JP2008056566A - Hypoxic response promoter - Google Patents

Hypoxic response promoter Download PDF

Info

Publication number
JP2008056566A
JP2008056566A JP2004380680A JP2004380680A JP2008056566A JP 2008056566 A JP2008056566 A JP 2008056566A JP 2004380680 A JP2004380680 A JP 2004380680A JP 2004380680 A JP2004380680 A JP 2004380680A JP 2008056566 A JP2008056566 A JP 2008056566A
Authority
JP
Japan
Prior art keywords
amino acid
leucine
isoleucine
valine
hypoxic response
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004380680A
Other languages
Japanese (ja)
Inventor
Hirohisa Tanaka
廣壽 田中
Kenji Takehana
健司 竹鼻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Todai TLO Ltd
Original Assignee
Ajinomoto Co Inc
Todai TLO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc, Todai TLO Ltd filed Critical Ajinomoto Co Inc
Priority to JP2004380680A priority Critical patent/JP2008056566A/en
Priority to PCT/JP2005/024083 priority patent/WO2006070874A1/en
Publication of JP2008056566A publication Critical patent/JP2008056566A/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/185Acids; Anhydrides, halides or salts thereof, e.g. sulfur acids, imidic, hydrazonic or hydroximic acids
    • A61K31/19Carboxylic acids, e.g. valproic acid
    • A61K31/195Carboxylic acids, e.g. valproic acid having an amino group
    • A61K31/197Carboxylic acids, e.g. valproic acid having an amino group the amino and the carboxyl groups being attached to the same acyclic carbon chain, e.g. gamma-aminobutyric acid [GABA], beta-alanine, epsilon-aminocaproic acid or pantothenic acid
    • A61K31/198Alpha-amino acids, e.g. alanine or edetic acid [EDTA]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P33/00Antiparasitic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Obesity (AREA)
  • Hospice & Palliative Care (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biomedical Technology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Endocrinology (AREA)
  • Vascular Medicine (AREA)
  • Virology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Epidemiology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a disease-treating/preventing agent or a food having excellent hypoxic response-promoting activity. <P>SOLUTION: The present invention provides a hypoxic response promoter, a therapeutic or preventive agent for an ischemic disease, a therapeutic agent for a hypoxia-induced dysfunction at high-altitude living and a supplement for high-altitude training, an mTOR-activating agent, an HIF-1α-activating agent or a vascular endothelial growth factor (VEGF) gene and/or an adrenomedullin (ADM) gene expression-inducing agent each containing an amino acid selected from leucine, isoleucine, valine or a mixture thereof. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低酸素応答促進剤、及びこれを含有する医薬組成物に関し、特に医薬品および飲料品の形態で、或は飲食品に含まれた形態でこの薬剤を好適に使用することが出来る。   The present invention relates to a hypoxic response promoter and a pharmaceutical composition containing the same, and in particular, the drug can be suitably used in the form of pharmaceuticals and beverages, or in the form contained in foods and drinks.

細胞は一般に低酸素下に曝されると、細胞内代謝や遺伝子発現の変化などを通じて低酸素に適応し、その障害に備える。こうした遺伝子発現の制御において中心を担うのがHIF-1α(Hypoxia-inducible factor-1α)と呼ばれる転写因子であり、HIF-1αが効率的に活性化されることが、低酸素ストレス応答においてはきわめて重要である(非特許文献1)。酸素分圧が低下すると構成的に発現しているHIF-1αタンパク質の安定性が増し、細胞内のHIF-1αタンパク質量が増加する。核に移行したHIF-1αは、応答遺伝子群の低酸素応答領域に結合し、遺伝子発現を転写レベルで誘導する。HIF-1αタンパク質量の増加は安定性の増加だけでなく翻訳を促進することでも調節されており、そのシグナルカスケードの上流にはmTOR(mammalian target of rapamycin)が関与していると考えられている。例えばインスリン、PDGF(platelet-derived growth factor)、FGF(fibroblast growth factor)などの成長因子は酸素分圧低下に影響なく、HIF-1αのタンパク質分解をともなわないタンパク質量増加を誘導し(非特許文献2、非特許文献3)、その作用はmTOR活性化阻害薬であるラパマイシンによって抑制される。HIF-1αは赤血球産生を調節するエリスロポエチンの転写活性化因子として見出されてきたが、その後、血管内皮細胞増殖因子VEGF、エノラーゼ1、トランスフェリン、アルドラーゼAなどのプロモーター領域にHIF-1αの結合部位が見つかった(非特許文献4)。また、グルコーストランスポーターや解糖系代謝酵素などのエネルギー産生に関わる遺伝子群の発現制御にも関わることが知られている。ラパマイシンはmTORを阻害することにより、HIF-1αの活性化を抑制し、ある種の癌細胞で発現するVEGFなどの発現を抑制することにより、癌細胞への栄養補給を絶ち、抗腫瘍効果を示すことが報告されている(非特許文献5)。アミノ酸は蛋白質の基質となるだけでなく、シグナルとしてmTORを活性化することにより細胞内で蛋白質合成を促進することが広く知られている(非特許文献6など)。ところが、細胞レベルの実験においては、細胞培養液中のアミノ酸濃度を低下させ、mTORの活性が低下するような条件でVEGFの発現が上昇するという報告がなされている(非特許文献7)。一方で、アミノ酸などのmTORを活性化する低分子化合物が、細胞内のHIF-1αの活性化を介して、VEGFなどHIF-1αの標的遺伝子の発現を亢進するかどうかについては知られていない。 In general, when cells are exposed to hypoxia, they adapt to hypoxia through changes in intracellular metabolism and gene expression, and prepare for the damage. The play a central in the regulation of such gene expression is transcriptional factor called HIF-1α (H ypoxia- i nducible f actor-1α), the HIF-l [alpha] is efficiently activated, hypoxic stress response Is extremely important (Non-patent Document 1). When the oxygen partial pressure decreases, the stability of the constitutively expressed HIF-1α protein increases, and the amount of HIF-1α protein in the cell increases. HIF-1α translocated to the nucleus binds to the hypoxic response region of the response gene group and induces gene expression at the transcriptional level. Increase in HIF-l [alpha] protein amount is regulated also by promoting translation not only increased stability and its upstream signaling cascades mTOR (m ammalian t arget o f r apamycin) is involved It is considered. For example, growth factors such as insulin, PDGF (platelet-derived growth factor), and FGF (fibroblast growth factor) have no effect on lowering the oxygen partial pressure, and induce an increase in protein amount without proteolysis of HIF-1α (Non-patent literature) 2, Non-Patent Document 3), its action is suppressed by rapamycin, an mTOR activation inhibitor. HIF-1α has been found as a transcriptional activator of erythropoietin that regulates erythropoiesis. However, HIF-1α binding sites in the promoter regions of vascular endothelial growth factor VEGF, enolase 1, transferrin, aldolase A, etc. Was found (Non-Patent Document 4). It is also known to be involved in the control of the expression of genes involved in energy production such as glucose transporters and glycolytic metabolic enzymes. Rapamycin inhibits the activation of HIF-1α by inhibiting mTOR, and by suppressing the expression of VEGF, etc. expressed in certain cancer cells, it stops nutritional supplementation to cancer cells and has an antitumor effect. It has been reported (Non-Patent Document 5). It is widely known that amino acids not only serve as protein substrates but also promote protein synthesis in cells by activating mTOR as a signal (Non-patent Document 6, etc.). However, in experiments at the cell level, it has been reported that the expression of VEGF increases under the condition that the amino acid concentration in the cell culture medium is decreased and the activity of mTOR is decreased (Non-patent Document 7). On the other hand, it is not known whether low molecular weight compounds that activate mTOR such as amino acids enhance the expression of HIF-1α target genes such as VEGF through the activation of intracellular HIF-1α. .

生体において、動脈硬化や血栓などの原因により虚血状態に陥った臓器、組織において生理的な低酸素応答の結果として血管新生が認められ、虚血状態からの回避を図ろうとするが、一般的にはその効果は不十分なことが多く、何らかの薬剤を用いて血管新生を誘導することが虚血などの低酸素障害における治療法になると考えられている。例えば、VEGFなどの血管新生を誘導する蛋白質製剤による治療やVEGF、HIF-1αの遺伝子治療が検討されている(非特許文献8)。また、血管新生には、HIF-1αを調節した疾患治療法が求められてきている。例えばHIF-1αを高発現させることにより、VEGFやその他の種々の因子が反応して、VEGF単独の因子のみを作用する場合よりも多くの正常な血管系が形成されることが報告されている。このとき、血管新生因子を単独で直接投与した場合に見られる浮腫や炎症、潰瘍や腫瘍は発生せず、HIF-1αの活性化を上げることは生理的な血管新生を誘導できるとされている(非特許文献9)。   In an organism, angiogenesis is observed as a result of a physiological hypoxic response in an organ or tissue that has become ischemic due to causes such as arteriosclerosis or thrombus, and attempts to avoid ischemia are common. In many cases, the effect is insufficient, and it is considered that induction of angiogenesis using any drug is a therapeutic method for hypoxic injury such as ischemia. For example, treatment with a protein preparation that induces angiogenesis such as VEGF, and gene therapy of VEGF and HIF-1α have been studied (Non-patent Document 8). In addition, for angiogenesis, there has been a demand for a disease treatment method that regulates HIF-1α. For example, high expression of HIF-1α has been reported to produce more normal vasculature than when VEGF alone or other various factors react to act alone. . At this time, edema, inflammation, ulcers and tumors seen when an angiogenic factor is directly administered alone do not occur, and increasing HIF-1α activation can induce physiological angiogenesis (Non-patent document 9).

平地生活をしてきた人が低酸素状態である高地生活を始めると、毛細血管の発達、赤血球の増加など低酸素環境における生理変化が起き、高地生活への適応現象が起こる。しかし、短期間で高地に上る、または海抜5000m以上の高地生活になると低酸素による様々な身体障害が現れる。高地の低酸素状態における身体障害を回避するには、高度順化や酸素を供給するなどの対策が採られているが、時間がかかることや酸素ボンベが必要であるなど画期的な解決策がない状況である。また、運動競技において競技者が高地トレーニングを行うことがしばしば見られるが、これは体の各組織への酸素供給量の増加を目的としたトレーニングである。平地においても高地の低酸素を類似する状態に生体を誘導できれば、高地トレーニングや高度順化と同様な効果が期待できると考えられる。   When a person who has lived on a flat ground begins a high-altitude life in a low oxygen state, physiological changes in a low-oxygen environment such as the development of capillaries and an increase in red blood cells occur, and an adaptation phenomenon to the highland life occurs. However, if you climb the highland in a short period of time, or if you become a highland living above 5000m above sea level, various disabilities due to hypoxia will appear. Measures such as high acclimatization and supply of oxygen are taken to avoid physical disabilities in low-oxygen conditions at high altitudes, but groundbreaking solutions such as the need for time and the need for oxygen cylinders There is no situation. In addition, it is often seen that athletes perform high altitude training in athletic competitions, which is training aimed at increasing the amount of oxygen supplied to each body tissue. If the living body can be guided to a state similar to low oxygen in the highland even on flat ground, it is considered that the same effect as highland training and acclimatization can be expected.

上記のような虚血性疾患などの治療や、高地生活への適応、高地トレーニングの効果増強には、低酸素に応答し種々の遺伝子発現を調節するHIF-1αの活性を高めることが必要と考えられる。こうした状況の中で、経口投与が可能で、かつ安全性の高い薬剤により、内在性のHIF-1α遺伝子の活性を上昇させ、VEGFなどの産生を高めることができれば、医療上のメリットは大きいが、これまでに、そのような薬物は知られていない。   In order to treat ischemic diseases as described above, adapt to high altitude life, and enhance the effects of high altitude training, it is necessary to increase the activity of HIF-1α, which regulates the expression of various genes in response to hypoxia It is done. Under these circumstances, if a drug that can be administered orally and has high safety can increase the activity of the endogenous HIF-1α gene and increase the production of VEGF, etc., there are significant medical benefits. To date, no such drug is known.

Semenza GL. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology.Trends Mol Med. 2001 Aug;7(8):345-50Semenza GL.Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology.Trends Mol Med. 2001 Aug; 7 (8): 345-50 Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR)-dependent signaling.FASEB J. 2002 Jun;16(8):771-80Humar R, Kiefer FN, Berns H, Resink TJ, Battegay EJ.Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR) -dependent signaling.FASEB J. 2002 Jun; 16 (8): 771-80 Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway.J Biol Chem. 2002 Aug 2;277(31):27975-81.Treins C, Giorgetti-Peraldi S, Murdaca J, Semenza GL, Van Obberghen E. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase / target of rapamycin-dependent signaling pathway.J Biol Chem. 2002 Aug 2; 277 ( 31): 27975-81. Wenger RH, Gassmann M. Oxygen(es) and the hypoxia-inducible factor-1.Biol Chem. 1997 Jul;378(7):609-16Wenger RH, Gassmann M. Oxygen (es) and the hypoxia-inducible factor-1.Biol Chem. 1997 Jul; 378 (7): 609-16 Nat Med. 2004 ;10(6):594-601Nat Med. 2004; 10 (6): 594-601 Biochem Biophys Res Commun. 2004 Jan 9;313(2):429-36Biochem Biophys Res Commun. 2004 Jan 9; 313 (2): 429-36 Earle KA, Pancholi S, Vernon P, Yudkin JS. Amino acid depletion modulates vascular endothelial growth factor production during the life span of human vascular smooth muscle cells. J Cell Physiol. 1998 Aug; 176(2): 359-64Earle KA, Pancholi S, Vernon P, Yudkin JS. Amino acid depletion modulates vascular endothelial growth factor production during the life span of human vascular smooth muscle cells.J Cell Physiol. 1998 Aug; 176 (2): 359-64 Nature Reviews Drug Discovery 2, 863 -872 (2003), Curr Opin Mol Ther. 2004 Apr;6(2):151-9.Nature Reviews Drug Discovery 2, 863 -872 (2003), Curr Opin Mol Ther. 2004 Apr; 6 (2): 151-9. Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, Arbeit JM. Induction of hypervascularity without leakage or inflammation in transgenic mice over expressing hypoxia-inducible factor-1alpha. Genes Dev. 2001 Oct 1;15(19):2520-32Elson DA, Thurston G, Huang LE, Ginzinger DG, McDonald DM, Johnson RS, Arbeit JM.Induction of hypervascularity without leakage or inflammation in transgenic mice over expressing hypoxia-inducible factor-1alpha.Genes Dev. 2001 Oct 1; 15 (19 ): 2520-32

本発明は、優れた低酸素応答促進活性を有する疾患治療/予防剤または食品を提供することを目的とする。
本発明は、又、虚血性疾患や貧血症の治療及び/または予防剤、及び/又は免疫賦活剤を提供することを目的とする。
本発明は、又、低酸素障害の予防/または治療に用いる医薬品又は食品の有効成分をスクリーニングする方法を提供することを目的とする。
An object of the present invention is to provide a disease treating / preventing agent or food having excellent hypoxic response promoting activity.
Another object of the present invention is to provide an agent for treating and / or preventing ischemic disease and anemia, and / or an immunostimulatory agent.
Another object of the present invention is to provide a method for screening an active ingredient of a pharmaceutical or food used for the prevention / treatment of hypoxic injury.

本発明者らは、上記課題を解決すべく鋭意研究を重ねた結果、特定のアミノ酸、望ましくは特定の分岐鎖アミノ酸が優れた低酸素応答の促進活性、特に転写因子HIF-1α活性化作用を有することを見出し、さらに低酸素応答遺伝子のひとつでありHIF-1αによって活性化されることの知られるVEGFやADMの遺伝子発現を誘導することを見出し、本発明を完成した。
すなわち、本発明は、ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とする低酸素応答促進剤を提供する。
本発明は、又、上記低酸素応答促進剤を含有することを特徴とする虚血性疾患の治療及び/または予防剤、及び/又は免疫賦活剤を提供する。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that a specific amino acid, preferably a specific branched-chain amino acid has an excellent hypoxic response promoting activity, particularly the transcription factor HIF-1α activating action. Further, the present invention was found by inducing gene expression of VEGF and ADM, which is one of the hypoxia responsive genes and is known to be activated by HIF-1α.
That is, the present invention provides a hypoxic response promoter characterized by containing an amino acid selected from leucine, isoleucine, valine or a mixture thereof.
The present invention also provides a therapeutic and / or prophylactic and / or immunostimulatory agent for ischemic disease, characterized by containing the hypoxic response promoter.

本発明は、又、ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とする高地生活低酸素起因障害治療剤又は高地トレーニング補助剤を提供する。。
本発明は、又、下記の各工程を含むことを特徴とする低酸素応答促進剤のスクリーニング方法を提供する。
(1)アミノ酸を含有しない培養液を用いて培養した培養細胞を準備する;
(2)アミノ酸を含有する培養液を用いて培養した培養細胞を準備する;
(3)被験物質を(1)及び(2)の培養細胞に添加する;
(4)(1)及び(2)の培養細胞における正常酸素分圧下および低酸素分圧下でのVEGF遺伝子発現指標を測定し、同等以上のVEGF遺伝子発現指標が得られた被験物質を選択する。
本発明は、又、ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有し、高地トレーニング補助効果を記載したパッケージに包装されたアミノ酸含有薬剤又は食品を提供する。
本発明は、又、ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とするmTORを活性化剤、HIF-1α活性化剤又はVascular Endothelial Growth Factor(VEGF)遺伝子及び/又はadrenomodullin(ADM)遺伝子発現誘導剤を提供する。
The present invention also provides a therapeutic agent for high altitude life hypoxia-induced disorder or a high altitude training aid, comprising an amino acid selected from leucine, isoleucine, valine or a mixture thereof. .
The present invention also provides a method for screening a hypoxic response promoter characterized by including the following steps.
(1) preparing a cultured cell cultured using a culture solution containing no amino acid;
(2) preparing cultured cells cultured using a culture solution containing amino acids;
(3) Add the test substance to the cultured cells of (1) and (2);
(4) The VEGF gene expression index under normoxic partial pressure and low oxygen partial pressure in the cultured cells of (1) and (2) is measured, and a test substance from which an equivalent or higher VEGF gene expression index is obtained is selected.
The present invention also provides an amino acid-containing drug or food that contains an amino acid selected from leucine, isoleucine, valine, or a mixture thereof and is packaged in a package that describes a high altitude training aid effect.
The present invention also provides an mTOR activator, HIF-1α activator or Vascular Endothelial Growth Factor (VEGF) gene characterized in that it comprises an amino acid selected from leucine, isoleucine, valine or a mixture thereof. An adrenomodullin (ADM) gene expression inducer is provided.

本発明の低酸素応答促進剤は、低酸素が原因となる虚血性疾患やその合併症を、低酸素応答の主要な制御因子であるHIF-1αの活性化を介して改善、緩和、回復することができる。また、本発明の薬剤を医薬品として使用できるが、食品として使用することもできる。従って、特に医薬品、食品等の分野において広く本発明を使用することができ、故に本発明はきわめて有用である。   The hypoxic response promoter of the present invention improves, alleviates, and recovers ischemic diseases and their complications caused by hypoxia through the activation of HIF-1α, which is a major regulator of hypoxic response. be able to. Moreover, although the chemical | medical agent of this invention can be used as a pharmaceutical, it can also be used as a foodstuff. Therefore, the present invention can be widely used particularly in the fields of pharmaceuticals, foods and the like, and therefore the present invention is very useful.

本発明の低酸素応答促進剤を含有する虚血性疾患治療剤及び/又は、貧血治療剤及び/又は、免疫賦活剤及び/又は、高地生活低酸素起因障害治療剤及び/又は、高地トレーニング補助剤、又は他の医薬組成物や食品組成物の場合、1製剤あたりではmTOR活性化剤、例えば、ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸、特にロイシンに代表されるアミノ酸などを、例えば、0.000001〜50g程度含有することが好ましい。より好ましくは、1〜10g程度含有するのがよい。ここで、上記アミノ酸として、L-体を用いるのが好ましい。本発明の疾患治療・予防用医薬品又は食品を使用する場合、経口投与、静脈内投与、皮下投与、または筋肉内投与することができるが、簡便性から経口投与が好ましい。投与量は投与する患者の症状、年齢、投与方法によって異なるが、通常0.1〜30g/kg/日である。   Treatment for ischemic disease and / or treatment for anemia and / or immunostimulant and / or treatment for high altitude hypoxia-induced disorder and / or high altitude training aid containing hypoxic response promoter of the present invention In the case of other pharmaceutical compositions and food compositions, an mTOR activator per formulation, for example, an amino acid selected from leucine, isoleucine, valine or a mixture thereof, particularly an amino acid typified by leucine, For example, it is preferable to contain about 0.000001-50g. More preferably, it is good to contain about 1-10g. Here, the L-form is preferably used as the amino acid. When the drug or food for disease treatment / prevention of the present invention is used, it can be administered orally, intravenously, subcutaneously, or intramuscularly. However, oral administration is preferred for convenience. The dose varies depending on the symptoms, age and administration method of the patient to be administered, but is usually 0.1 to 30 g / kg / day.

本発明の治療・予防用医薬品又は食品は常法により製剤化することができる。製剤の形としては注射剤、錠剤、顆粒剤、細粒剤、散剤、カプセル剤、クリーム剤、座剤などが挙げられ、製剤用担体としては、例えば、乳糖、ブドウ糖、D-マンニトール、澱粉、結晶セルロース、炭酸カルシウム、カオリン、デンプン、ゼラチン、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルピロリドン、エタノール、カルボキシメチルセルロース、カルボキシメチルセルロースカルシウム塩、ステアリン酸マグネシウム、タルク、アセチルセルロース、白糖、酸化チタン、安息香酸、パラオキシ安息香酸エステル、デヒドロ酢酸ナトリウム、アラビアゴム、トラガント、メチルセルロース、卵黄、界面活性剤、白糖、単シロップ、クエン酸、蒸留水、エタノール、グリセリン、プロピレングリコール、マクロゴール、リン酸一水素ナトリウム、リン酸二水素ナトリウム、リン酸ナトリウム、ブドウ糖、塩化ナトリウム、フェノール、チメロサール、パラオキシ安息香酸エステル、亜硫酸水素ナトリウム等があり、製剤の形に応じて、本発明の化合物と混合して使用される。また、必ずしも遊離アミノ酸として用いられる必要はなく、無機酸塩、有機酸塩、生体内で加水分解可能なエステル体などの形態で用いてもよい。また、2個以上のロイシンまたは他の分岐鎖アミノ酸、あるいはアミノ酸をペプチド結合させたペプチド類の形態で用いてもよい。ロイシンは、L-体、D-体、及びDL-体何れも使用可能であるが、天然に存在するという観点からL-体が望ましい。また、本発明の低酸素応答促進剤におけるアミノ酸は、服用に際しての体内のアミノ酸インバランスを回避する点から、ロイシン単独よりも、ロイシン、イソロイシン、バリンを適当な配合比で、例えば、ロイシン100質量部あたり、イソロイシンを10〜100質量部、バリンを10〜100質量部混合した分岐鎖アミノ酸が望ましい。本発明の低酸素応答促進剤は、アミノ酸単独であってもよいが、一般的な食品と共に含有していてもよい。   The therapeutic / preventive pharmaceutical or food of the present invention can be formulated by a conventional method. Examples of the form of the preparation include injections, tablets, granules, fine granules, powders, capsules, creams, suppositories, etc. Examples of the carrier for the preparation include lactose, glucose, D-mannitol, starch, Crystalline cellulose, calcium carbonate, kaolin, starch, gelatin, hydroxypropylcellulose, hydroxypropylmethylcellulose, polyvinylpyrrolidone, ethanol, carboxymethylcellulose, carboxymethylcellulose calcium salt, magnesium stearate, talc, acetylcellulose, sucrose, titanium oxide, benzoic acid, P-hydroxybenzoate, sodium dehydroacetate, gum arabic, tragacanth, methylcellulose, egg yolk, surfactant, sucrose, simple syrup, citric acid, distilled water, ethanol, glycerin, propylene glycol , Macrogol, sodium monohydrogen phosphate, sodium dihydrogen phosphate, sodium phosphate, glucose, sodium chloride, phenol, thimerosal, p-hydroxybenzoate, sodium bisulfite, etc. Used in admixture with the compounds of the invention. Moreover, it does not necessarily need to be used as a free amino acid, and may be used in the form of an inorganic acid salt, an organic acid salt, an ester that can be hydrolyzed in vivo, or the like. Further, it may be used in the form of two or more leucine or other branched chain amino acids, or peptides in which amino acids are peptide-bonded. Leucine can be used in any of the L-form, D-form, and DL-form, but the L-form is desirable from the viewpoint that it exists in nature. Further, the amino acid in the hypoxic response promoter of the present invention avoids amino acid imbalance in the body at the time of taking, so that leucine, isoleucine, and valine are mixed in an appropriate mixing ratio rather than leucine alone, for example, 100 mass of leucine. A branched chain amino acid in which 10 to 100 parts by mass of isoleucine and 10 to 100 parts by mass of valine are mixed per part is desirable. The hypoxic response promoter of the present invention may be an amino acid alone or may be contained with a general food.

上記本発明で使用する有効成分であるアミノ酸の投与量(摂取量)について算出する際、本発明で目的とする各種の疾患異常の治療、予防等の目的で使用される薬剤の有効成分として前記の算定範囲が決められているので、これとは別目的で、例えば通常の食生活の必要から、或は別の疾患の治療目的で、摂取または投与されるアミノ酸についてはこれを前記算定に含める必要はない。
例えば、通常の食生活から摂取される一日あたりのアミノ酸量を前記本発明における有効成分の一日あたりの投与量から控除して算定する必要はない。
次に、実施例により本発明をさらに詳細に述べる。なお、以下の実施例は、本発明を説明するものであって、本発明をこれに限定するものではない。
When calculating the dose (intake amount) of the amino acid, which is an active ingredient used in the present invention, the active ingredient of the drug used for the purpose of treatment, prevention, etc. of various disease abnormalities targeted in the present invention Included in the calculation for amino acids that are ingested or administered for other purposes, such as the need for a normal diet or for the treatment of other diseases. There is no need.
For example, it is not necessary to calculate by deducting the amount of amino acids per day taken from the normal diet from the daily dose of the active ingredient in the present invention.
Next, the present invention will be described in more detail by way of examples. It should be noted that the following examples are illustrative of the present invention and are not intended to limit the present invention.

実施例1:ロイシン及びBCAAによるVEGF遺伝子の発現誘導
<細胞培養及びアミノ酸成分変更培地(RPMI-AA)>
Cell LineはH4IIEを用い、10%牛胎児血清、ペニシリン/ストレプトマイシン添加RPMI1640で継代培養を行った細胞を使用した。実験時に作用させる培地はRPMI1640をベースに全てのアミノ酸を除きグルコース濃度を4.5g/Lに調整した培地(以下PRMI-AAと記す)を用いた。PRMI-AA培地の調整は以下のように行った。予め4XInorganic Slats Soln.と100Xvitamin Soln.を以下のように調整して保存しておき、2段蒸留水にOther Componentと4X Inorganic Salts Soln.を最終濃度1Xになるように添加した。実験条件により、PRMI-AA培地に最終濃度800μMのロイシンを添加した培地を用いた。
Example 1: Induction of VEGF gene expression by leucine and BCAA <Cell culture and amino acid component modified medium (RPMI-AA)>
Cell line used was H4IIE and cells subcultured with 10% fetal bovine serum and RPMI1640 supplemented with penicillin / streptomycin. As a medium to be acted on during the experiment, a medium (hereinafter referred to as PRMI-AA) in which all amino acids were removed based on RPMI1640 and the glucose concentration was adjusted to 4.5 g / L was used. The PRMI-AA medium was adjusted as follows. 4XInorganic Slats Soln. And 100Xvitamin Soln. Were adjusted and stored as follows, and Other Component and 4X Inorganic Salts Soln. Were added to double-stage distilled water to a final concentration of 1X. Depending on the experimental conditions, a medium in which a final concentration of 800 μM leucine was added to the PRMI-AA medium was used.

4XRPMI base Medium (glucose concentration :4.5g/l) AA作成
(components)
Inorganic Salts 4X(500ml分)
Ca(NO3)2・4H2O 200mg
KCl 800mg
MgSO4(anhyd.) 97.68mg
NaCl 12g
NaHCO3 4g
Na2HPO4 (anhyd.) 1.6g
(Other components) 2L分
D-glucose 9g
Glutathione (reduced) 2mg
HEPES 4.76g
Phenol Red 10mg
4XRPMI base Medium (glucose concentration: 4.5g / l) Created by AA
(components)
Inorganic Salts 4X (500ml)
Ca (NO3) 2 · 4H 2 O 200mg
KCl 800mg
MgSO 4 (anhyd.) 97.68mg
NaCl 12g
NaHCO 3 4g
Na 2 HPO 4 (anhyd.) 1.6g
(Other components) 2L
D-glucose 9g
Glutathione (reduced) 2mg
HEPES 4.76g
Phenol Red 10mg

(vitamins) 100X(500ml)
Biotin 10mg
D-Ca Pantothenate 12.5mg
Choline Chloride 150mg
Folic Acid 50mg
i-Inositol 1.75g
Niaciamide 50mg
Para-aminobenzoic acid 50mg
Pyridoxine HCl 50mg
Riboflavin 10mg
Thiamine HCl 50mg
Vitamine B12(100X) 2.5ml
Total 500ml
(vitamins) 100X (500ml)
Biotin 10mg
D-Ca Pantothenate 12.5mg
Choline Chloride 150mg
Folic Acid 50mg
i-Inositol 1.75g
Niaciamide 50mg
Para-aminobenzoic acid 50mg
Pyridoxine HCl 50mg
Riboflavin 10mg
Thiamine HCl 50mg
Vitamine B 12 (100X) 2.5ml
Total 500ml

<細胞への作用>
H4IIE細胞を10cm細胞培養シャーレに80%Confluentになるまで培養し、被検物質であるアミノ酸を添加する15時間前から無血清培地のRPMI1640培地で培養し、更にアミノ酸添加の2時間前よりアミノ酸不含RPMI-AA培地にて培養した。O時間に、ロイシン(800μM:図1)または、BCAA(最終濃度800μMロイシン、400μMイソロイシン、480μMバリン:図2)、またはBCAA以外の必須アミノ酸(リジン、ヒスチジン、アルギニン、トリプトファン、スレオニン、フェニルアラニン、メチオニンを各々の最終濃度が800μM:図3)を添加したRPMI-AA培地に培地交換し、2時間と8時間後に全RNAの抽出を行った。また、ラパマイシン(和光純薬工業)を添加する場合には、ロイシン含有のRPMI-AA培地に交換する30分前に最終濃度100μMとなるように培地中に添加した(図4)。全ての実験はN=4で行い、下記に示す方法によってVEGF遺伝子発現を検討した。
<Action on cells>
Cultivate H4IIE cells in a 10 cm cell culture dish to 80% Confluent, culture in serum-free RPMI1640 medium for 15 hours before adding the test substance amino acid, and then add amino acid-free from 2 hours before addition of amino acid. The cells were cultured in a RPMI-AA medium. O time, leucine (800 μM: FIG. 1) or BCAA (final concentration 800 μM leucine, 400 μM isoleucine, 480 μM valine: FIG. 2) or essential amino acids other than BCAA (lysine, histidine, arginine, tryptophan, threonine, phenylalanine, methionine) The medium was replaced with RPMI-AA medium supplemented with a final concentration of 800 μM (FIG. 3), and total RNA was extracted after 2 and 8 hours. When rapamycin (Wako Pure Chemical Industries) was added, it was added to the medium so that the final concentration was 100 μM 30 minutes before the replacement with the leucine-containing RPMI-AA medium (FIG. 4). All experiments were performed at N = 4, and VEGF gene expression was examined by the method described below.

<全RNAの精製>
10cm培養シャーレ1枚に対し、1mlのISOGEN(日本ジーン)を加え、ホモジナイズした。次に、200μlのクロロホルムを添加し、軽く攪拌した。室温に2分静置後、15000回転、4℃で10分間遠心し、水槽を回収した。水槽とそれと同等容量のイソプロパノールを加え、室温5分静値後、15000回転、4℃で10分間遠心した。上清を捨て、沈殿したペレットに70%エタノールを加え、 15000回転、4℃で10分間遠心し、ペレットを回収した。ペレットを室温で5分間乾燥させ、DEPC(ジエチルピロガネート)処理水を添加し、ペレットを溶解させた。
<テンプレートの合成>
Taqman PCRに用いるテンプレートのcDNA合成はSuperScript First-Strand Synthesis System for RT-PCR(GIBCO BRL社製)を使用し、実施した。全RNA 500ng、0.5μg/μl Oligo(dT)12-18 1μl、10mMdNTPmix1μlをDEPC処理水に溶解し、全量を10μlとした。65℃で5分間反応後、冷却し、10XRT Buffer 2μl、25mM MgCl2 4μl、0.1M DTT 2μl、RNase inhibitor 1μlを加えて混合した後、42℃、2分間保温し、逆転写酵素SUPERSCRIPT II RT 1μl (50units) を添加した。42℃、50分間、更に70℃、15分間反応させた。
<プライマーの設計>
ヒトVEGF遺伝子、コントロールとしてハウスキーピング遺伝子であるヒトβアクチンについてプライマーを設計した。設計には下記に示す外部データベースPrimer3を用いた。
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
<Purification of total RNA>
1 ml of ISOGEN (Nippon Gene) was added to each 10 cm culture dish and homogenized. Next, 200 μl of chloroform was added and lightly stirred. After standing at room temperature for 2 minutes, the mixture was centrifuged at 15000 rpm at 4 ° C. for 10 minutes, and the water tank was collected. A water bath and an equivalent volume of isopropanol were added, and after standing at room temperature for 5 minutes, it was centrifuged at 15000 rpm at 4 ° C. for 10 minutes. The supernatant was discarded, 70% ethanol was added to the precipitated pellet, and the mixture was centrifuged at 15,000 rpm at 4 ° C. for 10 minutes to collect the pellet. The pellet was dried at room temperature for 5 minutes and DEPC (diethyl pyroganate) treated water was added to dissolve the pellet.
<Composition of template>
The cDNA synthesis of the template used for Taqman PCR was performed using SuperScript First-Strand Synthesis System for RT-PCR (GIBCO BRL). 500 ng of total RNA, 0.5 μg / μl Oligo (dT) 12-18 1 μl, and 10 mM dNTPmix 1 μl were dissolved in DEPC-treated water to make a total volume of 10 μl. After reacting at 65 ° C for 5 minutes, cool, add 10XRT Buffer 2μl, 25mM MgCl 2 4μl, 0.1M DTT 2μl, RNase inhibitor 1μl, mix, then incubate at 42 ° C for 2 minutes, reverse transcriptase SUPERSCRIPT II RT 1μl (50 units) was added. The reaction was carried out at 42 ° C. for 50 minutes and further at 70 ° C. for 15 minutes.
<Primer design>
Primers were designed for the human VEGF gene and human β-actin as a housekeeping gene as a control. The external database Primer3 shown below was used for the design.
http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi

表1にヒトVEGF遺伝子とヒトβアクチンの遺伝子のGenBank番号、遺伝子名、及びプライマー塩基配列を示す。

表1
Table 1 shows the GenBank numbers, gene names, and primer base sequences of human VEGF gene and human β-actin gene.

Table 1

<Taqman PCR (CYBR Green法)反応>
表2に示す組成の反応液をTaqman用PCRチューブ内で混合し、ABI7700 Prism Sequence Dtector においてPCR反応を行った。反応条件は以下の通り行った。
反応条件:50℃2分→95℃10分→(95℃15秒→60℃1分)を40サイクル。
表2
PCR反応液組成(per tube)
テンプレートcDNA(totel RNA 2.5ng相当) 0.1μl
primer soln. (5'-プライマー) 1μl
primer soln. (3'-プライマー) 1μl
dH2O
total 10μl
<Taqman PCR (CYBR Green method) reaction>
The reaction solution having the composition shown in Table 2 was mixed in a PCR tube for Taqman, and PCR reaction was performed in ABI7700 Prism Sequence Dtector. The reaction conditions were as follows.
Reaction conditions: 50 cycles at 50 ° C for 2 minutes → 95 ° C for 10 minutes → (95 ° C for 15 seconds → 60 ° C for 1 minute).
Table 2
PCR reaction solution composition (per tube)
Template cDNA (totel RNA 2.5ng equivalent) 0.1μl
primer soln. (5'-primer) 1μl
primer soln. (3'-primer) 1μl
dH2O
total 10μl

<データ解析>
Taqman PCR反応はそれぞれN=3で行い、その蛍光値からmRNA量のVEGF mRNAの相対量を求めた。その平均値と同サンプルで求めた内部標準コントロールのβアクチン遺伝子のmRNAの相対量との比を比較し、図1〜図4に示した。
<結果>
VEGFの遺伝子発現はロイシンによって誘導され、8時間で約3倍にVEGFのmRNA量の増加が認められた(図1)。ロイシン、イソロイシン、バリンのアミノ酸配合においてもロイシン単独と同様な結果が得られた(図2)。ロイシンを含まないアミノ酸組成では、こうしたVEGF発現の上昇は認められなかった(図3)。また、ロイシンによるVEGF発現の上昇はmTOR阻害剤ラパマイシンの処理により阻害された(図4)。
本実施例により、ロイシンが細胞におけるVEGFのmRNAの発現を上昇させ、また、ロイシン、イソロイシン、バリンを含む配合アミノ酸(BCAA)にも同様な効果が得られることが明確である。また、この作用は、BCAAを除く他の必須アミノ酸には見られず、ロイシンまたはBCAAに特異的な作用であることが示された。更に、ロイシンによるVEGF mRNA量の増加はラパマイシンを作用させることで抑制され、ロイシンによるVEGF発現誘導がmTORの活性化を介した作用であると考えられた。このことから、ロイシンなどのmTORの活性化を引き起こす物質が、VEGFの遺伝子発現を上昇させることは明確である。
<Data analysis>
Each Taqman PCR reaction was performed at N = 3, and the relative amount of VEGF mRNA in mRNA amount was determined from the fluorescence value. The ratio between the average value and the relative amount of β-actin gene mRNA of the internal standard control obtained in the same sample was compared and shown in FIGS.
<Result>
The gene expression of VEGF was induced by leucine, and an increase in the amount of VEGF mRNA was observed about 3 times in 8 hours (FIG. 1). The same results as with leucine alone were obtained in the amino acid combination of leucine, isoleucine, and valine (FIG. 2). Such an increase in VEGF expression was not observed in the amino acid composition containing no leucine (FIG. 3). In addition, the increase in VEGF expression by leucine was inhibited by treatment with the mTOR inhibitor rapamycin (FIG. 4).
According to this example, it is clear that leucine increases the expression of VEGF mRNA in cells, and that the same effect can be obtained with a mixed amino acid (BCAA) containing leucine, isoleucine and valine. This action was not found in other essential amino acids except BCAA, and was shown to be specific to leucine or BCAA. Furthermore, the increase in the amount of VEGF mRNA by leucine was suppressed by the action of rapamycin, and VEGF expression induction by leucine was considered to be an effect through mTOR activation. From this, it is clear that substances that cause the activation of mTOR such as leucine increase the gene expression of VEGF.

蛋白質製剤としてのVEGFの投与やVEGF遺伝子の遺伝子治療により生体内でVEGFの産生を高める試みが、閉塞性動脈硬化症や心不全などの各種の虚血性疾患で試みられており、高い治療効果が得られているため(Nature Reviews Drug Discovery 2, 863 -872 (2003), Curr Opin Mol Ther. 2004 Apr;6(2):151-9.)、アミノ酸のように安全性が高く、経口吸収性の優れた薬剤により生体内で内在性のVEGFの発現を上昇することができれば、低酸素ストレス応答を促進させることにより、細胞死を防ぎ、エネルギー代謝を改善することによって、各種疾患に対する治療効果が得られることは明らかである。   Attempts to increase VEGF production in vivo by administering VEGF as a protein preparation or gene therapy for the VEGF gene have been attempted in various ischemic diseases such as obstructive arteriosclerosis and heart failure, and have achieved high therapeutic effects. (Nature Reviews Drug Discovery 2, 863 -872 (2003), Curr Opin Mol Ther. 2004 Apr; 6 (2): 151-9.) If an excellent drug can increase endogenous VEGF expression in vivo, it promotes a hypoxic stress response, thereby preventing cell death and improving energy metabolism, thereby achieving therapeutic effects on various diseases. It is clear that

実施例2:アミノ酸による低酸素ストレス下におけるHIF-1α蛋白質量の増加
健常人ボランティアの血液中の末梢血単核球細胞(PBMC)よりT細胞を単離培養し、通常酸素濃度下及び低酸素濃度での培養において培地中のアミノ酸が及ぼす、HIF-1α蛋白質量及び、各種mRNAの発現量に及ぼす効果を検討した。PBMCはFicoll-Plaque Plus(アマシャムバイオサイエンス社)を用いた密度勾配遠心法にて単離し、10% heat-inactivated fetal calf serum(FCS)-RPMI1640培地に懸濁、37℃、1時間の培養によって接着細胞を除去した後に、ナイロンウールカラムにて、T細胞に富んだ細胞画分を得た。
種々の酸素濃度での培養は、J.Immunology, 171: 6534-6540(2003)に記載の方法で行い、T細胞刺激は6ウェル培養皿に2x106個/mlの濃度で調節したT細胞を各ウェル4ml加え、30分間静置した後、10nMのPMAあるいは、5ng/mlを抗CD3抗体(UCHT1、BD Pharmingen社)加えることにより行った。
Example 2: Increase in the amount of HIF-1α protein under hypoxic stress by amino acids T cells were isolated and cultured from peripheral blood mononuclear cells (PBMC) in the blood of healthy volunteers, and under normal oxygen concentration and hypoxia The effects of amino acids in the medium on the amount of HIF-1α protein and the expression levels of various mRNAs were examined in culture at a concentration. PBMC was isolated by density gradient centrifugation using Ficoll-Plaque Plus (Amersham Bioscience), suspended in 10% heat-inactivated fetal calf serum (FCS) -RPMI1640 medium, and cultured at 37 ° C for 1 hour. After removing the adherent cells, a cell fraction rich in T cells was obtained using a nylon wool column.
Cultivation at various oxygen concentrations was performed by the method described in J. Immunology, 171: 6534-6540 (2003), and T cell stimulation was performed by adjusting T cells adjusted at a concentration of 2 × 10 6 cells / ml in a 6-well culture dish. After adding 4 ml of each well and allowing to stand for 30 minutes, 10 nM PMA or 5 ng / ml was added by adding an anti-CD3 antibody (UCHT1, BD Pharmingen).

アミノ酸濃度とHIF-1αの発現を検討した実験において、1X培地の組成は100mg/L Ca(NO3)2・4H2O、400mg/L、48.84mg/L MgSO4、6000mg/L NaCl2、 800mg/L NaHPO4、2000mg/L D-Glucose、1mg/Lグルタチオン、にRPMI1640 100Xvitamine solution(Sigma Aldrich)を最終濃度1xに調整されるように加え、各アミノ酸を最終濃度0.40mM Glycine、0.40mM L-Alanine、0.40mM L-Serine、0.80mM L-Threonine、0.26mM L-Cystein 2HCL、0.20mM L-Methionine、8mM L-Glutamine、0.40mM L-Asparagine、0.40mM L-Glutamic Acid、0.80mM L-Aspartic Acid、0.80mM L-Valine、0.8mM L-leucine、0.80mM L-Isoleucine、0.80mM L-Phenylalanine、L-Tyrosine・2Na・2H2O 0.08mM L-Tryptophan、1.00mM L-Lysine-HCl、0.48mM L-Arginine-HCl、0.27mM L-Histidine HCl-H2O、0.4mM L-Prolineに加えたものである。この培地のアミノ酸濃度を1Xと定義し、1/2X、1/4X、2X、3X、4X培地を調整した。また、アミノ酸除去培地(-AA)は上記のすべてのアミノ酸を除いた培地である。BCAA除去培地(-BCAA)は上記の1X培地よりValine、Leucine、Isoleucineを、ロイシン除去培地(-LEU)は上記の1X培地よりLeucineを除いた培地である。実際の実験は、10% heat-inactivated fetal calf serum(FCS)、100 unit/mlペニシリンおよび100 μg/mlのストレプトマイシンを各培地に加えて行った。アミノ酸除去刺激はRPMI1640で2x106個/mlの濃度で培養したT細胞を回収し、遠心して上清を除去後、さらにPBSで1回洗浄し、各アミノ酸組成の異なる培地で調整した。
各種の条件で細胞を18時間培養後、全細胞抽出液を調整しHIF-1αに特異的抗体(Ab463:Abcam社)、リン酸化S6K特異的抗体、リン酸化eIF2α抗体、リン酸化Akt特異的抗体などの各種抗体(Cell Signaling Technology社)を用いてイムノブロットを行った。また、総RNA抽出液を調整しそれぞれのmRNAに特異的なプライマーを用いて、J.Immunology, 171: 6534-6540(2003)に記載の方法によりRT-PCR法で検出した。
In the experiment examining the amino acid concentration and the expression of HIF-1α, the composition of the 1X medium was 100 mg / L Ca (NO 3 ) 2 .4H 2 O, 400 mg / L, 48.84 mg / L MgSO 4 , 6000 mg / L NaCl 2 , Add 800 mg / L NaHPO4, 2000 mg / L D-Glucose, 1 mg / L glutathione, RPMI1640 100Xvitamine solution (Sigma Aldrich) to a final concentration of 1x, and add each amino acid to a final concentration of 0.40 mM Glycine, 0.40 mM L- Alanine, 0.40 mM L-Serine, 0.80 mM L-Threonine, 0.26 mM L-Cystein 2HCL, 0.20 mM L-Methionine, 8 mM L-Glutamine, 0.40 mM L-Asparagine, 0.40 mM L-Glutamic Acid, 0.80 mM L-Aspartic Acid, 0.80 mM L-Valine, 0.8 mM L-leucine, 0.80 mM L-Isoleucine, 0.80 mM L-Phenylalanine, L-Tyrosine ・ 2Na ・ 2H 2 O 0.08 mM L-Tryptophan, 1.00 mM L-Lysine-HCl, 0.48 Added to mM L-Arginine-HCl, 0.27 mM L-Histidine HCl-H 2 O, 0.4 mM L-Proline. The amino acid concentration of this medium was defined as 1X, and 1 / 2X, 1 / 4X, 2X, 3X, and 4X media were prepared. The amino acid removal medium (-AA) is a medium excluding all the above amino acids. BCAA-removed medium (-BCAA) is a medium obtained by removing Valine, Leucine, and Isoleucine from the above 1X medium, and leucine-removed medium (-LEU) is a medium obtained by removing Leucine from the above-mentioned 1X medium. The actual experiment was performed by adding 10% heat-inactivated fetal calf serum (FCS), 100 unit / ml penicillin and 100 μg / ml streptomycin to each medium. For amino acid removal stimulation, T cells cultured at a concentration of 2 × 10 6 cells / ml with RPMI 1640 were collected, centrifuged, and the supernatant was removed. The supernatant was further washed once with PBS, and adjusted with a medium having a different amino acid composition.
After culturing the cells for 18 hours under various conditions, the whole cell extract is prepared and antibody specific for HIF-1α (Ab463: Abcam), phosphorylated S6K specific antibody, phosphorylated eIF2α antibody, phosphorylated Akt specific antibody Immunoblotting was performed using various antibodies such as Cell Signaling Technology. In addition, the total RNA extract was prepared, and a primer specific for each mRNA was used to detect by RT-PCR method according to the method described in J. Immunology, 171: 6534-6540 (2003).

図5は低酸素濃度下におけるHIF-1α蛋白質の発現量に及ぼす培地中のアミノ酸濃度の影響を検討したものである。図5Aに示すように、通常酸素濃度から低酸素濃度下にすると、2時間後のHIF-1α蛋白質の増加が認められるが、この効果は培地中の全アミノ酸を除去すると失われた。このとき、アミノ酸によるシグナル伝達の下流に存在するS6K1のリン酸化は失われ、アミノ酸飢餓に応答するシグナル伝達の下流に存在するeIF2αのリン酸化が亢進した。さらに、培地中のアミノ酸濃度を様々に変化させると、アミノ酸濃度に依存してHIF-1αの蛋白質量の増加が認められた。このことから、HIF-1α蛋白質の発現にはアミノ酸が必須であることが分かる。
図6は、低酸素(1%酸素分圧)下に、全アミノ酸を含むRPMI1640培地中から、BCAAのみを除去した時(-BCAA)、2時間後のHIF-1α蛋白質量を検討したものである。BCAAのみの除去が、全アミノ酸除去と同等の効果を示したことから、HIF-1α蛋白質の発現には、アミノ酸の中でもBCAAがとりわけ重要あることが分かる。このときに、S6K1のリン酸化も低下したが、Aktのリン酸化には何の影響も与えなかった。
FIG. 5 shows the effect of amino acid concentration in the medium on the expression level of HIF-1α protein under low oxygen concentration. As shown in FIG. 5A, when normal oxygen concentration was changed to low oxygen concentration, an increase in HIF-1α protein after 2 hours was observed, but this effect was lost when all amino acids in the medium were removed. At this time, phosphorylation of S6K1 existing downstream of signal transduction by amino acids was lost, and phosphorylation of eIF2α existing downstream of signal transduction in response to amino acid starvation was enhanced. Furthermore, when the amino acid concentration in the medium was changed variously, an increase in the amount of HIF-1α protein was observed depending on the amino acid concentration. This indicates that amino acids are essential for the expression of HIF-1α protein.
Fig. 6 shows the amount of HIF-1α protein after 2 hours when only BCAA is removed (-BCAA) from RPMI1640 medium containing all amino acids under hypoxia (1% oxygen partial pressure). is there. Since removal of only BCAA showed the same effect as removal of all amino acids, it can be seen that BCAA is particularly important among amino acids for the expression of HIF-1α protein. At this time, phosphorylation of S6K1 was also reduced, but Akt phosphorylation was not affected.

図7は、低酸素(1%酸素分圧)下に、全アミノ酸を含むRPMI1640培地中から、ロイシンのみを除去した時(-LEU)、2時間後の細胞内のHIF-1α蛋白質量を検討したものである。BCAAのみの除去が、全アミノ酸除去と同等の効果を示したことから、HIF-1α蛋白質の発現には、アミノ酸の中でもBCAAが重要であり、さらにはロイシンが最も重要であることが分かる。また、このときに、低酸素処理後18時間にRNAを抽出し、各種mRNA量をRT-PCR法にて検討したところ、HIF-1αの標的遺伝子として知られるadrenomedullin(ADM)遺伝子の転写誘導が、ロイシン除去培地(-LEU)では損なわれていた。
本実施例により、ロイシン、或はロイシン、イソロイシン、バリンを含む配合アミノ酸(BCAA)が低酸素下における細胞でのHIF-1α蛋白質の発現に重要な役割を果たし、HIF-1αの標的遺伝子の発現調節を行うことは明確である。また、この作用は、BCAAを除く他のアミノ酸には見られず、ロイシンまたはBCAAに特異的な作用であることが示された。HIF-1αの標的遺伝子としては例えば、adrenomedullin(ADM)が上げられるが、ADMには強力な血管拡張作用と血圧降下作用が知られるため(Xitamula et a1:Biochem Biophys Res Commun 192,553-560,1993)、ロイシンがHIF-1αの発現増加とそれに引き続く、ADMの発現誘導を介して種々の虚血性疾患ならびに高血圧症の治療に有用であることは明確である。
FIG. 7 shows the amount of intracellular HIF-1α protein after 2 hours when only leucine was removed from RPMI1640 medium containing all amino acids under low oxygen (1% oxygen partial pressure). It is a thing. Since removal of only BCAA showed the same effect as removal of all amino acids, it is understood that BCAA is important among amino acids, and leucine is most important for the expression of HIF-1α protein. At this time, RNA was extracted 18 hours after hypoxia treatment, and various mRNA levels were examined by RT-PCR. As a result, transcription of the adrenomedullin (ADM) gene known as the target gene of HIF-1α was induced. It was impaired in leucine removal medium (-LEU).
According to this example, leucine or a combination amino acid (BCAA) containing leucine, isoleucine, and valine played an important role in the expression of HIF-1α protein in cells under hypoxia, and the expression of the target gene of HIF-1α It is clear to make adjustments. Moreover, this action was not seen in other amino acids except BCAA, and was shown to be specific to leucine or BCAA. As a target gene of HIF-1α, for example, adrenomedullin (ADM) can be raised, but ADM has a strong vasodilatory action and blood pressure lowering action (Xitamula et a1: Biochem Biophys Res Commun 192,553-560,1993) It is clear that leucine is useful for the treatment of various ischemic diseases and hypertension through increased expression of HIF-1α and subsequent induction of ADM expression.

また、HIF-1αの活性化は、末梢組織における活性化T細胞の生存維持に極めて重要な役割を果たすと考えられる(J.Immunology, 171: 6534-6540(2003))。腫瘍免疫や細菌感染に対する免疫などの生体防御機能をT細胞が果たすためには、血管から組織に浸潤して、局所において一定期間にわたり生存することが必要と考えられる。このことから、ロイシン或は、BCAAが生体内でのT細胞機能、とりわけ組織局所における機能発揮に不可欠であることが明確である。したがって、ロイシン或は、BCAAは、HIF-1αの活性化を介して、T細胞免疫を賦活化し、腫瘍免疫、細菌感染免疫、寄生虫感染免疫、ウイルス感染免疫を高めることによって、種々の疾患ならびに病態を改善できる。   In addition, activation of HIF-1α is thought to play an extremely important role in maintaining the survival of activated T cells in peripheral tissues (J. Immunology, 171: 6534-6540 (2003)). In order for T cells to perform biological defense functions such as tumor immunity and immunity against bacterial infection, it is necessary to invade tissues from blood vessels and survive locally for a certain period of time. From this, it is clear that leucine or BCAA is indispensable for the T cell function in vivo, especially for the local function. Therefore, leucine or BCAA activates T cell immunity through activation of HIF-1α and enhances tumor immunity, bacterial infection immunity, parasitic infection immunity, viral infection immunity, and thus various diseases and Can improve the condition.

VEGF発現におけるロイシンの影響を示す。Figure 2 shows the effect of leucine on VEGF expression. VEGF発現におけるBCAAの影響を示す。Figure 3 shows the effect of BCAAs on VEGF expression. VEGF発現におけるBCAAを抜いた必須アミノ酸の影響を示す。The influence of the essential amino acid which removed BCAA in VEGF expression is shown. ロイシン誘導VEGF発現におけるラパマイシンの影響を示す。Figure 2 shows the effect of rapamycin on leucine-induced VEGF expression. 低酸素濃度下におけるHIF-1α蛋白質の発現量に及ぼす培地中のアミノ酸濃度の影響を示す。The influence of the amino acid concentration in the medium on the expression level of HIF-1α protein under low oxygen concentration is shown. 低酸素(1%酸素分圧)下に、全アミノ酸を含むRPMI1640培地中から、BCAAのみを除去した時(-BCAA)、2時間後のHIF-1α蛋白質量を示す。When only BCAA is removed (-BCAA) from RPMI1640 medium containing all amino acids under hypoxia (1% oxygen partial pressure), the amount of HIF-1α protein after 2 hours is shown. 低酸素(1%酸素分圧)下に、全アミノ酸を含むRPMI1640培地中から、ロイシンのみを除去した時(-LEU)、2時間後の細胞内のHIF-1α蛋白質量を示す。When only leucine is removed from the RPMI1640 medium containing all amino acids under low oxygen (1% oxygen partial pressure) (-LEU), the amount of intracellular HIF-1α protein after 2 hours is shown.

Claims (16)

ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とする低酸素応答促進剤。   A hypoxic response promoter comprising an amino acid selected from leucine, isoleucine, valine or a mixture thereof. mTORを活性化する請求項1に記載の低酸素応答促進剤。   The hypoxic response promoter according to claim 1, which activates mTOR. HIF-1αを活性化する請求項1又は2記載の低酸素応答促進剤。   The hypoxic response promoter according to claim 1 or 2, which activates HIF-1α. Vascular Endothelial Growth Factor(VEGF)遺伝子及び/又はadrenomodullin(ADM)遺伝子を発現誘導する請求項1〜3のいずれか1項記載の低酸素応答促進剤。   The hypoxic response promoter according to any one of claims 1 to 3, which induces expression of Vascular Endothelial Growth Factor (VEGF) gene and / or adrenomodullin (ADM) gene. 請求項1〜4のいずれか1項記載の低酸素応答促進剤を含有することを特徴とする虚血性疾患治療剤/予防剤。   A therapeutic / prophylactic agent for ischemic disease, comprising the hypoxic response promoter according to any one of claims 1 to 4. 虚血性疾患が、心筋梗塞、心不全、脳梗塞、脳溢血、糖尿病性血管障害、閉塞性動脈硬化症大腸炎、潰瘍、脊髄障害、視神経障害又は神経障害である請求項5記載の疾患治療/予防剤。   6. The disease treatment / prevention agent according to claim 5, wherein the ischemic disease is myocardial infarction, heart failure, cerebral infarction, cerebral hyperemia, diabetic vascular disorder, obstructive arteriosclerosis colitis, ulcer, spinal cord disorder, optic neuropathy or neuropathy. . 請求項1〜4のいずれか1項記載の低酸素応答促進剤を含有することを特徴とする免疫賦活剤。   An immunostimulant comprising the hypoxic response promoter according to any one of claims 1 to 4. 免疫が、腫瘍免疫、細菌感染免疫、寄生虫感染免疫及びウイルス感染免疫からなる群から選択される請求項7記載の免疫賦活剤。   The immunostimulant according to claim 7, wherein the immunity is selected from the group consisting of tumor immunity, bacterial infection immunity, parasitic infection immunity and viral infection immunity. 虚血性疾患治療剤または免疫賦活剤を調製するための請求項1〜4のいずれか1項記載の低酸素応答促進剤の使用。   Use of the hypoxic response promoter according to any one of claims 1 to 4 for preparing an ischemic disease therapeutic agent or an immunostimulant. ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とする高地生活低酸素起因障害治療剤。   A therapeutic agent for highland life hypoxia-induced disorders, comprising an amino acid selected from leucine, isoleucine, valine or a mixture thereof. ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とする高地トレーニング補助剤。   A highland training aid comprising an amino acid selected from leucine, isoleucine, valine or a mixture thereof. (1)アミノ酸を含有しない培養液を用いて培養した培養細胞を準備する;
(2)アミノ酸を含有する培養液を用いて培養した培養細胞を準備する;
(3)被験物質を(1)及び(2)の培養細胞に添加する;
(4)(1)及び(2)の培養細胞における正常酸素分圧下および低酸素分圧下でのVEGF遺伝子発現指標を測定し、同等以上のVEGF遺伝子発現指標が得られた被験物質を選択する、
各工程を含むことを特徴とする低酸素応答促進剤のスクリーニング方法。
(1) preparing a cultured cell cultured using a culture solution containing no amino acid;
(2) preparing cultured cells cultured using a culture solution containing amino acids;
(3) Add the test substance to the cultured cells of (1) and (2);
(4) Measure the VEGF gene expression index under normoxic partial pressure and low oxygen partial pressure in the cultured cells of (1) and (2), and select a test substance from which an equivalent or higher VEGF gene expression index is obtained.
A screening method for a hypoxic response promoter, comprising each step.
ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有し、高地トレーニング補助効果を記載したパッケージに包装されたアミノ酸含有薬剤又は食品。   An amino acid-containing drug or food containing an amino acid selected from leucine, isoleucine, valine, or a mixture thereof, and packaged in a package describing a high-altitude training aid effect. ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とするmTORを活性化剤。   An activator of mTOR, comprising an amino acid selected from leucine, isoleucine, valine or a mixture thereof. ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とするHIF-1α活性化剤。   A HIF-1α activator comprising an amino acid selected from leucine, isoleucine, valine or a mixture thereof. ロイシン、イソロイシン、バリンまたはそれらの混合物から選択されるアミノ酸を含有することを特徴とするVascular Endothelial Growth Factor(VEGF)遺伝子及び/又はadrenomodullin(ADM)遺伝子発現誘導剤。   A Vascular Endothelial Growth Factor (VEGF) gene and / or adrenomodullin (ADM) gene expression inducer, comprising an amino acid selected from leucine, isoleucine, valine or a mixture thereof.
JP2004380680A 2004-12-28 2004-12-28 Hypoxic response promoter Pending JP2008056566A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004380680A JP2008056566A (en) 2004-12-28 2004-12-28 Hypoxic response promoter
PCT/JP2005/024083 WO2006070874A1 (en) 2004-12-28 2005-12-28 Hypoxic response promoter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004380680A JP2008056566A (en) 2004-12-28 2004-12-28 Hypoxic response promoter

Publications (1)

Publication Number Publication Date
JP2008056566A true JP2008056566A (en) 2008-03-13

Family

ID=36614985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004380680A Pending JP2008056566A (en) 2004-12-28 2004-12-28 Hypoxic response promoter

Country Status (2)

Country Link
JP (1) JP2008056566A (en)
WO (1) WO2006070874A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220090A (en) * 2012-04-19 2013-10-28 Tohoku Univ Drug screening method for use in eye disease treatment

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301619A (en) * 1988-05-30 1989-12-05 Otsuka Pharmaceut Factory Inc Amino acid pharmaceutical for cancer
JP2814529B2 (en) * 1989-03-16 1998-10-22 味の素株式会社 Ischemic brain disorder drug
AU655780B2 (en) * 1990-10-30 1995-01-12 Clintec Nutrition Company A method and composition for the protection of a metabolic recovery of ischemic cardiac tissue
JP2000026289A (en) * 1998-07-01 2000-01-25 Crescendo Corporation:Kk Effect of branched chain amino acid on myalgia, stiffness and tensity of muscle
JP2000026290A (en) * 1998-07-07 2000-01-25 Crescendo Corporation:Kk Maintenance of muscular strength with branched chain amino acid
JP2001169752A (en) * 1999-12-15 2001-06-26 Fancl Corp Food composition
JP3827923B2 (en) * 2000-06-20 2006-09-27 味の素株式会社 Amino acid composition for improving hematopoiesis and nutritional status
IT1320782B1 (en) * 2000-07-04 2003-12-10 Professional Dietetics Srl COMPOSITIONS BASED ON AMINO ACIDS, SUITABLE FOR THE TREATMENT OF HEART INSUFFICIENCY.
JP4484010B2 (en) * 2001-01-29 2010-06-16 味の素株式会社 Liquid liquid food
ITTO20010580A1 (en) * 2001-06-15 2002-12-15 Professional Dietetics Srl AMINO ACID BASED COMPOSITIONS FOR IMPROVING THE MYOCARDIC VENTRICULAR FUNCTION IN PATIENTS WITH DIABETES.
JP2003238401A (en) * 2002-02-20 2003-08-27 Ajinomoto Co Inc Medicine and food and beverage for treating, curing or preventing disease
AU2003227475A1 (en) * 2002-04-09 2003-10-20 Eisai Co., Ltd. Drug containing riboflavin compound
JP4683844B2 (en) * 2003-02-10 2011-05-18 雅美 森山 Influenza virus infection prevention agent

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013220090A (en) * 2012-04-19 2013-10-28 Tohoku Univ Drug screening method for use in eye disease treatment

Also Published As

Publication number Publication date
WO2006070874A1 (en) 2006-07-06

Similar Documents

Publication Publication Date Title
US8329646B2 (en) Methods for the treatment of muscle loss
US20170027897A1 (en) mTORC1 MODULATION BY AMINO ACIDS AND USES THEREOF
US20110077198A1 (en) Compositions and methods for inhibiting the activation of dsrna-dependent protein kinase and tumor growth inhibition
Peters et al. Dose-dependent effects of leucine supplementation on preservation of muscle mass in cancer cachectic mice
US20080038321A1 (en) Prophylactic/therapeutic compositions for liver diseases
US9072778B2 (en) Treatment regimen for N-MYC, c-MYC, and L-MYC amplified and overexpressed tumors
Zhou et al. Regulation of hypoxia-inducible factor 1 by glucose availability under hypoxic conditions
JP2021527669A (en) Compositions and Methods for Relieving or Treating Fibrosis
US11478473B2 (en) Sleep improving agent
JP2022541720A (en) Production and use of ENAMPT contained in extracellular vesicles
EP3658133B1 (en) Compositions comprising amino acids for use in the treatment of obesity
JPWO2007060924A1 (en) Pancreatic β-cell protective agent
Tedesco et al. Experimental evidence on the efficacy of two new metabolic modulators on mitochondrial biogenesis and function in mouse cardiomyocytes
JP2008056566A (en) Hypoxic response promoter
JP5483775B2 (en) Composition for improving hypoalbuminemia
JP5923404B2 (en) TRPV4 activity inhibitor
JPWO2007018281A1 (en) Akt activation inhibitor
WO2005074911A1 (en) Protein kinase c activator
Tedesco et al. Journal of Population Therapeutics & Clinical Pharmacology