed-type column base structure in which a column member is erected by fixing a lower portion of a column member to a base plate fixed by anchor bolts fixed in foundation concrete. The column material is set so that the inflection point height ratio of the column material is 0.3 to 0.6 via the column base structure, and between the base plate and the lower end portion of the column material, With respect to the acting bending moment, a plasticizing member that yields and plasticizes before the anchor bolt is interposed, and the height from the upper surface of the base plate to the connecting portion between the plasticizing member and the column member is The technical means of setting at least 1.5 times the diameter of the column material or the length of one side was adopted. According to the present invention, a semi-fixed column base structure in which the inflection point height ratio of the column material is 0.3 to 0.6 is adopted as a basic structure, so that compared to a pin column base structure or a fixed column base structure In addition, the bending moment generated by the seismic action is distributed in a well-balanced manner between the column part and the column base part, and further, a plasticizing member that yields and plasticizes before the anchor bolt is interposed in the lower part of the column material. The base plate that constitutes the column and column base is constructed by shifting the part to the spindle type hysteresis characteristics, so that the ability to absorb seismic energy is greatly improved, and sudden collapse of the building due to seismic action can be avoided. In addition, it is possible to provide a column base structure that is capable of reducing the size of each component member such as the anchor bolt and the like, and having excellent seismic performance. Furthermore, in the present invention, the height from the upper surface of the base plate to the connecting portion between the plasticizing member and the column member is set to at least 1.5 times the diameter of the column member or the length of one side. A large absorption region can be secured, and it is avoided that an excessive force acts on the connecting portion between the plasticizing member and the column member and breaks from the connecting portion.

本発明によれば、次の効果を得ることができる。
(1)本発明では、柱材の反曲点高比が0.3〜0.6となる半固定状態の柱脚構造を柱脚部の基本構造として採用したので、ピン柱脚構造や固定柱脚構造に比べて、地震作用により生じる曲げモーメントが柱部と柱脚部にバランスよく分配されるとともに、さらに柱材の下部にアンカーボルトより先に降伏して塑性化する塑性化部材を介在させて前記柱脚部を紡錘型の履歴特性に移行させるように構成したので、地震エネルギの吸収能力が大幅に向上され、地震作用による建物の急激な倒壊を回避できることから、柱材自体の塑性変形により紡錘型を実現する従来の固定柱脚構造と比較しても、柱部や柱脚部を構成するベースプレート及びアンカーボルトなどの各構成部材を総合的に縮小化でき、しかも耐震性能の優れた柱脚構造を提供することができる。
(2)しかも、ベースプレートの上面から塑性化部材と柱材との接続部までの高さを柱材の直径ないし一辺の長さの少なくとも1.5倍に設定し、その間に広い塑性化領域を形成したので、地震時に大きな曲げモーメントが作用する柱材の根元部分にエネルギ吸収能力の大きい塑性化領域が形成されることから、耐震性能を大幅に向上することができる。
(3)また、塑性化部材と柱材との接続部までの高さをベースプレートの上面から柱材の直径ないし一辺の長さの少なくとも1.5倍に設定し、その接続部をベースプレートの上面から大きく離して地震時に最大曲げモーメントが作用する柱材の根元部分から外すように構成したので、前記柱脚に加わる曲げモーメント勾配に従って塑性化部材と柱材との接続部に作用する負荷が低減され、前記接続部からの破壊を確実に回避することができる。その塑性化部材と柱材との接続部に作用する負荷の低減により、該接続部の固定手段等を小型化してコストの削減を図ることも可能である。
According to the present invention, the following effects can be obtained.
(1) In the present invention, a semi-fixed column base structure in which the inflection point height ratio of the column material is 0.3 to 0.6 is adopted as the basic structure of the column base part. Compared with the column base structure, the bending moment generated by the seismic action is distributed in a balanced manner between the column part and the column base part, and further, a plasticizing member that yields and plasticizes before the anchor bolt is interposed at the lower part of the column material. The column base is made to shift to the spindle-type hysteresis characteristics, so that the seismic energy absorption capacity is greatly improved and the sudden collapse of the building due to the seismic action can be avoided. Compared to the conventional fixed column base structure that realizes the spindle type by deformation, the structural components such as the base plate and anchor bolts can be reduced overall, and the seismic performance is excellent. Provide a column base structure It is possible.
(2) Moreover, the height from the upper surface of the base plate to the connecting portion between the plasticizing member and the column material is set to at least 1.5 times the diameter of the column material or the length of one side, and a wide plasticization region is formed between them. Since it is formed, a plasticized region having a large energy absorption capability is formed at the base portion of the column member to which a large bending moment acts during an earthquake, so that the seismic performance can be greatly improved.
(3) Further, the height from the upper surface of the base plate to the connecting portion between the plasticizing member and the column member is set to at least 1.5 times the diameter of the column member or the length of one side, and the connecting portion is set to the upper surface of the base plate. Because it is configured to be separated from the base part of the column material where the maximum bending moment acts at the time of an earthquake, the load acting on the connection part between the plasticizing member and the column material is reduced according to the bending moment gradient applied to the column base. Therefore, it is possible to reliably avoid the breakage from the connecting portion. By reducing the load acting on the connecting portion between the plasticizing member and the column member, it is possible to reduce the cost by reducing the size of the fixing means for the connecting portion.

本発明は、基礎コンクリート中に埋設されるアンカーボルトにより固定されるベースプレートに対して柱材の下端部を固定することにより柱材を立設する形態の鉄骨造露出型柱脚部に広く適用することができる。柱材の形状に関しては、円形や角形のものに適用可能である。また、アンカーボルト自体の形態や定着の仕方に限定されることもない。前記塑性化部材としては、柱材に作用する曲げモーメントに対してアンカーボルトより先に降伏して塑性化し得るもので、所定の強度を備える部材であればよく、柱材と同じ材質の素材を用いたものでも異なる材質の素材を用いたものでもよい。例えば、柱材と同じ材質の素材を用いて熱間加工により円形や角形のパイプ状に形成したものや、柱材と同じ材質の素材を用いて冷間加工により形成した後に熱処理を施して加工硬化を除去したものなどが可能である。また、加工硬化が生じない鋳造により所定形状に形成したものでもよい。この鋳造による場合には、ベースプレートと一体的に形成してもよい。因みに、塑性化部材は、熱間圧延材などの伸びが大きく降伏棚をもった変形能力の優れたものから構成すれば、地震エネルギの吸収能力をより高く構成することができる。   INDUSTRIAL APPLICABILITY The present invention is widely applied to a steel-frame-exposed-type column base in which the column material is erected by fixing the lower end portion of the column material to a base plate fixed by anchor bolts embedded in the foundation concrete. be able to. The column material can be applied to a circular or square shape. Moreover, it is not limited to the form of the anchor bolt itself or the fixing method. As the plasticizing member, it can be plasticized by yielding before the anchor bolt with respect to the bending moment acting on the column material, and any member having a predetermined strength may be used. It may be the one used or a different material. For example, it is formed into a circular or square pipe shape by hot working using the same material as the column material, or it is formed by cold working using the same material as the column material and then processed by heat treatment What removed the hardening etc. is possible. Moreover, what was formed in the predetermined shape by the casting which does not produce work hardening may be used. In the case of this casting, it may be formed integrally with the base plate. Incidentally, if the plasticizing member is made of a material having a large deformation such as a hot rolled material and having a yielding shelf, the ability to absorb seismic energy can be made higher.

図4は、柱脚部の固定状態と各部に加わる曲げモーメントとの関係を示した説明図である。図中の(A)、(B)、(C)は柱脚部の固定状態別の模式図である。図示のように、柱材1の下部を固定状態に応じた柱脚構造を介して基礎コンクリート2に固定し、上部を梁3に固定した状態において、例えば梁3に水平力を作用させて実験的に考察すると、縦軸に柱材1の下部からの高さHをとり、横軸に曲げモーメントMをとると、図示した太線のような曲げモーメント図が得られる。図中の点Cは反曲点であり、この高さ位置では曲げモーメントはゼロであり、柱の撓み曲線の曲率の符号が変化する点である。曲げモーメント図は、柱の下部の固定状態すなわち柱脚構造によって(A)〜(C)のように種々の形態をとることが判明している。   FIG. 4 is an explanatory diagram showing the relationship between the fixed state of the column base and the bending moment applied to each part. (A), (B), (C) in a figure is a schematic diagram according to the fixing state of a column base part. As shown in the figure, in a state where the lower part of the column 1 is fixed to the foundation concrete 2 via the column base structure corresponding to the fixed state and the upper part is fixed to the beam 3, for example, a horizontal force is applied to the beam 3 for the experiment. In consideration, when the height H from the lower part of the column 1 is taken on the vertical axis and the bending moment M is taken on the horizontal axis, a bending moment diagram like the bold line shown in the figure is obtained. Point C in the figure is an inflection point. At this height position, the bending moment is zero, and the sign of the curvature of the column bending curve changes. It has been found that the bending moment diagram takes various forms as in (A) to (C) depending on the fixed state of the lower part of the column, that is, the column base structure.

次に、柱脚構造の3つの形態について説明する。一般に、建築構造物の柱脚構造は、主に固定柱脚構造とピン柱脚構造とに大別される。固定柱脚構造では、埋込み柱脚や根巻き柱脚が採用されることが一般的であり、柱脚部の固定度は高く、図4の(A)に示したように、この場合の反曲点Cにおける反曲点高比、すなわち反曲点Cの高さHc/柱材1の高さHsは、0.6以上になる。因みに、露出型柱脚においても、柱脚部を構成するベースプレートの肉厚や大きさ、アンカーボルトの径や設置本数を十分なものに設定すれば、固定柱脚構造として構成することも可能であるが、柱脚部の大形化を招き、施工コストも割高となることもある。これに対して、ピン柱脚構造は固定柱脚構造に比べて施工が容易で、基礎を小さくできるというメリットがある。このピン柱脚構造では、設計上、柱脚部をピンと看なしているが、実際の柱脚部は完全なピン柱脚構造のものは殆ど存在しない。このピン柱脚構造として、例えば図5の(A)に示したように、ベースプレート4を基礎コンクリート2に固定するアンカーボルト5を柱材1の面位置近傍か、やや内方に配設したものがあるが、固定度が低い場合に採用される形態である。このピン柱脚構造を用いた柱材1においては、地震時の曲げモーメントは、図4の(C)に示した状態に分配され、この場合の反曲点高比Hc/Hsは約0.3以下となり、柱脚部に作用する曲げモーメントは小さく、柱間隔の広い大スパンの建築構造などに適用が可能である。   Next, three forms of the column base structure will be described. Generally, the column base structure of a building structure is roughly classified into a fixed column base structure and a pin column base structure. In the fixed column base structure, an embedded column base or a rooted column base is generally adopted, and the fixing degree of the column base is high. As shown in FIG. The inflection point height ratio at the inflection point C, that is, the height Hc of the inflection point C / the height Hs of the column 1 is 0.6 or more. By the way, the exposed column base can also be configured as a fixed column base structure by setting the thickness and size of the base plate that makes up the column base, the diameter of the anchor bolts and the number of installation bolts to be sufficient. However, it may lead to an increase in the size of the column base and the construction cost may be high. On the other hand, the pin column base structure is easier to construct than the fixed column base structure and has the merit that the foundation can be made smaller. In this pin column base structure, the column base is regarded as a pin by design, but there are almost no actual column bases having a complete pin base structure. As this pin column structure, for example, as shown in FIG. 5A, anchor bolts 5 for fixing the base plate 4 to the foundation concrete 2 are arranged in the vicinity of the surface position of the column member 1 or slightly inward. However, it is a form adopted when the degree of fixation is low. In the column member 1 using this pin column structure, the bending moment at the time of earthquake is distributed to the state shown in FIG. 4C, and the inflection point height ratio Hc / Hs in this case is about 0. 0. The bending moment acting on the column base is small and can be applied to a large span building structure with a wide column interval.

以上のほかに、固定柱脚とピン柱脚との中間的な柱脚構造として半固定柱脚構造がある。この半固定柱脚構造としては、例えば図5の(B)に示したように、柱材1の外側のベースプレート4に比較的少ない数のアンカーボルト5を配設した形態があり、この場合の反曲点高比Hc/Hsは約0.3〜0.35である。また、図5の(C)に示したように、固定度を高めるためにアンカーボルト5の数を増やし、ベースプレート4に補強リブ6を設けた形態もあり、この場合の反曲点高比Hc/Hsは、約0.4〜0.5になる。それらの半固定柱脚構造における曲げモーメントは、ほぼ図4の(B)に示した状態に分配されることになる。   In addition to the above, there is a semi-fixed column base structure as an intermediate column base structure between the fixed column base and the pin base. As this semi-fixed column base structure, for example, as shown in FIG. 5 (B), there is a form in which a relatively small number of anchor bolts 5 are arranged on the base plate 4 outside the column member 1. The inflection point height ratio Hc / Hs is about 0.3 to 0.35. In addition, as shown in FIG. 5C, there is a form in which the number of anchor bolts 5 is increased to increase the degree of fixation, and reinforcing ribs 6 are provided on the base plate 4. In this case, the inflection point height ratio Hc / Hs is about 0.4 to 0.5. The bending moment in these semi-fixed column base structures is almost distributed to the state shown in FIG.

以上のことから、反曲点高比Hc/Hsが0.3〜0.6である半固定柱脚構造は、柱脚部が負担する曲げモーメントは柱頭部に比較して小さく、その分、固定柱脚構造に比べて柱脚部を構成するアンカーボルト5の耐力を小さく設定できる。すなわち、アンカーボルト5の径を小さくしたり設置本数を少なくして柱脚部の小型化を図ったり、施工コストを削減することも可能である。しかしながら、柱材1より耐力の小さいアンカーボルト5を使用すると、大地震等により過大な水平力が作用した際に柱脚部に対して作用する曲げモーメントに対する履歴特性がスリップ型となるため、地震エネルギの吸収が悪くアンカーボルト5の破断を招いて、建物の急激な倒壊を引き起こしかねない。そこで本発明では、柱脚部に作用する曲げモーメントに対して、アンカーボルト5より先に降伏して塑性化し易い塑性化部材を柱材1の下部に介在させることにより、柱脚部の履歴特性を的確に紡錘型に移行させ、これによりアンカーボルト5の破断による建物の急激な倒壊を回避したものであり、その点に特徴を有するものである。すなわち、反曲点高比Hc/Hsが0.3〜0.6である半固定柱脚構造を採用して柱脚部を構成するアンカーボルト5に対する負荷を軽減して部材の縮小化を可能にするとともに、塑性化部材の適用により柱脚部の履歴特性を的確に紡錘型に移行させて地震による過大な負荷による急激な建物の倒壊を回避した点に特徴を有するものである。   From the above, in the semi-fixed column base structure where the inflection point height ratio Hc / Hs is 0.3 to 0.6, the bending moment borne by the column base is smaller than that of the column head, and accordingly, The proof stress of the anchor bolt 5 which comprises a column base part can be set small compared with a fixed column base structure. That is, it is possible to reduce the diameter of the anchor bolt 5 or to reduce the number of installations to reduce the size of the column base or to reduce the construction cost. However, if the anchor bolt 5 having a lower proof strength than the column material 1 is used, the hysteresis characteristic with respect to the bending moment acting on the column base when an excessive horizontal force is applied due to a large earthquake or the like becomes a slip type. Energy absorption is poor and the anchor bolt 5 may be broken, which may cause a sudden collapse of the building. Therefore, in the present invention, the hysteresis characteristic of the column base is obtained by interposing a plasticizing member that tends to yield and plasticize before the anchor bolt 5 against the bending moment acting on the column base at the bottom of the column 1. Is precisely shifted to the spindle type, thereby avoiding a sudden collapse of the building due to the breakage of the anchor bolt 5, which is characterized in that respect. In other words, a semi-fixed column base structure having an inflection point height ratio Hc / Hs of 0.3 to 0.6 is adopted to reduce the load on the anchor bolt 5 constituting the column base portion and to reduce the size of the member. In addition, it is characterized in that the history characteristic of the column base portion is accurately shifted to a spindle type by applying a plasticizing member to avoid sudden collapse of the building due to an excessive load caused by an earthquake.

図6は紡錘型の露出型柱脚構造に関する地震時の挙動を例示した説明図であり、図7はその柱脚部の履歴特性を概略的に示した説明図である。なお、図7において縦軸にとった曲げモーメントMと横軸にとった回転角θとの関係は、図8の概念図に示したとおりである。しかして、紡錘型に係る露出型柱脚構造の場合には、地震時に柱材1を介してその根元部分、すなわち柱材1とベースプレート4との結合部分近傍に曲げモーメントMaが作用すると、図6に示した状態Aから状態Bのように柱材1の根元部分が大きく変形し、アンカーボルト5が塑性化する前に柱材1の根元部分が塑性化することになる。すなわち、曲げモーメントMaの作用により柱材1の根元部分が変形を始めると、先ず前半では弾性変形をし、やがて弾性領域を超えると塑性化して状態Bに至る。次に、逆向きの曲げモーメントMbが作用すると、柱材1は反対方向に変形して状態Cに至ることになる。この状態Bから状態Cへの変形の過程を図7を用いて説明すると、前半は先ず状態Bで示した変形状態から弾性変形分が復帰し、引続いて曲げモーメントMbによる弾性変形に移行する。そして、後半で弾性領域を超えると塑性化し、塑性変形しながら状態Aの垂直状態を過ぎて反対側に傾斜した状態Cに至ることになる。前述のように、本発明に係る露出型柱脚構造における履歴特性としては、紡錘型を呈することから、スリップ型のように途中でアンカーボルト5の締付ナット7がベースプレート4の上面から浮上がり、荷重が伝達されずに地震エネルギが吸収されない行程は介在しない。したがって、本発明に係る露出型柱脚構造の場合には、地震エネルギの吸収がきわめて良好であり、地震エネルギを吸収することにより大地震に対して建物の急激な倒壊を防ぐという構造物の耐震性能の観点から非常に有効である。また、アンカーボルト5の締付ナット7がベースプレート4の上面から浮上がって柱材1に対する固定力が失われるといった事態も回避することができる。   FIG. 6 is an explanatory diagram illustrating the behavior at the time of an earthquake related to the spindle-type exposed column base structure, and FIG. 7 is an explanatory diagram schematically showing the hysteresis characteristics of the column base portion. In FIG. 7, the relationship between the bending moment M on the vertical axis and the rotation angle θ on the horizontal axis is as shown in the conceptual diagram of FIG. Therefore, in the case of the exposed column base structure related to the spindle type, when the bending moment Ma acts on the base portion, that is, in the vicinity of the coupling portion between the column member 1 and the base plate 4 via the column member 1 in the event of an earthquake, 6, the base portion of the pillar material 1 is greatly deformed as in the state B from the state A and the base portion of the pillar material 1 is plasticized before the anchor bolt 5 is plasticized. That is, when the base portion of the column member 1 starts to be deformed by the action of the bending moment Ma, first, it is elastically deformed in the first half, and when it exceeds the elastic region, it is plasticized to reach the state B. Next, when a reverse bending moment Mb is applied, the column 1 is deformed in the opposite direction to reach the state C. The deformation process from the state B to the state C will be described with reference to FIG. 7. In the first half, the elastic deformation is first restored from the deformation state shown in the state B, and subsequently the elastic deformation due to the bending moment Mb is made. . Then, when the elastic region is exceeded in the latter half, it becomes plastic, and it reaches a state C inclined past the vertical state of state A while being plastically deformed. As described above, the hysteresis characteristic in the exposed column base structure according to the present invention is a spindle type, so that the fastening nut 7 of the anchor bolt 5 is lifted from the upper surface of the base plate 4 in the middle like a slip type. The process in which the seismic energy is not absorbed without the load being transmitted is not involved. Therefore, in the case of the exposed-type column base structure according to the present invention, the seismic energy absorption is very good, and the earthquake resistance of the structure that prevents the building from being suddenly collapsed against a large earthquake by absorbing the seismic energy. It is very effective from the viewpoint of performance. Further, it is possible to avoid a situation in which the fastening nut 7 of the anchor bolt 5 is lifted from the upper surface of the base plate 4 and the fixing force with respect to the pillar material 1 is lost.

ところで、柱材1としては、冷間圧延材、溶接組立材、形鋼等、様々な材料が用いられている。一般的によく使用されている冷間圧延材では、加工硬化によるばらつきがあるため、設計で用いられる柱材1の設計基準強度(いわゆる基準強度「F値」)より実際の耐力の方が10Kgf/mm前後も上回ることがあり、個々の構成部材の機械的性質の差によって次のような問題が生じた。すなわち、柱材1の実際の耐力が想定した以上に高すぎると、柱材1が先に塑性化するように設計したとしても、実際には柱材1の変形が弾性範囲内にとどまり、余裕のない柱脚部に過大な荷重がそのまま伝達されてしまい、柱脚部の履歴特性がスリップ型に移行して、最悪の場合には、アンカーボルト5の破断や基礎コンクリート2の破壊などにより、建物の急激な倒壊を引き起こしかねないという問題があった。そこで、従来技術においては、図7に示したいわゆる紡錘型の履歴特性を確実に実現するためには柱脚部の塑性耐力を十分大きくとる必要があることから、アンカーボルト5などが必要以上に過大化される傾向にあった。これに対して本発明に係る露出型柱脚構造の場合には、前述のように柱材1に作用する曲げモーメントに対してアンカーボルト5に先行して降伏する塑性化部材を柱材1の下部に介在させたことから、より的確に紡錘型の履歴特性を実現できるばかりでなく、従来の柱材1自体が塑性変形する固定柱脚構造の場合に比べて、柱脚部の塑性耐力をより小さく設定することも可能である。 By the way, as the column material 1, various materials, such as a cold-rolled material, a welding assembly material, and a shaped steel, are used. In general, cold-rolled materials that are often used have variations due to work hardening. Therefore, the actual proof stress is 10 kgf than the design standard strength (so-called standard strength “F value”) of the column 1 used in the design. / Mm 2 sometimes exceeded, and the following problems were caused by the difference in mechanical properties of the individual components. In other words, if the column material 1 is designed to be plasticized first if the actual proof stress of the column material 1 is too high as expected, the deformation of the column material 1 actually remains within the elastic range, and there is a margin. Excessive load is transmitted as it is to the column base without any part, and the hysteresis characteristics of the column base shift to the slip type. In the worst case, the anchor bolt 5 breaks or the foundation concrete 2 breaks down. There was a problem that could cause a sudden collapse of the building. Therefore, in the prior art, in order to surely realize the so-called spindle type hysteresis characteristic shown in FIG. 7, it is necessary to make the plastic proof strength of the column base part sufficiently large. There was a tendency to become oversized. On the other hand, in the case of the exposed column base structure according to the present invention, the plasticizing member that yields prior to the anchor bolt 5 with respect to the bending moment acting on the column member 1 is used as described above. Since it is interposed in the lower part, not only can the spindle-type hysteresis characteristics be realized more accurately, but also the plastic proof strength of the column base can be improved compared to the conventional fixed column base structure in which the column 1 itself is plastically deformed. It is also possible to set a smaller value.

以下、図面を用いて本発明の実施例に関して説明する。図1は本発明の一実施例を示した概略構成説明図であり、図2はその柱脚金物の部分を拡大して示した縦断面図である。図示のように、本実施例では、柱脚金物を構成するベースプレート4の上面に塑性化部材8を溶接等により一体的に構成し、その塑性化部材8の端部に柱材1の端部を溶接しておき、前記ベースプレート4を介して柱材1を基礎コンクリート2に対して立設する柱脚構造を採用した。現場では、基礎コンクリート2の所定位置にアンカーボルト5を埋設して定着させた後、そのアンカーボルト5の上端部にベースプレート4のボルト孔を合わせて挿通させ、締付ナット7によりベースプレート4を仮締めして基礎コンクリート2の上面に固定することにより、柱材1を所定位置に立設する。しかる後、さらに柱材1が垂直に立設するようにベースプレート4をレベル調整した上、基礎コンクリート2とベースプレート4との間にグラウト材10を充填する。このグラウト材10が固化した後、前記締付ナット7によりベースプレート4の本締めを行うことにより、柱材1が所定位置に確実に立設されることになる。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration explanatory view showing an embodiment of the present invention, and FIG. 2 is an enlarged longitudinal sectional view showing a part of the column base metal. As shown in the figure, in this embodiment, a plasticizing member 8 is integrally formed on the upper surface of a base plate 4 constituting a column base metal by welding or the like, and an end portion of the column member 1 is connected to an end portion of the plasticizing member 8. And a column base structure in which the column material 1 is erected with respect to the basic concrete 2 through the base plate 4 is adopted. At the site, after anchor bolts 5 are embedded and fixed at predetermined positions of the foundation concrete 2, the bolt holes of the base plate 4 are aligned with the upper ends of the anchor bolts 5, and the base plate 4 is temporarily attached by the tightening nuts 7. By tightening and fixing to the upper surface of the foundation concrete 2, the pillar material 1 is erected at a predetermined position. Thereafter, the level of the base plate 4 is further adjusted so that the pillar material 1 is vertically erected, and the grout material 10 is filled between the foundation concrete 2 and the base plate 4. After the grout material 10 is solidified, the base plate 4 is finally tightened by the tightening nut 7, so that the column material 1 is reliably erected at a predetermined position.

図2に示したように、本実施例では、塑性化部材8の高さHpを柱材1すなわち塑性化部材8自体の直径ないし一辺の長さDの1.5倍の寸法に設定し、溶接により柱材1の下端部に接続した場合を示してある。因みに、本発明では、前述のように、柱材1と塑性化部材8との接続部9までの高さHpを柱材1すなわち塑性化部材8の直径ないし一辺の長さDの少なくとも1.5倍に設定することを特徴としている。この塑性化部材8の高さを導く根拠は、実験の結果とその解析から得られたものである。柱材1の直径ないし一辺の長さをDとすると、塑性化部材8のうちベースプレート4の上面から略0.3Dないし0.5Dまでの高さ範囲はベースプレート4との一体化により拘束される領域であり、実際にはこの拘束領域から更に上方の領域が塑性化領域として機能して塑性変形が生じることになる。一方、溶接部に大きな曲げモーメントが作用すると溶接部から破断する可能性が高くなることはいうまでもない。本実施例では、それらを総合して、溶接部すなわち柱材1と塑性化部材8との接続部9の高さHpをベースプレートの4上面から少なくとも1.5Dの高さに設定することにより、大きな曲げモーメントが作用する根元部分を避けて溶接部からの破断を回避するとともに、柱材1の下部に十分な塑性化領域を確保し得るように構成した。すなわち、塑性化部材8と柱材1との接続部9の下方には、柱材1の直径ないし一辺の長さDの1.5倍という従来に比べて格段に大きい塑性化領域が形成されることから、大地震時における地震エネルギも十分吸収することが可能である。因みに、実験の結果を総合すると、柱材1の直径ないし一辺の長さDの0.8倍ないし同等の高さから塑性化が始り、その塑性化が上下に拡大することになるが、その塑性化の拡大用の上下幅としては、上下合わせて柱材1の直径ないし一辺の長さD程度の塑性化領域を確保しておけば、かなり大きな地震の地震エネルギの吸収にも十分対応できることが確認できる。したがって、本実施例によれば、塑性化部材8と柱材1との接続部9を、その塑性化拡大用の上下幅としての1Dも含めて、ベースプレート4の上面から1.5D離した高さに設定したので、地震エネルギを十分吸収し得るとともに、その接続部9に作用する曲げモーメントが低減されることから、該接続部9からの破壊も回避することができる。   As shown in FIG. 2, in the present embodiment, the height Hp of the plasticizing member 8 is set to a dimension that is 1.5 times the diameter of the column member 1, that is, the plasticizing member 8 itself, or the length D of one side, The case where it connects to the lower end part of the column 1 by welding is shown. Incidentally, in the present invention, as described above, the height Hp to the connecting portion 9 between the columnar member 1 and the plasticizing member 8 is set to at least 1. of the diameter of the columnar member 1, that is, the plasticizing member 8, or the length D of one side. It is characterized by being set to 5 times. The grounds for deriving the height of the plasticizing member 8 are obtained from the results of experiments and their analysis. If the diameter or length of one side of the column 1 is D, the height range of the plasticizing member 8 from the upper surface of the base plate 4 to approximately 0.3D to 0.5D is constrained by integration with the base plate 4. In actuality, the region above the constrained region functions as a plasticizing region, and plastic deformation occurs. On the other hand, needless to say, if a large bending moment acts on the welded portion, the possibility of fracture from the welded portion increases. In the present embodiment, by combining them, the height Hp of the connection portion 9 between the welded portion, that is, the column member 1 and the plasticizing member 8, is set to a height of at least 1.5D from the upper surface of the base plate 4. While avoiding the fracture | rupture from a welding part avoiding the root part to which a big bending moment acts, it comprised so that a sufficient plasticization area | region could be ensured in the lower part of the column material 1. FIG. That is, below the connecting portion 9 between the plasticizing member 8 and the column 1, a remarkably large plasticized region of 1.5 times the diameter of the column 1 or the length D of one side is formed. Therefore, it is possible to sufficiently absorb seismic energy during a large earthquake. By the way, when the results of the experiment are combined, plasticization starts from 0.8 times the length of the column 1 or the length D of one side or equivalent, and the plasticization expands vertically. As the vertical width for expanding the plasticization, if the plasticization region of the diameter of the column 1 or the length D of one side is secured in the vertical direction, it can sufficiently cope with the absorption of earthquake energy of a considerably large earthquake. I can confirm that I can do it. Therefore, according to the present embodiment, the connecting portion 9 between the plasticizing member 8 and the column 1 is 1.5D apart from the upper surface of the base plate 4 including 1D as the vertical width for expanding plasticization. Therefore, the seismic energy can be sufficiently absorbed, and the bending moment acting on the connecting portion 9 is reduced, so that the breakage from the connecting portion 9 can be avoided.

図3は柱材1に作用する水平力により柱脚金物の立上がり部を構成する塑性化部材8に塑性変形が生じる過程を説明するための説明図である。本図は、横軸に曲げモーメントMをとり、縦軸に高さHをとって示したものであり、直線mは柱材1に水平力が作用した際の曲げモーメントの付加状態を表わし、直線aは柱脚部の終局耐力すなわちアンカーボルト5の終局耐力、直線bは柱脚金物の立上がり部を構成する塑性化部材8の全塑性曲げ耐力、直線cは柱材1の全塑性曲げ耐力を表わしたものである。ここでは一つの設計例に従ってそれらの直線m及び直線a〜cを示したものである。柱材1に水平力が作用した際の曲げモーメントを表わす直線mは、曲げモーメントがゼロの反曲点Cを基準点とするモーメント勾配αからなる直線として示され、柱材1に作用する水平力が増すにつれて曲げモーメントも増し、前記反曲点Cを基準点としてモーメント勾配αが大きくなる。そして、図示のように、直線mが直線bと交差するようになると、ハッチングで示したように塑性化部材8に曲げモーメントによる塑性化が始まることになる。ただし、その塑性化部材8のうち、ベースプレート4の上面から略0.3Dないし0.5Dまでの高さ範囲は、ベースプレート4との一体性に基づく補強作用からくる拘束によって実際には塑性化は起こりにくいが、この点に関しては本説明図では捨象している。更に柱材1に作用する水平力が増すと、前記反曲点Cを基準点とするモーメント勾配αも更に大きくなり、やがて直線mが直線aに交差するようになると、負荷が柱脚部の終局耐力すなわちアンカーボルト5の終局耐力に達してアンカーボルトが破壊されることになるが、それまでに塑性化部材8の塑性化によって吸収されるエネルギ量は大きく、かなり大きな地震に対しても建物の急激な倒壊を回避し得る有効な手段となる。   FIG. 3 is an explanatory diagram for explaining a process in which plastic deformation occurs in the plasticizing member 8 constituting the rising portion of the column base metal by the horizontal force acting on the column member 1. This figure shows the bending moment M on the horizontal axis and the height H on the vertical axis, and the straight line m represents the added state of the bending moment when a horizontal force is applied to the column 1. The straight line a is the ultimate strength of the column base, that is, the ultimate strength of the anchor bolt 5, the straight line b is the total plastic bending strength of the plasticizing member 8 constituting the rising portion of the column base metal, and the straight line c is the total plastic bending strength of the column 1. It represents. Here, according to one design example, those straight lines m and straight lines a to c are shown. A straight line m representing a bending moment when a horizontal force is applied to the column member 1 is shown as a straight line composed of a moment gradient α with the bending point zero as a reference point and a horizontal moment acting on the column member 1. As the force increases, the bending moment also increases, and the moment gradient α increases with the inflection point C as a reference point. As shown in the figure, when the straight line m intersects the straight line b, the plasticizing member 8 starts to be plasticized by a bending moment as shown by hatching. However, in the plasticizing member 8, the height range from the upper surface of the base plate 4 to about 0.3D to 0.5D is actually plasticized by the restraint due to the reinforcing action based on the integrity with the base plate 4. Although not likely to occur, this point is omitted in this explanatory diagram. When the horizontal force acting on the column material 1 further increases, the moment gradient α with respect to the inflection point C as a reference point further increases, and when the straight line m eventually intersects the straight line a, the load is applied to the column base part. The ultimate proof strength, that is, the ultimate proof strength of the anchor bolt 5 is reached and the anchor bolt is destroyed. However, the amount of energy absorbed by the plasticizing of the plasticizing member 8 is large so far, and the building is resistant to a considerably large earthquake. It becomes an effective means that can avoid sudden collapse of the.

因みに、以上の実施例に用いる鋼材の材質として、柱材1には建築構造用冷間ロール成形角型鋼管(BCR295)を、塑性化部材8には建築構造用冷間プレス成形角型鋼管(BCP235)を採用することができる。この場合には、両者の降伏値を比較すると塑性化部材/柱材=235/295=0.8となり、降伏比は1以下であることから降伏は先に塑性化部材8で起きるが、引張り強さは両者とも等しいので最大耐力は低下することはない。選択する鋼材としては、このように引張り強さが同一で降伏値が異なるものが好適であるが、限定はされるものではない。また、塑性化部材8として熱間成形角型鋼管(SHC400)を用いることも有効である。それは、冷間成形材は製造の塑性加工時に残留応力が残るため、降伏比が高く伸びが減少して塑性変形能力が低下することになるからである。その点、熱間成形材は初期の冷間加工による塑性歪みの影響は熱間圧延によって殆ど除去され、原材と同等の塑性変形能力を有することから、熱間成形材の方がより地震エネルギの吸収に適しているといえる。   Incidentally, as the material of the steel material used in the above embodiment, a cold roll forming square steel pipe (BCR295) for a building structure is used for the column material 1, and a cold press forming square steel pipe for a building structure is used for the plasticizing member 8 ( BCP235) can be employed. In this case, when the yield values of the two are compared, the plasticized member / column material = 235/295 = 0.8, and the yield ratio is 1 or less. Since both strengths are equal, the maximum yield strength will not decrease. As the steel material to be selected, those having the same tensile strength and different yield values are suitable, but are not limited. It is also effective to use a hot-formed square steel pipe (SHC400) as the plasticizing member 8. This is because a cold-formed material retains residual stress during plastic processing during manufacture, and thus yield ratio is high and elongation is reduced, resulting in a decrease in plastic deformation ability. On the other hand, the hot-formed material has almost the same plastic deformation ability as that of the raw material because the effect of plastic strain due to the initial cold working is almost eliminated by hot rolling. It can be said that it is suitable for absorption.

本発明の実施例を示した概略構成説明図である。It is schematic structure explanatory drawing which showed the Example of this invention. 同実施例の柱脚金物の部分を拡大して示した縦断面図である。It is the longitudinal cross-sectional view which expanded and showed the part of the column base metal object of the Example. 柱材に作用する水平力により柱脚金物の立上がり部を構成する塑性化部材に塑性変形が生じる過程を説明するための説明図である。It is explanatory drawing for demonstrating the process in which plastic deformation arises in the plasticizing member which comprises the rising part of a column base metal object by the horizontal force which acts on a column material. 柱脚部の固定状態と各部に加わる曲げモーメントとの関係を示した説明図である。It is explanatory drawing which showed the relationship between the fixed state of a column base part, and the bending moment added to each part. ベースプレートの固定の仕方を例示した説明図である。It is explanatory drawing which illustrated the method of fixing a base plate. 紡錘型の露出型柱脚構造に関する地震時の挙動を例示した説明図である。It is explanatory drawing which illustrated the behavior at the time of the earthquake regarding a spindle-shaped exposed type column base structure. 同柱脚構造の履歴特性を概略的に示した説明図である。It is explanatory drawing which showed roughly the log | history characteristic of the same column base structure. 図7における曲げモーメントMと回転角θとの関係を示した概念図である。It is the conceptual diagram which showed the relationship between the bending moment M and rotation angle (theta) in FIG.

符号の説明Explanation of symbols

1…柱材、2…基礎コンクリート、3…梁、4…ベースプレート、5…アンカーボルト、6…補強リブ、7…締付ナット、8…塑性化部材、9…接続部、10…グラウト材   DESCRIPTION OF SYMBOLS 1 ... Column material, 2 ... Foundation concrete, 3 ... Beam, 4 ... Base plate, 5 ... Anchor bolt, 6 ... Reinforcement rib, 7 ... Clamping nut, 8 ... Plasticizing member, 9 ... Connection part, 10 ... Grout material

Claims (1)

基礎コンクリート中に定着したアンカーボルトにより固定されるベースプレートに対して柱材の下部を固定することにより柱材を立設する鉄骨造露出型柱脚構造において、その柱脚構造を介して前記柱材の反曲点高比が0.3〜0.6になるように設定するとともに、前記ベースプレートと前記柱材の下端部との間に、柱材に作用する曲げモーメントに対して前記アンカーボルトより先に降伏して塑性化する塑性化部材を介在させ、かつ前記ベースプレートの上面から前記塑性化部材と前記柱材との接続部までの高さを前記柱材の直径ないし一辺の長さの少なくとも1.5倍に設定したことを特徴とする鉄骨造露出型柱脚構造。   In a steel exposed type column base structure in which a column material is erected by fixing the lower part of the column material to a base plate fixed by anchor bolts fixed in the foundation concrete, the column material via the column base structure The inflection point height ratio of 0.3 to 0.6 is set between 0.3 and 0.6, and between the base plate and the lower end of the column member, the anchor bolt causes a bending moment acting on the column member. A plasticizing member that yields and plasticizes first is interposed, and the height from the upper surface of the base plate to the connecting portion between the plasticizing member and the column member is at least the diameter of the column member or the length of one side. Steel structure exposed column base structure characterized by being set to 1.5 times.
JP2007298733A 2007-11-17 2007-11-17 Steel structure exposed column base structure Expired - Lifetime JP4683571B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007298733A JP4683571B2 (en) 2007-11-17 2007-11-17 Steel structure exposed column base structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007298733A JP4683571B2 (en) 2007-11-17 2007-11-17 Steel structure exposed column base structure

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2003151698A Division JP4081406B2 (en) 2003-05-28 2003-05-28 Steel structure exposed column base structure

Publications (2)

Publication Number Publication Date
JP2008057323A true JP2008057323A (en) 2008-03-13
JP4683571B2 JP4683571B2 (en) 2011-05-18

Family

ID=39240401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007298733A Expired - Lifetime JP4683571B2 (en) 2007-11-17 2007-11-17 Steel structure exposed column base structure

Country Status (1)

Country Link
JP (1) JP4683571B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045042A1 (en) * 2013-09-25 2015-04-02 日立機材株式会社 Pedestal structure
WO2015045104A1 (en) * 2013-09-27 2015-04-02 日立機材株式会社 Design support program and structure computing program
CN105465484A (en) * 2015-07-13 2016-04-06 贵阳铝镁设计研究院有限公司 Steel structure pipeline support mounting method and support structure thereof
JP2016160678A (en) * 2015-03-03 2016-09-05 Jfeスチール株式会社 Joint structure between rectangular steel tube and h-shaped steel and structure
CN109629757A (en) * 2019-01-25 2019-04-16 北京工业大学 The unidirectional hinged column base node of recoverable function after a kind of shake of additional anti-shear steel plate group

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183759A (en) * 1996-12-26 1998-07-14 Kawasaki Steel Corp Column base structure of building structure
JP2000017781A (en) * 1998-07-01 2000-01-18 Kajima Corp Earthquake energy absorbing beam member
JP2002322737A (en) * 2001-04-25 2002-11-08 Shimizu Corp Method to construct extremely tough plinth

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10183759A (en) * 1996-12-26 1998-07-14 Kawasaki Steel Corp Column base structure of building structure
JP2000017781A (en) * 1998-07-01 2000-01-18 Kajima Corp Earthquake energy absorbing beam member
JP2002322737A (en) * 2001-04-25 2002-11-08 Shimizu Corp Method to construct extremely tough plinth

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015045042A1 (en) * 2013-09-25 2015-04-02 日立機材株式会社 Pedestal structure
JP5752846B1 (en) * 2013-09-25 2015-07-22 日立機材株式会社 Column base structure
WO2015045104A1 (en) * 2013-09-27 2015-04-02 日立機材株式会社 Design support program and structure computing program
JP5752847B1 (en) * 2013-09-27 2015-07-22 日立機材株式会社 Design support program and structural calculation program
JP2016160678A (en) * 2015-03-03 2016-09-05 Jfeスチール株式会社 Joint structure between rectangular steel tube and h-shaped steel and structure
CN105465484A (en) * 2015-07-13 2016-04-06 贵阳铝镁设计研究院有限公司 Steel structure pipeline support mounting method and support structure thereof
CN109629757A (en) * 2019-01-25 2019-04-16 北京工业大学 The unidirectional hinged column base node of recoverable function after a kind of shake of additional anti-shear steel plate group

Also Published As

Publication number Publication date
JP4683571B2 (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP5135034B2 (en) Exposed type column base structure
JP5071916B2 (en) Casting structure connector
AU2013201398B2 (en) Wooden member joint structure
JP2001515978A (en) Moment-resistant structure, support member, and construction method
JP4683571B2 (en) Steel structure exposed column base structure
US11773593B1 (en) Shear beam-column connection
CN112081305A (en) Self-resetting square concrete filled steel tube column base node with friction type anchoring device
KR100869397B1 (en) Exposed-type column base structure in steel structure and construction method of the same
JP6948754B2 (en) Column base joint structure
JP4490853B2 (en) Brace structure using shape memory alloy
JP7266470B2 (en) Column base joint structure
CN110777960A (en) Beam hinge assembly type self-resetting friction connection node structure and method
JP2010216153A (en) Joint reinforcing structure
JP5002569B2 (en) Gate-type frame structure of a wooden building
JP4081406B2 (en) Steel structure exposed column base structure
JP3078732B2 (en) Fixing method of base plate and anchor bolt of steel column base
JP2003227236A (en) Permanent and emergent aseismatic reinforcement method for column with wall
JPH11350778A (en) Vibration damper and vibration-damping structure
CN212478276U (en) Self-resetting square concrete filled steel tube column base node with friction type anchoring device
US8650828B2 (en) Reinforced concrete component reinforced with Z-shaped sheet metal pieces
JP4591891B2 (en) Tensile member fixture and tension member with fixture
JP4570139B2 (en) Basic structure of exposed column base
JP2005083136A (en) Composite structure support
JP2005264516A (en) Bolt connection structure between steel column and steel beam
JP3675410B2 (en) Steel pipe stiffening brace material

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100909

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140218

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4683571

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term