JP2008056948A - Pretreatment method for ceramic fine particle - Google Patents

Pretreatment method for ceramic fine particle Download PDF

Info

Publication number
JP2008056948A
JP2008056948A JP2006231552A JP2006231552A JP2008056948A JP 2008056948 A JP2008056948 A JP 2008056948A JP 2006231552 A JP2006231552 A JP 2006231552A JP 2006231552 A JP2006231552 A JP 2006231552A JP 2008056948 A JP2008056948 A JP 2008056948A
Authority
JP
Japan
Prior art keywords
fine particles
ceramic fine
ceramic
aerosol
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006231552A
Other languages
Japanese (ja)
Inventor
Akinari Ohira
晃也 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006231552A priority Critical patent/JP2008056948A/en
Publication of JP2008056948A publication Critical patent/JP2008056948A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a pretreatment method for producing a fine particle which is easily refined when having collided with a substrate, by forming cracks in the fine particle without using a mechanical technique. <P>SOLUTION: The pretreatment method is applied to the ceramic fine particle that is used for forming a film on the substrate by using an AD method of dispersing the ceramic fine particles in a gas to form an aerosol, and jetting and colliding the aerosol against the substrate. The method includes applying thermal shock to the ceramic fine particles before forming the aerosol. The thermal shock is given by holding the ceramic fine particles at 500 to 1,100°C for 10 minutes or longer and then quenching them. The ceramic fine particle is a fine particle particularly of alumina. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、エアロゾルデポジション法(以下、AD法と記す)によりセラミックス微粒子をガス中に分散してエアロゾルを基材に衝突させてセラミックス被膜を形成するためのセラミックス微粒子の前処理方法に関する。   The present invention relates to a ceramic fine particle pretreatment method for forming a ceramic coating by dispersing ceramic fine particles in a gas by an aerosol deposition method (hereinafter referred to as AD method) and causing the aerosol to collide with a substrate.

基板上の膜の形成方法として、微粒子ビーム堆積法あるいはAD法と呼ばれる脆性材料の膜や構造物の形成方法がある。AD法は、セラミックス等の脆性材料の微粒子を含むエアロゾルをノズルから基材に向けて吐出し、基材に微粒子を衝突させて、その機械的衝撃力を利用して脆性材料の多結晶構造物を基材上にダイレクトに形成させる方法である。基材に衝突した微粒子は、微細化して新生面が発生し、この新生面の活性度が高いため、堆積が進行して緻密な膜等の多結晶構造物が形成される。
基材への衝突時に微粒子が容易に微細化されるようにするため、微粒子にクラック等を付与することが好ましい。微粒子にクラックを付与する前処理方法としては、例えば、ボールミル、ジェットミル等で機械的にクラックを与える手法がある。従来、AD法として分級装置および解砕装置を付与する方法(特許文献1参照)等が開示されている。
As a method for forming a film on a substrate, there is a method for forming a film or structure of a brittle material called a fine particle beam deposition method or an AD method. In the AD method, an aerosol containing fine particles of a brittle material such as ceramics is ejected from a nozzle toward a base material, the fine particle collides with the base material, and the mechanical impact force is used to make a polycrystalline structure of the brittle material Is formed directly on the substrate. The fine particles that collide with the base material are refined to generate a new surface, and since the activity of the new surface is high, deposition proceeds and a polycrystalline structure such as a dense film is formed.
It is preferable to give cracks or the like to the fine particles so that the fine particles can be easily made fine at the time of collision with the substrate. As a pretreatment method for imparting cracks to fine particles, for example, there is a method of mechanically cracking with a ball mill, a jet mill or the like. Conventionally, a method of providing a classifying device and a crushing device as an AD method (see Patent Document 1) and the like have been disclosed.

しかしながら、実際の生産技術とするには機械的にクラックを与える手法では成膜速度が遅いなどの問題がある。ボールミルを用いる場合、湿式混合であることから乾燥工程が必要であるが、乾燥時に容易に凝集するため、クラックの入った一次粒子を容易に得ることができない。また、ジェットミルを用いる場合、バグフィルターで捕集するがフィルター上に堆積した微粉末は凝集していることから、一次粒子を容易に得ることができない。
したがって、機械的な手法を用いずに粒子にクラックを発生させ、衝突時に微細化し易い粒子を作製する前処理方法が望まれている。
特開2001−181859号公報
However, in the actual production technique, there is a problem that the film forming speed is slow in the method of mechanically cracking. When a ball mill is used, a drying process is necessary because of wet mixing, but since it easily aggregates during drying, cracked primary particles cannot be easily obtained. Moreover, when using a jet mill, although it collects with a bag filter, since the fine powder deposited on the filter has aggregated, a primary particle cannot be obtained easily.
Therefore, there is a demand for a pretreatment method in which particles are cracked without using a mechanical method, and particles that can be easily refined at the time of collision are produced.
JP 2001-181859 A

本発明はこのような問題に対処するためになされたもので、機械的な手法を用いずに微粒子にクラックを発生させ、衝突時に微細化し易い微粒子を作製する前処理方法を提供することを目的とする。   The present invention has been made to cope with such a problem, and an object of the present invention is to provide a pretreatment method for producing fine particles that are easy to be miniaturized at the time of collision by generating cracks in the fine particles without using a mechanical method. And

本発明のセラミックス微粒子の前処理方法は、セラミックス微粒子をガス中に分散してエアロゾル化し、該エアロゾルを基材上に噴射し衝突させて成膜を行なうAD法による成膜形成に用いられる上記セラミックス微粒子の前処理方法であって、該前処理方法は、上記エアロゾル化前において、上記セラミックス微粒子に熱衝撃を加える方法であることを特徴とする。
上記熱衝撃は、上記セラミックス微粒子を 500℃〜1100℃に 10分間以上保持した後、急冷する処理であることを特徴とする。
The ceramic fine particle pretreatment method of the present invention is the above-mentioned ceramic used for film formation by the AD method in which ceramic fine particles are dispersed in a gas to form an aerosol, and the aerosol is sprayed onto a substrate to collide with the film. A pretreatment method for fine particles, wherein the pretreatment method is a method in which a thermal shock is applied to the ceramic fine particles before the aerosolization.
The thermal shock is characterized in that the ceramic fine particles are held at 500 ° C. to 1100 ° C. for 10 minutes or more and then rapidly cooled.

上記セラミックス微粒子は、アルミナ微粒子であることを特徴とする。また、上記セラミックス微粒子の平均粒子径は、0.1μm〜2μm であることを特徴とする。
また、上記ガスは、アルゴン、窒素またはヘリウムを含む不活性ガスであることを特徴とする。
The ceramic fine particles are alumina fine particles. The average particle size of the ceramic fine particles is 0.1 μm to 2 μm.
The gas is an inert gas containing argon, nitrogen, or helium.

本発明のセラミックス微粒子の前処理方法は、AD法に用いるエアロゾル原料のセラミックス微粒子に熱衝撃を加える方法であるので、混合や堆積等の機械的な粒子間接触が生じない処理方法であり、セラミックス微粒子の凝集を防止でき、かつ微粒子表面および内部に熱衝撃によるクラックや応力歪を付与できる。その結果、基材との衝突時に微細化し易くなり、成膜効率が向上する。
特に、セラミックス微粒子としてアルミナ微粒子を使用し、熱衝撃として 500℃〜1100℃に 10分間以上保持した後、急冷する処理を行なうことで、熱膨張と、急激な熱収縮とによるクラックおよび応力歪をアルミナ微粒子に与えることができる。
The pretreatment method for ceramic fine particles according to the present invention is a method in which thermal shock is applied to the ceramic fine particles of the aerosol raw material used in the AD method, so that mechanical interparticle contact such as mixing and deposition does not occur. Aggregation of fine particles can be prevented, and cracks and stress strain due to thermal shock can be applied to the surface and inside of the fine particles. As a result, it becomes easy to miniaturize at the time of collision with the base material, and the film forming efficiency is improved.
In particular, by using alumina fine particles as ceramic fine particles and holding them at 500 ° C to 1100 ° C for 10 minutes or more as a thermal shock and then performing a rapid cooling treatment, cracks and stress strains due to thermal expansion and rapid thermal shrinkage are reduced. It can be given to alumina fine particles.

本発明のセラミックス微粒子の前処理方法は、セラミックス微粒子をガス中に分散してエアロゾル化し、該エアロゾルを基材上に噴射し衝突させて成膜を行なうAD法による成膜形成に用いられるセラミックス微粒子(特に、熱膨張係数 7.5×10-6/℃ 程度、融点1300℃ 程度)の前処理方法であり、エアロゾル化前においてセラミックス微粒子に熱衝撃を加える方法である。
この熱衝撃は、500℃〜1100℃に 10分間以上保持した後、急冷する処理である。セラミックス微粒子に熱衝撃を加えるために、熱衝撃に強いチタン酸アルミニウム製るつぼもしくはトレイにセラミックス微粒子を入れた後、電気炉内で 500℃〜1100℃で一定時間放置する。
放置後るつぼもしくはトレイを電気炉から取り出し、急冷させることで、熱収縮によるクラックおよび応力歪をセラミックス微粒子に与えることができる。500℃未満のときはクラックおよび応力歪みは軽微であり、1100℃をこえるときは粒子が部分的に溶着するので好ましくない。500℃〜1100℃であっても 10分間未満であればクラックおよび応力歪みは軽微であり、成膜効率の向上に寄与しない。
The ceramic fine particle pretreatment method of the present invention is a ceramic fine particle used for film formation by the AD method in which ceramic fine particles are dispersed in a gas to form an aerosol, and the aerosol is sprayed onto a substrate to collide with the film. (In particular, a thermal expansion coefficient of about 7.5 × 10 −6 / ° C. and a melting point of about 1300 ° C.), which is a method of applying thermal shock to ceramic fine particles before aerosolization.
This thermal shock is a process of rapidly cooling after holding at 500 ° C. to 1100 ° C. for 10 minutes or more. In order to apply a thermal shock to the ceramic fine particles, the ceramic fine particles are put into a crucible or tray made of aluminum titanate that is resistant to thermal shock, and then left in an electric furnace at a temperature of 500 ° C. to 1100 ° C. for a certain period of time.
After leaving the crucible or tray out of the electric furnace, the ceramic fine particles can be given cracks and stress strain due to thermal shrinkage by rapid cooling. When it is less than 500 ° C., cracks and stress strains are slight, and when it exceeds 1100 ° C., particles are partially welded, which is not preferable. Even if it is 500 ° C to 1100 ° C, if it is less than 10 minutes, cracks and stress strains are minor and do not contribute to the improvement of film formation efficiency.

急冷する方法としては、所定の加熱処理を施されたセラミックス微粒子の入ったるつぼおよびトレイに(1)冷風を当てる、(2)冷却水中に浸す、(3)低温槽に入れる等の方法がある。
通常のるつぼ(アルミナ、ジルコニア、カーボン)の場合、急冷すると破損するが、チタン酸アルミニウム製るつぼは耐熱衝撃性に優れるため、破損しない。市販のチタン酸アルミニウム製るつぼとしては、例えば、オーセラ社製レコジットを使用することができる。
As a method for rapid cooling, there are methods such as (1) applying cold air to a crucible and tray containing ceramic fine particles subjected to predetermined heat treatment, (2) immersing in cooling water, and (3) placing in a low temperature bath. .
In the case of a normal crucible (alumina, zirconia, carbon), it breaks when quenched, but the crucible made of aluminum titanate is excellent in thermal shock resistance, so it does not break. As a commercially available aluminum titanate crucible, for example, a record manufactured by Aucera Corporation can be used.

本発明の前処理方法の対象となるセラミックス微粒子は、エアロゾル原料となる任意のセラミックス微粒子である。このようなセラミックス微粒子としては、例えば、アルミナ、ジルコニア、チタニア等の酸化物、炭化ケイ素、窒化ケイ素等の微粒子が挙げられる。それぞれのセラミックスの高純度グレードにおいて、真比重が小さい方がエアロゾル化しやすいことから、アルミナ微粒子を用いることが好ましい。
なお、セラミックス微粒子以外でも、シリコン、ゲルマニウムなどのへき開性の強い脆性材料の微粒子も本発明の前処理を行なうことで同様の効果が得られる。
The ceramic fine particles to be subjected to the pretreatment method of the present invention are arbitrary ceramic fine particles that are used as an aerosol raw material. Examples of such ceramic fine particles include oxides such as alumina, zirconia, and titania, and fine particles such as silicon carbide and silicon nitride. In the high-purity grades of the respective ceramics, it is preferable to use alumina fine particles because the one with a smaller true specific gravity is more easily aerosolized.
In addition to ceramic fine particles, the same effect can be obtained by carrying out the pretreatment of the present invention on fine particles of brittle materials having strong cleavage properties such as silicon and germanium.

AD法では室温で微粒子同士の接合を実現でき、高温にさらされることによる原料セラミックスの変態による物性低下を招くこともない。例えば、絶縁性に優れたαアルミナを用いても溶射法ではγアルミナに変態して絶縁性が低下するため、膜厚を増加させる必要があるが、AD法でαアルミナを用いると絶縁性の高いαアルミナのままで成膜できるので、膜厚を増加させずに絶縁性の高いセラミックス層が得られる。   The AD method can realize bonding between fine particles at room temperature, and does not cause deterioration of physical properties due to transformation of raw material ceramics due to exposure to high temperature. For example, even if α-alumina with excellent insulating properties is used, the thermal spraying method transforms to γ-alumina and lowers the insulating properties. Therefore, it is necessary to increase the film thickness. Since the film can be formed with high α alumina, a ceramic layer having high insulation can be obtained without increasing the film thickness.

本発明の前処理方法の対象となるセラミックス微粒子の平均粒子径は、0.1μm 〜 2μm であることが好ましい。0.1μm 未満では凝集しやすくエアロゾル化は困難であり、2μm をこえるとAD法での膜形成はできない(膜成長しない)。なお、本発明において平均粒子径は日機装株式会社製:レーザー式粒度分析計マイクロトラックMT3000によって測定した値である。   The average particle size of the ceramic fine particles to be subjected to the pretreatment method of the present invention is preferably 0.1 μm to 2 μm. If it is less than 0.1 μm, it is easy to agglomerate and aerosolization is difficult, and if it exceeds 2 μm, film formation by AD method cannot be performed (film growth does not occur). In the present invention, the average particle diameter is a value measured by Nikkiso Co., Ltd .: Laser type particle size analyzer Microtrac MT3000.

本発明の前処理方法で処理したセラミックス微粒子をエアロゾル原料に用いた被膜形成方法を図1に基づいて説明する。図1はAD法により、基材である軸受外輪の外径面にセラミックス被膜を形成する場合の被膜形成装置を示す図である。
図1に示すように、AD法によるセラミックス被膜形成装置1は真空チャンバー2とエアロゾル発生装置8とを有する。真空チャンバー2内には、セラミックス被膜形成対象の基材である外輪4と、エアロゾル噴射ノズル9とが配設されている。真空チャンバー2の内部は真空ポンプ3によって減圧される。セラミックス微粒子の混入を防止するため、真空ポンプ3の直前に微粒子フィルター10が設けられている。
エアロゾル噴射ノズル9は、セラミックス微粒子を、長方形等の開口部を有するノズル先端から、基材である外輪4に噴射するものである。なお、エアロゾル噴射ノズル9は、1本であっても複数本であってもよい。また、エアロゾル噴射ノズル9は、真空チャンバー2内で変位可能に構成してもよい。
A film forming method using ceramic fine particles treated by the pretreatment method of the present invention as an aerosol raw material will be described with reference to FIG. FIG. 1 is a view showing a film forming apparatus in the case of forming a ceramic film on the outer diameter surface of a bearing outer ring as a base material by the AD method.
As shown in FIG. 1, a ceramic film forming apparatus 1 using an AD method includes a vacuum chamber 2 and an aerosol generator 8. In the vacuum chamber 2, an outer ring 4 that is a base material on which a ceramic film is to be formed and an aerosol injection nozzle 9 are disposed. The inside of the vacuum chamber 2 is depressurized by the vacuum pump 3. In order to prevent mixing of ceramic fine particles, a fine particle filter 10 is provided immediately before the vacuum pump 3.
The aerosol injection nozzle 9 injects ceramic fine particles from the tip of a nozzle having an opening such as a rectangle onto the outer ring 4 that is a base material. In addition, the aerosol injection nozzle 9 may be one or plural. The aerosol injection nozzle 9 may be configured to be displaceable in the vacuum chamber 2.

エアロゾル発生装置8内に、本発明の前処理方法により熱衝撃を加えたセラミックス微粒子をいれ、ガス供給設備7からエアロゾル発生装置8に搬送ガスを供給して、該セラミックス微粒子と搬送ガスとからなるエアロゾルを形成する。使用可能な搬送ガスとしては、アルゴン、窒素、ヘリウム等の不活性ガスが挙げられる。
エアロゾル噴射ノズル9には、エアロゾル発生装置8から上記のエアロゾルが供給される。固定したエアロゾル噴射ノズル9から、対象物回転用モータ6により所定回転数で回転(図中A)している外輪4に、上記のエアロゾルが噴射され、外輪4の外径面にセラミックス被膜が塗り重ねられて形成される。同時に、位置決め用XYテーブル5により外輪4を軸方向に移動(図中B)させることで、外輪4のXY方向にも均一に被膜が形成される。
ここで、原料のセラミックス微粒子が、エアロゾル化前に予め熱衝撃を加えられ、微小なクラックや応力歪が付与されていることから、基材である外輪4との衝突時に微細化し易く、外輪4等の曲面上にも容易に成膜できる。
In the aerosol generator 8, ceramic fine particles subjected to thermal shock by the pretreatment method of the present invention are put, and a carrier gas is supplied from the gas supply facility 7 to the aerosol generator 8, and the ceramic fine particles and the carrier gas are included. Form an aerosol. Usable carrier gases include inert gases such as argon, nitrogen and helium.
The aerosol is supplied from the aerosol generator 8 to the aerosol injection nozzle 9. The aerosol is sprayed from the fixed aerosol injection nozzle 9 onto the outer ring 4 rotating at a predetermined number of revolutions (A in the figure) by the object rotating motor 6, and a ceramic film is applied to the outer diameter surface of the outer ring 4. Overlapped and formed. At the same time, the outer ring 4 is moved in the axial direction by the positioning XY table 5 (B in the figure), so that a film is uniformly formed in the XY direction of the outer ring 4.
Here, since the raw material ceramic fine particles are preliminarily subjected to thermal shock before being aerosolized and are given minute cracks and stress strains, they are easily miniaturized at the time of collision with the outer ring 4 which is the base material. A film can be easily formed on a curved surface such as the above.

実施例1
るつぼ(オーセラ社製:レコジット)にアルミナ微粒子(住友化学社製:商品名AKP−50、平均粒子径 0.2μm 、熱膨張係数 7.5×10-6/℃)100 gを入れ、恒温槽にて 500℃×10分間保持した後、冷風を当てて室温( 20℃)まで急冷する前処理を施した。この前処理した微粒子を、図1に示すエアロゾル発生装置に入れ、真空チャンバー内に取り付けた軸受鋼SUJ2製テスト基板(縦 30 mm×横 30 mm、厚み 3 mm )表面にAD法でアルミナ微粒子を用いて、セラミックス被膜を 5 分間形成した。
AD法は位置決め用XYテーブルを用いて、6 mm/分で移動するテスト基板に、100 Pa 以下の減圧下で、開口サイズ 10 mm×0.3 mm のノズルを通してアルミナ微粒子のエアロゾルを噴射して 10 mm×10 mm の被膜形成を行なった。なお、搬送ガスには窒素ガスを用い、粒子速度は搬送ガス流量で制御した。
得られた被膜の膜厚を測定し、成膜条件を評価した。結果を表1に示す。なお、成膜速度(μm・cm/分)は 1 分間にスキャン距離 1 cm につき形成される被膜の厚さ(μm )を意味する。被膜厚さは、接触式表面形状測定器(日本真空技術社製:Dectak3030)を用いて測定した。
Example 1
Put 100 g of alumina fine particles (manufactured by Sumitomo Chemical Co., Ltd .: trade name AKP-50, average particle size 0.2 μm, coefficient of thermal expansion 7.5 × 10 −6 / ° C.) in a crucible (manufactured by OSELA: Recogit) and 500 in a thermostatic chamber. After maintaining at 10 ° C. for 10 minutes, a pretreatment was performed by applying cold air to rapidly cool to room temperature (20 ° C.). The pretreated fine particles are put in the aerosol generator shown in Fig. 1, and alumina fine particles are deposited by AD method on the surface of a bearing steel SUJ2 test substrate (length 30 mm x width 30 mm, thickness 3 mm) mounted in a vacuum chamber. Using, a ceramic coating was formed for 5 minutes.
The AD method uses a positioning XY table to inject an aerosol of alumina fine particles through a nozzle with an opening size of 10 mm x 0.3 mm under a reduced pressure of 100 Pa or less onto a test substrate moving at 6 mm / min. A film of × 10 mm was formed. Nitrogen gas was used as the carrier gas, and the particle velocity was controlled by the carrier gas flow rate.
The film thickness of the obtained film was measured and the film forming conditions were evaluated. The results are shown in Table 1. The film formation rate (μm · cm / min) means the thickness (μm) of the film formed per scan distance of 1 cm per minute. The film thickness was measured using a contact-type surface shape measuring instrument (manufactured by Nippon Vacuum Technology Co., Ltd .: Decak3030).

実施例2
実施例1において 700℃×10分間保持したアルミナ微粒子に冷風を当てる代わりに冷却水中に浸して常温に急冷する前処理を施したこと以外は、実施例1と同様に処理して、得られた被膜の膜厚を測定し、成膜条件を評価した。結果を表1に併記する。
Example 2
The same procedure as in Example 1 was carried out except that the alumina fine particles held at 700 ° C. for 10 minutes in Example 1 were subjected to a pretreatment that was immersed in cooling water and rapidly cooled to room temperature instead of applying cold air. The film thickness of the film was measured and the film forming conditions were evaluated. The results are also shown in Table 1.

実施例3
実施例1において 1100℃×10分間保持したアルミナ微粒子に冷風を当てる代わりに低温槽入れて常温に急冷する前処理を施したこと以外は、実施例1と同様に処理して、得られた被膜の膜厚を測定し、成膜条件を評価した。結果を表1に併記する。
Example 3
The coating film obtained in the same manner as in Example 1 except that the alumina fine particles held at 1100 ° C. for 10 minutes in Example 1 were subjected to a pretreatment in which they were placed in a low temperature bath and rapidly cooled to room temperature instead of applying cold air. The film thickness was measured and the film forming conditions were evaluated. The results are also shown in Table 1.

比較例1
実施例1においてアルミナ微粒子に熱衝撃を加える前処理を施さなかったこと以外は実施例1と同様に処理して被膜形成を行なった。
得られた被膜の膜厚を測定し、成膜条件を評価した。結果を表1に併記する。
Comparative Example 1
A coating was formed in the same manner as in Example 1 except that the pretreatment for applying thermal shock to the alumina fine particles in Example 1 was not performed.
The film thickness of the obtained film was measured and the film forming conditions were evaluated. The results are also shown in Table 1.

Figure 2008056948
表1に示すように各実施例から良好な成膜条件はアルミナ微粒子に施す前処理条件が 500℃〜1100℃に 10分間以上保持した後、急冷する処理であればよいことがわかる。
Figure 2008056948
As shown in Table 1, it can be seen from each example that favorable film forming conditions may be those in which the pretreatment conditions applied to the alumina fine particles are kept at 500 ° C. to 1100 ° C. for 10 minutes or more and then rapidly cooled.

本発明の前処理方法は、セラミックス微粒子に熱衝撃を加える処理であるので、混合や堆積等の機械的な粒子間接触が生じないことから機械的なセラミックス微粒子の凝集を防止でき、かつ微粒子表面および内部にクラックや応力歪を付与できる。その結果、基材との衝突時に微細化し易くなり、成膜効率が向上する。このため量産性が向上し、各種産業機械に用いられる耐熱耐摩耗性、耐久性、耐食・耐絶縁性等の要求される各種部材へのセラミックス被膜形成時において好適に利用できる。   Since the pretreatment method of the present invention is a process of applying a thermal shock to the ceramic fine particles, mechanical inter-particle contact such as mixing and deposition does not occur, so that mechanical ceramic fine particle aggregation can be prevented and the surface of the fine particles can be prevented. In addition, cracks and stress strain can be imparted to the inside. As a result, it becomes easy to miniaturize at the time of collision with the base material, and the film forming efficiency is improved. Therefore, mass productivity is improved, and it can be suitably used when forming a ceramic coating on various members required for heat and abrasion resistance, durability, corrosion resistance and insulation resistance used in various industrial machines.

AD法によるセラミックス被膜形成装置を示す図であるIt is a figure which shows the ceramic film formation apparatus by AD method

符号の説明Explanation of symbols

1 セラミックス被膜形成装置
2 真空チャンバー
3 真空ポンプ
4 外輪
5 位置決め用XYテーブル
6 対象物回転用モータ
7 ガス供給設備
8 エアロゾル発生装置
9 エアロゾル噴射ノズル
10 微粒子フィルター
DESCRIPTION OF SYMBOLS 1 Ceramic film formation apparatus 2 Vacuum chamber 3 Vacuum pump 4 Outer ring 5 XY table for positioning 6 Motor for object rotation 7 Gas supply equipment 8 Aerosol generator 9 Aerosol injection nozzle 10 Fine particle filter

Claims (5)

セラミックス微粒子をガス中に分散してエアロゾル化し、該エアロゾルを基材上に噴射し衝突させて成膜を行なうエアロゾルデポジション法による成膜形成に用いられる前記セラミックス微粒子の前処理方法であって、
該前処理方法は、前記エアロゾル化前において、前記セラミックス微粒子に熱衝撃を加える方法であることを特徴とするセラミックス微粒子の前処理方法。
A method for pretreating ceramic fine particles used for film formation by an aerosol deposition method in which ceramic fine particles are dispersed in a gas to be aerosolized, and the aerosol is sprayed onto a substrate to collide with the film.
The pretreatment method for ceramic fine particles is a method in which a thermal shock is applied to the ceramic fine particles before the aerosolization.
前記熱衝撃は、前記セラミックス微粒子を 500℃ 〜 1100℃ に 10分間以上保持した後、急冷する処理であることを特徴とする請求項1記載のセラミックス微粒子の前処理方法。   2. The pretreatment method of ceramic fine particles according to claim 1, wherein the thermal shock is a treatment in which the ceramic fine particles are held at 500 ° C. to 1100 ° C. for 10 minutes or more and then rapidly cooled. 前記セラミックス微粒子は、アルミナ微粒子であることを特徴とする請求項1または請求項2記載のセラミックス微粒子の前処理方法。   3. The pretreatment method for ceramic fine particles according to claim 1, wherein the ceramic fine particles are alumina fine particles. 前記セラミックス微粒子の平均粒子径は、0.1μm〜2μm であることを特徴とする請求項1、請求項2または請求項3記載のセラミックス微粒子の前処理方法。   4. The pretreatment method for ceramic fine particles according to claim 1, wherein the average particle size of the ceramic fine particles is 0.1 to 2 [mu] m. 前記ガスは、アルゴン、窒素またはヘリウムを含む不活性ガスであることを特徴とする請求項1ないし請求項4のいずれか一項記載のセラミックス微粒子の前処理方法。   The pretreatment method for ceramic fine particles according to any one of claims 1 to 4, wherein the gas is an inert gas containing argon, nitrogen, or helium.
JP2006231552A 2006-08-29 2006-08-29 Pretreatment method for ceramic fine particle Pending JP2008056948A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231552A JP2008056948A (en) 2006-08-29 2006-08-29 Pretreatment method for ceramic fine particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231552A JP2008056948A (en) 2006-08-29 2006-08-29 Pretreatment method for ceramic fine particle

Publications (1)

Publication Number Publication Date
JP2008056948A true JP2008056948A (en) 2008-03-13

Family

ID=39240046

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231552A Pending JP2008056948A (en) 2006-08-29 2006-08-29 Pretreatment method for ceramic fine particle

Country Status (1)

Country Link
JP (1) JP2008056948A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966487B1 (en) * 2008-03-21 2010-06-29 한국세라믹기술원 Manufacturing method of microwave ceramic-polymer composite
CN108957026A (en) * 2018-05-23 2018-12-07 安徽工业大学 A kind of critical ball rebound velocity measuring device and method of hot fly ash granule
JP2018202848A (en) * 2016-09-14 2018-12-27 Toto株式会社 Composite structure
US10272467B2 (en) 2013-08-22 2019-04-30 Komico Co., Ltd. Aerosol coating method and plasma-resistant member formed by the same
WO2023042066A1 (en) 2021-09-16 2023-03-23 Ricoh Company, Ltd. Powder, laminate using the same, and method of manufacturing laminate

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100966487B1 (en) * 2008-03-21 2010-06-29 한국세라믹기술원 Manufacturing method of microwave ceramic-polymer composite
US10272467B2 (en) 2013-08-22 2019-04-30 Komico Co., Ltd. Aerosol coating method and plasma-resistant member formed by the same
JP2018202848A (en) * 2016-09-14 2018-12-27 Toto株式会社 Composite structure
CN108957026A (en) * 2018-05-23 2018-12-07 安徽工业大学 A kind of critical ball rebound velocity measuring device and method of hot fly ash granule
CN108957026B (en) * 2018-05-23 2020-07-03 安徽工业大学 Device and method for measuring critical rebound velocity of thermal-state fly ash particles
WO2023042066A1 (en) 2021-09-16 2023-03-23 Ricoh Company, Ltd. Powder, laminate using the same, and method of manufacturing laminate

Similar Documents

Publication Publication Date Title
KR101110371B1 (en) Plasma resistant crystal ceramic coating film and manufacturing method of the same
JP4643478B2 (en) Manufacturing method of ceramic covering member for semiconductor processing equipment
JP5571152B2 (en) Manufacturing method of sputtering target
US7455881B2 (en) Methods for coating a magnesium component
KR20060071315A (en) Laser enhancements of cold sprayed deposits
JP2013532770A (en) Thermal spray composite coating for semiconductor applications
JP2008081775A (en) Method for forming alumina coating film
Khanna et al. Development of CoNiCrAlY oxidation resistant hard coatings using high velocity oxy fuel and cold spray techniques
KR20100011576A (en) Plasma-resistant ceramic coated substrate
JP2008056948A (en) Pretreatment method for ceramic fine particle
JP5605901B2 (en) Method for repairing metal material by cold spray method, method for producing powder material for cold spray, and cold spray film
JP2005344171A (en) Raw material powder for film deposition, and film deposition method using the same
KR101043588B1 (en) Method Of Forming Ceramic Coating Layer having the Resistant Plasma
JP5649026B2 (en) Method for forming zirconia film
JP3897623B2 (en) Composite structure manufacturing method
KR20130089408A (en) Coating material for thermal spray using ceramic composite materials and fabrication method and coating method therof
JP2008111154A (en) Method for forming coating film
Sammaiah et al. Effect of heat treatment & machining process for deposition of Al2O3 nano particles on steel
Mantry et al. Parametric appraisal of process parameters for adhesion of plasma sprayed nanostructured YSZ coatings using taguchi experimental design
JP5649023B2 (en) Method for forming zirconia film
JP2008277862A (en) Electrostatic chuck and manufacturing method therefor
CN116060612B (en) Spherical yttrium oxyfluoride-based powder, preparation method thereof and yttrium oxyfluoride-based coating
JP5649028B2 (en) Method for forming zirconia film
JP2008069399A (en) Film deposition method
JP2007254826A (en) Apparatus and method for depositing coating film