JP2008057090A - Polyethylene naphthalate staple fiber - Google Patents

Polyethylene naphthalate staple fiber Download PDF

Info

Publication number
JP2008057090A
JP2008057090A JP2006238816A JP2006238816A JP2008057090A JP 2008057090 A JP2008057090 A JP 2008057090A JP 2006238816 A JP2006238816 A JP 2006238816A JP 2006238816 A JP2006238816 A JP 2006238816A JP 2008057090 A JP2008057090 A JP 2008057090A
Authority
JP
Japan
Prior art keywords
fiber
polyethylene naphthalate
cross
acid
dtex
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006238816A
Other languages
Japanese (ja)
Other versions
JP2008057090A5 (en
Inventor
Kota Fungen
浩太 枌原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Frontier Co Ltd
Original Assignee
Teijin Fibers Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Fibers Ltd filed Critical Teijin Fibers Ltd
Priority to JP2006238816A priority Critical patent/JP2008057090A/en
Publication of JP2008057090A publication Critical patent/JP2008057090A/en
Publication of JP2008057090A5 publication Critical patent/JP2008057090A5/ja
Pending legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide polyethylene naphthalate fiber suitable to the industrial material sector, especially as rubber-reinforcing fiber or in the form of nonwoven fabrics such as filters or cushioning materials, and uniform in the cross-section diameter on the cross section perpendicular to the fiber axis. <P>SOLUTION: The fiber is formed of polyethylene naphthalate wherein at least 90 mol% of the total recurring unit represents ethylene-2,6-naphthalate units. The fiber, polyethylene naphthalate staple fiber, meets the following requirements (a) to (d): (a) 0.45 dL/g≤intrinsic viscosity≤1.00 dL/g, (b) fiber diameter dispersion degree≤20%, (c) 1.1 dtex≤single fiber fineness≤100 dtex, and (d) 3 mm≤fiber length≤200 mm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明はポリエチレンナフタレート短繊維に関する。さらに詳しくは繊維の繊維軸方向に対して垂直な断面における断面径が均一なポリエチレンナフタレート短繊維に関する。   The present invention relates to a short polyethylene naphthalate fiber. More specifically, the present invention relates to a polyethylene naphthalate short fiber having a uniform cross-sectional diameter in a cross section perpendicular to the fiber axis direction of the fiber.

エチレン−2,6−ナフタレート単位を主たる構成成分とするポリエチレンナフタレート繊維は、高強度、高弾性率および優れた熱寸法安定性を示し、タイヤコードを始めとするゴム補強材等の分野でポリエチレンテレフタレート繊維を凌駕する性能を示すものと期待されている(例えば特許文献1〜3参照。)。   Polyethylene naphthalate fibers mainly composed of ethylene-2,6-naphthalate units exhibit high strength, high elastic modulus, and excellent thermal dimensional stability, and are used in the fields of rubber reinforcement such as tire cords. It is expected to show performance superior to that of terephthalate fibers (see, for example, Patent Documents 1 to 3).

しかしながらポリエチレンナフタレート繊維の製造工程において、繊維の繊維軸方向に対して垂直な断面における断面径についての説明はなされておらず、公知の技術とは言い難い。このような断面径の分散が大きい繊維束は、ゴム補強用繊維、あるいはフィルタやクッション材などの不織布として用いた場合、その特性が十分に発揮されるものではない。   However, in the production process of polyethylene naphthalate fiber, no explanation is given for the cross-sectional diameter in a cross section perpendicular to the fiber axis direction of the fiber, and it is difficult to say that this is a known technique. Such a fiber bundle having a large cross-sectional diameter dispersion does not sufficiently exhibit its characteristics when used as a rubber reinforcing fiber or a nonwoven fabric such as a filter or a cushion material.

特開平5−163612号公報JP-A-5-163612 特開平6−346322号公報JP-A-6-346322 特開平10−88422号公報JP-A-10-88422

本発明は以上の事情を背景としてなされたものであり、繊維径の均一なタイヤコード、ベルト、ホースなどのゴム資材の補強用繊維、あるいはフィルタやクッション材などの不織布として好適な、繊維の繊維軸方向に対して垂直な断面における断面径が均一なポリエチレンナフタレート短繊維を提供することを目的とする。   The present invention has been made against the background described above, and is a fiber fiber suitable for use as a reinforcing fiber for rubber materials such as tire cords, belts, hoses and the like having a uniform fiber diameter, or as a nonwoven fabric such as filters and cushion materials. An object of the present invention is to provide a polyethylene naphthalate short fiber having a uniform cross-sectional diameter in a cross section perpendicular to the axial direction.

本発明者らの研究によればポリエチレンナフタレート樹脂を吐出するシェアレートを1200s−1以下とすることにより、繊維の繊維軸方向に対して垂直な断面における断面径の分散度が20%以下である、断面径が均一なポリエチレンナフタレート短繊維が得られることを見出した。 According to the study by the present inventors, by setting the share rate for discharging the polyethylene naphthalate resin to 1200 s −1 or less, the degree of dispersion of the cross-sectional diameter in the cross section perpendicular to the fiber axis direction of the fiber is 20% or less. It has been found that a polyethylene naphthalate short fiber having a uniform cross-sectional diameter can be obtained.

かくして全繰り返し単位中の少なくとも90モル%がエチレン−2,6−ナフタレート単位であるポリエチレンナフタレートから形成された繊維であって、さらに下記(a)〜(d)を満足するポリエチレンナフタレート短繊維。
(a)0.45dL/g≦極限粘度≦1.00dL/g
(b)繊維径分散度≦20%
(c)1.1dtex≦単繊維繊度≦100dtex
(d)3mm≦繊維長≦200mm
Thus, a fiber formed from polyethylene naphthalate in which at least 90 mol% of all repeating units are ethylene-2,6-naphthalate units, and further a polyethylene naphthalate short fiber satisfying the following (a) to (d): .
(A) 0.45 dL / g ≦ Intrinsic viscosity ≦ 1.00 dL / g
(B) Fiber diameter dispersion ≦ 20%
(C) 1.1 dtex ≦ single fiber fineness ≦ 100 dtex
(D) 3 mm ≦ fiber length ≦ 200 mm

本発明のポリエチレンナフタレート短繊維は繊維軸方向に対して垂直な断面における断面径が非常に均一であり、産業資材分野、特にゴム補強用繊維、あるいはフィルタやクッション材などの不織布として好適な繊維である。また本発明におけるポリエチレンナフタレート繊維に捲縮を付与することなくカットしたものは、例えば抄紙などの不織布の用途として好適な繊維である。   The polyethylene naphthalate short fiber of the present invention has a very uniform cross-sectional diameter in a cross section perpendicular to the fiber axis direction, and is suitable for industrial materials, particularly as a rubber reinforcing fiber, or a nonwoven fabric such as a filter or cushion material. It is. Moreover, what cut | disconnected the polyethylene naphthalate fiber in this invention, without giving a crimp is a fiber suitable as uses, for example of nonwoven fabrics, such as papermaking.

本発明でいうポリエチレンナフタレートは、エチレン−2,6−ナフタレート単位を全繰り返し単位中90モル%以上含んでいる必要があり、10モル%以下の割合で適当な第3成分を含む重合体であっても差し支えない。なかでもエチレン−2,6−ナフタレート単位を95モル%以上含んでいることがより好ましい。エチレン−2,6−ナフタレート単位を90モル%未満であると目的とする用途に対して耐熱性が不足するので好ましくない。一般にポリエチレン−2,6−ナフタレートは、ナフタレン−2,6−ジカルボン酸またはそのエステル形成性誘導体を触媒の存在下適当な反応条件のもとにエチレングリコールと縮重合せしめることによって合成される。このとき、ポリエチレン−2,6−ナフタレートの重合完結前に適当な1種または2種以上の第3成分を添加すれば、共重合ポリエステルが合成される。   The polyethylene naphthalate referred to in the present invention is a polymer containing an ethylene-2,6-naphthalate unit in an amount of 90 mol% or more in all repeating units and containing an appropriate third component in a proportion of 10 mol% or less. There is no problem. Especially, it is more preferable that 95 mol% or more of ethylene-2,6-naphthalate units are included. If the ethylene-2,6-naphthalate unit is less than 90 mol%, the heat resistance is insufficient for the intended use, which is not preferable. In general, polyethylene-2,6-naphthalate is synthesized by polycondensation of naphthalene-2,6-dicarboxylic acid or an ester-forming derivative thereof with ethylene glycol in the presence of a catalyst under appropriate reaction conditions. At this time, if one or more appropriate third components are added before the completion of the polymerization of polyethylene-2,6-naphthalate, a copolyester is synthesized.

適当な第3成分としては、(a)2個のエステル形成性官能基を有する化合物:例えばシュウ酸、コハク酸、アジピン酸、セバシン酸、ダイマー酸などの脂肪族ジカルボン酸;シクロプロパンジカルボン酸、シクロブタンジカルボン酸、ヘキサヒドロテレフタル酸、デカリンジカルボン酸などの脂環族ジカルボン酸;フタル酸、イソフタル酸、ナフタレン−1,4−ジカルボン酸、ナフタレン−1,5−ジカルボン酸、ナフタレン−1,8−ジカルボン酸、ナフタレン−2,7−ジカルボン酸、4,4’−ジフェニルジカルボン酸、3,4’−ジフェニルジカルボン酸などの芳香族ジカルボン酸;ジフェニルエーテルジカルボン酸、ジフェニルスルホンジカルボン酸、ジフェノキシエタンジカルボン酸、3,5−ジカルボキシベンゼンスルホン酸ナトリウムなどのカルボン酸;グリコール酸、p−オキシ安息香酸、p−オキシエトキシ安息香酸などのオキシカルボン酸;プロピレングリコール、トリメチレングリコール、ジエチレングリコール、テトラメチレングリコール、ヘキサメチレングリコール、トリエチレングリコール、ネオペンチレングリコール、テトラエチレングリコール、ジブチレングリコール、p−キシリレングリコール、1,4−シクロヘキサンジメタノール、ビスフェノールA、p,p′−ジヒドロキシジフェニルスルホン、1,4−ビス(β−ヒドロキシエトキシ)ベンゼン、2,2−ビス(p−β−ヒドロキシエトキシフェニル)プロパン、ポリアルキレングリコールなどのジヒドロキシ化合物;それらの機能的誘導体;前記カルボン酸、オキシカルボン酸、ジヒドロキシ化合物またはそれらの機能的誘導体から誘導される高重合度化合物や、(b)1個のエステル形成性官能基を有する化合物、例えば安息香酸、ベンジルオキシ安息香酸、メトキシポリアルキレングリコールなどが挙げられる。ここで機能的誘導体とは他の官能基を持つ化合物と反応させることによりエステル基を形成できる官能基を有する誘導体のことを表す。   Suitable third components include: (a) compounds having two ester-forming functional groups: for example, aliphatic dicarboxylic acids such as oxalic acid, succinic acid, adipic acid, sebacic acid, dimer acid; cyclopropanedicarboxylic acid, Cycloaliphatic dicarboxylic acids such as cyclobutanedicarboxylic acid, hexahydroterephthalic acid, decalin dicarboxylic acid; phthalic acid, isophthalic acid, naphthalene-1,4-dicarboxylic acid, naphthalene-1,5-dicarboxylic acid, naphthalene-1,8- Aromatic dicarboxylic acids such as dicarboxylic acid, naphthalene-2,7-dicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 3,4′-diphenyldicarboxylic acid; diphenyl ether dicarboxylic acid, diphenylsulfone dicarboxylic acid, diphenoxyethanedicarboxylic acid 3,5-dicarboxybenzenesulfo Carboxylic acid such as sodium acid; oxycarboxylic acid such as glycolic acid, p-oxybenzoic acid, p-oxyethoxybenzoic acid; propylene glycol, trimethylene glycol, diethylene glycol, tetramethylene glycol, hexamethylene glycol, triethylene glycol, neo Pentylene glycol, tetraethylene glycol, dibutylene glycol, p-xylylene glycol, 1,4-cyclohexanedimethanol, bisphenol A, p, p'-dihydroxydiphenyl sulfone, 1,4-bis (β-hydroxyethoxy) benzene , 2,2-bis (p-β-hydroxyethoxyphenyl) propane, polyalkylene glycol and other dihydroxy compounds; functional derivatives thereof; carboxylic acids, oxycarboxylic acids Compounds having a high degree of polymerization derived from dihydroxy compounds or functional derivatives thereof, and (b) compounds having one ester-forming functional group such as benzoic acid, benzyloxybenzoic acid, methoxypolyalkylene glycol, etc. . Here, the functional derivative represents a derivative having a functional group capable of forming an ester group by reacting with a compound having another functional group.

さらに(c)3個以上のエステル形成性官能基を有する化合物、例えばグリセリン、ペンタエリスルトール、トリメチロールプロパン、トリメシン酸、トリメリット酸、ピロメリット酸なども重合体が実質的に線状である範囲内で使用可能である。
また、前記ポリエステル中に二酸化チタンなどの艶消剤やリン酸、亜リン酸およびそれらのエステルなどの安定剤が含まれていてよいことはいうまでもない。
Furthermore, (c) compounds having three or more ester-forming functional groups such as glycerin, pentaerythritol, trimethylolpropane, trimesic acid, trimellitic acid, pyromellitic acid are substantially linear in polymer. It can be used within a certain range.
Further, it goes without saying that the polyester may contain a matting agent such as titanium dioxide and a stabilizer such as phosphoric acid, phosphorous acid and esters thereof.

本発明の繊維を形成するポリエチレンナフタレートは、その極限粘度(IV)が0.45dL/g以上1.00dL/g以下であることが必要である。さらに好ましくは0.49〜0.80dL/gである。本発明でいう極限粘度は繊維をフェノールとオルトジクロロベンゼンとの混合溶媒(容積比6:4)に溶解し、35℃で測定した粘度から求めた値である。極限粘度が0.45dL/g未満では、ポリエチレンナフタレート短繊維の強度、タフネスが低下する。一方、極限粘度が1.00dL/gを越えるようなポリエチレンナフタレートは溶融粘度が極端に高く、また紡糸(溶融)温度を上げすぎる熱分解反応が進行するため紡糸工程が不良となり易く、ポリエチレンナフタレート短繊維の製造が難しくなることがある。ポリエチレンナフタレートを重合する際に溶融重合又は固相重合などの重合様式、重合温度、圧力、重合時間等を適宜調節することによりこの極限粘度の範囲になるようにすることができる。さらに、繊維化する際に充分乾燥を行うなどの手法により、その極限粘度の低下を抑制することにより実現することができる。   The intrinsic viscosity (IV) of the polyethylene naphthalate that forms the fiber of the present invention needs to be 0.45 dL / g or more and 1.00 dL / g or less. More preferably, it is 0.49-0.80 dL / g. The intrinsic viscosity as used in the present invention is a value obtained from the viscosity measured at 35 ° C. by dissolving the fiber in a mixed solvent of phenol and orthodichlorobenzene (volume ratio 6: 4). When the intrinsic viscosity is less than 0.45 dL / g, the strength and toughness of the polyethylene naphthalate short fiber are lowered. On the other hand, polyethylene naphthalate having an intrinsic viscosity exceeding 1.00 dL / g has an extremely high melt viscosity, and a thermal decomposition reaction that excessively raises the spinning (melting) temperature proceeds, so that the spinning process tends to be poor. Manufacture of phthalate short fibers may be difficult. When the polyethylene naphthalate is polymerized, it can be made to be within the range of this intrinsic viscosity by appropriately adjusting the polymerization mode such as melt polymerization or solid phase polymerization, polymerization temperature, pressure, polymerization time and the like. Furthermore, it can be realized by suppressing a decrease in the intrinsic viscosity by a technique such as sufficient drying when the fiber is formed.

本発明におけるポリエチレンナフタレート短繊維は通常知られている溶融紡糸装置を用いて、溶融紡糸することができる。ただし、紡糸口金孔径が0.60〜0.80mmの口金を用いて溶融紡糸し、溶融紡糸時の口金孔からのシェアレートが1200s−1以下であることが好ましい。より好ましくは1000s−1以下である。シェアレートが1200s−1を越えると、繊維の繊維軸方向に対して垂直な断面における断面径が不均一となって好ましくない。シェアレートが1200s−1以下にするためには紡糸に使用する口金孔の径を上記の範囲内で大きくすることにより達成することができる。また後述のように紡糸時の条件の1つである吐出量とのバランスによっても設定することが出来る。 The polyethylene naphthalate short fibers in the present invention can be melt-spun using a generally known melt-spinning apparatus. However, it is preferable that melt spinning is performed using a nozzle having a spinneret hole diameter of 0.60 to 0.80 mm, and the shear rate from the nozzle hole at the time of melt spinning is 1200 s −1 or less. More preferably, it is 1000 s −1 or less. When the shear rate exceeds 1200 s −1 , the cross-sectional diameter in the cross section perpendicular to the fiber axis direction of the fiber is not preferable. The shear rate of 1200 s -1 or less can be achieved by increasing the diameter of the die hole used for spinning within the above range. As will be described later, it can also be set by a balance with the discharge amount, which is one of the spinning conditions.

さらに得られるポリエチレンナフタレート繊維の繊維径分散度が20%以下である必要がある。繊維径分散度とは50本以上の単糸について繊維軸方向に対して垂直な断面における断面径を実測しその標準偏差を平均値で割った値である。より好ましい繊維径分散度は10%以下である。繊維径分散度が20%を越えると、例えば不織布などの産業用途に使用した際に強度などの物性が均一とならないので好ましくない。繊維径分散度を20%以下にするためには口金から吐出するポリマーのシェアレートを1200s−1以下にするなどにより達成することができる。 Furthermore, the fiber diameter dispersion of the obtained polyethylene naphthalate fiber needs to be 20% or less. The fiber diameter dispersity is a value obtained by actually measuring a cross-sectional diameter in a cross section perpendicular to the fiber axis direction of 50 or more single yarns and dividing the standard deviation by an average value. A more preferable fiber diameter dispersion is 10% or less. When the fiber diameter dispersity exceeds 20%, it is not preferable because physical properties such as strength are not uniform when used for industrial applications such as nonwoven fabric. In order to reduce the fiber diameter dispersion to 20% or less, it can be achieved by setting the share rate of the polymer discharged from the die to 1200 s −1 or less.

さらに得られるポリエチレンナフタレート繊維の単繊維繊度は1.1〜100dtexであり、繊維長が3〜200mmである必要がある。単繊維繊度が1.1dtex未満の繊維は安定して紡糸を継続することができる吐出量とすることが難しい、または、口金の孔数増加に伴う紡糸性不良が増加するなどの点から好ましくない。一方、単繊維繊度が100dtex以上では不織布などに成形加工した際に硬くなってしまい、不織布の風合いが優れたものとならないので好ましくない。単繊維繊度は好ましくは1.1〜20dtexであり、より好ましくは1.1〜15dtex、よりもっと好ましくは1.1〜13dtex、更によりもっと好ましくは1.1〜12dtex、最も好ましくは1.1〜11dtexである。単繊維繊度は紡糸工程での口金の孔の大きさ、吐出量、ドラフト、シェアレート等の条件、延伸工程での延伸倍率の設定条件等により適宜調製することができる。繊維長は3mm未満であると繊維の後の工程における高次加工の過程で繊維末端から僅かに抜け出ることがあり、この抜け出る割合がより高くなってしまうので好ましくない。繊維長が200mmを超えると紡績工程を始めとして工程通過性が不良となって好ましくない。繊維長は好ましくは4〜100mmであり、より好ましくは4〜70mm、最も好ましくは5〜55mmである。   Furthermore, the single fiber fineness of the obtained polyethylene naphthalate fiber is 1.1 to 100 dtex, and the fiber length needs to be 3 to 200 mm. A fiber having a single fiber fineness of less than 1.1 dtex is not preferable from the viewpoint that it is difficult to obtain a discharge amount capable of stably continuing spinning, or a poor spinning property due to an increase in the number of holes in the die. . On the other hand, when the single fiber fineness is 100 dtex or more, it becomes hard when molded into a nonwoven fabric or the like, and the texture of the nonwoven fabric is not excellent. The single fiber fineness is preferably 1.1 to 20 dtex, more preferably 1.1 to 15 dtex, even more preferably 1.1 to 13 dtex, even more preferably 1.1 to 12 dtex, and most preferably 1.1. ~ 11 dtex. The single fiber fineness can be appropriately adjusted depending on conditions such as the size of the hole in the die in the spinning process, the discharge rate, the draft and the shear rate, and the setting conditions of the draw ratio in the drawing process. If the fiber length is less than 3 mm, it may be slightly removed from the end of the fiber in the process of high-order processing in the subsequent process of the fiber, and this rate of removal will be higher, which is not preferable. When the fiber length exceeds 200 mm, the process passability is poor including the spinning process, which is not preferable. The fiber length is preferably 4 to 100 mm, more preferably 4 to 70 mm, and most preferably 5 to 55 mm.

更に本願のポリエチレンナフタレート繊維を製造する際には、紡糸口金孔径が0.30〜0.80mmの口金を用いて溶融紡糸することが好ましい。紡糸口金孔径が0.30〜0.80mmの範囲を越えると繊維の繊維径分散度が20%以上となって好ましくない。   Furthermore, when producing the polyethylene naphthalate fiber of the present application, it is preferable to melt-spin using a die having a spinneret hole diameter of 0.30 to 0.80 mm. If the spinneret hole diameter exceeds the range of 0.30 to 0.80 mm, the fiber diameter dispersion degree of the fibers is not preferable because it is 20% or more.

また、本発明のポリエチレンナフタレート繊維の断面形状については特に限定されるものではなく、例えば丸形、楕円形、三角・四角・六角などの多角形、星形・十(十字形)・Y字形・H字形・花びら形・帽子形などの異形断面、および中空形などを挙げることができ、これらの形状を一部変更したものや合成したものでもよい。また、これらの各種の断面形状を組み合わせてもよい。   Further, the cross-sectional shape of the polyethylene naphthalate fiber of the present invention is not particularly limited. For example, a round shape, an oval shape, a polygon shape such as a triangle, a square, a hexagon, a star shape, a tens (cross shape), and a Y shape. -An irregular cross section such as an H shape, a petal shape, a hat shape, and a hollow shape can be mentioned, and a partially modified shape or a synthesized shape may be used. Moreover, you may combine these various cross-sectional shapes.

以下、実施例により本発明をさらに具体的に説明する。なお、各物性値は下記の方法により測定したものである。   Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each physical property value is measured by the following method.

(1)繊維の強伸度、繊度、繊維長
引張荷重測定器(島津製作所オートグラフ)を用い、JIS L−1015に記載された方法に従って測定した。
(1) Fiber elongation and fineness, fiber length Using a tensile load measuring instrument (Shimadzu Autograph), the fiber was measured according to the method described in JIS L-1015.

(2)繊維径分散度:V
繊維径分散度は、繊維の繊維軸方向に対して垂直な断面におけるセクション写真を撮影し、断面径を測定した後繊維断面の面積を計算し、下記計算式により算出した。

Figure 2008057090
Xi:繊維断面の面積、 x:ΣXi/n、 n:測定したサンプル数
以下の実施例、比較例においてはサンプル数10で測定を行った。 (2) Fiber diameter dispersion degree: V
The fiber diameter dispersion degree was calculated by the following calculation formula by taking a section photograph in a cross section perpendicular to the fiber axis direction of the fiber, measuring the cross section diameter, and calculating the area of the fiber cross section.
Figure 2008057090
Xi: Fiber cross-sectional area, x: ΣXi / n, n: Measurement was carried out with 10 samples in Examples and Comparative Examples below the number of measured samples.

(3)極限粘度:IV
極限粘度は繊維サンプルをフェノールとオルトジクロロベンゼンとの混合溶媒(容積比6:4)に溶解し、35℃でウベローデ型粘度計を用いて測定した粘度から求めた値である。
(3) Intrinsic viscosity: IV
The intrinsic viscosity is a value obtained by dissolving a fiber sample in a mixed solvent of phenol and orthodichlorobenzene (volume ratio 6: 4) and measuring the viscosity at 35 ° C. using an Ubbelohde viscometer.

(4)1孔当たりの吐出量:Q
1孔当たりの吐出量は、口金からのポリエチレンナフタレートポリマーの1分間当たりの吐出量を実測し、口金孔数で割ることにより算出した。この値を調整することによってもシェアレートを所定の値に制御することも出来る。
(4) Discharge amount per hole: Q 1
The discharge amount per hole was calculated by actually measuring the discharge amount per minute of the polyethylene naphthalate polymer from the base and dividing it by the number of the base holes. The share rate can also be controlled to a predetermined value by adjusting this value.

(5)シェアレート:γ
吐出線速度は、下記計算式により算出した。

Figure 2008057090
γ:シェアレート、 Q:1孔当たりの1秒間の吐出量、 D:口金の孔径、 ρ:溶融ポリマー密度 (5) Share rate: γ
The discharge linear velocity was calculated by the following formula.
Figure 2008057090
γ: shear rate, Q 2 : discharge amount per second per hole, D: hole diameter of the die, ρ: molten polymer density

[実施例1]
溶融粘度0.62dL/gのエチレン−2,6−ナフタレートチップを310℃の温度で溶融後、孔径0.65mmの吐出孔を250ホール有する紡糸口金から2.0g/分・ホールで吐出した。吐出された糸条は冷却風を吹き付けて固化し、オイリングローラーで油剤を付与した後、500m/分の速度で巻き取った。ついで未延伸糸を第1延伸ローラーと第2延伸ローラーの間で110〜140℃に加熱して第1段延伸(延伸倍率:2.0〜4.0倍)を行い、引き続き第2延伸ローラーと第3延伸ローラーの間で110〜140℃に加熱して第2段延伸(延伸倍率:1.00〜1.50倍)を行った後、さらに200℃の熱セットローラーにて熱セットした。延伸糸を70〜120℃に予熱し、押し込み式のクリンパーにて捲縮を付与した。その後所定の長さに繊維をカットした。繊維製造時の条件、得られた短繊維の物性を表1に示した。
[Example 1]
An ethylene-2,6-naphthalate chip having a melt viscosity of 0.62 dL / g was melted at a temperature of 310 ° C. and then discharged from a spinneret having 250 holes having a hole diameter of 0.65 mm at a rate of 2.0 g / min · hole. . The discharged yarn was solidified by blowing cooling air, applied with an oil agent with an oiling roller, and then wound up at a speed of 500 m / min. Subsequently, the undrawn yarn is heated to 110 to 140 ° C. between the first drawing roller and the second drawing roller to perform the first stage drawing (drawing ratio: 2.0 to 4.0 times), and then the second drawing roller. The second stage stretching (stretching ratio: 1.00 to 1.50 times) was performed by heating between 110 and 140 ° C. between the first and third stretching rollers, and then heat setting was performed with a 200 ° C. heat setting roller. . The drawn yarn was preheated to 70 to 120 ° C., and crimped by a push-in crimper. Thereafter, the fibers were cut to a predetermined length. The conditions at the time of fiber production and the physical properties of the obtained short fibers are shown in Table 1.

[実施例2]
紡糸口金孔径が0.60mm、1.3g/分・ホールであること以外は実施例1と同一の方法で繊維を得た。繊維製造時の条件、得られた繊維の物性を表1に示した。
[Example 2]
Fibers were obtained in the same manner as in Example 1 except that the spinneret hole diameter was 0.60 mm and 1.3 g / min · hole. The conditions at the time of fiber production and the physical properties of the obtained fiber are shown in Table 1.

[実施例3]
紡糸口金孔径が0.60mm、0.94g/分・ホールであること以外は実施例1と同一の方法で繊維を得た。繊維製造時の条件、得られた繊維の物性を表1に示した。
[Example 3]
Fibers were obtained in the same manner as in Example 1 except that the spinneret hole diameter was 0.60 mm and 0.94 g / min · hole. The conditions at the time of fiber production and the physical properties of the obtained fiber are shown in Table 1.

[実施例4]
紡糸口金孔径が0.40mm、0.94g/分・ホールであること以外は実施例1と同一の方法で繊維を得た。繊維製造時の条件、得られた繊維の物性を表1に示した。
[Example 4]
Fibers were obtained in the same manner as in Example 1 except that the spinneret hole diameter was 0.40 mm and 0.94 g / min · hole. The conditions at the time of fiber production and the physical properties of the obtained fiber are shown in Table 1.

[比較例1]
紡糸口金孔径が0.26mm、1.3g/分・ホールであること以外は実施例1と同一の方法で繊維を得た。繊維製造時の条件、得られた繊維の物性を表1に示した。
[Comparative Example 1]
Fibers were obtained in the same manner as in Example 1 except that the spinneret hole diameter was 0.26 mm and 1.3 g / min · hole. The conditions at the time of fiber production and the physical properties of the obtained fiber are shown in Table 1.

[比較例2]
紡糸口金孔径が0.26mm、0.23g/分・ホール、紡糸速度が800m/分であること以外は実施例1と同一の方法で繊維を得た。繊維製造時の条件、得られた繊維の物性を表1に示した。
[Comparative Example 2]
Fibers were obtained in the same manner as in Example 1, except that the spinneret hole diameter was 0.26 mm, 0.23 g / min · hole, and the spinning speed was 800 m / min. The conditions at the time of fiber production and the physical properties of the obtained fiber are shown in Table 1.

Figure 2008057090
Figure 2008057090

本発明のポリエチレンナフタレート繊維は繊維軸方向に対して垂直な断面における断面径が非常に均一であり、産業資材分野、特にゴム補強用繊維、あるいはフィルタやクッション材などの不織布として好適な繊維である。また本発明におけるポリエチレンナフタレート繊維に捲縮を付与することなくカットしたものは、例えば抄紙等の不織布用途として好適な短繊維である。このような繊維は上述の用途に好適な繊維となる点において産業上非常に有意義である。   The polyethylene naphthalate fiber of the present invention has a very uniform cross-sectional diameter in a cross section perpendicular to the fiber axis direction, and is a fiber suitable for industrial materials, particularly rubber reinforcing fibers, or non-woven fabrics such as filters and cushion materials. is there. Moreover, what cut | disconnected the polyethylene naphthalate fiber in this invention, without providing a crimp is a short fiber suitable for nonwoven fabric uses, such as papermaking, for example. Such a fiber is very significant industrially in that it is a suitable fiber for the above-mentioned applications.

Claims (2)

全繰り返し単位中の少なくとも90モル%がエチレン−2,6−ナフタレート単位であるポリエチレンナフタレートから形成された繊維であって、さらに下記(a)〜(d)を満足するポリエチレンナフタレート短繊維。
(a)0.45dL/g≦極限粘度≦1.00dL/g
(b)繊維径分散度≦20%
(c)1.1dtex≦単繊維繊度≦100dtex
(d)3mm≦繊維長≦200mm
Polyethylene naphthalate short fibers which are fibers formed from polyethylene naphthalate in which at least 90 mol% of all repeating units are ethylene-2,6-naphthalate units, and satisfy the following (a) to (d).
(A) 0.45 dL / g ≦ Intrinsic viscosity ≦ 1.00 dL / g
(B) Fiber diameter dispersion ≦ 20%
(C) 1.1 dtex ≦ single fiber fineness ≦ 100 dtex
(D) 3 mm ≦ fiber length ≦ 200 mm
単繊維繊度が1.1〜15dtexである請求項1記載のポリエチレンナフタレート短繊維。   The polyethylene naphthalate short fiber according to claim 1, wherein the single fiber fineness is 1.1 to 15 dtex.
JP2006238816A 2006-09-04 2006-09-04 Polyethylene naphthalate staple fiber Pending JP2008057090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006238816A JP2008057090A (en) 2006-09-04 2006-09-04 Polyethylene naphthalate staple fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006238816A JP2008057090A (en) 2006-09-04 2006-09-04 Polyethylene naphthalate staple fiber

Publications (2)

Publication Number Publication Date
JP2008057090A true JP2008057090A (en) 2008-03-13
JP2008057090A5 JP2008057090A5 (en) 2009-08-13

Family

ID=39240174

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006238816A Pending JP2008057090A (en) 2006-09-04 2006-09-04 Polyethylene naphthalate staple fiber

Country Status (1)

Country Link
JP (1) JP2008057090A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266B1 (en) * 1970-02-18 1977-01-05
JPH04194021A (en) * 1990-11-28 1992-07-14 Teijin Ltd Naphthalate polyester fiber and its production
JPH04352811A (en) * 1991-05-22 1992-12-07 Teijin Ltd Polyethylene naphthalate fiber and its production
JPH09256218A (en) * 1996-03-21 1997-09-30 Teijin Ltd Staple fiber for reinforcing molded structure
JPH1088422A (en) * 1996-09-11 1998-04-07 Teijin Ltd Polyethylene naphthalate fiber and its production

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266B1 (en) * 1970-02-18 1977-01-05
JPH04194021A (en) * 1990-11-28 1992-07-14 Teijin Ltd Naphthalate polyester fiber and its production
JPH04352811A (en) * 1991-05-22 1992-12-07 Teijin Ltd Polyethylene naphthalate fiber and its production
JPH09256218A (en) * 1996-03-21 1997-09-30 Teijin Ltd Staple fiber for reinforcing molded structure
JPH1088422A (en) * 1996-09-11 1998-04-07 Teijin Ltd Polyethylene naphthalate fiber and its production

Similar Documents

Publication Publication Date Title
JP5527971B2 (en) High crimped composite fiber
US20060058441A1 (en) Polyester fibers, their production and their use
JP5808327B2 (en) Process for producing molded articles of poly (trimethylene arylate) / polystyrene
JP2013087153A (en) Copolyester, and polyester fiber with excellent moisture absorbency including the same
JP2012193476A (en) Polyester microfiber
JP2008057090A (en) Polyethylene naphthalate staple fiber
JP2010063480A (en) Suture thread
KR0140230B1 (en) Manufacturing method of dimensional stability polyester yarn
JP4847312B2 (en) Non-woven binder fiber and method for producing the same
JP2006328583A (en) Sea-island type conjugate fiber having excellent anti-transparent property
JP3806320B2 (en) Method for producing polytrimethylene terephthalate short fiber
JP2010065325A (en) Polylactic acid nanofiber
JP2009191390A (en) Recycled hollow multifilament
JP6411922B2 (en) High strength atypical polyester multifilament
JP4574911B2 (en) Polyester-based hollow crimped fiber and method for producing the same
JP7048060B2 (en) Manufacturing method of multifilament yarn made of high density fiber
JP2007031848A (en) Polyester multifilament for separated yarn having flat section
JP2006322110A (en) Method for producing polyethylene naphthalate fiber
JPH09256218A (en) Staple fiber for reinforcing molded structure
JP2007056382A (en) Method for producing high specific gravity composite fiber
JP2007009376A (en) Specific polyester multi-hollow fiber
JP6304750B2 (en) High strength hollow polyester multifilament
JP5065670B2 (en) Nonwoven fabric and sheet
JP6089786B2 (en) Sea-island composite fiber made of polylactic acid and polyglycolic acid
JP2009209499A (en) Crimped polyethylene naphthalate fiber having low heat shrinkage and its manufacturing method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090630

A977 Report on retrieval

Effective date: 20110411

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20110426

Free format text: JAPANESE INTERMEDIATE CODE: A131

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A02 Decision of refusal

Effective date: 20111108

Free format text: JAPANESE INTERMEDIATE CODE: A02