JP2008055486A - Friction pressure-welded component and friction pressure-welding method - Google Patents

Friction pressure-welded component and friction pressure-welding method Download PDF

Info

Publication number
JP2008055486A
JP2008055486A JP2006237174A JP2006237174A JP2008055486A JP 2008055486 A JP2008055486 A JP 2008055486A JP 2006237174 A JP2006237174 A JP 2006237174A JP 2006237174 A JP2006237174 A JP 2006237174A JP 2008055486 A JP2008055486 A JP 2008055486A
Authority
JP
Japan
Prior art keywords
friction welding
burr
cylindrical portion
smaller
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006237174A
Other languages
Japanese (ja)
Other versions
JP5060086B2 (en
Inventor
Ko Mizuguchi
興 水口
Shinichiro Sumi
慎一郎 角
Eiji Anzai
英司 安在
Kazuhiro Nakakura
和宏 中倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Nikkeikin Aluminum Core Technology Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Nikkeikin Aluminum Core Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd, Nikkeikin Aluminum Core Technology Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2006237174A priority Critical patent/JP5060086B2/en
Publication of JP2008055486A publication Critical patent/JP2008055486A/en
Application granted granted Critical
Publication of JP5060086B2 publication Critical patent/JP5060086B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a friction pressure-welded component for which variation in strength is small and the strength can correctly be grasped, and to provide a friction pressure-welding method. <P>SOLUTION: In the friction pressure-welded component obtained by subjecting the first member 10 and the second member 20 to friction pressure welding, each notch by burrs 11a, 11b formed on the side of the first member 10 is made smaller than each notch by burrs 21a, 21b formed on the side of the second member 20. Alternatively, in a friction pressure-welded component obtained by subjecting the cylindrical part 11 of the first member 10 and the cylindrical part 21 of the second member 20 to friction pressure welding, the notch by the burr 11a formed at the inner space side of the first member 10 is made smaller than the notch by the burr 21a formed at the inner space side of the second member 20. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、摩擦圧接部品および摩擦圧接方法に関する。   The present invention relates to a friction welding component and a friction welding method.

アッパリンク、ロアリンク、ラジアスロッドなどサスペンションを構成する棒状部品(以下、「サスペンション部品」という。)には、鉄鋼材料が用いられていたが、車両の軽量化という観点から、近年では、アルミニウム合金材料が用いられることも多く、例えば特許文献1には、アルミニウム合金製のパイプ状部材の両端にアルミニウム合金製のエンド部材を摩擦圧接してなるサスペンション部品が開示されている。   Steel materials have been used for rod-like parts (hereinafter referred to as “suspension parts”) such as upper links, lower links, and radius rods. However, in recent years, aluminum alloy materials have been used from the viewpoint of weight reduction of vehicles. For example, Patent Document 1 discloses a suspension component in which an aluminum alloy end member is friction-welded to both ends of an aluminum alloy pipe-shaped member.

なお、摩擦圧接は、固相接合の一種であることから、溶融溶接に見られる欠陥が発生せず、MIG溶接やTIG溶接のような特殊な技能を必要とせずに種々の部材を一定の品質で接合できることから、広範な分野で使用されている。   Friction welding is a kind of solid-phase bonding, so it does not have the defects found in fusion welding, and it does not require special skills such as MIG welding or TIG welding, so that various members have a certain quality. Because it can be joined with a wide range, it is used in a wide range of fields.

特開平11−156562号公報Japanese Patent Laid-Open No. 11-156562

パイプ状部材とエンド部材とを摩擦圧接により接合すると、摩擦熱により軟化した部位がバリとなって排出されるが、このバリを切除せずに残置する場合には、バリが切欠き(断面変化部)となってこの部位に応力が集中し、当該部位における強度(静的強度や疲労強度など)が低下してしまうので、バリによる強度の低下を見込んだうえでサスペンション部品の設計を行う必要がある。   When the pipe-shaped member and the end member are joined by friction welding, the part softened by the frictional heat is discharged as burrs. However, when this burr is left without being cut, the burr is notched (change in cross section). Part), stress concentrates on this part, and the strength (static strength, fatigue strength, etc.) at the part decreases, so it is necessary to design suspension parts in anticipation of the strength reduction due to burrs. There is.

ところで、バリを含む部位の強度(すなわち、応力集中の度合い)は、バリ形状(バリによる切欠きの形状)に依存していて、バリ形状にばらつきがあると、バリを含む部位の強度にもばらつきが生じてしまう。バリを含む部位における強度のばらつきを小さくすることができれば、サスペンション部品の破壊モードや耐久性をより一層正確に把握することが可能となるので、サスペンション部品の設計の合理化を図ることが可能になるが、パイプ状部材およびエンド部材の材料強度、寸法公差、摩擦圧接条件などの僅かな差異によっても、バリ形状にばらつきが発生してしまうので、実際には非常に困難である。   By the way, the strength of the part including the burr (that is, the degree of stress concentration) depends on the burr shape (the shape of the notch due to the burr). Variation will occur. If the variation in strength in the part including burrs can be reduced, the failure mode and durability of the suspension parts can be grasped more accurately, and the design of the suspension parts can be rationalized. However, even a slight difference in the material strength, dimensional tolerance, friction welding conditions, and the like of the pipe-shaped member and the end member causes variation in the burr shape, which is very difficult in practice.

なお、前記した問題は、パイプ状部材とエンド部材とを摩擦圧接してなるサスペンション部品に限らず、第一部材と第二部材とを摩擦圧接してなる摩擦圧接部品にも共通して当てはまる問題である。   The above-mentioned problem is not limited to suspension parts formed by friction welding the pipe-shaped member and the end member, but also applies to friction welding parts formed by friction welding the first member and the second member. It is.

このような観点から、本発明は、バリ形状にばらつきが生じたとしても摩擦圧接部の強度のばらつきが小さく、かつ、強度を正確に把握することが可能な摩擦圧接部品および摩擦圧接方法を提供することを課題とする。   From this point of view, the present invention provides a friction welding component and a friction welding method in which the variation in the strength of the friction welding portion is small and the strength can be accurately grasped even if the burr shape varies. The task is to do.

このような課題を解決する本発明に係る摩擦圧接部品は、第一部材と第二部材とを摩擦圧接してなる摩擦圧接部品であって、前記第一部材側に形成されたバリによる切欠きが、前記第二部材側に形成されたバリによる切欠きよりも小さいことを特徴とする。   A friction welding component according to the present invention for solving such a problem is a friction welding component formed by friction welding a first member and a second member, and is a notch formed by a burr formed on the first member side. Is smaller than the notch formed by the burr formed on the second member side.

要するに、本発明は、第二部材側に形成されるバリよりも急峻なバリを第一部材側に形成することで、接合界面よりも第一部材側の形状係数(応力集中係数)を第二部材側の形状係数よりも大きくするところに特徴がある。すなわち、第一部材側に形成されるバリのバリ底半径やバリ底角度を、第二部材側に形成されるバリのバリ底半径やバリ底角度よりも小さくして、第一部材側の断面変化を第二部材側の断面変化よりも急峻にするところに特徴がある。このようにすると、第一部材側のバリ部分における応力の集中度合いが、第二部材側のバリ部分における応力の集中度合いよりも常に高くなるので、接合部での応力集中は、第一部材側のみを考慮して設計すればよい。これにより、摩擦圧接部品の設計を合理化することが可能となる。   In short, the present invention forms a burr that is steeper than the burr formed on the second member side on the first member side, thereby reducing the shape factor (stress concentration coefficient) on the first member side relative to the bonding interface to the second. It is characterized in that it is larger than the shape factor on the member side. That is, the burr bottom radius and burr bottom angle of the burr formed on the first member side are made smaller than the burr bottom radius and burr bottom angle of the burr formed on the second member side, and the cross section on the first member side It is characterized in that the change is steeper than the cross-sectional change on the second member side. In this way, the stress concentration level in the burr portion on the first member side is always higher than the stress concentration level in the burr portion on the second member side. It is sufficient to design considering only the above. This makes it possible to rationalize the design of the friction welding parts.

第一部材の円筒部と第二部材の円筒部とを摩擦圧接してなる摩擦圧接部品においては、前記第一部材の円筒部の内周側に形成されるバリによる切欠きを、前記第二部材の円筒部の内周側に形成されるバリによる切欠きよりも小さくするとよい。   In the friction welding part formed by friction welding the cylindrical part of the first member and the cylindrical part of the second member, the notch formed by the burr formed on the inner peripheral side of the cylindrical part of the first member It is good to make it smaller than the notch by the burr | flash formed in the inner peripheral side of the cylindrical part of a member.

また、第一部材の円筒部と第二部材の円筒部とを摩擦圧接してなる摩擦圧接部品においては、前記第一部材の円筒部の外径を、前記第二部材の円筒部の外径と等しくするとよい。このようにすると、第一部材の内空側に形成されるバリのバリ底半径やバリ底角度が、常に第二部材の内空側に形成されるバリのバリ底半径やバリ底角度よりも小さくなるので、破壊モードの特定が容易となる。また、第一部材の円筒部の外周面と第二部材の円筒部の外周面とに段差がなくなるので、外周側に形成されたバリを切除する作業を容易に行うことが可能となる。   In addition, in the friction welding component formed by friction welding the cylindrical portion of the first member and the cylindrical portion of the second member, the outer diameter of the cylindrical portion of the first member is set to the outer diameter of the cylindrical portion of the second member. Should be equal. In this way, the burr bottom radius and burr bottom angle of the burr formed on the inner side of the first member are always larger than the burr bottom radius and burr bottom angle of the burr formed on the inner side of the second member. Since it becomes small, it becomes easy to specify the destruction mode. In addition, since there is no step between the outer peripheral surface of the cylindrical portion of the first member and the outer peripheral surface of the cylindrical portion of the second member, it is possible to easily perform the work of removing the burrs formed on the outer peripheral side.

前記第一部材および前記第二部材が、JIS規格のアルミニウム合金6061−T6からなる場合には、接合界面よりも前記第一部材側の形状係数を、2.0以上にすることが望ましい。このようにすると、切欠き係数(応力集中がない場合の疲労強度/応力集中がある場合の疲労強度)のばらつきが小さくなるので、第一部材の破壊強度(すなわち、摩擦圧接部品の破壊強度)をより一層的確に把握することが可能となる。なお、前記第一部材側の形状係数を2.0以上にするためには、例えば、前記第一部材側に形成されたバリのバリ底角度を、鋭角にすればよい。   When the first member and the second member are made of JIS standard aluminum alloy 6061-T6, it is desirable that the shape factor on the first member side with respect to the bonding interface is 2.0 or more. This reduces the variation of the notch coefficient (fatigue strength when there is no stress concentration / fatigue strength when there is stress concentration), so the fracture strength of the first member (that is, the fracture strength of the friction welded part) Can be grasped more accurately. In order to set the shape factor on the first member side to 2.0 or more, for example, the burr bottom angle of the burr formed on the first member side may be an acute angle.

本発明においては、摩擦圧接前における前記第一部材の突合面の面積を、摩擦圧接前における前記第二部材の突合面の面積よりも小さくするか、あるいは、摩擦圧接前における前記第一部材の突合面の断面二次モーメントを、摩擦圧接前における前記第二部材の突合面の断面二次モーメントよりも小さくするとよい。また、第一部材と第二部材とが強度差(特に高温強度差)を示す異種金属からなる場合や、同種の金属からなる場合であっても製造工程の差異により明らかな強度差(特に高温強度差)を示すような場合などにおいては、前記第一部材の強度を、前記第二部材の強度よりも低くするとよい。このようにすると、第一部材側に形成されたバリによる切欠きを、簡単かつ確実に、第二部材側に形成されたバリによる切欠きよりも小さくすることが可能となる。すなわち、第一部材側に形成されるバリのバリ底半径やバリ底角度を、簡単かつ確実に、第二部材側に形成されたバリのバリ底半径やバリ底角度よりも小さくすることが可能となる。   In the present invention, the area of the abutting surface of the first member before the friction welding is made smaller than the area of the abutting surface of the second member before the friction welding, or the first member before the friction welding The cross-sectional secondary moment of the abutting surface may be smaller than the cross-sectional secondary moment of the abutting surface of the second member before the friction welding. Even when the first member and the second member are made of dissimilar metals showing a difference in strength (especially high temperature strength difference) or made of the same kind of metal, an apparent strength difference (especially high temperature) In cases such as showing a difference in strength, the strength of the first member may be lower than the strength of the second member. If it does in this way, it becomes possible to make the notch by the burr | flash formed in the 1st member side smaller than the notch by the burr | flash formed in the 2nd member side simply and reliably. In other words, the burr bottom radius and burr bottom angle of the burr formed on the first member side can be easily and reliably made smaller than the burr bottom radius and burr bottom angle of the burr formed on the second member side. It becomes.

なお、第一部材の円筒部と第二部材の円筒部とを摩擦圧接してなる摩擦圧接部品においては、摩擦圧接前における前記第一部材の円筒部の肉厚を、摩擦圧接前における前記第二部材の円筒部の肉厚よりも小さくすると、第一部材側に形成されるバリのバリ底半径やバリ底角度を、簡単かつ確実に、第二部材側に形成されたバリのバリ底半径やバリ底角度よりも小さくすることが可能となる。   In the friction welding component formed by friction welding the cylindrical portion of the first member and the cylindrical portion of the second member, the thickness of the cylindrical portion of the first member before the friction welding is set to the thickness of the first member before the friction welding. If the thickness is smaller than the wall thickness of the cylindrical part of the two members, the burr bottom radius and burr bottom angle of the burr formed on the first member side can be set easily and reliably on the burr bottom radius of the burr formed on the second member side. It becomes possible to make it smaller than the burr bottom angle.

前記した課題を解決する本発明に係る摩擦圧接方法は、第一部材と第二部材とを摩擦圧接する方法であって、前記第一部材と前記第二部材とを相対回転させつつ突き合せた際に、前記第一部材を先に流動化させることで、前記第一部材の突合面側に形成されるバリによる切欠きを、前記第二部材側に形成されるバリによる切欠きよりも小さくすることを特徴とする。   The friction welding method according to the present invention for solving the above-described problem is a method of friction welding the first member and the second member, and the first member and the second member are abutted while rotating relative to each other. When the first member is fluidized first, the notch formed by the burr formed on the abutting surface side of the first member is made smaller than the notch formed by the burr formed on the second member side. It is characterized by doing.

このような摩擦圧接方法によれば、強度のばらつきが小さく、かつ、強度の大きさを正確に把握することが可能な摩擦圧接部品を得ることが可能となる。すなわち、この摩擦圧接方法により得られた摩擦圧接部品では、第一部材側のバリ部分における応力の集中度合いが、第二部材側のバリ部分における応力の集中度合いよりも常に高くなるので、接合部での応力集中は、第一部材側のみを考慮するだけでよい。   According to such a friction welding method, it is possible to obtain a friction welding component in which variation in strength is small and the magnitude of strength can be accurately grasped. That is, in the friction welded part obtained by this friction welding method, the stress concentration in the burr part on the first member side is always higher than the stress concentration in the burr part on the second member side. For the stress concentration at, only the first member side needs to be considered.

なお、第一部材の円筒部と第二部材の円筒部とを摩擦圧接する場合には、前記第一部材の円筒部と前記第二部材の円筒部とを相対回転させつつ突き合せた際に、前記第一部材を先に流動化させることで、前記第一部材の円筒部の内周側に形成されるバリによる切欠きを、前記第二部材の円筒部の内周側に形成されるバリによる切欠きよりも小さくすればよい。   When the cylindrical portion of the first member and the cylindrical portion of the second member are friction-welded, when the cylindrical portion of the first member and the cylindrical portion of the second member are abutted while rotating relative to each other, By first fluidizing the first member, a notch by a burr formed on the inner peripheral side of the cylindrical portion of the first member is formed on the inner peripheral side of the cylindrical portion of the second member. What is necessary is just to make it smaller than the notch by a burr | flash.

第一部材を先に流動化させるには、例えば、前記第一部材を前記第二部材よりも高温にすればよい。また、摩擦圧接前における前記第一部材の突合面の面積を、摩擦圧接前における前記第二部材の突合面の面積よりも小さくしておくか、あるいは、摩擦圧接前における前記第一部材の突合面の断面二次モーメントを、摩擦圧接前における前記第二部材の突合面の断面二次モーメントよりも小さくしておくことでも、第一部材を先に流動化させることができる。さらに、第一部材と第二部材とが強度差(特に高温強度差)を示す異種金属からなる場合や、同種の金属からなる場合であっても製造工程の差異により明らかな強度差(特に高温強度差)を示すような場合などにおいては、前記第二部材よりも強度の低い材料で前記第一部材を形成すれば、第一部材を先に流動化させることができる。   In order to fluidize the first member first, for example, the first member may be heated to a temperature higher than that of the second member. Further, the area of the abutting surface of the first member before the friction welding is made smaller than the area of the abutting surface of the second member before the friction welding, or the abutting of the first member before the friction welding. The first member can also be fluidized first by keeping the cross-sectional secondary moment of the surface smaller than the cross-sectional secondary moment of the abutting surface of the second member before the friction welding. Furthermore, even when the first member and the second member are made of different metals showing a difference in strength (especially, high temperature strength difference), or even when made of the same kind of metal, an apparent strength difference (especially high temperature) In cases such as showing a difference in strength, the first member can be fluidized first by forming the first member with a material having a lower strength than the second member.

なお、第一部材の円筒部と第二部材の円筒部とを摩擦圧接する場合においては、摩擦圧接前における前記第一部材の円筒部の肉厚を、摩擦圧接前における前記第二部材の円筒部の肉厚よりも小さくしておくことで、前記第一部材を先に流動化させることができる。   In addition, in the case of friction welding the cylindrical portion of the first member and the cylindrical portion of the second member, the thickness of the cylindrical portion of the first member before the friction welding is set to the cylinder of the second member before the friction welding. By making it smaller than the thickness of the part, the first member can be fluidized first.

本発明に係る摩擦圧接部品によれば、強度のばらつきが小さく、かつ、強度を正確に把握することが可能となる。また、本発明に係る摩擦圧接方法によれば、強度のばらつきが小さく、かつ、強度を正確に把握することが可能な摩擦圧接部品を得ることが可能となる。   According to the friction welding component according to the present invention, the variation in strength is small, and the strength can be accurately grasped. In addition, according to the friction welding method according to the present invention, it is possible to obtain a friction welding component in which variation in strength is small and the strength can be accurately grasped.

本発明を実施するための最良の形態を、添付した図面を参照しつつ詳細に説明する。なお、以下の実施形態においては、摩擦圧接部品がサスペンション部品の一種であるサスペンションロッドである場合を例示するが、本発明に係る摩擦圧接部品の用途を限定する趣旨ではない。   The best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings. In the following embodiment, the case where the friction welding component is a suspension rod which is a kind of suspension component is illustrated, but the application of the friction welding component according to the present invention is not limited.

図1の(a)に示すように、本実施形態に係る摩擦圧接部品1は、パイプ状部材である第一部材10の両端にエンド部材である第二部材20,20を摩擦圧接してなるものである。なお、二つの第二部材20,20の主要な構成は同様であるので、以下の説明においては、一方(図1において右側)の第二部材20についてのみ説明を行い、他方の第二部材20については、その詳細な説明を省略する。   As shown in FIG. 1A, the friction welding component 1 according to this embodiment is formed by friction welding the second members 20 and 20 as end members to both ends of the first member 10 as a pipe-like member. Is. In addition, since the main structure of the two 2nd members 20 and 20 is the same, in the following description, only the 2nd member 20 of one side (right side in FIG. 1) is demonstrated, and the other 2nd member 20 is demonstrated. The detailed description of is omitted.

第一部材10は、図1の(b)に示すように、円管状を呈するアルミニウム合金製の押出形材からなり、本体部12と、この本体部12の両端部の各々に形成された円筒部11とを備えている。摩擦圧接前における円筒部11は、押出方向に断面変化のない円筒状を呈している。本体部12も押出方向に断面変化のない円筒状を呈していて、円筒部11と同じ断面形状を備えている。   As shown in FIG. 1 (b), the first member 10 is made of an extruded shape made of an aluminum alloy having a circular tube shape, and a cylinder formed on each of a main body portion 12 and both end portions of the main body portion 12. Part 11. The cylindrical portion 11 before friction welding has a cylindrical shape with no cross-sectional change in the extrusion direction. The main body 12 also has a cylindrical shape with no cross-sectional change in the extrusion direction, and has the same cross-sectional shape as the cylindrical portion 11.

第二部材20は、それぞれ、アルミニウム合金製の押出形材を利用して形成されたものであり、円筒部21と断面変化部22とを備えている。摩擦圧接前における円筒部21は、断面変化のない円筒状を呈している。円筒部21は、第二部材20となる押出形材の一部に切削加工や穴あけ加工を施すことにより円筒状に成形される。   Each of the second members 20 is formed using an extruded shape made of an aluminum alloy, and includes a cylindrical portion 21 and a cross-section changing portion 22. The cylindrical portion 21 before friction welding has a cylindrical shape with no cross-sectional change. The cylindrical portion 21 is formed into a cylindrical shape by subjecting a part of the extruded shape to be the second member 20 to cutting or drilling.

なお、アルミニウム合金の種類に特に制限はないが、摩擦圧接部品1をサスペンション部品として用いる場合には、T6処理をしたAl−Mg−Si系合金(JIS規格の6000系アルミニウム合金であって溶体化処理後に焼入れ処理をし、その後に人工時効処理をしたもの)であることが望ましい。特に、T6処理をしたAl−Mg−Si系合金(JIS規格のアルミニウム合金6061−T6)であれば、強度が高く(0.2%耐力が245MPa以上)、耐久性(応力腐食割れ性や耐候性など)も高いので、より一層望ましい。また、第一部材10および第二部材20は、押出形材である必要はなく、鋳造品(ダイカストを含む)であっても差し支えない。ちなみに、鋳造品からなる第一部材10および第二部材20を用いてサスペンション部品を構成する場合には、AC4C系合金やADC3系合金を用いることが望ましい。   The type of the aluminum alloy is not particularly limited. However, when the friction welding part 1 is used as a suspension part, an Al—Mg—Si based alloy subjected to T6 treatment (a JIS standard 6000 series aluminum alloy and solutionized). It is desirable that a quenching treatment be performed after the treatment, followed by an artificial aging treatment). In particular, an Al—Mg—Si based alloy (JIS standard aluminum alloy 6061-T6) treated with T6 has high strength (0.2% proof stress of 245 MPa or more) and durability (stress corrosion cracking resistance and weather resistance). It is even more desirable. Moreover, the 1st member 10 and the 2nd member 20 do not need to be an extrusion shape material, and may be a casting (including die-casting). Incidentally, when a suspension part is formed using the first member 10 and the second member 20 made of a cast product, it is desirable to use an AC4C alloy or an ADC3 alloy.

本実施形態においては、摩擦圧接前における第一部材10の円筒部11の肉厚tが、摩擦圧接前における第二部材20の円筒部21の肉厚tよりも小さくなっている。また、第一部材10の円筒部11の外径が、第二部材20の円筒部21の外径と等しくなっている。すなわち、本実施形態においては、摩擦圧接前における第一部材10の突合面(円筒部11の端面)11cの面積が、摩擦圧接前における第二部材20の突合面(円筒部21の端面)21cの面積よりも小さく、かつ、第一部材10の突合面11cの断面二次モーメントが、第二部材20の突合面21cの断面二次モーメントよりも小さくなっている。換言すれば、摩擦圧接時には第一部材10の円筒部11の先端部は、第二部材20の円筒部21の先端部よりも変形し易くなっている。 In the present embodiment, the thickness t 1 of the cylindrical portion 11 of the first member 10 before the friction welding is smaller than the thickness t 2 of the cylindrical portion 21 of the second member 20 before the friction welding. Further, the outer diameter of the cylindrical portion 11 of the first member 10 is equal to the outer diameter of the cylindrical portion 21 of the second member 20. That is, in this embodiment, the area of the abutting surface (end surface of the cylindrical portion 11) 11c of the first member 10 before the friction welding is equal to the abutting surface (end surface of the cylindrical portion 21) 21c of the second member 20 before the friction welding. And the second moment of section of the abutting surface 11 c of the first member 10 is smaller than the second moment of section of the abutting surface 21 c of the second member 20. In other words, the tip end portion of the cylindrical portion 11 of the first member 10 is more easily deformed than the tip end portion of the cylindrical portion 21 of the second member 20 during friction welding.

ここで、第一部材10と第二部材20とを摩擦圧接する方法(すなわち、摩擦圧接部品1の製造方法)を説明する。本実施形態に係る摩擦圧接方法は、準備過程と摩擦過程とアプセット過程とを含んでいる。   Here, a method for friction welding the first member 10 and the second member 20 (that is, a method for manufacturing the friction welding component 1) will be described. The friction welding method according to the present embodiment includes a preparation process, a friction process, and an upset process.

準備過程では、第一部材10を図示せぬ摩擦圧接装置のクランプで把持するとともに、第二部材20を、その円筒部21の中心軸線が第一部材10の円筒部11の中心軸線と同軸となるように図示せぬ摩擦圧接装置の主軸のチャックで把持する。   In the preparation process, the first member 10 is gripped by a clamp of a friction welding apparatus (not shown), and the central axis of the cylindrical portion 21 of the second member 20 is coaxial with the central axis of the cylindrical portion 11 of the first member 10. It is gripped by the chuck of the spindle of the friction welding apparatus (not shown).

摩擦過程では、第一部材10と第二部材20とを相対回転させつつ、第二部材20を第一部材10に向かって前進させて第一部材10の円筒部11の突合面11cと第二部材20の円筒部21の突合面21cとを突き合せ、突合面11c,21cに摩擦圧力を付与する。相対回転数、摩擦圧力、摩擦寄り代、摩擦寄り速度などは、第一部材10,20の材質や円筒部11,21の寸法・形状を考慮しつつ適宜設定すればよい。   In the friction process, while the first member 10 and the second member 20 are relatively rotated, the second member 20 is advanced toward the first member 10, and the abutting surface 11 c of the cylindrical portion 11 of the first member 10 and the second member 10 are moved forward. The abutting surface 21c of the cylindrical portion 21 of the member 20 is abutted and a friction pressure is applied to the abutting surfaces 11c and 21c. The relative rotational speed, the friction pressure, the friction deviation, the friction deviation speed, and the like may be appropriately set in consideration of the material of the first members 10 and 20 and the dimensions and shapes of the cylindrical portions 11 and 21.

円筒部11,21を相対回転させつつ突合面11c,21cに圧力を付与すると、摩擦熱によって突合面11c,21cの周囲に母材よりも軟らかい軟化部が形成され、軟化部の流動性が高まると、円筒部11,21の内外へ押し出されてバリが形成され始める。本実施形態では、第一部材10の突合面11cの面積が第二部材20の突合面21cの面積よりも小さくなっており、第一部材10と第二部材20とが同じ材質なので、第一部材10の円筒部11に発生する応力の方が第二部材20の円筒部21に発生する応力よりも大きく、かつ、第一部材10の方が第二部材20より断面積が小さいために熱伝導による熱拡散が小さく高温となるために変形抵抗が小さい。したがって、第一部材10の円筒部11が先に流動化することになる。すなわち、摩擦圧力によって第一部材10の円筒部11の先端部が第二部材よりも先に変形(塑性流動化)を開始し、その結果、接合界面Jよりも第一部材10側にあるバリによる切欠き(断面変化)が第二部材20側にあるバリによる切欠き(断面変化)よりも急峻なものになる。なお、摩擦圧接前の円筒部11,21の突合面11c,21cに存在している酸化皮膜や付着物などは、バリとともに排出されることになる。   When pressure is applied to the abutting surfaces 11c and 21c while relatively rotating the cylindrical portions 11 and 21, softened portions that are softer than the base material are formed around the abutting surfaces 11c and 21c by frictional heat, and the fluidity of the softened portions is increased. Then, it is pushed out into and out of the cylindrical portions 11 and 21, and burrs begin to be formed. In the present embodiment, the area of the abutting surface 11c of the first member 10 is smaller than the area of the abutting surface 21c of the second member 20, and the first member 10 and the second member 20 are the same material. The stress generated in the cylindrical portion 11 of the member 10 is greater than the stress generated in the cylindrical portion 21 of the second member 20, and the first member 10 has a smaller cross-sectional area than the second member 20. Deformation resistance is small because heat diffusion due to conduction is small and the temperature is high. Therefore, the cylindrical portion 11 of the first member 10 is fluidized first. That is, the tip of the cylindrical portion 11 of the first member 10 starts to deform (plastic fluidization) before the second member due to the friction pressure, and as a result, the burrs located on the first member 10 side with respect to the bonding interface J. The notch (cross-sectional change) due to sag becomes steeper than the notch (cross-sectional change) due to the burr on the second member 20 side. In addition, the oxide film, the deposits, and the like existing on the abutting surfaces 11c and 21c of the cylindrical portions 11 and 21 before the friction welding are discharged together with the burrs.

アプセット過程は、アプセット圧力を付与する過程であり、摩擦過程の終了後または終了直前に実施される。すなわち、円筒部11,21の突合面11c,21cに付与する圧力を摩擦圧力よりも増加させ、所定のアプセット圧力に達したら、このアプセット圧力を所定時間保持して円筒部11,21を圧着する。アプセット圧力を付与すると、摩擦過程に引き続き、摩擦過程で形成された軟化部が円筒部11,21の内外へ押し出され、その結果、図1の(a)に示すように、バリが成長するとともに、酸化皮膜等のない接合界面Jが形成される。   The upset process is a process of applying an upset pressure, and is performed after or just before the end of the friction process. That is, the pressure applied to the abutting surfaces 11c and 21c of the cylindrical portions 11 and 21 is increased more than the friction pressure, and when the predetermined upset pressure is reached, the upset pressure is maintained for a predetermined time and the cylindrical portions 11 and 21 are pressure bonded. . When an upset pressure is applied, the softened part formed in the friction process is pushed out into and out of the cylindrical parts 11 and 21 following the friction process, and as a result, as shown in FIG. As a result, a bonding interface J having no oxide film or the like is formed.

このような過程を経て形成された接合部の形態を、図2を参照してより詳細に説明する。前記したように、第一部材10の円筒部11の方が第二部材20の円筒部21よりも変形し易いので、第一部材10側に形成されたバリ11a,11bによる切欠きが、第二部材20側に形成されたバリ21a,21bによる切欠きよりも小さくなる。すなわち、円筒部11の内周側(内空側)に形成されるバリ11aのバリ底角度θ1aが、円筒部21の内周側に形成されたバリ21aのバリ底角度θ2aよりも小さくなり、バリ11aのバリ底半径R1aが、バリ21aのバリ底半径R2aよりも小さくなる。同様に、円筒部11の外周側に形成されるバリ11bのバリ底角度θ1bが、円筒部21の外周側に形成されたバリ21bのバリ底角度θ2bよりも小さくな り、バリ11bのバリ底半径R1bが、バリ21bのバリ底半径R2bよりも小さくなる。 The form of the joint formed through such a process will be described in more detail with reference to FIG. As described above, since the cylindrical portion 11 of the first member 10 is more easily deformed than the cylindrical portion 21 of the second member 20, the notches formed by the burrs 11a and 11b formed on the first member 10 side are first. It becomes smaller than the notch by the burr | flash 21a, 21b formed in the two member 20 side. That is, the burr bottom angle θ 1a of the burr 11a formed on the inner peripheral side (inner side) of the cylindrical part 11 is smaller than the burr bottom angle θ 2a of the burr 21a formed on the inner peripheral side of the cylindrical part 21. Thus, the burr bottom radius R 1a of the burr 11a is smaller than the burr bottom radius R 2a of the burr 21a. Similarly, burrs 11b are formed on the outer peripheral side of the cylindrical portion 11 burrs bottom angle theta 1b is, the burr 21b formed on the outer peripheral side of the cylindrical portion 21 Ri of less than burr bottom angle theta 2b, the burrs 11b The burr bottom radius R 1b is smaller than the burr bottom radius R 2b of the burr 21b.

なお、バリ底半径R1a,R1b,R2a,R2bとは、バリ11a,11b,21a,21bの立ち上がり部分の断面形状を、肉厚変化点P1,P2,Q1,Q2を通る円弧で近似したときの最小半径を意味し、バリ底角度θ1a,θ1b,θ2a,θ2bとは、前記した円弧とバリ11a,11b,21a,21bの輪郭線との接点(もしくは交点)における前記円弧に対する接線S1a,S1b,S2a,S2bと、円筒部11,21の中心軸線に平行な直線であって肉厚変化点P1,P2,Q1,Q2を通る直線T1a,T1b,T2a,T2bとがなす角度を意味する。 The burr bottom radii R 1a , R 1b , R 2a , and R 2b are cross-sectional shapes of rising portions of the burrs 11a, 11b, 21a, and 21b, and are arcs that pass through the thickness change points P1, P2, Q1, and Q2. This means the minimum radius when approximated, and the burr bottom angles θ 1a , θ 1b , θ 2a , θ 2b are at the contact points (or intersections) of the arcs and the contour lines of the burr 11a, 11b, 21a, 21b. Tangent lines S 1a , S 1b , S 2a , S 2b with respect to the arc and straight lines T 1a , T 2 that are parallel to the central axes of the cylindrical portions 11, 21 and pass through the thickness change points P 1, P 2, Q 1, Q 2. It means the angle formed by 1b , T 2a and T 2b .

また、本実施形態においては、第一部材10側に形成されたバリ11a,11bのバリ底角度θ1a,θ1bが、鋭角(π/2(rad)未満)になっている。 In the present embodiment, the burr bottom angles θ 1a and θ 1b of the burrs 11a and 11b formed on the first member 10 side are acute angles (less than π / 2 (rad)).

なお、摩擦熱によって形成された軟化部は、円筒部11,21の内周側よりも外周側へ押し出され易い傾向にあることから、円筒部11,21の内周側に形成されるバリ11a,21aの容積は、外周側に形成されるバリ11b,21bの容積よりも小さくなり、その結果、円筒部11の内周側の肉厚変化点P1は、外周側の肉厚変化点Q1よりも接合界面Jに近くなり、円筒部21の内周側の肉厚変化点P2は、外周側の肉厚変化点Q2よりも接合界面Jに近くなる。   In addition, since the softening part formed by frictional heat tends to be pushed out to the outer peripheral side rather than the inner peripheral side of the cylindrical parts 11 and 21, the burr 11a formed on the inner peripheral side of the cylindrical parts 11 and 21. , 21a is smaller than the volume of burrs 11b, 21b formed on the outer peripheral side. As a result, the thickness change point P1 on the inner peripheral side of the cylindrical portion 11 is greater than the thickness change point Q1 on the outer peripheral side. Is closer to the joining interface J, and the thickness change point P2 on the inner peripheral side of the cylindrical portion 21 is closer to the joining interface J than the thickness change point Q2 on the outer peripheral side.

ところで、圧接時の摩擦熱によって、母材の強度と異なる強度・材質を有する熱影響部(HAZ=Heat Affected Zone)が接合界面Jの周辺に不可避的に発生するが、強度の変質度合いは、接合界面Jに近づくに従って大きくなる傾向にある。なお、熱影響部Hの強度は、第一部材10および第二部材20が熱処理型合金(JIS規格の2000系アルミニウム合金(Al−Cu−Mg系合金)、JIS規格の6000系アルミニウム合金(Al−Mg−Si系合金)、JIS規格の7000系アルミニウム合金(Al−Zn−Mg系合金))からなる場合には、母材よりも小さくなり、非熱処理型合金(JIS規格の1000系アルミニウム合金(純アルミニウム系)、JIS規格の3000系アルミニウム合金(Al−Mn系合金)、JIS規格の5000系アルミニウム合金(Al−Mg系合金))からなる場合には、母材よりも大きくなる。したがって、例えば、第一部材10および第二部材20が熱処理型合金からなる場合には、外周側の肉厚変化点Q1,Q2での強度よりも円筒部11,21の内周側の肉厚変化点P1,P2での強度の方が小さくなる。   By the way, due to frictional heat during pressure welding, a heat affected zone (HAZ = Heat Affected Zone) having a strength and material different from the strength of the base material inevitably occurs around the joint interface J. It tends to increase as it approaches the joint interface J. The strength of the heat affected zone H is such that the first member 10 and the second member 20 are heat treated alloys (JIS standard 2000 series aluminum alloy (Al-Cu-Mg series alloy), JIS standard 6000 series aluminum alloy (Al -Mg-Si alloy), JIS standard 7000 series aluminum alloy (Al-Zn-Mg alloy)), it is smaller than the base metal, and is not heat-treatable alloy (JIS standard 1000 series aluminum alloy) In the case of (pure aluminum series), JIS standard 3000 series aluminum alloy (Al-Mn series alloy), JIS standard 5000 series aluminum alloy (Al-Mg series alloy), it is larger than the base material. Therefore, for example, when the first member 10 and the second member 20 are made of a heat treatment type alloy, the thickness on the inner peripheral side of the cylindrical portions 11 and 21 is higher than the strength at the outer peripheral thickness change points Q1 and Q2. The intensity at the change points P1 and P2 becomes smaller.

また、本実施形態に係る摩擦圧接部品1においては、その第一部材10側に急峻なバリ11a,11bが形成されていることで、接合界面Jよりも前記第一部材10側の形状係数αが、1.5以上になっている。   Further, in the friction welding component 1 according to the present embodiment, the steep burrs 11a and 11b are formed on the first member 10 side, so that the shape factor α on the first member 10 side than the joint interface J is formed. However, it is 1.5 or more.

形状係数αは、応力集中係数ともいい、肉厚変化点P1を含む断面等における最大応力をσmax、平均応力をσとすると、次式により定義される。
α=σmax/σ
The shape factor α is also called a stress concentration factor, and is defined by the following equation, where σ max is the maximum stress and σ n is the average stress in the cross section including the wall thickness change point P1.
α = σ max / σ n

なお、図3の(a)および(b)に示す幅広の帯板101と幅狭の帯板102の突合せ溶接継手が引張力Fを受ける場合の形状係数αは、次式により算出できることが知られている。 The shape factor α 0 when the butt weld joint of the wide strip 101 and the narrow strip 102 shown in FIGS. 3A and 3B receives the tensile force F can be calculated by the following equation. Are known.

Figure 2008055486
Figure 2008055486

接合界面Jよりも第一部材10側のバリによる切欠きの断面形状は、図3に示す突合せ溶接継手の形状に近似しているので、接合界面Jよりも第一部材10側の形状係数αは、次式により算出することができる。   Since the cross-sectional shape of the notch by the burr on the first member 10 side with respect to the joining interface J approximates the shape of the butt weld joint shown in FIG. 3, the shape factor α on the first member 10 side with respect to the joining interface J. Can be calculated by the following equation.

Figure 2008055486
Figure 2008055486

上式から分かるように、形状係数αは、バリ底角度θ1a,θ1bが小さくなるほど大きくなり、バリ底半径R1a,R1bが小さくなるほど大きくなり、接合界面Jにおける肉厚tが大きくなるほど大きくなる。なお、参考として、形状係数αが四捨五入をして2.0となる諸元の例を表1に示す。 As can be seen from the above equation, the shape factor α increases as the burr bottom angles θ 1a , θ 1b decrease, increases as the burr bottom radii R 1a , R 1b decrease, and the thickness t J at the joint interface J increases. It gets bigger. For reference, Table 1 shows an example of specifications in which the shape factor α is rounded to 2.0.

Figure 2008055486
Figure 2008055486

耐久性能の指標となる切欠き係数β(=(応力集中がない場合の疲労強度)/(応力集中がある場合の疲労強度)は、応力集中が大きくなるほど、すなわち、形状係数αが大きくなるほど大きくなる傾向にあるが、図4に示すように、切欠き係数βの変化率Δβは、形状係数αが大きくなるに従って小さくなる傾向にある。また、形状係数αの変化率Δαと切欠き係数βの変化率Δβとの比(=Δβ/Δα)は、1以下である。なお、図4に示すグラフは、図3に示す突合せ溶接継手の材質がJIS規格のアルミニウム合金6061−T6(JIS規格の6000系アルミニウム合金(Al−Mg−Si系合金)であって溶体化処理後に焼入れ処理をし、その後に人工時効処理をしたもの)である場合のものである。   The notch coefficient β (= (fatigue strength in the absence of stress concentration) / (fatigue strength in the presence of stress concentration), which is an index of durability performance, increases as the stress concentration increases, that is, as the shape factor α increases. 4, the change rate Δβ of the notch coefficient β tends to decrease as the shape factor α increases, and the change rate Δα of the shape factor α and the notch coefficient β The ratio (= Δβ / Δα) with the change rate Δβ is 1 or less, and the graph shown in Fig. 4 shows that the material of the butt welded joint shown in Fig. 3 is JIS standard aluminum alloy 6061-T6 (JIS standard). 6000 series aluminum alloy (Al-Mg-Si series alloy), which has been subjected to quenching treatment after solution treatment and then artificial aging treatment).

ところで、第一部材10および第二部材20の公差、温度の変化、摩擦圧接条件の僅かな差異によってバリによる切欠きの形状が微妙に変化するので、摩擦圧接部品1ごとに形状係数αがばらつくことになるが、第一部材10および第二部材20がJIS規格のアルミニウム合金6061−T6からなる場合には、形状係数αを2.0以上としておけば、形状係数αのばらつきが切欠き係数βに及ぼす影響が小さいものとなる。すなわち、接合界面Jよりも第一部材10側の形状係数αが2.0以上となるように摩擦圧接をすれば、切欠き係数βの変化率Δβが小さくなるので、摩擦圧接条件等に誤差等が生じたとしても接合部における破壊強度(疲労強度)のばらつきを小さくすることが可能となり、また、接合部の破壊強度の大きさを正確に把握することが可能となる。   By the way, since the shape of the notch due to burrs slightly changes due to slight differences in tolerances, temperature changes, and friction welding conditions of the first member 10 and the second member 20, the shape factor α varies for each friction welding component 1. However, when the first member 10 and the second member 20 are made of JIS standard aluminum alloy 6061-T6, if the shape factor α is set to 2.0 or more, the variation in the shape factor α is notched. The effect on β is small. That is, if the friction welding is performed so that the shape factor α on the first member 10 side with respect to the joining interface J is 2.0 or more, the change rate Δβ of the notch coefficient β is reduced, so that there is an error in the friction welding conditions and the like. Even if such occurs, it is possible to reduce the variation in fracture strength (fatigue strength) at the joint, and it is possible to accurately grasp the magnitude of fracture strength at the joint.

以上説明したように、本実施形態に係る摩擦圧接部品1においては、第一部材10側のバリ11a,11bによる切欠き部分における応力の集中度合いが、第二部材20側のバリ部分21a,21bによる切欠き部分における応力の集中度合いよりも常に高くなるので、接合部での応力集中は、第一部材10側のみを考慮するだけでよい。すなわち、摩擦圧接部品1によれば、その強度のばらつきを小さくすることが可能となり、加えて、強度の大きさも正確に把握することが可能となるので、摩擦圧接部品の設計を合理化することが可能となる。   As described above, in the friction-welded component 1 according to the present embodiment, the degree of stress concentration in the notched portions by the burrs 11a and 11b on the first member 10 side is the burr portions 21a and 21b on the second member 20 side. Since it always becomes higher than the stress concentration degree in the notch portion due to, the stress concentration in the joint portion only needs to be considered on the first member 10 side. That is, according to the friction welded part 1, it is possible to reduce variations in strength, and in addition, it is possible to accurately grasp the magnitude of the strength, so that the design of the friction welded part can be streamlined. It becomes possible.

ちなみに、第一部材10および第二部材20が熱処理合金からなる場合には、接合界面Jに近づくに従って強度が低下するので、円筒部11,21の内周側の肉厚変化点P1,P2での強度は、外周側の肉厚変化点Q1,Q2での強度よりも小さくなる。つまり、想定外の荷重が作用する場合には、円筒部11,21の内周側から破壊が進行する可能性が高い。特に本実施形態では、第一部材10の円筒部11の内周側に形成されるバリ11aによる切欠きが第二部材10の円筒部21の内周側に形成されるバリ21aによる切欠きよりも急峻であることから、想定外の荷重が作用する場合には、バリ11aの立ち上がり部分の切欠き(すなわち、第一部材10の円筒部11の内周側の肉厚変化点P1近傍)から破壊が進行する可能性が高い。このように、円筒部11の内周側に形成されるバリ11aのバリ底角度θ1aやバリ底半径R1aを、円筒部21の内周側に形成されるバリ21aのバリ底角度θ2aやバリ底半径R2aよりも小さくしておけば、破壊モードの特定が容易となる。 Incidentally, when the first member 10 and the second member 20 are made of a heat-treated alloy, the strength decreases as the joint interface J is approached. Therefore, at the thickness change points P1 and P2 on the inner peripheral side of the cylindrical portions 11 and 21, respectively. Is smaller than the strength at the wall thickness change points Q1, Q2. That is, when an unexpected load is applied, there is a high possibility that the destruction proceeds from the inner peripheral side of the cylindrical portions 11 and 21. Particularly in the present embodiment, the notch formed by the burr 11a formed on the inner peripheral side of the cylindrical portion 11 of the first member 10 is more than the notch formed by the burr 21a formed on the inner peripheral side of the cylindrical portion 21 of the second member 10. Therefore, when an unexpected load is applied, from the notch of the rising portion of the burr 11a (that is, near the thickness change point P1 on the inner peripheral side of the cylindrical portion 11 of the first member 10). Destruction is likely to progress. In this way, the burr bottom angle θ 1a of the burr 11a formed on the inner peripheral side of the cylindrical portion 11 and the burr bottom radius R 1a are used as the burr bottom angle θ 2a of the burr 21a formed on the inner peripheral side of the cylindrical portion 21. If it is smaller than the burr bottom radius R 2a , it is easy to specify the destruction mode.

なお、円筒部11の外径と円筒部21の外径とを等しくしなくとも、円筒部11の内空側に形成されるバリ底角度θ1aやバリ底半径R1aを、円筒部21の内周側に形成されるバリ底角度θ2a やバリ底半径R2aよりも小さくすることはできるが、本実施形態の如く円筒部11,21の外径を等しくして内周面に段差を設けておけば、円筒部11の内周側に形成されるバリ底角度θ1aやバリ底半径R1aが、円筒部21の内周側に形成されるバリ底角度θ2aやバリ底半径R2aよりも小さくなり易くなる。また、円筒部11の外径と円筒部21の外径とを等しくすると、第一部材の円筒部の外周面と第二部材の円筒部の外周面とに段差がなくなるので、外周側に形成されたバリ11b,21bを切除する作業を容易に行うことが可能となる。 Even if the outer diameter of the cylindrical portion 11 and the outer diameter of the cylindrical portion 21 are not equal, the burr bottom angle θ 1a and the burr bottom radius R 1a formed on the inner space side of the cylindrical portion 11 Although it can be made smaller than the burr bottom angle θ 2a and burr bottom radius R 2a formed on the inner peripheral side, the outer diameters of the cylindrical portions 11 and 21 are made equal to each other as in the present embodiment, and a step is formed on the inner peripheral surface. If provided, the burr bottom angle θ 1a and burr bottom radius R 1a formed on the inner peripheral side of the cylindrical portion 11 are changed to the burr bottom angle θ 2a and burr bottom radius R formed on the inner peripheral side of the cylindrical portion 21, respectively. It tends to be smaller than 2a . Further, if the outer diameter of the cylindrical portion 11 is equal to the outer diameter of the cylindrical portion 21, there is no step between the outer peripheral surface of the cylindrical portion of the first member and the outer peripheral surface of the cylindrical portion of the second member. The work of excising the burrs 11b, 21b thus made can be easily performed.

また、図5に示すように、接合部の外周側に形成されたバリ11b,21bについては、接合部の外周面を滑らかにするために切除される場合があるが、円筒部11の内周側に形成されるバリ底角度θ1aやバリ底半径R1aを、円筒部21の内周側に形成されるバリ底角度θ2aやバリ底半径R2aよりも小さくしておけば、バリ11b,21bの切除後においても、破壊モードの特定が容易となる。 Further, as shown in FIG. 5, the burrs 11 b and 21 b formed on the outer peripheral side of the joint portion may be cut out to smooth the outer peripheral surface of the joint portion. If the burr bottom angle θ 1a and burr bottom radius R 1a formed on the side are smaller than the burr bottom angle θ 2a and burr bottom radius R 2a formed on the inner peripheral side of the cylindrical portion 21, the burr 11b , 21b can be easily identified even after excision.

また、本実施形態においては、第一部材10および第二部材20をJIS規格のアルミニウム合金6061−T6で形成するとともに、接合界面Jよりも第一部材10側の形状係数αを2.0以上としたので、切欠き係数βにばらつきがなくなる。つまり、摩擦圧接部品1の破壊強度をより的確に把握することが可能となる。   Moreover, in this embodiment, while forming the 1st member 10 and the 2nd member 20 with the aluminum alloy 6061-T6 of JIS specification, the shape factor alpha by the side of the 1st member 10 rather than the joining interface J is 2.0 or more. Therefore, there is no variation in the notch coefficient β. That is, the fracture strength of the friction welded part 1 can be grasped more accurately.

なお、前記した実施形態では、摩擦圧接前における第一部材10の円筒部11の肉厚tを、第二部材20の円筒部21の肉厚tよりも小さくすることで、摩擦圧接前における第一部材10の突合面11cの面積および断面二次モーメントを、摩擦圧接前における第二部材20の突合面21cの面積および断面二次モーメントよりも小さくしたが、例えば、図6の(a)に示すように、摩擦圧接前における第一部材10の円筒部11の先端部に段差を付けて薄肉部13を形成することで、摩擦圧接前における第一部材10の突合面11cの面積および断面二次モーメントを、摩擦圧接前における第二部材20の突合面21cの面積および断面二次モーメントよりも小さくしてもよい。この場合、第一部材10の円筒部11の肉厚tと第二部材20の円筒部21の肉厚tとを同一にしてもよい。 In the above-described embodiment, the thickness t 1 of the cylindrical portion 11 of the first member 10 before the friction welding is made smaller than the thickness t 2 of the cylindrical portion 21 of the second member 20, so that the friction welding is performed. The area of the abutting surface 11c of the first member 10 and the secondary moment of the cross section are smaller than the area of the abutting surface 21c of the second member 20 and the secondary moment of the cross section before the friction welding. For example, FIG. ), By forming a thin portion 13 with a step on the tip of the cylindrical portion 11 of the first member 10 before the friction welding, the area of the abutting surface 11c of the first member 10 before the friction welding and The cross-sectional secondary moment may be smaller than the area of the abutting surface 21c of the second member 20 and the cross-sectional secondary moment before the friction welding. In this case, the thickness t 1 of the cylindrical portion 11 of the first member 10 and the thickness t 2 of the cylindrical portion 21 of the second member 20 may be the same.

このようにしても、摩擦圧接時に、第一部材10の円筒部11が先に流動化することになるので、図示は省略するが、第一部材10側に形成されるバリのバリ底角度やバリ底半径を第二部材20側に形成されるバリのバリ底角度やバリ底半径よりも小さくすることが可能となる。また、第一部材10の円筒部11に薄肉部13を形成すれば、第二部材20の円筒部21を全長に亘って厚肉にする必要がなくなるので、摩擦圧接部品1の重量が必要以上に増加することがない。   Even if it does in this way, since the cylindrical part 11 of the 1st member 10 fluidizes previously at the time of friction welding, although illustration is abbreviate | omitted, the burr | flash burr bottom angle formed in the 1st member 10 side, It is possible to make the burr bottom radius smaller than the burr bottom angle or burr bottom radius of the burr formed on the second member 20 side. Further, if the thin portion 13 is formed in the cylindrical portion 11 of the first member 10, it is not necessary to make the cylindrical portion 21 of the second member 20 thick over the entire length, so the weight of the friction welding component 1 is more than necessary. Will not increase.

また、図6の(b)に示すように、摩擦圧接前における第二部材20の円筒部21の先端部に段差を付けて厚肉部23を形成することで、摩擦圧接前における第一部材10の突合面11cの面積および断面二次モーメントを、摩擦圧接前における第二部材20の突合面21cの面積および断面二次モーメントよりも小さくしてもよい。この場合、第一部材10の円筒部11の肉厚tと第二部材20の円筒部21の肉厚tとを同一にしてもよい。 Further, as shown in FIG. 6B, the first member before friction welding is formed by forming a thick portion 23 by providing a step at the tip of the cylindrical portion 21 of the second member 20 before friction welding. The area of the 10 abutting surfaces 11c and the secondary moment of the cross section may be smaller than the area of the abutting surface 21c of the second member 20 and the secondary moment of the cross section before the friction welding. In this case, the thickness t 1 of the cylindrical portion 11 of the first member 10 and the thickness t 2 of the cylindrical portion 21 of the second member 20 may be the same.

このようにしても、摩擦圧接時に、第一部材10の円筒部11が先に流動化することになるので、図示は省略するが、第一部材10側に形成されるバリのバリ底角度やバリ底半径を第二部材20側に形成されるバリのバリ底角度やバリ底半径よりも小さくすることが可能となる。また、第二部材20の円筒部21に厚肉部23を形成すれば、第二部材20の円筒部21を全長に亘って厚肉にする必要がなくなるので、摩擦圧接部品1の重量が必要以上に増加することがない。   Even if it does in this way, since the cylindrical part 11 of the 1st member 10 fluidizes previously at the time of friction welding, although illustration is abbreviate | omitted, the burr | flash burr bottom angle formed in the 1st member 10 side, It is possible to make the burr bottom radius smaller than the burr bottom angle or burr bottom radius of the burr formed on the second member 20 side. Moreover, if the thick part 23 is formed in the cylindrical part 21 of the second member 20, it is not necessary to make the cylindrical part 21 of the second member 20 thick over the entire length, so the weight of the friction welding component 1 is necessary. There is no increase.

また、図6の(c)に示すように、摩擦圧接前における第一部材10の円筒部11の先端部に先細りの傾斜部14を形成することで、摩擦圧接前における第一部材10の突合面11cの面積および断面二次モーメントを、摩擦圧接前における第二部材20の突合面21cの面積および断面二次モーメントよりも小さくしてもよい。この場合においては、第一部材10の円筒部11の肉厚tと第二部材20の円筒部21の肉厚tとを同一にしてもよい。 Further, as shown in FIG. 6C, the tapered portion 14 is formed at the tip of the cylindrical portion 11 of the first member 10 before the friction welding, so that the first member 10 butt before the friction welding. The area of the surface 11c and the cross-sectional secondary moment may be smaller than the area of the abutting surface 21c of the second member 20 and the cross-sectional secondary moment before the friction welding. In this case, the thickness t 1 of the cylindrical portion 11 of the first member 10 and the thickness t 2 of the cylindrical portion 21 of the second member 20 may be the same.

このようにしても、摩擦圧接時に、第一部材10の円筒部11が先に流動化することになるので、図示は省略するが、第一部材10側に形成されるバリのバリ底角度やバリ底半径を第二部材20側に形成されるバリのバリ底角度やバリ底半径よりも小さくすることが可能となる。また、第一部材の円筒部11の先端部に傾斜部14を形成すれば、第二部材20の円筒部21を全長に亘って厚肉にする必要がなくなるので、摩擦圧接部品1の重量が必要以上に増加することがない。   Even if it does in this way, since the cylindrical part 11 of the 1st member 10 fluidizes previously at the time of friction welding, although illustration is abbreviate | omitted, the burr | flash burr bottom angle formed in the 1st member 10 side, It is possible to make the burr bottom radius smaller than the burr bottom angle or burr bottom radius of the burr formed on the second member 20 side. Further, if the inclined portion 14 is formed at the tip of the cylindrical portion 11 of the first member, it is not necessary to make the cylindrical portion 21 of the second member 20 thick over the entire length, so the weight of the friction welding component 1 is increased. Does not increase more than necessary.

また、前記した実施形態では、第一部材10と第二部材20の材質を同質とし、第一部材10の突合面11cの面積を第二部材20の突合面21cの面積よりも小さくすることで、第一部材10の円筒部11を先に流動化させたが、第二部材20よりも強度(特に高温強度)の小さい異種金属で第一部材10を形成すれば、突合面11c,21cの面積が同一であっても、第一部材10の円筒部11を先に流動化させることが可能となる。つまり、第二部材20よりも強度(特に高温強度)の小さい異種金属で第一部材10を形成することでも、図示は省略するが、第一部材10側に形成されるバリのバリ底角度を第二部材20側に形成されるバリのバリ底角度よりも小さくすることが可能となる。具体的には、例えば、第一部材10をアルミニウム合金製とするとともに、第二部材20をアルミニウム合金よりも高温強度の大きい銅合金製とすれば、突合面11c,21cの面積が同一であっても、第一部材10の円筒部11を先に流動化させることが可能となる。   In the above-described embodiment, the first member 10 and the second member 20 are made of the same material, and the area of the abutting surface 11 c of the first member 10 is made smaller than the area of the abutting surface 21 c of the second member 20. The cylindrical portion 11 of the first member 10 is fluidized first, but if the first member 10 is formed of a dissimilar metal having a lower strength (particularly high temperature strength) than the second member 20, the abutting surfaces 11c and 21c Even if the area is the same, the cylindrical portion 11 of the first member 10 can be fluidized first. That is, the burr bottom angle of the burr formed on the first member 10 side is also omitted, although the first member 10 is formed of a dissimilar metal having a strength (particularly high temperature strength) lower than that of the second member 20. It becomes possible to make it smaller than the burr bottom angle of the burr formed on the second member 20 side. Specifically, for example, if the first member 10 is made of an aluminum alloy and the second member 20 is made of a copper alloy having a higher high temperature strength than the aluminum alloy, the areas of the abutting surfaces 11c and 21c are the same. However, the cylindrical portion 11 of the first member 10 can be fluidized first.

なお、第一部材10と第二部材20とが同種の金属からなる場合であっても、金属の製造工程の差異によって明らかな強度差(特に高温強度差)がある場合には、第一部材10の円筒部11を先に流動化させることが可能となる。具体的には、例えば、第一部材10を2000系アルミニウム合金(熱処理型合金であるAl−Cu−Mg系合金(ジェラルミンなど))製や4000系アルミニウム合金(非熱処理型合金であるAl−Si系合金)製とするとともに、第二部材20を2000系や4000系のアルミニウム合金よりも高温強度の大きい6000系のアルミニウム合金製とすれば、突合面11c,21cの面積が同一であっても、第一部材10の円筒部11を先に流動化させることが可能となるので、図示は省略するが、第一部材10側に形成されるバリのバリ底角度やバリ底半径を第二部材20側に形成されるバリのバリ底角度やバリ底半径よりも小さくすることが可能となる。   Even when the first member 10 and the second member 20 are made of the same kind of metal, the first member is used when there is a clear strength difference (particularly a high temperature strength difference) due to a difference in the metal manufacturing process. Ten cylindrical portions 11 can be fluidized first. Specifically, for example, the first member 10 is made of a 2000 series aluminum alloy (Al-Cu-Mg series alloy (geralmine or the like) which is a heat treatment type alloy) or a 4000 series aluminum alloy (Al-Si which is a non-heat treatment type alloy). If the second member 20 is made of a 6000 series aluminum alloy having a high temperature strength higher than that of a 2000 series or 4000 series aluminum alloy, the area of the abutting surfaces 11c and 21c is the same. Since the cylindrical portion 11 of the first member 10 can be fluidized first, the burr bottom angle and the burr bottom radius of the burr formed on the first member 10 side are set to the second member although illustration is omitted. The burr bottom angle and burr bottom radius of the burr formed on the 20 side can be made smaller.

また、第一部材10を第二部材20よりも高温にすることでも、第一部材10を先に流動化させることが可能となる。例えば、第一部材10と第二部材20とが同じ材質で、かつ、突合面11c,21cの面積が同一である場合であっても、摩擦過程において、第一部材10を第二部材20よりも高温にすれば、第一部材10を先に流動化させることが可能となり、ひいては、図示は省略するが、第一部材10側に形成されるバリのバリ底角度を第二部材20側に形成されたバリのバリ底角度よりも小さくすることが可能となる。第一部材10を第二部材20よりも高温にするには、例えば、摩擦過程中に、第二部材20を空冷又は水冷するか、あるいは、第一部材10をチャックしている治具を断熱して第一部材10から治具への熱伝達を防止するか、当該治具を電熱線やバーナー等で加熱すればよい。   Also, the first member 10 can be fluidized first by setting the first member 10 to a temperature higher than that of the second member 20. For example, even if the first member 10 and the second member 20 are made of the same material and the areas of the abutting surfaces 11c and 21c are the same, the first member 10 is moved from the second member 20 in the friction process. However, if the temperature is too high, the first member 10 can be fluidized first. As a result, although not shown, the burr bottom angle of the burr formed on the first member 10 side is set to the second member 20 side. It becomes possible to make it smaller than the burr bottom angle of the formed burr. In order to raise the temperature of the first member 10 higher than that of the second member 20, for example, the second member 20 is air-cooled or water-cooled during the friction process, or the jig that chucks the first member 10 is insulated. Then, heat transfer from the first member 10 to the jig may be prevented, or the jig may be heated with a heating wire, a burner or the like.

また、前記した実施形態においては、中空な円筒部11,21の端面を突合面11c,21cとした場合を例示したが、例えば、図7の(a)に示すように、第二部材20に中実な柱部25を設け、その端面を突合面25cとしてもよい。第一部材10と第二部材20とが同じ材質であれば、第一部材10の円筒部11の先端部が第二部材20の柱部25よりも先に流動化することになるので、図示は省略するが、円筒部11に形成されたバリのバリ底角度やバリ底半径は、柱部25の外周側に形成されたバリのバリ底角度やバリ底半径よりも小さくなる。   Further, in the above-described embodiment, the case where the end surfaces of the hollow cylindrical portions 11 and 21 are the abutting surfaces 11c and 21c is illustrated, but for example, as illustrated in FIG. The solid column portion 25 may be provided, and the end surface thereof may be used as the abutting surface 25c. If the first member 10 and the second member 20 are made of the same material, the tip of the cylindrical portion 11 of the first member 10 will be fluidized before the column portion 25 of the second member 20. Although not shown, the burr bottom angle and burr bottom radius of the burr formed on the cylindrical part 11 are smaller than the burr bottom angle and burr bottom radius of the burr formed on the outer peripheral side of the column part 25.

また、図7の(b)に示すように、第二部材20だけでなく、第一部材10にも中実な柱部15を設け、その端面を突合面15cとしてもよい。なお、第一部材10と第二部材20とが同じ材質である場合には、第一部材10の柱部15を第二部材20の柱部25よりも小径にする(すなわち、突合面15cの面積を突合面25cの面積よりも小さくする)。このようにすると、第一部材10の柱部15の先端部が第二部材20の柱25よりも先に座屈して流動化することになるので、図示は省略するが、柱部15に形成されたバリのバリ底角度やバリ底半径は、柱部25の外周側に形成されたバリのバリ底角度やバリ底半径よりも小さくなる。   Further, as shown in FIG. 7B, not only the second member 20 but also the first member 10 may be provided with a solid column portion 15, and the end surface thereof may be used as the abutting surface 15 c. When the first member 10 and the second member 20 are made of the same material, the column portion 15 of the first member 10 has a smaller diameter than the column portion 25 of the second member 20 (that is, the abutting surface 15c). The area is made smaller than the area of the abutting surface 25c). If it does in this way, since the front-end | tip part of the pillar part 15 of the 1st member 10 will buckle and fluidize ahead of the pillar 25 of the 2nd member 20, although illustration is abbreviate | omitted, it forms in the pillar part 15 The burr bottom angle and burr bottom radius of the burr formed are smaller than the burr bottom angle and burr bottom radius of the burr formed on the outer peripheral side of the column portion 25.

(a)は本発明の実施形態に係る摩擦圧接部品を示す断面図、(b)は摩擦圧接前における第一部材および第二部材を示す断面図である。(A) is sectional drawing which shows the friction welding part which concerns on embodiment of this invention, (b) is sectional drawing which shows the 1st member and 2nd member before friction welding. 図1の(a)のX部分の拡大図である。It is an enlarged view of the X part of (a) of FIG. 形状係数の算定式を説明するための模式図である。It is a schematic diagram for demonstrating the calculation formula of a shape factor. 形状係数と切欠き係数の関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a shape factor and a notch coefficient. 外周側のバリを切除した状態を示す拡大断面図である。It is an expanded sectional view which shows the state which excised the burr | flash on the outer peripheral side. (a)〜(c)は摩擦圧接前における第一部材および第二部材の変形例を示す断面図である。(A)-(c) is sectional drawing which shows the modification of the 1st member and the 2nd member before friction welding. (a)および(b)は摩擦圧接前における第一部材および第二部材の他の変形例を示す断面図である。(A) And (b) is sectional drawing which shows the other modification of the 1st member and the 2nd member before friction welding.

符号の説明Explanation of symbols

1 摩擦圧接部品
10 第一部材
11 円筒部
11a,11b バリ
11c 突合面
20 第二部材
21 円筒部
21a,21b バリ
21c 突合面
J 接合界面
DESCRIPTION OF SYMBOLS 1 Friction welding part 10 1st member 11 Cylindrical part 11a, 11b Burr 11c Abutting surface 20 Second member 21 Cylindrical part 21a, 21b Burr 21c Butting surface J Joining interface

Claims (16)

第一部材と第二部材とを摩擦圧接してなる摩擦圧接部品であって、
前記第一部材側に形成されたバリによる切欠きが、前記第二部材側に形成されたバリによる切欠きよりも小さいことを特徴とする摩擦圧接部品。
A friction welding component formed by friction welding the first member and the second member,
The friction welding part, wherein a notch formed by the burr formed on the first member side is smaller than a notch formed by the burr formed on the second member side.
第一部材の円筒部と第二部材の円筒部とを摩擦圧接してなる摩擦圧接部品であって、
前記第一部材の円筒部の内周側に形成されたバリによる切欠きが、前記第二部材の円筒部の内周側に形成されたバリによる切欠きよりも小さいことを特徴とする摩擦圧接部品。
A friction welding component formed by friction welding the cylindrical portion of the first member and the cylindrical portion of the second member,
Friction welding, wherein a notch formed by a burr formed on the inner peripheral side of the cylindrical portion of the first member is smaller than a notch formed by a burr formed on the inner peripheral side of the cylindrical portion of the second member. parts.
摩擦圧接前における前記第一部材の円筒部の肉厚が、摩擦圧接前における前記第二部材の円筒部の肉厚よりも小さいことを特徴とする請求項2に記載の摩擦圧接部品。   The friction welding component according to claim 2, wherein the thickness of the cylindrical portion of the first member before friction welding is smaller than the thickness of the cylindrical portion of the second member before friction welding. 前記第一部材の円筒部の外径が、前記第二部材の円筒部の外径と等しいことを特徴とする請求項3に記載の摩擦圧接部品。   The friction welding part according to claim 3, wherein an outer diameter of the cylindrical portion of the first member is equal to an outer diameter of the cylindrical portion of the second member. 前記第一部材および前記第二部材が、JIS規格のアルミニウム合金6061−T6からなり、接合界面よりも前記第一部材側の形状係数が、2.0以上であることを特徴とする請求項1乃至請求項4のいずれか一項に記載の摩擦圧接部品。   The first member and the second member are made of JIS standard aluminum alloy 6061-T6, and the shape factor on the first member side with respect to the bonding interface is 2.0 or more. The friction welding part as described in any one of Claims 4 thru | or 4. 前記第一部材側に形成されたバリのバリ底角度が、鋭角になっていることを特徴とする請求項1乃至請求項4のいずれか一項に記載の摩擦圧接部品。   The friction welding part according to any one of claims 1 to 4, wherein a burr bottom angle of a burr formed on the first member side is an acute angle. 摩擦圧接前における前記第一部材の突合面の面積が、摩擦圧接前における前記第二部材の突合面の面積よりも小さいことを特徴とする請求項1乃至請求項4のいずれか一項に記載の摩擦圧接部品。   5. The area of the abutting surface of the first member before friction welding is smaller than the area of the abutting surface of the second member before friction welding. 6. Friction welding parts. 摩擦圧接前における前記第一部材の突合面の断面二次モーメントが、摩擦圧接前における前記第二部材の突合面の断面二次モーメントよりも小さいことを特徴とする請求項1乃至請求項4のいずれか一項に記載の摩擦圧接部品。   The cross-sectional secondary moment of the abutting surface of the first member before friction welding is smaller than the cross-sectional secondary moment of the abutting surface of the second member before friction welding. The friction welding part as described in any one. 前記第一部材の強度が、前記第二部材の強度よりも低いことを特徴とする請求項1乃至請求項4のいずれか一項に記載の摩擦圧接部品。   The friction welded part according to any one of claims 1 to 4, wherein the strength of the first member is lower than the strength of the second member. 第一部材と第二部材とを摩擦圧接する方法であって、
前記第一部材と前記第二部材とを相対回転させつつ突き合せた際に、前記第一部材を先に流動化させることで、前記第一部材の突合面側に形成されるバリによる切欠きを、前記第二部材側に形成されるバリによる切欠きよりも小さくすることを特徴とする摩擦圧接方法。
A method of friction welding the first member and the second member,
When the first member and the second member are butted while rotating relative to each other, the first member is fluidized first, so that a notch is formed by a burr formed on the abutting surface side of the first member. Is made smaller than a notch formed by a burr formed on the second member side.
第一部材の円筒部と第二部材の円筒部とを摩擦圧接する方法であって、
前記第一部材の円筒部と前記第二部材の円筒部とを相対回転させつつ突き合せた際に、前記第一部材を先に流動化させることで、前記第一部材の円筒部の内周側に形成されるバリによる切欠きを、前記第二部材の円筒部の内周側に形成されるバリによる切欠きよりも小さくすることを特徴とする摩擦圧接方法。
A method of friction welding the cylindrical portion of the first member and the cylindrical portion of the second member,
When the cylindrical portion of the first member and the cylindrical portion of the second member are abutted while rotating relative to each other, the inner periphery of the cylindrical portion of the first member is fluidized first. A friction welding method, wherein a notch formed by a burr formed on the side is made smaller than a notch formed by a burr formed on an inner peripheral side of the cylindrical portion of the second member.
摩擦圧接前における前記第一部材の円筒部の肉厚を、摩擦圧接前における前記第二部材の円筒部の肉厚よりも小さくしておくことで、前記第一部材を先に流動化させることを特徴とする請求項11に記載の摩擦圧接方法。   The first member is fluidized first by setting the thickness of the cylindrical portion of the first member before friction welding to be smaller than the thickness of the cylindrical portion of the second member before friction welding. The friction welding method according to claim 11. 前記第一部材を前記第二部材よりも高温にすることで、前記第一部材を先に流動化させることを特徴とする請求項10乃至請求項12のいずれか一項に記載の摩擦圧接方法。   The friction welding method according to any one of claims 10 to 12, wherein the first member is fluidized first by setting the first member to a temperature higher than that of the second member. . 摩擦圧接前における前記第一部材の突合面の面積を、摩擦圧接前における前記第二部材の突合面の面積よりも小さくしておくことで、前記第一部材を先に流動化させることを特徴とする請求項10乃至請求項12のいずれか一項に記載の摩擦圧接方法。   The first member is fluidized first by making the area of the abutting surface of the first member before friction welding smaller than the area of the abutting surface of the second member before friction welding. The friction welding method according to any one of claims 10 to 12. 摩擦圧接前における前記第一部材の突合面の断面二次モーメントを、摩擦圧接前における前記第二部材の突合面の断面二次モーメントよりも小さくしておくことで、前記第一部材を先に流動化させることを特徴とする請求項10乃至請求項12のいずれか一項に記載の摩擦圧接部品。   By setting the second moment of section of the butt surface of the first member before friction welding to be smaller than the second moment of section of the butt surface of the second member before friction welding, the first member first The friction welding component according to any one of claims 10 to 12, wherein the friction welding component is fluidized. 前記第二部材よりも強度の低い材料で、前記第一部材を形成しておくことで、前記第一部材を先に流動化させることを特徴とする請求項10乃至請求項12のいずれか一項に記載の摩擦圧接方法。   13. The first member is fluidized first by forming the first member with a material having lower strength than the second member. The friction welding method according to item.
JP2006237174A 2006-09-01 2006-09-01 Suspension component and method for manufacturing suspension component Active JP5060086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006237174A JP5060086B2 (en) 2006-09-01 2006-09-01 Suspension component and method for manufacturing suspension component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006237174A JP5060086B2 (en) 2006-09-01 2006-09-01 Suspension component and method for manufacturing suspension component

Publications (2)

Publication Number Publication Date
JP2008055486A true JP2008055486A (en) 2008-03-13
JP5060086B2 JP5060086B2 (en) 2012-10-31

Family

ID=39238842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006237174A Active JP5060086B2 (en) 2006-09-01 2006-09-01 Suspension component and method for manufacturing suspension component

Country Status (1)

Country Link
JP (1) JP5060086B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030595A1 (en) * 2009-09-09 2011-03-17 カヤバ工業株式会社 Method for manufacturing piston rod
DE102009059055A1 (en) * 2009-12-18 2011-06-22 MAHLE International GmbH, 70376 Method for connecting two components, where each component has a joining surface, comprises connecting two joining surfaces associated to each other by means of a friction welding
CN105073329A (en) * 2013-03-28 2015-11-18 萱场工业株式会社 Joined body
WO2019193711A1 (en) * 2018-04-05 2019-10-10 日鍛バルブ株式会社 Waste gate valve
JP2020006399A (en) * 2018-07-06 2020-01-16 日之出水道機器株式会社 Conjugate and conjugate manufacturing method
CN113357342A (en) * 2020-03-06 2021-09-07 本田技研工业株式会社 Drive shaft and method for manufacturing same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397381A (en) * 1986-10-09 1988-04-28 Toyota Motor Corp Friction welding method for thin wall pipe body
JPS63144882A (en) * 1986-12-09 1988-06-17 Kobe Steel Ltd Frictional press welding method for materials having different deformation resistance
JPH09239569A (en) * 1996-03-11 1997-09-16 Amao Seisakusho:Kk High pressure vessel and manufacture thereof
JP2000161414A (en) * 1998-11-20 2000-06-16 Unisia Jecs Corp Suspension strut
JP2000225821A (en) * 1999-02-09 2000-08-15 Tokai Rubber Ind Ltd Suspension arm
JP2004141933A (en) * 2002-10-24 2004-05-20 Showa Corp Friction pressure welding method of propeller shaft

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6397381A (en) * 1986-10-09 1988-04-28 Toyota Motor Corp Friction welding method for thin wall pipe body
JPS63144882A (en) * 1986-12-09 1988-06-17 Kobe Steel Ltd Frictional press welding method for materials having different deformation resistance
JPH09239569A (en) * 1996-03-11 1997-09-16 Amao Seisakusho:Kk High pressure vessel and manufacture thereof
JP2000161414A (en) * 1998-11-20 2000-06-16 Unisia Jecs Corp Suspension strut
JP2000225821A (en) * 1999-02-09 2000-08-15 Tokai Rubber Ind Ltd Suspension arm
JP2004141933A (en) * 2002-10-24 2004-05-20 Showa Corp Friction pressure welding method of propeller shaft

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011030595A1 (en) * 2009-09-09 2011-03-17 カヤバ工業株式会社 Method for manufacturing piston rod
DE102009059055A1 (en) * 2009-12-18 2011-06-22 MAHLE International GmbH, 70376 Method for connecting two components, where each component has a joining surface, comprises connecting two joining surfaces associated to each other by means of a friction welding
CN105073329A (en) * 2013-03-28 2015-11-18 萱场工业株式会社 Joined body
CN105073329B (en) * 2013-03-28 2018-11-27 Kyb株式会社 Conjugant
WO2019193711A1 (en) * 2018-04-05 2019-10-10 日鍛バルブ株式会社 Waste gate valve
CN111902617A (en) * 2018-04-05 2020-11-06 日锻汽门株式会社 Exhaust bypass valve
JPWO2019193711A1 (en) * 2018-04-05 2021-04-22 日鍛バルブ株式会社 Wastegate valve
JP2020006399A (en) * 2018-07-06 2020-01-16 日之出水道機器株式会社 Conjugate and conjugate manufacturing method
JP7048093B2 (en) 2018-07-06 2022-04-05 日之出水道機器株式会社 Joined bodies and methods for manufacturing joined bodies
CN113357342A (en) * 2020-03-06 2021-09-07 本田技研工业株式会社 Drive shaft and method for manufacturing same
CN113357342B (en) * 2020-03-06 2024-02-27 本田技研工业株式会社 Drive shaft and method for manufacturing same
US11965548B2 (en) 2020-03-06 2024-04-23 Honda Motor Co., Ltd. Drive shaft and method of producing drive shaft

Also Published As

Publication number Publication date
JP5060086B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5081153B2 (en) Friction welding method
JPWO2008010266A1 (en) Friction welding component, suspension rod comprising the friction welding component, and joining method
JP4686289B2 (en) Friction stir welding method for hollow workpieces
JP5060086B2 (en) Suspension component and method for manufacturing suspension component
Martin et al. Novel techniques for corner joints using friction stir welding
JP4751625B2 (en) Formation method of welded joint
JP2017070994A (en) Tool for friction stir welding and friction stir welding method
JP2001269779A (en) Welding method, tailored blank metal plate and welding tool
JP2005324251A (en) Friction stir welding method, friction stir welding method for tubular member, and method for manufacturing hollow body
JP3507050B2 (en) Friction stir welding method
JP2006224146A (en) Method for joining different kinds of material
WO2005053890A2 (en) Method for metal and alloy joining using bulk friction stir welding
JPH10137952A (en) Joining method between aluminum material and different metal materials
JP2000042762A (en) Friction stirring joining method
JP2007313541A (en) Method for manufacturing clad tube
US9539666B2 (en) Transition joint and method for attaching dissimilar metal tubes
JP3963215B2 (en) Method for joining pipe-shaped members
CN101500743A (en) Friction welded part and method of friction welding
JP2002224857A (en) Joining structure and joining method between hollow members made of respectively different kinds of metal
JP3081799B2 (en) Aluminum material joining method
JP4437914B2 (en) Aluminum bonding material and method of pressing aluminum bonding material
JP2001287040A (en) Joined structure body and method of evaluation of joined strength of the same
TWI569902B (en) Bicycle frame pipe system
JP6377048B2 (en) Manufacturing method of dissimilar metal joined body
JP2022516365A (en) Devices and methods for thickening pipes at their edges

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110920

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120731

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5060086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350