JP2008056543A - Hydrogen manufacturing apparatus and fuel battery system - Google Patents

Hydrogen manufacturing apparatus and fuel battery system Download PDF

Info

Publication number
JP2008056543A
JP2008056543A JP2006237334A JP2006237334A JP2008056543A JP 2008056543 A JP2008056543 A JP 2008056543A JP 2006237334 A JP2006237334 A JP 2006237334A JP 2006237334 A JP2006237334 A JP 2006237334A JP 2008056543 A JP2008056543 A JP 2008056543A
Authority
JP
Japan
Prior art keywords
mass
partition
evaporator
combustion gas
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006237334A
Other languages
Japanese (ja)
Inventor
Tomomichi Asou
智倫 麻生
Yoichi Kimura
洋一 木村
Yutaka Yoshida
豊 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006237334A priority Critical patent/JP2008056543A/en
Publication of JP2008056543A publication Critical patent/JP2008056543A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen manufacturing apparatus which can sufficiently reduce the temperature of the hydrogen-containing gas fed to a CO remover by evaporating the liquid in the upstream in the evaporator in a multi-concentric cylinder type hydrogen generator in which the evaporator is installed between the combustion gas path and the converter with partitions in between and the flow of water in the evaporator runs opposite to the flow of the combustion gas in the combustion gas path. <P>SOLUTION: The heat conductivity of a first partition 21 arranged between combustion gas path 11 and evaporator 4a is made smaller than the heat conductivity of a second partition 22 arranged between the evaporator 4a and conversion catalyst 6a. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、炭化水素等の原料を水蒸気と水蒸気改質反応させ、一酸化炭素をシフト反応により低減する変成器を備え水素リッチな改質ガスを生成する際に、水蒸気の発生を確実に行うとともに、変成器の触媒層を均一に加熱することを特徴とする水素生成装置及びこれを用いる燃料電池システムに関する。   The present invention reliably generates steam when a raw material such as hydrocarbon is subjected to steam reforming reaction with steam and a reformer that reduces carbon monoxide by a shift reaction is provided to generate hydrogen-rich reformed gas. In addition, the present invention relates to a hydrogen generator that uniformly heats the catalyst layer of the transformer, and a fuel cell system using the hydrogen generator.

燃料電池発電システム等において、炭化水素等を原料として使用し、この原料を水蒸気改質反応させることによって、水素を主成分とする改質ガスを生成する水素製造装置が使用されている。   In a fuel cell power generation system or the like, a hydrogen production apparatus that uses a hydrocarbon or the like as a raw material and generates a reformed gas containing hydrogen as a main component by causing the raw material to undergo a steam reforming reaction is used.

炭化水素等の原料を水蒸気改質する水素製造装置の一例を図1に示す。この水素製造装置は、改質触媒1aが充填された改質器1と、変成触媒6aが充填された変成器6と、酸化触媒9aが充填されたCO除去器9が同心円状に一体となった構造を特徴とする。水蒸気改質反応に必要な原料は原料供給器3から供給され、水供給部2より液体の状態で水が原料と共に蒸発器4aに供給され、燃焼器5で発生する高温の燃焼ガスが流れる燃焼ガス流路内の燃焼ガスによって加熱され蒸発器4aに供給された水が水蒸気となる。この原料と水蒸気の混合ガスが改質器1に供給されると、水蒸気改質反応により、水素リッチな改質ガスとなって改質器1を通過する。この時、水蒸気改質反応は吸熱反応であるため、外部より上記水蒸気改質反応に必要な温度まで加熱する必要がある。そこでこの加熱源として燃焼器5を設けており、そこで燃焼したガスが燃焼ガス流路11による顕熱で改質器1を加熱している。上記改質ガスは、変成器6にて200℃〜400℃の温度範囲で変成反応により、上記改質ガス中に含まれる一酸化炭素を水素に変成させて、ある特定量まで低減させる。この上記変成反応は発熱反応であるため、燃料電池で発電している時、加熱は不要であるが、起動時に、変成反応に必要な温度になるまでヒータ6cを設けて加熱を行う場合もある。上記一酸化炭素を特定量まで低減させた改質ガスは変成器6を通過した後、CO除去器9にて空気供給部8より供給された空気と100℃〜150℃の温度範囲で酸化反応により、一酸化炭素を二酸化炭素に酸化し、ガス中の一酸化炭素濃度をさらに低減させている。この上記酸化反応は発熱反応であるため、燃料電池で発電している時、加熱は不要であるが、起動時に、酸化反応に必要な温度になるまでヒータ9cを設けて加熱を行う場合もある。   An example of a hydrogen production apparatus for steam reforming raw materials such as hydrocarbons is shown in FIG. In this hydrogen production apparatus, the reformer 1 filled with the reforming catalyst 1a, the shifter 6 filled with the shift catalyst 6a, and the CO remover 9 filled with the oxidation catalyst 9a are integrated into a concentric circle. Characterized by the structure. The raw material required for the steam reforming reaction is supplied from the raw material supplier 3, and water is supplied from the water supply unit 2 to the evaporator 4a together with the raw material in a liquid state, and the high-temperature combustion gas generated in the combustor 5 flows Water heated by the combustion gas in the gas flow path and supplied to the evaporator 4a becomes steam. When this mixed gas of raw material and steam is supplied to the reformer 1, it becomes a hydrogen-rich reformed gas through the reformer 1 by a steam reforming reaction. At this time, since the steam reforming reaction is an endothermic reaction, it is necessary to heat from the outside to a temperature necessary for the steam reforming reaction. Therefore, a combustor 5 is provided as a heating source, and the gas combusted there heats the reformer 1 with sensible heat from the combustion gas passage 11. The reformed gas is converted to hydrogen by a shift reaction in a temperature range of 200 ° C. to 400 ° C. in the transformer 6 to reduce carbon monoxide contained in the reformed gas to a specific amount. Since this modification reaction is an exothermic reaction, heating is not necessary when generating electricity with a fuel cell, but at the time of start-up, a heater 6c may be provided until the temperature is reached for the modification reaction. . The reformed gas in which the carbon monoxide is reduced to a specific amount passes through the transformer 6 and is then oxidized with the air supplied from the air supply unit 8 by the CO remover 9 in the temperature range of 100 ° C. to 150 ° C. Thus, carbon monoxide is oxidized to carbon dioxide, and the concentration of carbon monoxide in the gas is further reduced. Since this oxidation reaction is an exothermic reaction, heating is not required when power is generated by the fuel cell, but at the time of start-up, a heater 9c may be provided until the temperature reaches the temperature required for the oxidation reaction. .

さらに上記水素製造装置の特徴として、各反応部1、6、9から発生する放熱を有効利用し、熱変換効率を向上させるために、各反応部1、6、9及び蒸発器4aが同心円上に多重円筒の一体型構造となっている。反応部1及び蒸発器4aを加熱するために、燃焼ガス流路11を内側に設けており、燃焼ガス流路11内の燃焼ガスと蒸発器4a内の水または水蒸気との熱交換性を高めるため、燃焼ガスの流れの向きと水または水蒸気の流れの向きとが対向している。また、蒸発器4aの外側に変成器4a及びCO除去器9が設けられており、変成器4aでの変成反応による発熱及び変成器4aから送出されCO除去器9に導入される水素含有ガスの熱も利用して蒸発している(例えば、特許文献1参照)。
国際公開第02/098790号パンフレット
Further, as a feature of the above hydrogen production apparatus, the reaction units 1, 6, 9 and the evaporator 4a are concentrically arranged in order to effectively use the heat generated from the reaction units 1, 6, 9 and improve the heat conversion efficiency. In addition, it has an integrated structure of multiple cylinders. In order to heat the reaction part 1 and the evaporator 4a, the combustion gas flow path 11 is provided inside, and the heat exchange property between the combustion gas in the combustion gas flow path 11 and water or water vapor in the evaporator 4a is improved. Therefore, the flow direction of the combustion gas is opposed to the flow direction of the water or water vapor. Also, a transformer 4a and a CO remover 9 are provided outside the evaporator 4a. The heat generated by the transformation reaction in the transformer 4a and the hydrogen-containing gas sent from the transformer 4a and introduced into the CO remover 9 are provided. It is evaporated by using heat (see, for example, Patent Document 1).
International Publication No. 02/098790 Pamphlet

しかし、上記従来の水素生成装置は、燃焼ガス流路11内の燃焼ガスの流れと蒸発器4a内の水もしくは水蒸気の流れは対向しているため、燃焼ガス流路11aの上流の燃焼ガスから蒸発器4aの下流側の水蒸器に過剰に熱が伝熱すると、蒸発器4aの上流側の水が蒸発するのに十分な熱が伝えられず、液水が蒸発器4aの流路を部分的に閉塞することになり、原料流量の流れに分布ができるので、改質器1に供給される原料流量が不均一となり、改質反応が不均一となり、所定の水素生成量が得られないという問題があった。   However, in the above conventional hydrogen generator, the flow of the combustion gas in the combustion gas passage 11 and the flow of water or water vapor in the evaporator 4a are opposed to each other, so that the combustion gas upstream from the combustion gas passage 11a If heat is transferred excessively to the water vaporizer on the downstream side of the evaporator 4a, sufficient heat is not transmitted to evaporate the water on the upstream side of the evaporator 4a, and the liquid water partially passes through the flow path of the evaporator 4a. As a result, the flow rate of the raw material flow is distributed, so that the raw material flow rate supplied to the reformer 1 becomes non-uniform, the reforming reaction becomes non-uniform, and a predetermined hydrogen generation amount cannot be obtained. There was a problem.

また、変成反応による発熱する変成触媒6aの温度安定性を確保し、変成器6から送出された200℃以上の水素含有ガスをCO除去器9に導入される前に150℃程度の温度に迄、十分低下させなければ、CO除去器9が高温になりメタン化反応が進行して熱暴走を起こす可能性がある。   Further, the temperature stability of the shift catalyst 6a that generates heat due to the shift reaction is ensured, and the hydrogen-containing gas of 200 ° C. or more sent from the shift converter 6 is brought to a temperature of about 150 ° C. before being introduced into the CO remover 9. If not sufficiently reduced, the CO remover 9 becomes high in temperature and the methanation reaction may proceed to cause thermal runaway.

本発明は上記の点に鑑みてなされたものであり、原料を水蒸気改質反応により水素含有ガスにする改質器、変成器、CO除去器及び水蒸気改質を行うための水を蒸気にする蒸発器を有し、蒸発器が燃焼ガス流路と変成器との間に隔壁を介して設けられ、蒸発器内の水もしくは水蒸気の流れと燃焼ガス流路内の燃焼ガスが対向している多重円筒型水素生成装置において、蒸発器内の上流に液水がたまることなく十分に蒸発され、変成反応による発熱する変成触媒6aの温度安定性を確保し、CO除去器に導入される水素含有ガスの温度が十分低減されることが可能な水素生成装置、及びこれを備える燃料電池システムを提供することを目的とする。   The present invention has been made in view of the above points. A reformer that converts a raw material into a hydrogen-containing gas by a steam reforming reaction, a shifter, a CO remover, and water for performing steam reforming are converted into steam. An evaporator is provided, and the evaporator is provided between the combustion gas flow path and the transformer via a partition wall, and the flow of water or water vapor in the evaporator and the combustion gas in the combustion gas flow path are opposed to each other. In the multi-cylindrical hydrogen generator, liquid water is sufficiently evaporated without accumulating upstream in the evaporator, ensuring the temperature stability of the shift catalyst 6a that generates heat due to shift reaction, and containing hydrogen introduced into the CO remover An object of the present invention is to provide a hydrogen generator capable of sufficiently reducing the temperature of a gas, and a fuel cell system including the same.

上記課題を解決するために、第1の本発明の水素生成装置は、原料及び水蒸気の改質反応により水素含有ガスを生成する改質器と、該改質器を加熱するための燃焼器と、該燃焼器より送出される燃焼ガスが流れる燃焼ガス流路と、該燃焼ガス流路の外側に前記燃焼ガスからの熱により前記水蒸気を生成するための蒸発器と、前記蒸発器の外側に前記改質器より送出される水素含有ガス中の一酸化炭素をシフト反応により低減する変成器と、前記変成器より送出される水素含有ガスの一酸化炭素を酸化反応により低願するためのCO除去器とを備え、前記燃焼ガス流路を流れる燃焼ガスの流れと前記蒸発器を流れる水蒸気の流れとが対向するよう構成される水素生成装置であって、前記燃焼ガス流路と前記蒸発器との間の第1の隔壁を構成する金属は、前記蒸発器と前記変成器との間の第2の隔壁を構成する金属よりも熱伝導度が低いことを特徴とする。   In order to solve the above problems, a hydrogen generator of the first aspect of the present invention includes a reformer that generates a hydrogen-containing gas by a reforming reaction of a raw material and steam, and a combustor for heating the reformer. A combustion gas flow path through which combustion gas delivered from the combustor flows, an evaporator for generating the water vapor by heat from the combustion gas outside the combustion gas flow path, and outside the evaporator A converter for reducing carbon monoxide in the hydrogen-containing gas delivered from the reformer by a shift reaction, and a CO for applying for low carbon monoxide from the reformer by an oxidation reaction. A hydrogen generator configured to oppose a flow of combustion gas flowing through the combustion gas flow path and a flow of water vapor flowing through the evaporator, wherein the combustion gas flow path and the evaporator Gold constituting the first partition between Is characterized by a low thermal conductivity than the metal constituting the second partition between said transformer and said evaporator.

また、第2の本発明の水素生成装置は、第1の隔壁を構成する金属及び第2の隔壁を構成する金属の熱伝導率が、10[w/m℃]以上であり、第1の隔壁を構成する金属及び第2の隔壁を構成する金属の熱伝導度の差が2[w/m℃]以上であることを特徴とする。   Further, in the hydrogen generator of the second aspect of the present invention, the thermal conductivity of the metal constituting the first partition and the metal constituting the second partition is 10 [w / m ° C.] or more, The difference in thermal conductivity between the metal constituting the partition and the metal constituting the second partition is 2 [w / m ° C.] or more.

また、第3の本発明の水素生成装置は、第1の隔壁を構成する金属の熱伝導率が10[w/m℃]以上20[w/m℃]以下であり、第2の隔壁を構成する金属の熱伝導率が22[w/m℃]以上であることを特徴とする。   In the hydrogen generator of the third aspect of the present invention, the metal constituting the first partition has a thermal conductivity of 10 [w / m ° C.] or more and 20 [w / m ° C.] or less, and the second partition It is characterized in that the thermal conductivity of the constituent metal is 22 [w / m ° C.] or more.

また、第4の本発明の水素生成装置は、第1の隔壁を構成する金属が、オーステナイト系ステンレスであり、第2の隔壁を構成する金属が、フェライト系ステンレスであることを特徴とする。   In the hydrogen generating apparatus of the fourth aspect of the present invention, the metal constituting the first partition is austenitic stainless steel, and the metal constituting the second partition is ferrite stainless.

また、第5の本発明の水素生成装置は、前記第1の隔壁を構成する金属は、C:0.02〜0.10質量%、Si:0〜2.5質量%、Mn:0〜2.0質量%、P:0〜0.04質量%、S:0〜0.02質量%、Ni:7〜12重量%以下、Cr:15〜25質量%、残部が実質的にFeの組成をもち、前記第2の隔壁を構成する金属は、C:0〜0.02質量%、Si:0〜2.5質量%、Mn:0〜2.0質量%、P:0〜0.04質量%、S:0〜0.02質量%、Ni:0〜0.6質量%、Cr:15〜25質量%、残部が実質的にFeの組成であることを特徴とする。   In the hydrogen generator of the fifth aspect of the present invention, the metal constituting the first partition is C: 0.02 to 0.10% by mass, Si: 0 to 2.5% by mass, Mn: 0 to 2.0 mass%, P: 0 to 0.04 mass%, S: 0 to 0.02 mass%, Ni: 7 to 12 mass% or less, Cr: 15 to 25 mass%, the balance being substantially Fe The metal having the composition and constituting the second partition wall is C: 0 to 0.02 mass%, Si: 0 to 2.5 mass%, Mn: 0 to 2.0 mass%, P: 0 to 0. 0.04% by mass, S: 0 to 0.02% by mass, Ni: 0 to 0.6% by mass, Cr: 15 to 25% by mass, and the balance being substantially Fe composition.

また、第6の本発明の燃料電池システムは、上記第1〜第5の本発明の水素生成装置と、水素生成装置より供給される水素含有ガスを用いて発電する燃料電池とを備えることを特徴そする。   A fuel cell system according to a sixth aspect of the present invention includes the hydrogen generators according to the first to fifth aspects of the present invention, and a fuel cell that generates power using a hydrogen-containing gas supplied from the hydrogen generator. Features.

本発明の水素生成装置によれば、蒸発器内の上流に液水がたまることなく十分に蒸発されるとともに、CO除去器に導入される水素含有ガスの温度が十分低減されることが可能となる。   According to the hydrogen generator of the present invention, liquid water is sufficiently evaporated without accumulating upstream in the evaporator, and the temperature of the hydrogen-containing gas introduced into the CO remover can be sufficiently reduced. Become.

図2は、本発明の実施の形態に係る水素生成装置の一例を示す概略図である。   FIG. 2 is a schematic diagram illustrating an example of a hydrogen generator according to an embodiment of the present invention.

中心に燃焼器5を配置し、外側に向かって順次、燃焼ガス流路11、第1の隔壁21、蒸発器4a、第2の隔壁22、変成触媒6a及び酸化触媒9aが設けられている。第1の隔壁21は、第2の隔壁22よりも熱伝導度が低い金属材料で構成されている。水供給部2から供給された水と原料供給器3から供給された原料ガスは、蒸発器4aに送られ、水蒸気と原料ガスの混合気となり、蒸発器4aの下流側に配置された改質器1、変成器5、CO除去器9を通過し改質ガスとなって順次流通する。燃焼ガス流路11の燃焼ガスの流れ方向と、蒸発器4aの水の流れ方向は対向するようになっている。蒸発器4aには液相の水が供給され、対向流である燃焼ガス流から熱伝達され下流に向かって蒸発し水蒸気となり、原料ガスとの混合気となって改質触媒1aに供給される。   The combustor 5 is disposed in the center, and a combustion gas flow path 11, a first partition 21, an evaporator 4a, a second partition 22, a shift catalyst 6a, and an oxidation catalyst 9a are sequentially provided outward. The first partition 21 is made of a metal material having a lower thermal conductivity than the second partition 22. The water supplied from the water supply unit 2 and the raw material gas supplied from the raw material supply device 3 are sent to the evaporator 4a to become a mixture of water vapor and the raw material gas and are reformed arranged downstream of the evaporator 4a. It passes through the vessel 1, the transformer 5, and the CO remover 9 and sequentially flows as reformed gas. The flow direction of the combustion gas in the combustion gas channel 11 and the flow direction of the water in the evaporator 4a are opposed to each other. Liquid phase water is supplied to the evaporator 4a, and heat is transferred from the combustion gas flow which is a counter flow, evaporates downstream to become water vapor, and is supplied to the reforming catalyst 1a as a mixture with the raw material gas. .

燃焼ガスから蒸発器4aへの熱伝達は第1の隔壁21を経て行われるが、第1の隔壁21の熱伝導率が小さいので、燃焼器5の出口から流入した燃焼ガス流路4a上流の高温の燃焼ガスからの伝熱量は、抑制され、下流側での燃焼ガスの温度が高い状態となり、蒸発器4aに流入した液相の水を十分に蒸発させることができる。したがって蒸発器4aに流入した液体が流路を閉塞し、原料ガスの流れに偏りができ、改質反応が不均一になることを防止でき、均一で安定な改質反応となり、燃料電池の運転を安定化させることができる。また、蒸発器4aの外側に変成器6びCO除去器9設けているので、蒸発器4aに流入された水が速やかに蒸発しない場合には、変成器6及びCO除去器9が液相の水によって冷却されるので温度低下し、触媒層の温度差が大きくなり、触媒反応は不十分となり改質ガス中の一酸化炭素を安定して低減できないが、蒸発器4aに流入した液相の水を速やかに蒸発することができるので、変成器6及びCO除去器9が部分的冷却されることによる温度分布も小さくすることができ、改質ガス中の一酸化炭素を安定して低減できる。   Heat transfer from the combustion gas to the evaporator 4a is performed through the first partition 21, but since the thermal conductivity of the first partition 21 is small, the upstream of the combustion gas flow path 4a flowing from the outlet of the combustor 5 is used. The amount of heat transfer from the high-temperature combustion gas is suppressed, the temperature of the combustion gas on the downstream side becomes high, and the liquid phase water that has flowed into the evaporator 4a can be sufficiently evaporated. Therefore, the liquid flowing into the evaporator 4a closes the flow path, and the flow of the raw material gas can be biased to prevent the reforming reaction from becoming nonuniform, resulting in a uniform and stable reforming reaction. Can be stabilized. Further, since the transformer 6 and the CO remover 9 are provided outside the evaporator 4a, when the water flowing into the evaporator 4a does not evaporate quickly, the transformer 6 and the CO remover 9 are in the liquid phase. Since it is cooled by water, the temperature drops, the temperature difference of the catalyst layer increases, the catalytic reaction becomes insufficient, and carbon monoxide in the reformed gas cannot be reduced stably, but the liquid phase that has flowed into the evaporator 4a Since water can be quickly evaporated, the temperature distribution due to partial cooling of the transformer 6 and the CO remover 9 can also be reduced, and carbon monoxide in the reformed gas can be stably reduced. .

蒸発器4aの外側には第2の隔壁22が設けられ、第2の隔壁22の外側には変成触媒6aが設けられており、変成触媒6aの下流側に連通して酸化触媒9aが設けられている。変成器の反応はCOの水成シフト反応であり、変成触媒6aの入り口温度は略300℃、出口温度は略200℃であり、変成器6での変成反応が発熱反応であることから変成器6を放熱して温度の安定性を保つ必要がある。さらには、CO除去器9aの入り口温度は略150℃程度であり、変成器6から送出された200℃程度の温度を有する水素含有ガスの温度を150℃程度に下げる必要がある。ここで、変成器6の外側及び変成触媒6aの出口とCO除去器9aの入り口の間に改質ガスの温度を低下させる熱交換部を設けることで、所定の酸化入り口温度に低下させることができるが、熱交換部を新たに設ける必要があり装置をコンパクトにできないことになる。   A second partition 22 is provided outside the evaporator 4a, a shift catalyst 6a is provided outside the second partition 22, and an oxidation catalyst 9a is provided in communication with the downstream side of the shift catalyst 6a. ing. The reaction of the shifter is a CO water shift reaction, the inlet temperature of the shifter catalyst 6a is approximately 300 ° C., the outlet temperature is approximately 200 ° C., and the shift reaction in the shifter 6 is an exothermic reaction. 6 needs to be radiated to maintain temperature stability. Furthermore, the inlet temperature of the CO remover 9a is about 150 ° C., and the temperature of the hydrogen-containing gas having a temperature of about 200 ° C. sent from the transformer 6 needs to be lowered to about 150 ° C. Here, by providing a heat exchange section for reducing the temperature of the reformed gas outside the shifter 6 and between the outlet of the shift catalyst 6a and the inlet of the CO remover 9a, the temperature can be lowered to a predetermined oxidation inlet temperature. Although it is possible, it is necessary to newly provide a heat exchange part, and the apparatus cannot be made compact.

そこで、本実施の形態のように変成器6の外側に蒸発器4aを設けることで、変成触媒熱は変成触媒6aから第2の隔壁22を経て蒸発器4aに伝熱されるので、第2の隔壁22の熱伝導率を大きくすることで、変成触媒6aから蒸発器4aへの伝熱量が大きくでき、変成触媒6aの出口温度を200℃程度の温度に保持することが可能になり、さらには、CO除去器6に導入される水素含有ガス温度を150℃程度まで低下させることが可能になり、CO除去器9でのCO低減を図ることができ、熱交換部を設ける必要もなく装置をコンパクトにできる。   Therefore, by providing the evaporator 4a outside the shift converter 6 as in the present embodiment, the shift catalyst heat is transferred from the shift catalyst 6a to the evaporator 4a through the second partition wall 22, so that the second By increasing the thermal conductivity of the partition wall 22, the amount of heat transferred from the shift catalyst 6a to the evaporator 4a can be increased, and the outlet temperature of the shift catalyst 6a can be maintained at a temperature of about 200 ° C. The temperature of the hydrogen-containing gas introduced into the CO remover 6 can be lowered to about 150 ° C., CO can be reduced in the CO remover 9, and the apparatus is not required to provide a heat exchange part. Can be compact.

なお、上記第1の隔壁21及び第2の隔壁22を構成する金属として、例えば、熱伝導率が、10[w/m℃]以上であり、第1の隔壁21を構成する金属及び第2の隔壁22を構成する金属の熱伝導度の差が2[w/m℃]以上であることが好ましく、より具体的には、第1の隔壁を構成する金属の熱伝導率が10[w/m℃]以上20[w/m℃]以下であり、前記第2の隔壁を構成する金属の熱伝導率が22[w/m℃]以上であることが好ましい。   In addition, as a metal which comprises the said 1st partition 21 and the 2nd partition 22, thermal conductivity is 10 [w / m degree C] or more, for example, the metal which comprises the 1st partition 21, and 2nd The difference in the thermal conductivity of the metal constituting the partition wall 22 is preferably 2 [w / m ° C.] or more, more specifically, the thermal conductivity of the metal constituting the first partition wall is 10 [w / M ° C.] or more and 20 [w / m ° C.] or less, and the thermal conductivity of the metal constituting the second partition wall is preferably 22 [w / m ° C.] or more.

本実施の形態では、耐熱性及び耐食性も考慮し、第1の隔壁21にはオーステナイト系ステンレスで構成し、第2の隔壁22はフェライト系ステンレスで構成する。なお、上記それぞれの隔壁に使用する金属材料としては、第1の隔壁を構成する金属は、C:0.02〜0.10質量%、Si:0〜2.5質量%、Mn:0〜2.0質量%、P:0〜0.04質量%、S:0〜0.02質量%、Ni:7〜12重量%以下、Cr:15〜25質量%、残部が実質的にFeの組成をもち、第2の隔壁を構成する金属は、C:0〜0.02質量%、Si:0〜2.5質量%、Mn:0〜2.0質量%、P:0〜0.04質量%、S:0〜0.02質量%、Ni:0〜0.6質量%、Cr:15〜25質量%、残部が実質的にFeの組成を有するものであっても構わない。   In the present embodiment, in consideration of heat resistance and corrosion resistance, the first partition wall 21 is made of austenitic stainless steel, and the second partition wall 22 is made of ferrite stainless steel. In addition, as a metal material used for each said partition, the metal which comprises a 1st partition is C: 0.02-0.10 mass%, Si: 0-2.5 mass%, Mn: 0 2.0 mass%, P: 0 to 0.04 mass%, S: 0 to 0.02 mass%, Ni: 7 to 12 mass% or less, Cr: 15 to 25 mass%, the balance being substantially Fe The metal which has a composition and comprises the 2nd partition is C: 0-0.02 mass%, Si: 0-2.5 mass%, Mn: 0-2.0 mass%, P: 0-0. 04 mass%, S: 0 to 0.02 mass%, Ni: 0 to 0.6 mass%, Cr: 15 to 25 mass%, and the balance may substantially have a composition of Fe.

以上のように燃焼ガス流路11と蒸発器4aの間に設けた第1の隔壁21の熱伝導率は小さするとともに、蒸発器4aと変成触媒6aの間に設けた第2の隔壁22の熱伝導率は大きくすることで、蒸発器4a内の上流に液水がたまることなく十分に蒸発されるとともに、変成反応により発熱する変成触媒6aの温度安定性を保持し、CO除去器に導入される水素含有ガスの温度を十分低減することが可能となる。   As described above, the thermal conductivity of the first partition wall 21 provided between the combustion gas flow path 11 and the evaporator 4a is small, and the second partition wall 22 provided between the evaporator 4a and the shift catalyst 6a. By increasing the thermal conductivity, liquid water is sufficiently evaporated without accumulating upstream in the evaporator 4a, and the temperature stability of the shift catalyst 6a that generates heat by the shift reaction is maintained and introduced into the CO remover. It is possible to sufficiently reduce the temperature of the hydrogen-containing gas.

本発明にかかる水素生成装置は、蒸発器内の上流に液水がたまることなく十分に蒸発されるとともに、CO除去器に導入される水素含有ガスの温度が十分低減されることが可能となるので家庭用の燃料電池コジェネシステム用の水素生成装置等として有用である。   The hydrogen generator according to the present invention is sufficiently evaporated without accumulating liquid water upstream in the evaporator, and the temperature of the hydrogen-containing gas introduced into the CO remover can be sufficiently reduced. Therefore, it is useful as a hydrogen generator for a household fuel cell cogeneration system.

従来の水素製造装置を示す図Diagram showing a conventional hydrogen production system 本発明の水素製造装置の実施形態を示す要部断面図Sectional drawing which shows the principal part which shows embodiment of the hydrogen production apparatus of this invention

符号の説明Explanation of symbols

1 改質器
1a 改質触媒
1b 改質温度検出部
2 水供給器
3 原料供給器
4a 蒸発器
5 燃焼器
6 変成器
6a 変成触媒
6b 変成温度検出器
6c ヒータ
7 熱交換器
8 空気供給器
9 CO除去器
9a 酸化触媒
9b 温度検出器
9c ヒータ
10 燃焼用ファン
11 燃焼ガス流路
21 第1の隔壁
22 第2の隔壁
DESCRIPTION OF SYMBOLS 1 Reformer 1a Reforming catalyst 1b Reforming temperature detection part 2 Water supply device 3 Raw material supply device 4a Evaporator 5 Combustor 6 Transformation device 6a Transformation catalyst 6b Transformation temperature detector 6c Heater 7 Heat exchanger 8 Air supply device 9 CO remover 9a Oxidation catalyst 9b Temperature detector 9c Heater 10 Combustion fan 11 Combustion gas flow path 21 First partition 22 Second partition

Claims (6)

原料及び水蒸気の改質反応により水素含有ガスを生成する改質器と、該改質器を加熱するための燃焼器と、該燃焼器より送出される燃焼ガスが流れる燃焼ガス流路と、該燃焼ガス流路の外側に前記燃焼ガスからの熱により前記水蒸気を生成するための蒸発器と、前記蒸発器の外側に前記改質器より送出される水素含有ガス中の一酸化炭素をシフト反応により低減する変成器と、前記変成器より送出される水素含有ガスの一酸化炭素を酸化反応により低減するためのCO除去器とを備え、前記燃焼ガス流路を流れる燃焼ガスの流れと前記蒸発器を流れる水蒸気の流れとが対向するよう構成される水素生成装置であって、前記燃焼ガス流路と前記蒸発器との間の第1の隔壁を構成する金属は、前記蒸発器と前記変成器との間の第2の隔壁を構成する金属よりも熱伝導度が低いことを特徴とする水素生成装置。 A reformer that generates a hydrogen-containing gas by a reforming reaction of a raw material and steam, a combustor for heating the reformer, a combustion gas passage through which a combustion gas sent from the combustor flows, and An evaporator for generating the water vapor by heat from the combustion gas outside the combustion gas flow path, and a carbon monoxide in the hydrogen-containing gas sent from the reformer to the outside of the evaporator And a CO remover for reducing the carbon monoxide of the hydrogen-containing gas delivered from the transformer by an oxidation reaction, the flow of the combustion gas flowing through the combustion gas passage and the evaporation A hydrogen generator configured to oppose the flow of water vapor flowing through the vessel, wherein the metal constituting the first partition between the combustion gas flow path and the evaporator is the evaporator and the transformation Constitutes a second partition wall Hydrogen generator, wherein the lower thermal conductivity than the genus. 前記第1の隔壁を構成する金属及び前記第2の隔壁を構成する金属の熱伝導率が、10[w/m℃]以上であり、前記第1の隔壁を構成する金属及び前記第2の隔壁を構成する金属の熱伝導度の差が2[w/m℃]以上であることを特徴とする請求項1記載の水素生成装置。 The metal constituting the first partition and the metal constituting the second partition have a thermal conductivity of 10 [w / m ° C.] or more, and the metal constituting the first partition and the second 2. The hydrogen generator according to claim 1, wherein the difference in thermal conductivity of the metal constituting the partition wall is 2 [w / m ° C.] or more. 前記第1の隔壁を構成する金属の熱伝導率が10[w/m℃]以上20[w/m℃]以下であり、前記第2の隔壁を構成する金属の熱伝導率が22[w/m℃]以上であることを特徴とする請求項1記載の水素生成装置。 The metal constituting the first partition has a thermal conductivity of 10 [w / m ° C.] or more and 20 [w / m ° C.] or less, and the metal constituting the second partition has a thermal conductivity of 22 [w / M ° C.] or more. 前記第1の隔壁を構成する金属が、オーステナイト系ステンレスであり、前記第2の隔壁を構成する金属が、フェライト系ステンレスであることを特徴とする請求項1記載の水素生成装置。 2. The hydrogen generating apparatus according to claim 1, wherein the metal constituting the first partition is austenitic stainless steel, and the metal constituting the second partition is ferritic stainless steel. 前記第1の隔壁を構成する金属は、C:0.02〜0.10質量%、Si:0〜2.5質量%、Mn:0〜2.0質量%、P:0〜0.04質量%、S:0〜0.02質量%、Ni:7〜12重量%以下、Cr:15〜25質量%、残部が実質的にFeの組成をもち、前記第2の隔壁を構成する金属は、C:0〜0.02質量%、Si:0〜2.5質量%、Mn:0〜2.0質量%、P:0〜0.04質量%、S:0〜0.02質量%、Ni:0〜0.6質量%、Cr:15〜25質量%、残部が実質的にFeの組成であることを特徴とする請求項1記載の水素生成装置。 The metal constituting the first partition is C: 0.02 to 0.10% by mass, Si: 0 to 2.5% by mass, Mn: 0 to 2.0% by mass, P: 0 to 0.04%. Mass%, S: 0 to 0.02 mass%, Ni: 7 to 12% by mass or less, Cr: 15 to 25 mass%, the balance substantially having a composition of Fe, and the metal constituting the second partition wall Are C: 0-0.02 mass%, Si: 0-2.5 mass%, Mn: 0-2.0 mass%, P: 0-0.04 mass%, S: 0-0.02 mass%. 2. The hydrogen generator according to claim 1, wherein Ni is 0 to 0.6 mass%, Cr is 15 to 25 mass%, and the balance is substantially composed of Fe. 請求項1〜5に記載の水素生成装置と、前記水素生成装置より供給される水素含有ガスを用いて発電する燃料電池とを備える燃料電池システム。 A fuel cell system comprising the hydrogen generator according to claim 1 and a fuel cell that generates electric power using a hydrogen-containing gas supplied from the hydrogen generator.
JP2006237334A 2006-09-01 2006-09-01 Hydrogen manufacturing apparatus and fuel battery system Pending JP2008056543A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237334A JP2008056543A (en) 2006-09-01 2006-09-01 Hydrogen manufacturing apparatus and fuel battery system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237334A JP2008056543A (en) 2006-09-01 2006-09-01 Hydrogen manufacturing apparatus and fuel battery system

Publications (1)

Publication Number Publication Date
JP2008056543A true JP2008056543A (en) 2008-03-13

Family

ID=39239727

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237334A Pending JP2008056543A (en) 2006-09-01 2006-09-01 Hydrogen manufacturing apparatus and fuel battery system

Country Status (1)

Country Link
JP (1) JP2008056543A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006279A (en) * 2009-06-25 2011-01-13 Panasonic Corp Hydrogen generation apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006279A (en) * 2009-06-25 2011-01-13 Panasonic Corp Hydrogen generation apparatus

Similar Documents

Publication Publication Date Title
CA2594394C (en) Method of starting-up solid oxide fuel cell system
US7520907B2 (en) Highly integrated fuel processor for distributed hydrogen production
KR100848047B1 (en) Highly Efficient, Compact Reformer Unit for Generating Hydrogen from Gaseous Hydrocarbons in the Low Power Range
WO2005000737A1 (en) Fuel reformer
JP4933818B2 (en) Operation method of solid oxide fuel cell system
JP2004059415A (en) Fuel reformer and fuel cell power generation system
US8795397B2 (en) Reforming device with series-connected gas-liquid multiphase and dry-out heat exchangers
JP2005015292A (en) Fuel reformer
JP3820765B2 (en) Fuel reactor
JP2006076850A (en) Apparatus and method for reforming, and fuel cell system
WO2005077820A1 (en) Fuel reformer
JP2003187849A (en) Solid polymer fuel cell power generator
JP4136624B2 (en) Liquid fuel reforming method and apparatus
JP2017048079A (en) Hydrogen generator and fuel cell system using the same
JP2008056543A (en) Hydrogen manufacturing apparatus and fuel battery system
JP2001313053A (en) Fuel cell system
JP2004115321A (en) Reforming apparatus
JP2009173479A (en) Heat exchanger and compound type fuel reactor
US9624105B1 (en) Process for producing hydrogen with reduced corrosion
KR20160045738A (en) Multitube reformer for a hydrocarbon- and alcohol-reforming system and hydrocarbon- and alcohol-reforming system comprising same, and associated method
JP2005507137A (en) System and method for preparing fuel for a fuel processing system
JP2006282424A (en) Hydrogen generator
JP4786162B2 (en) Liquid fuel reforming system and method
JP5132183B2 (en) Hydrogen production equipment
JP2006294464A (en) Fuel cell power generation system