JP2008056844A - Method for producing polycarbonate having vegetable-originated component - Google Patents

Method for producing polycarbonate having vegetable-originated component Download PDF

Info

Publication number
JP2008056844A
JP2008056844A JP2006237550A JP2006237550A JP2008056844A JP 2008056844 A JP2008056844 A JP 2008056844A JP 2006237550 A JP2006237550 A JP 2006237550A JP 2006237550 A JP2006237550 A JP 2006237550A JP 2008056844 A JP2008056844 A JP 2008056844A
Authority
JP
Japan
Prior art keywords
polycarbonate
reaction
producing
formula
carbonic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006237550A
Other languages
Japanese (ja)
Other versions
JP5054342B2 (en
Inventor
Akimichi Oda
顕通 小田
Takanori Miyoshi
孝則 三好
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2006237550A priority Critical patent/JP5054342B2/en
Publication of JP2008056844A publication Critical patent/JP2008056844A/en
Application granted granted Critical
Publication of JP5054342B2 publication Critical patent/JP5054342B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyesters Or Polycarbonates (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a polycarbonate having a vegetable-originated component and having high heat resistance and mechanical properties with a two tank type reactor. <P>SOLUTION: The method for producing the polycarbonate containing ether diol residues represented by formula (1) by a melt-polycondensation method using a carbonic diester with two tank type reactor comprising the first reaction tank having a distillation tower, a stirring device and a water-cooling condenser, and the second reaction tank having a distillation pipe not having a refluxing function, a stirring device, and a polymer extruding port, is characterized by transferring the reaction solution to the second reaction layer, after the distillation amount of a hydroxyl compound produced in the reaction process in the first reaction tank reaches to the range of 60 to 93% of a theoretical distillation amount. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は植物由来成分を含有し、さらに高度な耐熱性と機械物性を有するポリカーボネートの製造方法に関する。さらに詳しくは、二槽式反応装置を用いて植物由来のジオール成分を有するポリカーボネートを炭酸ジエステルを用いて製造する際に、重縮合生成物である炭酸ジエステル由来のモノヒドロキシ化合物の第一反応槽での留出量が基準の範囲内に到達した時点で反応液を第二反応槽へと送液することにより高度な耐熱性と機械物性を有するポリカーボネートを製造する方法に関する。   The present invention relates to a method for producing a polycarbonate containing plant-derived components and further having high heat resistance and mechanical properties. More specifically, when a polycarbonate having a diol component derived from a plant is produced using a diester carbonate using a two-tank reactor, the first reaction tank for the monohydroxy compound derived from the diester carbonate is a polycondensation product. The present invention relates to a method for producing a polycarbonate having high heat resistance and mechanical properties by feeding a reaction solution to a second reaction tank when the amount of the distillate reaches within a standard range.

ポリカーボネート樹脂は透明性、耐熱性、耐衝撃性に優れており、現在、電気・電子分野、自動車分野、光学部品分野、その他の工業分野で広く使用されている。しかしながら一般的に用いられている芳香族ポリカーボネート樹脂は石油資源から得られる原料を用いて製造されているため、石油資源の枯渇や廃棄物の焼却処理に伴い発生する二酸化炭素による地球温暖化が懸念されている昨今においては好ましい材料とは言えず、より環境負荷が小さく、リサイクル性に優れた材料が待たれる。   Polycarbonate resins are excellent in transparency, heat resistance, and impact resistance, and are currently widely used in the electrical / electronic field, automobile field, optical part field, and other industrial fields. However, since commonly used aromatic polycarbonate resins are manufactured using raw materials obtained from petroleum resources, there is concern about global warming due to carbon dioxide generated due to exhaustion of petroleum resources and waste incineration. In recent years, it is not a preferable material, and a material with a smaller environmental load and excellent recyclability is awaited.

このような問題に対処するために植物由来原料からなるポリカーボネートの研究も行われている(特許文献1)。かかる樹脂の製造方法としては、植物由来エーテルジオールおよび脂肪族ジオールと炭酸ジエステルとのエステル交換反応(溶融重縮合法)が用いられており、溶融重縮合法はジヒドロキシ化合物にホスゲンを直接反応させる方法(界面重縮合)に比べて有毒なホスゲンや、メチレンクロリド等のハロゲン化合物を溶媒として使用する問題が無く、安価にポリカーボネートを製造できる。   In order to cope with such a problem, research on polycarbonate made of plant-derived materials has also been conducted (Patent Document 1). As a method for producing such a resin, a transesterification reaction (melt polycondensation method) between a plant-derived ether diol and an aliphatic diol and a carbonic acid diester is used, and the melt polycondensation method is a method in which phosgene is directly reacted with a dihydroxy compound. Compared with (interfacial polycondensation), there is no problem of using a toxic phosgene or a halogen compound such as methylene chloride as a solvent, and polycarbonate can be produced at a low cost.

しかしながらこのようなポリカーボネートの製造においてはフラスコ等を用いた比較的小スケールでの重合方法が開示されているのみであり、実用に際してのスケールアップ時に用いられる二槽またはそれ以上の多槽式の反応装置での重合方法については述べられていない。
国際公開第2004/111106号パンフレット
However, in the production of such a polycarbonate, only a relatively small scale polymerization method using a flask or the like is disclosed, and two or more multi-tank reactions used for scale-up in practical use are disclosed. There is no mention of a polymerization process in the apparatus.
International Publication No. 2004/111106 Pamphlet

本発明の目的は、上記従来技術のこれらの問題点を解決し、二槽式反応装置を用いて高度な耐熱性と機械物性を有する植物由来成分を有するポリカーボネートを製造する方法を提供することである。本発明者らは鋭意研究の結果、炭酸ジエステル由来の重縮合生成物であるモノヒドロキシ化合物の第一反応槽での留出量が基準の範囲内に到達した時点で反応液を第二反応槽へと送液することにより上記目的が達成されることを発見し本発明を完成するに至った。   The object of the present invention is to solve these problems of the prior art described above and to provide a method for producing a polycarbonate having plant-derived components having high heat resistance and mechanical properties using a two-tank reactor. is there. As a result of diligent research, the present inventors determined that the reaction liquid was added to the second reaction tank when the dihydroxyl amount of the monohydroxy compound, which is a polycondensation product derived from carbonic acid diester, reached the standard range. The present invention was completed by discovering that the above-mentioned object was achieved by feeding the solution into the liquid.

空冷または水冷還流カラムよりなる蒸留塔、撹拌装置および水冷コンデンサを備えた第一反応槽と、還流機能を有さない留出管、撹拌装置、ポリマー吐出口を備えた第二反応槽からなる二槽式の反応装置を用いて下記式(1)

Figure 2008056844
(R〜Rはそれぞれ独立に水素原子、アルキル基、シクロアルキル基またはアリール基)
で表されるエーテルジオール残基を含んで成り、全ジオール残基中式(1)で表されるエーテルジオール残基が40〜100モル%を占めるポリカーボネートを炭酸ジエステルを重合原料として用いて溶融重縮合法により製造する際に、反応過程で生成した炭酸ジエステル由来のモノヒドロキシ化合物について、第一反応槽での当該モノヒドロキシ化合物留出量が理論留出量の60〜93%の範囲に達した後に第二反応層へと反応液を送液することを特徴とするポリカーボネートの製造方法である。 A first reaction tank equipped with a distillation tower comprising an air-cooled or water-cooled reflux column, a stirrer and a water-cooled condenser, and a second reaction tank equipped with a distillation pipe having no reflux function, a stirrer, and a polymer outlet. Using the tank type reactor, the following formula (1)
Figure 2008056844
(R 1 to R 4 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group)
Polycarbonate containing an ether diol residue represented by the formula (1) and having 40 to 100 mol% of the ether diol residue represented by the formula (1) is melt-decompressed using a carbonic acid diester as a polymerization raw material. When the monohydroxy compound derived from the carbonic acid diester produced in the reaction process is produced by the legal method, after the monohydroxy compound distillate amount in the first reaction tank reaches the range of 60 to 93% of the theoretical distillate amount. It is a manufacturing method of the polycarbonate characterized by sending a reaction liquid to the 2nd reaction layer.

本発明によれば、二槽式反応装置を用いて高度な耐熱性と機械物性を有する植物由来成分を有するポリカーボネートを製造することができる。   According to the present invention, a polycarbonate having a plant-derived component having high heat resistance and mechanical properties can be produced using a two-tank reactor.

以下に、本発明を実施するための形態につき詳細に説明する。尚、これらの実施例および説明は本発明を例示するものであり、本発明の範囲を制限するものではない。本発明の趣旨に合致する限り他の実施の形態も本発明の範疇に属し得ることは言うまでもない。   Hereinafter, embodiments for carrying out the present invention will be described in detail. In addition, these Examples and description illustrate the present invention, and do not limit the scope of the present invention. It goes without saying that other embodiments may belong to the category of the present invention as long as they match the gist of the present invention.

本発明にかかる製造方法は、空冷または水冷還流カラムよりなる蒸留塔、撹拌装置および水冷コンデンサを備えた第一反応槽と、還流機能を有さない留出管、撹拌装置、ポリマー吐出口を備えた第二反応槽からなる二槽式の反応装置を用いて下記式(1)

Figure 2008056844
(R〜Rはそれぞれ独立に水素原子、アルキル基、シクロアルキル基またはアリール基)
で表されるエーテルジオール残基を含んで成り、全ジオール残基中式(1)で表されるエーテルジオール残基が40〜100モル%を占めるポリカーボネートを炭酸ジエステルを重合原料として溶融重縮合法により製造する際に、反応過程で生成した炭酸ジエステル由来のモノヒドロキシ化合物について、第一反応槽での当該モノヒドロキシ化合物留出量が理論留出量の60〜93%の範囲に達した後、第二反応層へと反応液を送液することを特徴とするポリカーボネートの製造方法である。 The production method according to the present invention comprises a distillation column comprising an air-cooled or water-cooled reflux column, a first reaction tank equipped with a stirring device and a water-cooled condenser, a distillation pipe having no reflux function, a stirring device, and a polymer discharge port. The following formula (1) using a two-tank reactor comprising the second reactor
Figure 2008056844
(R 1 to R 4 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group)
Polycarbonate containing an ether diol residue represented by the formula (1), wherein the ether diol residue represented by the formula (1) occupies 40 to 100 mol% is obtained by a melt polycondensation method using a carbonic acid diester as a polymerization raw material. When the monohydroxy compound derived from the carbonic acid diester produced in the reaction process is produced, after the monohydroxy compound distillate amount in the first reaction tank reaches the range of 60 to 93% of the theoretical distillate amount, A method for producing a polycarbonate, comprising feeding a reaction solution to two reaction layers.

ポリカーボネート樹脂の公知の製造方法としては、主としてジヒドロキシ化合物のアルカリ水溶液とホスゲンを有機溶媒の存在下反応させるホスゲン法、又はジヒドロキシ化合物と炭酸ジエステルをエステル交換触媒の存在下高温・高真空下で溶融重縮合反応させる溶融重縮合法が挙げられる。このうち溶融重縮合法は、エステル交換触媒と高温・高真空を必要とするプロセスであるが、ホスゲン法に比較して経済的であり、更に塩素原子を実質的に含まないポリカーボネート樹脂が得られる利点がある。本発明においても溶融重縮合法により上記ポリカーボネートを製造するのが好ましい。   Known methods for producing polycarbonate resins include the phosgene method in which an alkaline aqueous solution of a dihydroxy compound and phosgene are reacted in the presence of an organic solvent, or the melt weight of a dihydroxy compound and a carbonic acid diester in the presence of a transesterification catalyst under high temperature and high vacuum. Examples thereof include a melt polycondensation method in which a condensation reaction is performed. Among them, the melt polycondensation method is a process that requires a transesterification catalyst and a high temperature / high vacuum, but is more economical than the phosgene method, and can further obtain a polycarbonate resin substantially free of chlorine atoms. There are advantages. Also in the present invention, it is preferable to produce the polycarbonate by a melt polycondensation method.

本発明の製造方法では、好ましくは重合触媒の存在下、原料であるジオールと炭酸ジエステルとを不活性ガス気流下で溶融させた後減圧下で280℃以下の温度で加熱しながら撹拌して、生成するフェノール等の芳香族モノヒドロキシ化合物または脂肪族モノヒドロキシ化合物を留出させる。反応系は窒素など、原料、反応混合物に対し不活性なガスの雰囲気に保つことが好ましい。窒素以外の不活性ガスとしては、アルゴンなどを挙げることができる。   In the production method of the present invention, preferably, the raw material diol and carbonic acid diester are melted under an inert gas stream in the presence of a polymerization catalyst, and then stirred while heating at a temperature of 280 ° C. or lower under reduced pressure. Aromatic monohydroxy compounds such as phenol or aliphatic monohydroxy compounds are distilled off. The reaction system is preferably maintained in an atmosphere of a gas inert to the raw materials and reaction mixture, such as nitrogen. Examples of inert gases other than nitrogen include argon.

反応初期に常圧で加熱反応させることが好ましい。これはオリゴマー化反応を進行させ、反応後期に減圧してフェノール等の芳香族モノヒドロキシ化合物または脂肪族モノヒドロキシ化合物を留去する際、未反応のモノマーが留出してモルバランスが崩れ、重合度が低下することを防ぐためである。本発明にかかる製造方法においては芳香族モノヒドロキシ化合物または脂肪族モノヒドロキシ化合物を適宜系(反応器)から除去することにより反応を進めることができる。そのためには、反応後期には減圧することが効果的であり、好ましい。   It is preferable to carry out the heating reaction at normal pressure at the beginning of the reaction. This proceeds the oligomerization reaction, and when the aromatic monohydroxy compound such as phenol or the aliphatic monohydroxy compound is distilled off in the latter stage of the reaction to distill off the unreacted monomer, the molar balance is lost, and the polymerization degree is lost. It is for preventing that falls. In the production method according to the present invention, the reaction can proceed by appropriately removing the aromatic monohydroxy compound or the aliphatic monohydroxy compound from the system (reactor). For this purpose, it is effective and preferable to reduce the pressure in the late stage of the reaction.

本発明の製造方法において、ジオールの分解を抑え、着色が少なく高粘度の樹脂を得るために、できるだけ低温の条件を用いることが好ましいが、重合反応を適切に進めるためには重合温度は180℃以上280℃以下の範囲であることが好ましく、反応後期の重合温度はより好ましくは230〜260℃の範囲である。   In the production method of the present invention, in order to suppress decomposition of the diol and obtain a highly viscous resin with little coloration, it is preferable to use conditions as low as possible, but the polymerization temperature is 180 ° C. in order to proceed the polymerization reaction appropriately. The temperature is preferably in the range of 280 ° C. or lower, and the polymerization temperature in the late reaction is more preferably in the range of 230 to 260 ° C.

本発明にかかる反応装置は第一および第二の反応槽よりなり、このうち第一反応槽は空冷または水冷還流カラムよりなる蒸留塔、撹拌装置および水冷コンデンサを具備していることが好ましい。蒸留塔およびコンデンサに冷却機能が付与されていない場合はポリカーボネートの溶融重縮合の際に副生物として生じるモノヒドロキシ化合物のみでなく、モノマーが初期反応中に揮発し、モノマーのモルバランスが崩れ、得られるポリマーの重合度が上がらず、実用に十分な耐熱性と機械物性が得られないため好ましくない。   The reaction apparatus according to the present invention comprises first and second reaction vessels, and among these, the first reaction vessel preferably comprises a distillation tower comprising an air-cooled or water-cooled reflux column, a stirring device, and a water-cooled condenser. If the distillation tower and condenser are not provided with a cooling function, not only the monohydroxy compound produced as a by-product during the melt polycondensation of the polycarbonate, but also the monomer volatilizes during the initial reaction, and the molar balance of the monomer is disrupted. The degree of polymerization of the obtained polymer is not increased, and heat resistance and mechanical properties sufficient for practical use cannot be obtained.

この反応装置を用いて上記のポリカーボネートを製造する際には、第一反応槽でのフェノール留出量が理論留出量の60〜93%の範囲に達した後に第二反応層へと反応液を送液することが好ましい。第一反応槽でのモノヒドロキシ化合物留出量の理論留出量に対する値がこの範囲よりも小さい時点で第二反応槽へと反応液を送液すると、還流機能を有していない第二反応槽において未反応のモノマーやオリゴマーが揮発し、得られるポリマーの重合度が上がらず、実用に十分な耐熱性と機械物性が得られないため好ましくない。また、第一反応槽でのモノヒドロキシ化合物留出量の理論留出量に対する値がこの範囲よりも大きい時点で第二反応槽へと反応液を送液すると、第一反応槽で反応液の粘度が上昇し、第二反応槽へと送液される反応液量および結果的に得られるポリマー量が少なくなり、製造効率が低くなるため好ましくない。本発明の製造方法により得られるポリカーボネート量の理論量に対する収率は35%以上であることが好ましく、40%以上であることがより好ましい。   When the above polycarbonate is produced using this reaction apparatus, the reaction liquid enters the second reaction layer after the phenol distillate amount in the first reaction tank reaches the range of 60 to 93% of the theoretical distillate amount. Is preferably sent. When the reaction liquid is sent to the second reaction tank when the value of the monohydroxy compound distillation volume in the first reaction tank with respect to the theoretical distillation volume is smaller than this range, the second reaction that does not have a reflux function. Unreacted monomers and oligomers volatilize in the tank, the degree of polymerization of the resulting polymer does not increase, and heat resistance and mechanical properties sufficient for practical use cannot be obtained. In addition, when the reaction liquid is fed to the second reaction tank when the value of the monohydroxy compound distillation volume in the first reaction tank with respect to the theoretical distillation volume is larger than this range, The viscosity increases, the amount of the reaction solution sent to the second reaction tank and the resulting polymer amount are reduced, which is not preferable because the production efficiency is lowered. The yield of the amount of polycarbonate obtained by the production method of the present invention is preferably 35% or more, and more preferably 40% or more.

本発明の製造方法により得られるポリカーボネートは、還元粘度が0.40dl/g以上であることが好ましく、より好ましくは0.50dl/g以上であり、さらには0.60dl/g以上であることが好ましい。この範囲内にあるときには良好な溶融流動性を有し、さらには十分な機械強度を有する。   The polycarbonate obtained by the production method of the present invention preferably has a reduced viscosity of 0.40 dl / g or more, more preferably 0.50 dl / g or more, and even more preferably 0.60 dl / g or more. preferable. When it is within this range, it has good melt fluidity and further has sufficient mechanical strength.

本発明で用いるポリカーボネートのガラス転移温度は90℃以上であり、より好ましくは100℃以上である。ガラス転移温度が90℃よりも低くなると実用的に十分な耐熱性と成形性が得られない場合がある。   The glass transition temperature of the polycarbonate used in the present invention is 90 ° C. or higher, more preferably 100 ° C. or higher. When the glass transition temperature is lower than 90 ° C., practically sufficient heat resistance and formability may not be obtained.

本発明により製造されるポリカーボネート中の全ジオール残基中、式(1)で表されるエーテルジオール残基は40〜100モル%である。式(1)で表されるエーテルジオール残基の割合がこの範囲よりも小さくなると、得られる樹脂のガラス転移温度が低くなり耐熱性が低くなり好ましくない。またエーテルジオール残基の割合がこの範囲よりも大きくなると溶融粘度が高くなり高い重合度のポリマーが得られず、また成型加工も困難になるため好ましくない。式(1)で表されるエーテルジオール残基の割合は全ジオール残基中より好ましくは60モル%以上90モル%以下である。   The ether diol residue represented by the formula (1) is 40 to 100 mol% in all diol residues in the polycarbonate produced according to the present invention. When the ratio of the ether diol residue represented by the formula (1) is smaller than this range, the glass transition temperature of the resulting resin is lowered, and the heat resistance is lowered, which is not preferable. On the other hand, if the ratio of the ether diol residue is larger than this range, the melt viscosity becomes high and a polymer having a high polymerization degree cannot be obtained, and the molding process becomes difficult. The ratio of the ether diol residue represented by the formula (1) is preferably 60 mol% or more and 90 mol% or less than the total diol residues.

また、ジオール成分としてエーテルジオール(下記式(2))と脂肪族ジオール(下記式(3))以外のジオール成分を含んでも良い。その他のジオール成分として、シクロヘキサンジオール、シクロヘキサンジメタノールなどの脂環式アルキレンジオール類、ジメタノールベンセン、ジエタノールベンゼンなどの芳香族ジオール、ビスフェノール類などが挙げることができる。   Moreover, you may contain diol components other than ether diol (following formula (2)) and aliphatic diol (following formula (3)) as a diol component. Examples of other diol components include cycloaliphatic alkylene diols such as cyclohexane diol and cyclohexane dimethanol, aromatic diols such as dimethanol benzene and diethanol benzene, and bisphenols.

さらに、本発明の製造方法では、好ましくは下記式(2)で表されるジオール、下記式(3)で表されるジオール、および炭酸ジエステルとから溶融重縮合法によりポリカーボネートを製造する。     Further, in the production method of the present invention, a polycarbonate is preferably produced by a melt polycondensation method from a diol represented by the following formula (2), a diol represented by the following formula (3), and a carbonic acid diester.

Figure 2008056844
Figure 2008056844
(Rは炭素数が2から12である脂肪族基)
Figure 2008056844
Figure 2008056844
(R 5 is an aliphatic group having 2 to 12 carbon atoms)

ここで上記式(1)および(3)におけるRは炭素数が2から12である脂肪族基である。つまり、式(3)で表されるジオール成分としては、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジオール、1,4-シクロヘキサンジメタノールなどが挙げられる。この中でもポリマーの合成において重合度が上がりやすく、またポリマーの物性においても高いガラス転移点を示すといった点で1,3-プロパンジオール、1,4-ブタンジオール、1,6-ヘキサンジオールが好ましく、1,3-プロパンジオールと1,6-ヘキサンジオールがより好ましい。 Here, R 5 in the above formulas (1) and (3) is an aliphatic group having 2 to 12 carbon atoms. That is, as the diol component represented by the formula (3), ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, 1,4- Examples include cyclohexanediol and 1,4-cyclohexanedimethanol. Among these, 1,3-propanediol, 1,4-butanediol, and 1,6-hexanediol are preferable in that the degree of polymerization is easily increased in the synthesis of the polymer, and the glass transition point is high in the physical properties of the polymer. 1,3-propanediol and 1,6-hexanediol are more preferred.

本発明にかかる製造方法では触媒を用いることが好ましい。使用できる触媒は(i)含窒素塩基性化合物、(ii)アルカリ金属化合物および(iii)アルカリ土類金属化合物である。これらは一種類を単独で使用しても、二種類以上を併用してもよいが、(i)と(ii)、(i)と(iii)、(i)と(ii)と(iii)の組み合わせで併用することが好ましい場合が多い。   In the production method according to the present invention, it is preferable to use a catalyst. The catalysts that can be used are (i) nitrogen-containing basic compounds, (ii) alkali metal compounds and (iii) alkaline earth metal compounds. These may be used alone or in combination of two or more, but (i) and (ii), (i) and (iii), (i) and (ii) and (iii) In many cases, it is preferable to use them in combination.

(i)については好ましくはテトラメチルアンモニウムヒドロキシド、(ii)については、重縮合反応を速やかに進行するという点でナトリウム塩類を重合触媒として用いることが好ましく、2,2-ビス(4-ヒドロキシルフェニル)プロパン二ナトリウム塩を用いることがさらに好ましい。   For (i), tetramethylammonium hydroxide is preferred, and for (ii), sodium salts are preferably used as polymerization catalysts in that the polycondensation reaction proceeds rapidly, and 2,2-bis (4-hydroxyl) is preferred. More preferably, phenyl) propane disodium salt is used.

本発明のポリカーボネートの製造方法に用いる炭酸ジエステルとしては、たとえばジフェニルカーボネート、ジナフチルカーボネート、ビス(ジフェニル)カーボネートなどの芳香族系炭酸ジエステルや、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート等の脂肪族系炭酸ジエステルが挙げられる。このような化合物のうち反応性、コスト面から芳香族系炭酸ジエステルを用いることが好ましく、ジフェニルカーボネートを用いることがさらに好ましい。   Examples of the carbonic acid diester used in the polycarbonate production method of the present invention include aromatic carbonic acid diesters such as diphenyl carbonate, dinaphthyl carbonate, and bis (diphenyl) carbonate, and aliphatic carbonic acid such as dimethyl carbonate, diethyl carbonate, and dibutyl carbonate. Diesters may be mentioned. Of these compounds, aromatic carbonic acid diesters are preferably used in terms of reactivity and cost, and diphenyl carbonate is more preferably used.

上記式(1)で表されるエーテルジオール残基を構成するエーテルジオールとしては、具体的には下記式(4)、(5)および(6)で表されるイソソルビド、イソマンニド、イソイディッドなどが挙げられる。これら糖質由来のエーテルジオールは、自然界のバイオマスからも得られる物質で、再生可能資源と呼ばれるものの一つである。イソソルビドはでんぷんから得られるD-グルコースに水添した後、脱水を受けさせることにより得られる。その他のエーテルジオールについても、出発物質を除いて同様の反応により得られる。   Specific examples of the ether diol constituting the ether diol residue represented by the above formula (1) include isosorbide, isomannide and isoidide represented by the following formulas (4), (5) and (6). It is done. These saccharide-derived ether diols are substances obtained from natural biomass and are one of the so-called renewable resources. Isosorbide is obtained by hydrogenating D-glucose obtained from starch and then dehydrating it. Other ether diols can be obtained by the same reaction except for the starting materials.

Figure 2008056844
Figure 2008056844
Figure 2008056844
Figure 2008056844
Figure 2008056844
Figure 2008056844

特に、エーテルジオール残基としてイソソルビドの残基を含んでなるポリカーボネートが好ましい。イソソルビドはでんぷんなどから簡単に作ることがエーテルジオールであり資源として豊富に入手することができる上、イソマンニドやイソイディッドと比べても製造の容易さ、性質、用途の幅広さの全てにおいて優れている。上記式(1)で表されるエーテルジオール残基のうち、イソソルビドの残基は60〜100重量%であることが好ましい。   In particular, a polycarbonate comprising an isosorbide residue as an ether diol residue is preferred. Isosorbide is an ether diol that can be easily produced from starch and the like, and can be obtained in abundant resources. In addition, it is excellent in ease of manufacture, properties, and versatility of use compared to isomannide and isoidide. Of the ether diol residues represented by the above formula (1), the isosorbide residue is preferably 60 to 100% by weight.

本発明にかかる製造方法で得られたポリカーボネートは単独で用いてもよく、また本発明の目的を損なわない範囲で他の熱可塑性樹脂(例えば、ポリアルキレンテレフタレート樹脂、ポリアリレート樹脂、液晶性ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、ポリエーテルイミド樹脂、ポリウレタン樹脂、シリコーン樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリエチレンおよびポリプロピレンなどのポリオレフィン樹脂など)、充填剤(ガラス繊維、炭素繊維、天然繊維、有機繊維、セラミックスファイバー、セラミックビーズ、タルク、クレーおよびマイカなど)、酸化防止剤(ヒンダードフェノール系化合物、イオウ系酸化防止剤など)、難燃添加剤(リン系、ブロモ系など)、紫外線吸収剤(ベンゾトリアゾール系、ベンゾフェノン系、シアノアクリレート系など)、流動改質剤、着色剤、光拡散剤、赤外線吸収剤、有機顔料、無機顔料、離形剤、可塑剤などを添加することができる。   The polycarbonate obtained by the production method according to the present invention may be used alone, or other thermoplastic resin (for example, polyalkylene terephthalate resin, polyarylate resin, liquid crystalline polyester resin as long as the object of the present invention is not impaired). , Polyamide resin, polyimide resin, polyetherimide resin, polyurethane resin, silicone resin, polyphenylene ether resin, polyphenylene sulfide resin, polysulfone resin, polyolefin resin such as polyethylene and polypropylene), filler (glass fiber, carbon fiber, natural fiber) Organic fibers, ceramic fibers, ceramic beads, talc, clay, mica, etc.), antioxidants (hindered phenolic compounds, sulfur antioxidants, etc.), flame retardant additives (phosphorous, bromo, etc.) Add UV absorbers (benzotriazole, benzophenone, cyanoacrylate, etc.), flow modifiers, colorants, light diffusing agents, infrared absorbers, organic pigments, inorganic pigments, release agents, plasticizers, etc. Can do.

また、本発明の樹脂組成物は射出成型や押出成型、ブロー成型などの方法によって、各種成型品(射出成型品、押出成型品、ブロー成型品、フィルム、繊維、シートなど)に加工し利用することができる。   The resin composition of the present invention is processed into various molded products (injection molded products, extrusion molded products, blow molded products, films, fibers, sheets, etc.) by methods such as injection molding, extrusion molding, and blow molding. be able to.

以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。尚、各ポリカーボネートの物性値は以下の手法により評価した。
[還元粘度] フェノール/テトラクロロエタン(体積比50/50)の混合溶媒10mlに対してポリカーボネート120 mgを溶解して得た溶液の35℃における粘度をウデローベ粘度計で測定した。単位はdl(リットル)/gである。
[ガラス転移温度(Tg)] TA instruments社製DSC2920を用いて窒素雰囲気下、昇温速度20℃/分の条件で測定した。
[フェノール留出比率] モノマー仕込み量より算出されるフェノールの理論留出量に対する実際のフェノール留出量の割合を百分率[%]で表記した。
[ポリマー収率] モノマー仕込み量より算出される生成ポリマー量に対する回収ポリマー量の割合を百分率[%]で表記した。
EXAMPLES Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. The physical properties of each polycarbonate were evaluated by the following methods.
[Reduced Viscosity] The viscosity at 35 ° C. of a solution obtained by dissolving 120 mg of polycarbonate in 10 ml of a mixed solvent of phenol / tetrachloroethane (volume ratio 50/50) was measured with a Uderobe viscometer. The unit is dl (liter) / g.
[Glass Transition Temperature (Tg)] Measurement was performed using a DSC2920 manufactured by TA instruments under a nitrogen atmosphere under a temperature increase rate of 20 ° C./min.
[Phenol Distillation Ratio] The ratio of the actual phenol distillate amount to the theoretical phenol distillate amount calculated from the monomer charge amount was expressed as a percentage [%].
[Polymer Yield] The ratio of the recovered polymer amount to the generated polymer amount calculated from the monomer charge amount was expressed as a percentage [%].

[実施例1]
イソソルビド(1240g, 8.50モル)、1,6−ヘキサンジオール(HD,186g, 1.58モル)およびジフェニルカーボネート(2140g, 10.0モル)とを空冷還流カラムよりなる蒸留塔、撹拌装置および水冷コンデンサを備えたSUS316製第一反応槽に入れ、また重合触媒として2,2-ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩(0.681mg, 2.50×10-6モル)およびテトラメチルアンモニウムヒドロキシド(91.2mg, 1.00×10-3モル)を加え窒素雰囲気下180℃で溶融した。攪拌下、反応槽内を100mmHgに減圧し、生成するフェノールを留去しながら約20分間反応させた。次に200℃に昇温した後、フェノールを留去しながら30mmHgまで減圧し、さらに約20分間反応させた。この時点でフェノールの留出量は1.48kg、フェノール理論留出量に対する割合は79%であった。ついで、反応液を還流機能を有さない留出管、撹拌装置、ポリマー吐出口を備えたSUS316製第二反応槽へと送液し、反応槽内を徐々に30mmHgに減圧した後、250℃に昇温した。さらに反応槽内を1.8 mmHgへと到達せしめた。重合の進行は反応液の撹拌に要する電力値の上昇によって確認し、この値が一定になった時点で反応を停止した。得られたポリカーボネートの還元粘度は0.64、回収量は897g、収率は59%であった。結果を表1に示す。
[Example 1]
A distillation column, a stirrer, and an isosorbide (1240 g, 8.50 mol), 1,6-hexanediol (HD, 186 g, 1.58 mol) and diphenyl carbonate (2140 g, 10.0 mol) comprising an air-cooled reflux column It was placed in a first reactor made of SUS316 equipped with a water-cooled condenser, and 2,2-bis (4-hydroxyphenyl) propane disodium salt (0.681 mg, 2.50 × 10 −6 mol) and tetramethyl were used as polymerization catalysts. Ammonium hydroxide (91.2 mg, 1.00 × 10 −3 mol) was added and melted at 180 ° C. in a nitrogen atmosphere. Under stirring, the pressure in the reaction vessel was reduced to 100 mmHg, and the reaction was carried out for about 20 minutes while distilling off the produced phenol. Next, after raising the temperature to 200 ° C., the pressure was reduced to 30 mmHg while distilling off phenol, and the reaction was further continued for about 20 minutes. At this time, the amount of phenol distilled was 1.48 kg, and the ratio to the theoretical phenol distillate amount was 79%. Next, the reaction solution was fed to a second reaction vessel made of SUS316 equipped with a distillation tube having no reflux function, a stirrer, and a polymer discharge port, and the pressure inside the reaction vessel was gradually reduced to 30 mmHg, and then 250 ° C. The temperature was raised to. Furthermore, the inside of the reaction tank was reached to 1.8 mmHg. The progress of the polymerization was confirmed by an increase in the power value required for stirring the reaction solution, and the reaction was stopped when this value became constant. The reduced viscosity of the obtained polycarbonate was 0.64, the recovered amount was 897 g, and the yield was 59%. The results are shown in Table 1.

[実施例2]
モノマー仕込み量をイソソルビド(1280g, 8.75モル)、1,6−ヘキサンジオール(155g, 1.31モル)およびジフェニルカーボネート(2140g, 10.0モル)とし、第一反応槽でのフェノールの留出量1.60kg、フェノール理論留出量に対する割合が85%となった時点で反応液を第二反応槽へと送液し、最終的な反応槽内圧力が0.6 mmHgである以外は実施例1と同様の操作でポリカーボネートを製造した。得られたポリカーボネートの還元粘度は0.60、回収量は930g、収率は55%であった。結果を表1に示す。
[Example 2]
The monomer charge was isosorbide (1280 g, 8.75 mol), 1,6-hexanediol (155 g, 1.31 mol) and diphenyl carbonate (2140 g, 10.0 mol). The reaction solution was fed to the second reaction tank at a time when the output amount was 1.60 kg and the ratio to the theoretical phenol distillate amount was 85%, and the final reaction tank internal pressure was 0.6 mmHg. A polycarbonate was produced in the same manner as in Example 1. The polycarbonate obtained had a reduced viscosity of 0.60, a recovered amount of 930 g, and a yield of 55%. The results are shown in Table 1.

[実施例3]
モノマーおよび重合触媒仕込み量をイソソルビド(1020g, 7.00モル)、1,3−プロパンジオール(240g, 3.15モル)、ジフェニルカーボネート(2140g, 10.0モル)、2,2-ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩(0.681mg, 2.50×10-6モル)およびテトラメチルアンモニウムヒドロキシド(18.2mg, 2.00×10-4モル)とし、第一反応槽でのフェノールの留出量1.70kg、フェノール理論留出量に対する割合が90%となった時点で反応液を第二反応槽へと送液し、最終的な反応槽内圧力が0.6 mmHgである以外は実施例1と同様の操作でポリカーボネートを製造した。得られたポリカーボネートの還元粘度は0.70、回収量は670g、収率は44%であった。結果を表1に示す。
[Example 3]
The amount of monomer and polymerization catalyst charged was isosorbide (1020 g, 7.00 mol), 1,3-propanediol (240 g, 3.15 mol), diphenyl carbonate (2140 g, 10.0 mol), 2,2-bis (4 -Hydroxyphenyl) propane disodium salt (0.681 mg, 2.50 × 10 −6 mol) and tetramethylammonium hydroxide (18.2 mg, 2.00 × 10 −4 mol) in the first reactor When the phenol distillate amount is 1.70 kg and the ratio to the phenol theoretical distillate amount is 90%, the reaction solution is sent to the second reaction vessel, and the final reaction vessel pressure is 0.6 mmHg. Except for the above, polycarbonate was produced in the same manner as in Example 1. The polycarbonate obtained had a reduced viscosity of 0.70, a recovered amount of 670 g, and a yield of 44%. The results are shown in Table 1.

[実施例4]
モノマーおよび重合触媒の仕込み量をイソソルビド(1280g, 8.75モル)、1,3−プロパンジオール(285g, 3.75モル)、ジフェニルカーボネート(2700g, 12.6モル)、2,2-ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩(5.11mg, 1.88×10-5モル)およびテトラメチルアンモニウムヒドロキシド(114mg, 1.25×10-3モル)とし、第一反応槽でのフェノールの留出量2.13kg、フェノール理論留出量に対する割合が91%となった時点で反応液を第二反応槽へと送液し、最終的な反応槽内圧力が0.45 mmHgである以外は実施例1と同様の操作でポリカーボネートを製造した。得られたポリカーボネートの還元粘度は0.57、回収量は1060g、収率は55%であった。結果を表1に示す。
[Example 4]
The amount of monomer and polymerization catalyst charged was isosorbide (1280 g, 8.75 mol), 1,3-propanediol (285 g, 3.75 mol), diphenyl carbonate (2700 g, 12.6 mol), 2,2-bis ( 4-hydroxyphenyl) propane disodium salt (5.11 mg, 1.88 × 10 −5 mol) and tetramethylammonium hydroxide (114 mg, 1.25 × 10 −3 mol) and phenol in the first reactor When the ratio of the amount of distillate to 2.13 kg and the ratio to the theoretical phenol distillate amount is 91%, the reaction solution is fed to the second reaction vessel, and the final pressure in the reaction vessel is 0.45 mmHg. Except for the above, polycarbonate was produced in the same manner as in Example 1. The polycarbonate obtained had a reduced viscosity of 0.57, a recovered amount of 1060 g, and a yield of 55%. The results are shown in Table 1.

[比較例1]
モノマーおよび重合触媒の仕込み量をイソソルビド(1280g, 8.75モル)、1,3−プロパンジオール(300g, 3.94モル)、ジフェニルカーボネート(2680g, 12.5モル)、2,2-ビス(4−ヒドロキシフェニル)プロパン二ナトリウム塩(0.851mg, 3.13×10-6モル)およびテトラメチルアンモニウムヒドロキシド(22.8mg, 2.50×10-4モル)とし、第一反応槽でのフェノールの留出量1.29kg、フェノール理論留出量に対する割合が55%となった時点で反応液を第二反応槽へと送液し、最終的な反応槽内圧力が0.6 mmHgである以外は実施例1と同様の操作でポリカーボネートを製造した。得られたポリカーボネートの還元粘度は0.21、回収量は1140g、収率は60%であった。結果を表1に示す。
[Comparative Example 1]
Charges of monomer and polymerization catalyst were isosorbide (1280 g, 8.75 mol), 1,3-propanediol (300 g, 3.94 mol), diphenyl carbonate (2680 g, 12.5 mol), 2,2-bis ( 4-hydroxyphenyl) propane disodium salt (0.851 mg, 3.13 × 10 −6 mol) and tetramethylammonium hydroxide (22.8 mg, 2.50 × 10 −4 mol) in the first reactor When the amount of phenol distillate 1.29 kg and the ratio to the theoretical phenol distillate amount is 55%, the reaction solution is fed to the second reaction vessel, and the final reaction vessel internal pressure is 0.6 mmHg. Except that, polycarbonate was produced in the same manner as in Example 1. The polycarbonate obtained had a reduced viscosity of 0.21, a recovered amount of 1140 g, and a yield of 60%. The results are shown in Table 1.

[比較例2]
第一反応槽でのフェノールの留出量2.23kg、フェノール理論留出量に対する割合が95%となった時点で反応液を第二反応槽へと送液する以外は比較例1と同様の操作でポリカーボネートを製造した。得られたポリカーボネートの還元粘度は0.60、回収量は572g、収率は30%であった。結果を表1に示す。
[Comparative Example 2]
The same as Comparative Example 1 except that the reaction liquid was fed to the second reaction tank when the phenol distillate amount in the first reaction tank was 2.23 kg and the ratio to the theoretical phenol distillate amount was 95%. Polycarbonate was produced by operation. The polycarbonate obtained had a reduced viscosity of 0.60, a recovered amount of 572 g, and a yield of 30%. The results are shown in Table 1.

表1中の実施例1〜3からわかるように二槽式反応装置を用いて植物由来成分を有するポリカーボネートを製造する際に、重縮合生成物であるフェノールの第一反応槽での留出量が基準の範囲内に到達した時点で反応液を第二反応槽へと送液することにより高重合度のポリカーボネートを高収率で得ることができる。   As can be seen from Examples 1 to 3 in Table 1, when a polycarbonate having a plant-derived component is produced using a two-tank reactor, the amount of distillate in the first reactor of phenol as a polycondensation product When reaching the standard range, the reaction solution is fed to the second reaction tank, whereby a polycarbonate having a high degree of polymerization can be obtained in a high yield.

Figure 2008056844
Figure 2008056844

Claims (8)

空冷または水冷還流カラムよりなる蒸留塔、撹拌装置および水冷コンデンサを備えた第一反応槽と、還流機能を有さない留出管、撹拌装置、ポリマー吐出口を備えた第二反応槽からなる二槽式反応装置を用いて下記式(1)
Figure 2008056844
(R〜Rはそれぞれ独立に水素原子、アルキル基、シクロアルキル基またはアリール基)
で表されるエーテルジオール残基を含んで成り、全ジオール残基中式(1)で表されるエーテルジオール残基が40〜100モル%を占めるポリカーボネートを炭酸ジエステルを重合原料として用いて溶融重縮合法により製造する際に、第一反応槽で生成した炭酸ジエステル由来のモノヒドロキシ化合物の留出量が理論留出量の60〜93%に達した後、第二反応層へと反応液を送液することを特徴とするポリカーボネートの製造方法。
A first reaction tank equipped with a distillation tower comprising an air-cooled or water-cooled reflux column, a stirrer and a water-cooled condenser, and a second reaction tank equipped with a distillation pipe having no reflux function, a stirrer, and a polymer outlet. Using the tank reactor, the following formula (1)
Figure 2008056844
(R 1 to R 4 are each independently a hydrogen atom, an alkyl group, a cycloalkyl group or an aryl group)
Polycarbonate containing an ether diol residue represented by the formula (1) and having 40 to 100 mol% of the ether diol residue represented by the formula (1) is melt-decompressed using a carbonic acid diester as a polymerization raw material. When producing by the legal method, after the distillate of the monohydroxy compound derived from the carbonic acid diester produced in the first reaction tank reaches 60 to 93% of the theoretical distillate, the reaction solution is sent to the second reaction layer. A process for producing a polycarbonate, characterized by comprising:
下記式(2)で表されるエーテルジオール、下記式(3)で表される脂肪族ジオール、および炭酸ジエステルとから溶融重縮合法により製造される請求項1に記載のポリカーボネートの製造方法。
Figure 2008056844
Figure 2008056844
(Rは炭素数が2から12である脂肪族基)
The manufacturing method of the polycarbonate of Claim 1 manufactured by the melt polycondensation method from the ether diol represented by following formula (2), the aliphatic diol represented by following formula (3), and carbonic acid diester.
Figure 2008056844
Figure 2008056844
(R 5 is an aliphatic group having 2 to 12 carbon atoms)
重合触媒として2,2-ビス(4-ヒドロキシルフェニル)プロパン二ナトリウム塩を使用することを特徴とする、請求項2に記載のポリカーボネートの製造方法。   The method for producing a polycarbonate according to claim 2, wherein 2,2-bis (4-hydroxylphenyl) propane disodium salt is used as a polymerization catalyst. 炭酸ジエステルとしてジフェニルカーボネートを使用する請求項1〜3のいずれか1項記載のポリカーボネートの製造方法。   The method for producing a polycarbonate according to any one of claims 1 to 3, wherein diphenyl carbonate is used as the carbonic acid diester. 上記式(2)で表されるエーテルジオールとしてイソソルビドを使用する請求項1〜4のいずれかに記載のポリカーボネートの製造方法。   The manufacturing method of the polycarbonate in any one of Claims 1-4 which uses isosorbide as ether diol represented by the said Formula (2). 上記式(3)で表される脂肪族ジオールとして1,3−プロパンジオールまたは1,6−ヘキサンジオールを使用する請求項1〜5のいずれかに記載のポリカーボネートの製造方法。   The method for producing a polycarbonate according to any one of claims 1 to 5, wherein 1,3-propanediol or 1,6-hexanediol is used as the aliphatic diol represented by the formula (3). 請求項1〜6のいずれかに記載の製造方法により製造されたポリカーボネート。   The polycarbonate manufactured by the manufacturing method in any one of Claims 1-6. 請求項1〜7のいずれかに記載の製造方法により製造された、還元粘度が0.40以上であるポリカーボネート。   A polycarbonate produced by the production method according to claim 1 and having a reduced viscosity of 0.40 or more.
JP2006237550A 2006-09-01 2006-09-01 Process for producing polycarbonate having plant-derived components Active JP5054342B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237550A JP5054342B2 (en) 2006-09-01 2006-09-01 Process for producing polycarbonate having plant-derived components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237550A JP5054342B2 (en) 2006-09-01 2006-09-01 Process for producing polycarbonate having plant-derived components

Publications (2)

Publication Number Publication Date
JP2008056844A true JP2008056844A (en) 2008-03-13
JP5054342B2 JP5054342B2 (en) 2012-10-24

Family

ID=39239969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237550A Active JP5054342B2 (en) 2006-09-01 2006-09-01 Process for producing polycarbonate having plant-derived components

Country Status (1)

Country Link
JP (1) JP5054342B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674872B2 (en) 2008-06-17 2010-03-09 Sabic Innovative Plastics Ip B.V. Method of producing high molecular weight polymer
WO2010061926A1 (en) 2008-11-28 2010-06-03 三菱化学株式会社 Method for storing dihydroxy compound to be used as starting material for polycarbonate, method for preparing starting material for polycarbonate and method for producing polycarbonate
JP2011021185A (en) * 2009-06-17 2011-02-03 Mitsubishi Chemicals Corp Method for producing polycarbonate
WO2011065505A1 (en) 2009-11-30 2011-06-03 三菱化学株式会社 Polycarbonate resin and method for producing same
JP2011140645A (en) * 2009-12-11 2011-07-21 Mitsubishi Chemicals Corp Polycarbonate resin
WO2011129377A1 (en) * 2010-04-14 2011-10-20 三菱化学株式会社 Polycarbonate diol, process for producing same, and polyurethane and actinic-energy-ray-curable polymer composition both formed using same
JP2012153886A (en) * 2011-01-07 2012-08-16 Mitsubishi Chemicals Corp Method for producing polycarbonate
WO2012165502A1 (en) 2011-05-30 2012-12-06 三菱化学株式会社 Method for producing polycarbonate polyols, polyurethane using said polycarbonate polyols
US20130202827A1 (en) * 2010-10-20 2013-08-08 Mitsubishi Plastics, Inc. Glittering resin composition and decorated sheet
KR20140010109A (en) 2011-03-31 2014-01-23 미쓰비시 가가꾸 가부시키가이샤 Method for producing polycarbonate, and transparent film
JP2018009277A (en) * 2016-07-05 2018-01-18 三菱ケミカル株式会社 Fiber and fabric

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162522A (en) * 1984-09-03 1986-03-31 Daicel Chem Ind Ltd Production of polycondensation product
JPH0543673A (en) * 1991-08-14 1993-02-23 Kuraray Co Ltd Production of alicyclic hydrocarbon containing polymer
JP2000072868A (en) * 1998-08-28 2000-03-07 Teijin Ltd Production of aromatic polycarbonate resin
JP2001220436A (en) * 2000-02-10 2001-08-14 Mitsubishi Chemicals Corp Method for producing aromatic polycarbonate
WO2004111106A1 (en) * 2003-06-16 2004-12-23 Teijin Limited Polycarbonate and process for producing the same
JP2006028441A (en) * 2004-07-21 2006-02-02 Teijin Ltd Optical film comprising aliphatic polycarbonate

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6162522A (en) * 1984-09-03 1986-03-31 Daicel Chem Ind Ltd Production of polycondensation product
JPH0543673A (en) * 1991-08-14 1993-02-23 Kuraray Co Ltd Production of alicyclic hydrocarbon containing polymer
JP2000072868A (en) * 1998-08-28 2000-03-07 Teijin Ltd Production of aromatic polycarbonate resin
JP2001220436A (en) * 2000-02-10 2001-08-14 Mitsubishi Chemicals Corp Method for producing aromatic polycarbonate
WO2004111106A1 (en) * 2003-06-16 2004-12-23 Teijin Limited Polycarbonate and process for producing the same
JP2006028441A (en) * 2004-07-21 2006-02-02 Teijin Ltd Optical film comprising aliphatic polycarbonate

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7674872B2 (en) 2008-06-17 2010-03-09 Sabic Innovative Plastics Ip B.V. Method of producing high molecular weight polymer
WO2010061926A1 (en) 2008-11-28 2010-06-03 三菱化学株式会社 Method for storing dihydroxy compound to be used as starting material for polycarbonate, method for preparing starting material for polycarbonate and method for producing polycarbonate
EP3409708A1 (en) 2008-11-28 2018-12-05 Mitsubishi Chemical Corporation Method of preparing polycarbonate raw material, and method of producing polycarbonate
JP2011021185A (en) * 2009-06-17 2011-02-03 Mitsubishi Chemicals Corp Method for producing polycarbonate
WO2011065505A1 (en) 2009-11-30 2011-06-03 三菱化学株式会社 Polycarbonate resin and method for producing same
US9382378B2 (en) 2009-11-30 2016-07-05 Mitsubishi Chemical Corporation Polycarbonate resins and processes for producing the same
US9051420B2 (en) 2009-11-30 2015-06-09 Mitsubishi Chemical Corporation Polycarbonate resins and processes for producing the same
EP3520981A1 (en) 2009-11-30 2019-08-07 Mitsubishi Chemical Corporation Polycarbonate resins and processes for producing the same
JP2011140645A (en) * 2009-12-11 2011-07-21 Mitsubishi Chemicals Corp Polycarbonate resin
JP2012072350A (en) * 2010-04-14 2012-04-12 Mitsubishi Chemicals Corp Polycarbonate diol, process for producing the same, and polyurethane and actinic-energy-ray-curable polymer composition both formed using the same
US10907012B2 (en) 2010-04-14 2021-02-02 Mitsubishi Chemical Corporation Polycarbonate diol and producing method thereof, and polyurethane and active energy ray-curable polymer composition both formed using same
WO2011129377A1 (en) * 2010-04-14 2011-10-20 三菱化学株式会社 Polycarbonate diol, process for producing same, and polyurethane and actinic-energy-ray-curable polymer composition both formed using same
US20130202827A1 (en) * 2010-10-20 2013-08-08 Mitsubishi Plastics, Inc. Glittering resin composition and decorated sheet
US10131761B2 (en) * 2010-10-20 2018-11-20 Mitsubishi Chemical Corporation Glittering resin composition and decorated sheet
US8629235B2 (en) 2011-01-07 2014-01-14 Mitsubishi Chemical Corporation Production method of polycarbonate
KR101897839B1 (en) 2011-01-07 2018-10-04 미쯔비시 케미컬 주식회사 Method for producing polycarbonate
EP2662396A4 (en) * 2011-01-07 2016-11-30 Mitsubishi Chem Corp Method for producing polycarbonate
JP2012153886A (en) * 2011-01-07 2012-08-16 Mitsubishi Chemicals Corp Method for producing polycarbonate
KR20140010109A (en) 2011-03-31 2014-01-23 미쓰비시 가가꾸 가부시키가이샤 Method for producing polycarbonate, and transparent film
KR101950530B1 (en) 2011-03-31 2019-02-20 미쯔비시 케미컬 주식회사 Method for producing polycarbonate, and transparent film
WO2012165502A1 (en) 2011-05-30 2012-12-06 三菱化学株式会社 Method for producing polycarbonate polyols, polyurethane using said polycarbonate polyols
JP2018009277A (en) * 2016-07-05 2018-01-18 三菱ケミカル株式会社 Fiber and fabric

Also Published As

Publication number Publication date
JP5054342B2 (en) 2012-10-24

Similar Documents

Publication Publication Date Title
JP5054342B2 (en) Process for producing polycarbonate having plant-derived components
JP5415685B2 (en) Polycarbonate having plant-derived components and process for producing the same
JP6648144B2 (en) A new method for preparing highly transparent and heat resistant polycarbonate esters
JP5170388B2 (en) Polycarbonate and method for producing the same
EP3026074B1 (en) Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor
JP2011132505A (en) Method for producing flame-retardant polyester copolymer and molded article thereof
TW201731909A (en) Polycarbonate resin
WO2014077342A1 (en) Production method for aromatic polycarbonate resin having increased molecular weight
WO2012093693A1 (en) Method for producing polycarbonate
WO1997032916A1 (en) Polycarbonate comprising different kinds of bonding units and process for the preparation thereof
KR101309375B1 (en) Polyester resin composition using biomass extract and method for preparing the same
WO2014077341A1 (en) Aromatic polycarbonate resin composition
JP5042491B2 (en) Method for producing alicyclic epoxy compound and alicyclic epoxy compound
JP2011214015A (en) Polycarbonate resin
JP2011241277A (en) Copolycarbonate
JP5346458B2 (en) Method for producing stabilized polycarbonate using plant-derived ether diol as raw material
JP5751604B2 (en) Method for producing polybutylene terephthalate resin
JP6705287B2 (en) Polyester resin
JP5401897B2 (en) Method for producing polybutylene terephthalate
Zhang Sustainable polycarbonate nanocomposites: impact of production method and composition
KR102004594B1 (en) Polycarbonate copolymer and method of manufacturing the same
CN116113654A (en) Polyester resin and method for producing polyester resin
JP2012201843A (en) Copolycarbonate
KR101586457B1 (en) Method for preparing polyester resin
JP2023529991A (en) Polyester carbonate with a defined proportion of ester groups

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090528

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120703

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120727

R150 Certificate of patent or registration of utility model

Ref document number: 5054342

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3