JP2008055304A - Hollow fiber membrane module and method of manufacturing hollow fiber membrane module - Google Patents

Hollow fiber membrane module and method of manufacturing hollow fiber membrane module Download PDF

Info

Publication number
JP2008055304A
JP2008055304A JP2006234517A JP2006234517A JP2008055304A JP 2008055304 A JP2008055304 A JP 2008055304A JP 2006234517 A JP2006234517 A JP 2006234517A JP 2006234517 A JP2006234517 A JP 2006234517A JP 2008055304 A JP2008055304 A JP 2008055304A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
case
bundle
potting material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006234517A
Other languages
Japanese (ja)
Other versions
JP4933864B2 (en
Inventor
Hiroshi Tasaka
広 田阪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Engineering Co Ltd
Original Assignee
Mitsubishi Rayon Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Engineering Co Ltd filed Critical Mitsubishi Rayon Engineering Co Ltd
Priority to JP2006234517A priority Critical patent/JP4933864B2/en
Publication of JP2008055304A publication Critical patent/JP2008055304A/en
Application granted granted Critical
Publication of JP4933864B2 publication Critical patent/JP4933864B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing hollow fiber membrane modules which improves the durability of a hollow fiber membrane in the vicinity of a crawling-up part without damaging the initial performance of an effective membrane part, by improving the hollow fiber membrane of a hollow fiber membrane module. <P>SOLUTION: The hollow fiber membrane module which is formed by housing a hollow fiber membrane bundle bundling a plurality of hollow fiber membrane bundles each having a large number of pores opened on the outer surface in a case, and supporting and fixing the hollow fiber membrane bundle in the case with a potting material while remaining an effective membrane part 12; is provided with the crawling-up part 13 formed of the potting material and covering so as to crawl up on the outer surface of the hollow fiber membrane, and a filling part 14 formed of the potting material entering the pores, and forms an easily breakable part 18 on the interface between the crawling-up part 13 and the filling part 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、外表面に多孔質部分を有する中空糸膜を用いた中空糸膜モジュール及び該中空糸膜モジュールの製造方法に関する。   The present invention relates to a hollow fiber membrane module using a hollow fiber membrane having a porous portion on the outer surface and a method for producing the hollow fiber membrane module.

従来から、複数の中空糸膜をケース内に収納し、該中空糸膜の端部を樹脂により液密に固定して中空糸膜モジュールとしてなる流体濾過モジュールや気液分離モジュール等が知られている。
例えば、特許文献1では、製造時に中空糸膜束の外周部に位置する中空糸膜が樹脂固定部(以下、ポッティング部という)以外の箇所でハウジング内壁と接着することがなく、使用時に、リークが発生することがない中空糸膜モジュールおよびその製造方法が開示されている。
Conventionally, a fluid filtration module, a gas-liquid separation module, and the like are known in which a plurality of hollow fiber membranes are housed in a case and the ends of the hollow fiber membranes are liquid-tightly fixed with a resin to form a hollow fiber membrane module. Yes.
For example, in Patent Document 1, the hollow fiber membrane positioned on the outer peripheral part of the hollow fiber membrane bundle at the time of manufacture does not adhere to the inner wall of the housing at a place other than the resin fixing part (hereinafter referred to as potting part), and leaks during use. A hollow fiber membrane module and a method for manufacturing the same are disclosed.

また、特許文献2では、中空糸膜束の最外周に位置する中空糸膜に固定用樹脂(以下、ポッティング材という)の硬化収縮の応力が集中することがなく、リークを防止できる耐久性能の高い中空糸膜モジュールが提供されている。
そして、特許文献3では、中空糸膜束の最外周に位置する中空糸膜にポッティング材の硬化収縮の応力が集中することがなく、リークを防止できる耐久性能の高い中空糸膜モジュールが提供されている。
また、特許文献4では、特に熱履歴が作用しても中空糸に応力が作用するのを防止でき、信頼性の高い中空糸型膜分離モジュールの製造方法と、中空糸型膜分離モジュールが提供されている。
そして、特許文献5では、中空糸膜が支持部材内に均一に分布し、かつ中空糸膜の固定部材に対する信頼性の高い中空糸膜モジュールの製造方法が提供されている。
特開2001−276583号公報 特開2000−229225号公報 特開平9−164324号公報 特開平5−57155号公報 特開昭61−57206号公報
Moreover, in patent document 2, the stress of the hardening shrinkage of fixing resin (henceforth a potting material) does not concentrate on the hollow fiber membrane located in the outermost periphery of a hollow fiber membrane bundle, but the durability performance which can prevent a leak High hollow fiber membrane modules are provided.
And in patent document 3, the hollow fiber membrane module with high durability which can prevent the leak without the stress of the hardening shrinkage | contraction of a potting material being concentrated on the hollow fiber membrane located in the outermost periphery of a hollow fiber membrane bundle is provided. ing.
Patent Document 4 provides a method for manufacturing a highly reliable hollow fiber membrane separation module and a hollow fiber membrane separation module that can prevent stress from acting on the hollow fiber even when a thermal history is applied. Has been.
And in patent document 5, the hollow fiber membrane is distributed uniformly in a support member, and the manufacturing method of the highly reliable hollow fiber membrane module with respect to the fixing member of a hollow fiber membrane is provided.
JP 2001-276583 A JP 2000-229225 A JP-A-9-164324 JP-A-5-57155 JP-A-61-57206

しかしながら、上記従来の中空糸膜モジュールでは、中空糸膜束のポッティング材による固定部において、ポッティング材に埋没した中空糸膜と可撓性を保持した中空糸膜の有効膜部との境界部に応力が集中することが、中空糸膜の耐久性に対する制約となっている。また、この現象は中空糸膜束の径方向中央部より中空糸膜束外周部において発生しやすくなっている。   However, in the above-described conventional hollow fiber membrane module, in the fixing portion of the hollow fiber membrane bundle with the potting material, at the boundary between the hollow fiber membrane buried in the potting material and the effective membrane portion of the hollow fiber membrane retaining flexibility The concentration of stress is a limitation on the durability of the hollow fiber membrane. In addition, this phenomenon is more likely to occur at the outer periphery of the hollow fiber membrane bundle than at the radial center of the hollow fiber membrane bundle.

このため、例えば、特許文献1では、硬化前のポッティング材がケース内壁面と中空糸膜間に毛細管現象で這い上がる事を防ぐために樹脂固定部の中空糸膜束を収束しケース内表面との間隔をあける手法が開示されている。また、特許文献2では、特許文献1と同じ目的で、樹脂固定部と中空糸膜束間に弾性を有する応力緩和剤を配置しケース内表面との間隔をあける手法が開示されている。
しかし、この場合、中空糸膜束のポッティング材による固定部の中空糸膜充填率が上昇し、ポッティング材の侵入が困難となる。これによる「す」等の封止不良が発生することを防止するためには、充填率を下げる必要がある。その場合、必要な膜面積を確保するためにモジュールが大型化するなどの新たな課題が発生する。
For this reason, for example, in Patent Document 1, in order to prevent the potting material before curing from creeping up between the inner wall surface of the case and the hollow fiber membrane by a capillary phenomenon, the hollow fiber membrane bundle of the resin fixing portion is converged and the case inner surface is A technique for spacing is disclosed. Moreover, in patent document 2, the method of arrange | positioning the space | interval with the inner surface of a case by arrange | positioning the stress relaxation agent which has elasticity between a resin fixing | fixed part and a hollow fiber membrane bundle for the same purpose as patent document 1 is disclosed.
However, in this case, the hollow fiber membrane filling rate of the fixed portion by the potting material of the hollow fiber membrane bundle is increased, and it becomes difficult for the potting material to enter. In order to prevent a sealing failure such as “su” from occurring due to this, it is necessary to lower the filling rate. In that case, a new problem such as an increase in the size of the module occurs in order to secure a necessary membrane area.

また、特許文献3では、溶剤に熱可塑性樹脂を溶解し中空糸膜束集束固定部付近の中空糸膜を浸漬し、中空糸膜を熱可塑性樹脂で被覆することにより補強する手法が開示されている。しかし、この場合には、溶剤に溶融できる熱可塑性樹脂を使用する時点で、この手法で製作された中空糸膜モジュールの薬液用途への展開や、超純水等の溶出を極度に敬遠する用途への展開が困難となる。   Patent Document 3 discloses a technique for reinforcing a hollow fiber membrane by dissolving the thermoplastic resin in a solvent, immersing the hollow fiber membrane in the vicinity of the bundle fixing portion of the hollow fiber membrane bundle, and coating the hollow fiber membrane with the thermoplastic resin. Yes. However, in this case, at the time of using a thermoplastic resin that can be melted in a solvent, the hollow fiber membrane module manufactured by this method is used for chemicals, and the use of ultra-pure water etc. is extremely avoided. It becomes difficult to expand to.

一方、特許文献4では、温熱流体を処理した際の中空糸膜長の変化を吸収させるため、中空糸膜束全体を加熱収縮させ、更に有効中空糸膜部分(以下、有効膜部という)を弛緩させる手法が開示されている。しかし、この方法の場合、有効膜部を加熱収縮してしまうため中空糸膜の表面開孔状態が変化し、ろ過、分離等の膜としての性能に影響がある。   On the other hand, in Patent Document 4, in order to absorb the change in the length of the hollow fiber membrane when the thermal fluid is processed, the entire hollow fiber membrane bundle is heated and shrunk, and an effective hollow fiber membrane portion (hereinafter referred to as an effective membrane portion) is further reduced. A relaxation technique is disclosed. However, in the case of this method, the effective membrane portion is heated and shrunk, so that the surface open state of the hollow fiber membrane is changed, which affects the performance as a membrane such as filtration and separation.

また、特許文献5では、ポッティング材の中空糸膜間への侵入を容易にするため中空糸膜端部を加熱し中空糸膜をカールさせる手法が開示されているが、這い上がり部の耐久性については開示されていない。   Patent Document 5 discloses a method of curling the hollow fiber membrane by heating the end portion of the hollow fiber membrane in order to facilitate the penetration of the potting material between the hollow fiber membranes. Is not disclosed.

本発明は上記事情に鑑みて、本発明者らの鋭意検討の結果なされたものである。その目的は、中空糸膜を改良し、有効膜部の初期性能を損なうことなく這い上がり部近傍における中空糸膜の耐久性を向上させることである。   In view of the above circumstances, the present invention has been made as a result of intensive studies by the present inventors. The purpose is to improve the hollow fiber membrane and improve the durability of the hollow fiber membrane in the vicinity of the scooping portion without impairing the initial performance of the effective membrane portion.

本発明の中空糸膜モジュールは、外表面に開孔する多数の孔を有する複数の中空糸膜を束ねた中空糸膜束をケース内に収納し、前記中空糸膜束がポッティング材により有効膜部を残して前記ケース内に支持固定されてなる中空糸膜モジュールであって、前記中空糸膜の外表面を這い上がるように被覆する前記ポッティング材により形成された這い上がり部と、前記孔に入り込む前記ポッティング材により形成された充填部とを備え、これら這い上がり部と充填部との界面に易破断部を形成したことを特徴とする。   The hollow fiber membrane module of the present invention stores a hollow fiber membrane bundle in which a plurality of hollow fiber membranes having a large number of holes opened on the outer surface are bundled in a case, and the hollow fiber membrane bundle is an effective membrane by a potting material. A hollow fiber membrane module that is supported and fixed in the case leaving a portion, and a scooping portion formed by the potting material that covers the outer surface of the hollow fiber membrane so as to scoop up; And a filling portion formed by the potting material entering, and an easily breakable portion is formed at the interface between the scooping portion and the filling portion.

このように構成することで、這い上がり部に中空糸膜の長手方向の外力が加わったときに、易破断部の外側に位置する中空糸膜表面に沿ってポッティング材の破壊が進行する。これにより、這い上がり部は充填部による拘束を逃れて中空糸膜の長手方向の伸長に追従して伸長する。   By comprising in this way, when the external force of the longitudinal direction of a hollow fiber membrane is added to the scooping-up part, destruction of a potting material advances along the hollow fiber membrane surface located outside an easily breakable part. Thereby, the scooping up part escapes the restriction | limiting by a filling part, and extends | stretches following extension of the longitudinal direction of a hollow fiber membrane.

また、本発明の中空糸膜モジュールは、前記這い上がり部に被覆された前記中空糸膜の外表面における前記孔の径が、前記有効膜部の外表面の前記孔の径よりも小さいことを特徴とする。   Further, in the hollow fiber membrane module of the present invention, the diameter of the hole on the outer surface of the hollow fiber membrane covered by the scooping portion is smaller than the diameter of the hole on the outer surface of the effective membrane part. Features.

このように構成することで、中空糸膜表面を被覆する這い上がり部と、中空糸膜外表面の孔に入り込んだ充填部との界面である易破断部の面積を、有効膜部の表面開孔面積と比較して小さくすることができる。これにより、中空糸膜の表面に沿う方向のせん断力が加わったときに、易破断部は中空糸膜表面に沿って容易にせん断破壊する。
したがって、上記の発明と同様に、這い上がり部に中空糸膜の長手方向の外力が加わったときに、易破断部の外側に位置する中空糸膜表面に沿ってポッティング材の破壊を進行させることができる。これにより、這い上がり部は充填部による拘束を逃れて中空糸膜の長手方向の伸長に追従して伸長する。
With this configuration, the area of the easily breakable portion, which is an interface between the scooping portion that covers the surface of the hollow fiber membrane and the filling portion that has entered the hole on the outer surface of the hollow fiber membrane, is reduced to the surface opening of the effective membrane portion. It can be made smaller than the pore area. Thereby, when a shearing force in a direction along the surface of the hollow fiber membrane is applied, the easily breakable portion easily shears and breaks along the surface of the hollow fiber membrane.
Therefore, as in the case of the above-described invention, when an external force in the longitudinal direction of the hollow fiber membrane is applied to the scooping portion, the potting material breaks down along the hollow fiber membrane surface located outside the easily breakable portion. Can do. Thereby, the scooping up part escapes the restriction | limiting by a filling part, and extends | stretches following extension of the longitudinal direction of a hollow fiber membrane.

また、本発明の中空糸膜モジュールの製造方法は、外表面に開孔する多数の孔を有する複数の中空糸膜を束ねた中空糸膜束をケース内に挿入する工程と、前記中空糸膜束の端部をポッティング材により有効膜部を残して前記ケース内に支持固定する工程を有する中空糸膜モジュールの製造方法であって、前記ケース内に前記中空糸膜束を挿入する工程と、前記ポッティング材により前記中空糸膜束を前記ケース内に支持固定する工程との間に、前記ポッティング材により被覆される前記中空糸膜束の端部を前記ケース外部から加熱する工程を有することを特徴とする。   The method for producing a hollow fiber membrane module of the present invention includes a step of inserting a hollow fiber membrane bundle in which a plurality of hollow fiber membranes having a large number of holes opened on an outer surface are bundled into a case, and the hollow fiber membrane A hollow fiber membrane module manufacturing method comprising a step of supporting and fixing an end portion of a bundle in the case leaving an effective membrane portion with a potting material, the step of inserting the hollow fiber membrane bundle into the case; Between the step of supporting and fixing the hollow fiber membrane bundle in the case with the potting material, and having the step of heating the end of the hollow fiber membrane bundle covered with the potting material from the outside of the case. Features.

このように製造することで、ポッティング材により被覆される中空糸膜束の端部の中空糸膜をケース外部から加熱して、加熱された部分の中空糸膜外表面の孔の径を収縮させることができる。   By manufacturing in this way, the hollow fiber membrane at the end of the hollow fiber membrane bundle covered with the potting material is heated from the outside of the case, and the diameter of the hole on the outer surface of the hollow fiber membrane in the heated portion is contracted. be able to.

本発明によれば、這い上がり部に中空糸膜の長手方向の外力が加わったときに、易破断部の外側に位置する中空糸膜表面に沿ってポッティング材の易破断部の破壊が進行し、這い上がり部を中空糸膜の長手方向の伸長に追従して伸長させることができる。
したがって、這い上がり部における中空糸膜断面方向の破断を防止して、這い上がり部の耐久性を向上させることができる。
According to the present invention, when an external force in the longitudinal direction of the hollow fiber membrane is applied to the scooping up portion, the breakage of the easily breakable portion of the potting material proceeds along the hollow fiber membrane surface located outside the easily breakable portion. The scooping-up portion can be extended following the extension in the longitudinal direction of the hollow fiber membrane.
Therefore, it is possible to prevent breakage in the cross-sectional direction of the hollow fiber membrane at the scooping portion and improve the durability of the scooping portion.

また、本発明によれば、上記の効果に加えて、這い上がり部によって被覆される中空糸膜外表面の孔の径を小さくするだけで易破断部を容易に形成することできる。したがって、中空糸膜モジュールの生産性を低下させずに、這い上がり部の中空糸膜断面方向の破断を防止して、這い上がり部の耐久性を向上させることができる。
また、中空糸膜の有効膜部は、膜としての機能を果たすべく適宜設計された表面開孔径を維持しているため、中空糸膜の膜性能を維持することができる。
Further, according to the present invention, in addition to the above-described effect, the easily breakable portion can be easily formed simply by reducing the diameter of the hole on the outer surface of the hollow fiber membrane covered by the scooping portion. Therefore, without lowering the productivity of the hollow fiber membrane module, it is possible to prevent the scooping portion from breaking in the cross-sectional direction of the hollow fiber membrane and improve the durability of the scooping portion.
Further, since the effective membrane portion of the hollow fiber membrane maintains the surface opening diameter that is appropriately designed to fulfill the function as a membrane, the membrane performance of the hollow fiber membrane can be maintained.

また、本方法発明によれば、ポッティング部と中空糸膜外表面の這い上がり部によって被覆される部分のみを加熱して、その部分の外表面の孔径を収縮させることができる。したがって、単一の種類の中空糸膜でも、簡便な熱処理のみで同様の効果を得ることができ、新規に膜を開発する必要がない。
また、従来の製造工程に単純な加熱工程を加えるだけでよいので、生産性を低下させることがない。
Moreover, according to this invention, only the part coat | covered with the potting part and the scooping part of the hollow fiber membrane outer surface can be heated, and the hole diameter of the outer surface of the part can be shrunk | reduced. Therefore, even with a single type of hollow fiber membrane, the same effect can be obtained only by simple heat treatment, and it is not necessary to develop a new membrane.
Moreover, since a simple heating process only needs to be added to the conventional manufacturing process, productivity is not reduced.

(第1の実施の形態)
以下、本発明の第1の実施の形態について図面を参照しながら詳細に説明する。
図1に示すように、中空糸膜モジュール1において、内部が中空で膜壁2を備えた糸状の中空糸膜3を複数束ねた中空糸膜束4が、円筒状のケース5内部に挿入されている。中空糸膜3の膜壁2には、図2に示すように内表面6から外表面7に達して開孔する微小な孔8が多数形成されている。ケース5内部に収納された中空糸膜束4は、中空糸膜3の両端部が開口した状態で、ポッティング材によって形成されたポッティング部10を介してケース5内部に支持固定されている。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings.
As shown in FIG. 1, in the hollow fiber membrane module 1, a hollow fiber membrane bundle 4 in which a plurality of thread-like hollow fiber membranes 3 having a hollow inside and having a membrane wall 2 are bundled is inserted into a cylindrical case 5. ing. In the membrane wall 2 of the hollow fiber membrane 3, as shown in FIG. 2, a large number of minute holes 8 are formed that open from the inner surface 6 to the outer surface 7. The hollow fiber membrane bundle 4 accommodated in the case 5 is supported and fixed inside the case 5 via a potting portion 10 formed of a potting material in a state where both ends of the hollow fiber membrane 3 are open.

ここで、中空糸膜3は、例えば、ポリエチレンポリマーを原料として、溶融紡糸法と延伸開孔法で製造したものである。また、中空糸膜3の表面開孔径11は、例えば、略0.3μmである。また、ポッティング材は、例えば、エポキシ樹脂を主成分とする。また、ケース4の材質は処理流体によって選定され、例えば、ポリエチレンなどの樹脂材料である。   Here, the hollow fiber membrane 3 is manufactured by, for example, a melt spinning method and a stretch hole method using a polyethylene polymer as a raw material. Moreover, the surface opening diameter 11 of the hollow fiber membrane 3 is, for example, approximately 0.3 μm. Further, the potting material contains, for example, an epoxy resin as a main component. The material of the case 4 is selected depending on the processing fluid, and is, for example, a resin material such as polyethylene.

また、ポッティング部10によってケース4内部に液密に固定された中空糸膜3の端部には、図2に示すように、ポッティング部10に埋没した中空糸膜3と有効膜部12との間にポッティング材が中空糸膜3の外表面7を這い上がるように被覆する這い上がり部13が形成されている。さらに、中空糸膜3の外表面7を被覆したポッティング材は、中空糸膜3の外表面7の多数の表面開孔8に入り込み、孔8にポッティング材が充填された充填部14が形成されている。   Further, at the end of the hollow fiber membrane 3 that is liquid-tightly fixed inside the case 4 by the potting portion 10, as shown in FIG. 2, the hollow fiber membrane 3 embedded in the potting portion 10 and the effective membrane portion 12 A scooping portion 13 for covering the potting material so as to scoop up the outer surface 7 of the hollow fiber membrane 3 is formed therebetween. Further, the potting material covering the outer surface 7 of the hollow fiber membrane 3 enters a large number of surface openings 8 on the outer surface 7 of the hollow fiber membrane 3, and a filling portion 14 is formed in which the hole 8 is filled with the potting material. ing.

ここで、這い上がり部13に被覆された中空糸膜3の外表面7の表面開孔径15は、有効膜部12における外表面7の表面開孔径11よりも小さくなっている。例えば、這い上がり部13に被覆された中空糸膜3の外表面7の表面開孔径15は略0.1μmであり、中空糸膜3の有効膜部12における表面開孔径11は略0.3μmである。この縮径された孔16によって表面開孔部17の中空糸膜3の外表面7に沿った断面積も小さくなっている。ポッティング材のこの表面開孔部17の中空糸膜3の外表面7に沿った断面、すなわち這い上がり部13と充填部14との界面に易破断部18が形成されている。   Here, the surface aperture diameter 15 of the outer surface 7 of the hollow fiber membrane 3 covered with the scooping-up portion 13 is smaller than the surface aperture diameter 11 of the outer surface 7 in the effective membrane portion 12. For example, the surface aperture diameter 15 of the outer surface 7 of the hollow fiber membrane 3 covered with the scooping portion 13 is approximately 0.1 μm, and the surface aperture diameter 11 of the effective membrane portion 12 of the hollow fiber membrane 3 is approximately 0.3 μm. It is. The cross-sectional area along the outer surface 7 of the hollow fiber membrane 3 of the surface opening portion 17 is also reduced by the reduced diameter hole 16. An easily breakable portion 18 is formed at a cross section along the outer surface 7 of the hollow fiber membrane 3 of the surface opening portion 17 of the potting material, that is, at the interface between the scooping portion 13 and the filling portion 14.

次に、作用・効果について説明する。上記の構成により、図2に示すように、例えば、中空糸膜モジュール1の運転中に、中空糸膜3の長手方向Lの張力が加わると有効膜部12は柔軟に伸長する。このとき、這い上がり部13も中空糸膜3に追従して、その長手方向Lに伸張する。しかし、ポッティング材は有効膜部12と比較して可撓性が一般的に低いため、有効膜部12よりも先に伸長の限界に達してしまう傾向にある。また、這い上がり部13と充填部14を比較して、充填部14は中空糸膜3の長手方向Lの長さが短いため、長手方向Lの相対的な伸び量が這い上がり部13よりも小さい。したがって、充填部14は這い上がり部13よりも先に伸長の限界に達してしまう。   Next, functions and effects will be described. With the above configuration, as shown in FIG. 2, for example, when the tension in the longitudinal direction L of the hollow fiber membrane 3 is applied during the operation of the hollow fiber membrane module 1, the effective membrane portion 12 extends flexibly. At this time, the scooping up portion 13 also follows the hollow fiber membrane 3 and extends in the longitudinal direction L thereof. However, since the potting material is generally less flexible than the effective membrane portion 12, it tends to reach the limit of elongation before the effective membrane portion 12. Moreover, since the length of the filling part 14 in the longitudinal direction L of the hollow fiber membrane 3 is shorter than that of the climbing part 13 and the filling part 14, the relative elongation in the longitudinal direction L is higher than that of the climbing part 13. small. Therefore, the filling portion 14 reaches the limit of expansion before the scooping-up portion 13.

ここで、図3に示す中空糸膜103に長手方向L1の張力が加わって中空糸膜103が伸長すると、這い上がり部113も中空糸膜103に追従してその長手方向L1に伸張する。しかし、上述のように、這い上がり部113よりも先に伸長の限界に達した充填部114によって、這い上がり部113の長手方向L1の伸長が拘束される。そして、伸長の限界に達した充填部114では、這い上がり部113と充填部114との界面118のせん断破壊よりも先に、中空糸膜103の断面方向C1に破壊が進行することとなる。それに伴って、這い上がり部113および中空糸膜103も中空糸膜103の断面方向C1に破断してしまう。   Here, when the tension in the longitudinal direction L1 is applied to the hollow fiber membrane 103 shown in FIG. 3 and the hollow fiber membrane 103 expands, the scooping portion 113 also follows the hollow fiber membrane 103 and extends in the longitudinal direction L1. However, as described above, the expansion of the scooping portion 113 in the longitudinal direction L1 is restricted by the filling portion 114 that has reached the limit of expansion before the scooping portion 113. In the filling portion 114 that has reached the limit of elongation, the breakage proceeds in the cross-sectional direction C1 of the hollow fiber membrane 103 prior to the shear failure of the interface 118 between the scooping-up portion 113 and the filling portion 114. Accordingly, the scooping up portion 113 and the hollow fiber membrane 103 are also broken in the cross-sectional direction C <b> 1 of the hollow fiber membrane 103.

しかしながら、本実施の形態では、図2に示すように中空糸膜3の外表面7の這い上がり部13に被覆された部分の表面開孔径15が、有効膜部12における表面開孔径11よりも縮径されている。これにより、這い上がり部13と充填部14との界面に易破断部18が形成されている。すなわち、この易破断部18は中空糸膜3の外表面7に沿った断面積が小さいため、中空糸膜3の外表面7に沿う方向のせん断応力によって、中空糸膜3の外表面7に沿って容易に破壊させることができる。   However, in the present embodiment, as shown in FIG. 2, the surface opening diameter 15 of the portion covered with the scooping portion 13 of the outer surface 7 of the hollow fiber membrane 3 is larger than the surface opening diameter 11 in the effective membrane portion 12. Reduced diameter. Thereby, an easily breakable portion 18 is formed at the interface between the scooping portion 13 and the filling portion 14. That is, since the easily breakable portion 18 has a small cross-sectional area along the outer surface 7 of the hollow fiber membrane 3, shearing stress in a direction along the outer surface 7 of the hollow fiber membrane 3 causes a shear stress in the direction along the outer surface 7 of the hollow fiber membrane 3. Can be easily broken along.

したがって、外力(屈曲や中空部に内圧が掛かることによる径方向の膨張等を含む)により、図2に示す中空糸膜3に長手方向Lの張力が加わって中空糸膜3が伸長すると、這い上がり部13も中空糸膜3に追従してその長手方向Lに伸張する。そして、這い上がり部13よりも先に伸長の限界に達した充填部14によって這い上がり部の長手方向Lの伸長が拘束される。しかし、このとき、ポッティング材の易破断部18が中空糸膜3外表面7に沿って容易にせん断破壊する。これにより、這い上がり部13は充填部14の拘束を逃れ、中空糸膜3の長手方向Lの伸長に追従して伸長することができる。   Therefore, when the hollow fiber membrane 3 is elongated by applying a tensile force in the longitudinal direction L to the hollow fiber membrane 3 shown in FIG. 2 by external force (including radial expansion caused by bending or internal pressure applied to the hollow portion) The rising portion 13 also follows the hollow fiber membrane 3 and extends in the longitudinal direction L thereof. And the expansion | extension of the longitudinal direction L of the scooping part is restrained by the filling part 14 which reached the limit of expansion | extension before the scooping part 13. However, at this time, the easily breakable portion 18 of the potting material is easily sheared along the outer surface 7 of the hollow fiber membrane 3. Thereby, the scooping-up part 13 can escape the restraint of the filling part 14, and can extend following the expansion | extension of the longitudinal direction L of the hollow fiber membrane 3. FIG.

したがって、ポッティング材の這い上がり部13に中空糸膜3の長手方向Lの外力が加わったときに、這い上がり部13のポッティング材が破壊する際、中空糸膜3の外表面7に沿ってポッティング材の破壊を進行させることができる。これにより、這い上がり部13における中空糸膜3の長手方向Lの可撓性を向上させ、有効膜部12の初期性能を損なうことなく、這い上がり部13近傍における中空糸膜3の耐久性を向上させることができる。   Therefore, when an external force in the longitudinal direction L of the hollow fiber membrane 3 is applied to the creeping portion 13 of the potting material, the potting along the outer surface 7 of the hollow fiber membrane 3 occurs when the potting material of the creeping portion 13 breaks. The destruction of the material can be advanced. Thereby, the flexibility of the hollow fiber membrane 3 in the longitudinal direction L at the scooping portion 13 is improved, and the durability of the hollow fiber membrane 3 in the vicinity of the scooping portion 13 is reduced without impairing the initial performance of the effective membrane portion 12. Can be improved.

また、中空糸膜3の有効膜部12は、膜としての機能を果たすべく適宜設計された表面開孔径11を維持しているため、中空糸膜3の膜性能を維持することができる。また、這い上がり部13のポッティング材が破壊する際、中空糸膜3の外表面7に沿ってポッティング材の破壊を進行させることができるため、中空糸膜3の可撓性が損なわれることを防止して、中空糸膜3の損傷を防止することができる。したがって、破壊が進行しても中空糸膜3の性能を損なうことがないだけでなく、ポッティング部10の液密も保持することができる。
よって、中空糸膜3の初期性能を損なうことなく、這い上がり部13近傍における中空糸膜3の耐久性を向上させることができる。
Moreover, since the effective membrane part 12 of the hollow fiber membrane 3 maintains the surface opening diameter 11 appropriately designed to fulfill the function as a membrane, the membrane performance of the hollow fiber membrane 3 can be maintained. Further, when the potting material of the scooping portion 13 breaks, the breaking of the potting material can be advanced along the outer surface 7 of the hollow fiber membrane 3, so that the flexibility of the hollow fiber membrane 3 is impaired. It is possible to prevent the hollow fiber membrane 3 from being damaged. Accordingly, not only does the performance of the hollow fiber membrane 3 be impaired even if the breakage progresses, but also the liquid tightness of the potting portion 10 can be maintained.
Therefore, the durability of the hollow fiber membrane 3 in the vicinity of the scooping portion 13 can be improved without impairing the initial performance of the hollow fiber membrane 3.

(第2の実施の形態)
次に、本発明の第2の実施の形態について、図1を援用し、図4を用いて説明する。
図4は易破断部218の形成に際して、中空糸膜203の孔208全体を縮径させるのではなく、表面開孔部217の周囲の骨格を潰して孔208を塞ぐように張り出させることにより、表面開孔径215のみを小さくしている。その他の構成は第1の実施の形態と同様であるので、説明は省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIG. 4 with reference to FIG.
In FIG. 4, when forming the easily breakable portion 218, the entire hole 208 of the hollow fiber membrane 203 is not reduced in diameter, but the skeleton around the surface opening portion 217 is crushed so as to close the hole 208. Only the surface opening diameter 215 is reduced. Since other configurations are the same as those of the first embodiment, description thereof will be omitted.

ここで、この易破断部218を形成する方法としては、例えば、ポッティング材の這い上がり部213によって被覆される部分の中空糸膜203の外表面207を摩擦する方法がある。このとき、中空糸膜203の孔208が潰れることがない圧力で、ポッティング材の這い上がり部213に被覆される部分を膜同士あるいは摩擦部材と擦り合わせればよい。これにより、中空糸膜203の外表面207の表面開孔部217の周囲の中空糸膜203の骨格を潰して孔208を塞ぐように張り出させることができる。よって、表面開孔径215のみを小さくし、図4に示すような易破断部218を形成することができる。   Here, as a method of forming the easily breakable portion 218, for example, there is a method of rubbing the outer surface 207 of the hollow fiber membrane 203 in a portion covered with the scooping portion 213 of the potting material. At this time, the portion covered with the scooping portion 213 of the potting material may be rubbed with the membranes or the friction member with a pressure that does not cause the holes 208 of the hollow fiber membrane 203 to be crushed. As a result, the skeleton of the hollow fiber membrane 203 around the surface opening portion 217 of the outer surface 207 of the hollow fiber membrane 203 can be crushed so as to close the hole 208. Therefore, only the surface opening diameter 215 can be reduced, and the easily breakable portion 218 as shown in FIG. 4 can be formed.

この第2の実施の形態によれば、図4に示すように易破断部218の中空糸膜203の外表面207に沿った断面積を小さくすることができる。したがって、長手方向L2の張力によって生じた中空糸膜203の外表面207に沿う方向のせん断応力によって、易破断部218を外表面207に沿って容易に破壊させることができる。
したがって、図4に示す中空糸膜203に長手方向L2の張力が加わって中空糸膜203が伸長すると、這い上がり部213も中空糸膜203に追従してその長手方向L2に伸張する。そして、這い上がり部213よりも先に伸長の限界に達した充填部214によって、這い上がり部213の長手方向L2の伸長が拘束される。しかし、このとき、ポッティング材の易破断部218が中空糸膜203の外表面207に沿って、容易にせん断破壊する。これにより、這い上がり部213は充填部214の拘束を逃れ、中空糸膜203の長手方向L1の伸長に追従して伸長することができる。
よって、第1の実施の形態と同様の効果が得られる。
According to the second embodiment, as shown in FIG. 4, the cross-sectional area along the outer surface 207 of the hollow fiber membrane 203 of the easily breakable portion 218 can be reduced. Therefore, the easily breakable portion 218 can be easily broken along the outer surface 207 by the shear stress in the direction along the outer surface 207 of the hollow fiber membrane 203 generated by the tension in the longitudinal direction L2.
Therefore, when the tension in the longitudinal direction L2 is applied to the hollow fiber membrane 203 shown in FIG. 4 and the hollow fiber membrane 203 expands, the scooping portion 213 also follows the hollow fiber membrane 203 and extends in the longitudinal direction L2. And the expansion | extension of the longitudinal direction L2 of the scooping part 213 is restrained by the filling part 214 which reached the limit of expansion | extension before the scooping part 213. FIG. However, at this time, the easily-breakable portion 218 of the potting material easily shears and breaks along the outer surface 207 of the hollow fiber membrane 203. Thereby, the scooping-up part 213 can escape the restraint of the filling part 214, and can extend following the expansion | extension of the longitudinal direction L1 of the hollow fiber membrane 203. FIG.
Therefore, the same effect as the first embodiment can be obtained.

(中空糸膜モジュールの製造方法)
次に、本発明の実施の形態における中空糸膜モジュール1の製造方法について説明する。
(Method for producing hollow fiber membrane module)
Next, the manufacturing method of the hollow fiber membrane module 1 in embodiment of this invention is demonstrated.

(中空糸膜束挿入工程)
図1に示す中空糸膜モジュール1の製造に当たっては、まず、前述の中空糸膜3を束ねて中空糸膜束4を形成する。次に形成した中空糸膜束4を円筒状のケース4内に挿入する。
(Hollow fiber membrane bundle insertion process)
In the manufacture of the hollow fiber membrane module 1 shown in FIG. 1, first, the hollow fiber membrane bundle 4 is formed by bundling the hollow fiber membranes 3 described above. Next, the formed hollow fiber membrane bundle 4 is inserted into the cylindrical case 4.

(中空糸膜束加熱工程)
次に、中空糸膜束4の端部のポッティング材によって被覆される部分を過熱する。
図5に示すように、ケース5の外側には加熱容器20が設けられている。この加熱容器20はケース5の端部のみを覆う構造となっている。また、加熱容器20は図示しない電源及び制御装置に接続され、図示しないヒータによってケース5内部の中空糸膜束4を任意の温度に加熱することができる。また、加熱容器20がケース4を覆う巾を調節することで、中空糸膜束4の端部の任意の長さを加熱することができる。
(Hollow fiber membrane bundle heating process)
Next, the part covered with the potting material at the end of the hollow fiber membrane bundle 4 is heated.
As shown in FIG. 5, a heating container 20 is provided outside the case 5. The heating container 20 has a structure that covers only the end of the case 5. The heating container 20 is connected to a power source and a control device (not shown), and the hollow fiber membrane bundle 4 inside the case 5 can be heated to an arbitrary temperature by a heater (not shown). Moreover, the arbitrary length of the edge part of the hollow fiber membrane bundle 4 can be heated by adjusting the width | variety which the heating container 20 covers the case 4. FIG.

この加熱容器20を用いて、ケース5内部に収納された中空糸膜束4の端部をケース5の外側から加熱する。加熱することにより、中空糸膜3は収縮し、その表面開孔径15は小さくなる。加熱収縮させる端部の巾は、モジュール化する際ポッティング材によって被覆される巾だけでよく、片方の端部あるいは両方の端部を適宜加熱収縮させればよい。
加熱の方法は、加熱容器20で端部を乾式加熱する方法、端部のみを液体に浸漬し加熱容器20で湿式加熱する方法等、適宜選択することが出来る。
Using this heating container 20, the end of the hollow fiber membrane bundle 4 housed inside the case 5 is heated from the outside of the case 5. By heating, the hollow fiber membrane 3 contracts, and the surface opening diameter 15 becomes small. The width of the end portion to be heated and shrunk may be only the width covered with the potting material when modularized, and one end portion or both end portions may be appropriately heat-shrinked.
The heating method can be selected as appropriate, such as a method in which the end portion is dry-heated with the heating container 20 or a method in which only the end portion is immersed in a liquid and wet-heated in the heating container 20.

乾式加熱の場合には中空糸膜3の汚染の心配が無く加熱装置20も簡便であるが、中空糸膜束4内の空気が断熱材として働くため、中空糸膜束4の径方向中央方向への伝熱は少なく、中空糸膜束4の外周部のみが加熱収縮による表面開孔径15の小径化がなされる。したがって、中空糸膜束4の径が小さい場合、中空糸膜束4の外周のみを小表面開孔径15とすれば事足りる場合には乾式加熱方式が好ましい。   In the case of dry heating, there is no concern about contamination of the hollow fiber membrane 3 and the heating device 20 is simple. However, since the air in the hollow fiber membrane bundle 4 acts as a heat insulating material, the radial direction center direction of the hollow fiber membrane bundle 4 Only the outer peripheral portion of the hollow fiber membrane bundle 4 is reduced in surface opening diameter 15 by heat shrinkage. Therefore, when the diameter of the hollow fiber membrane bundle 4 is small, the dry heating method is preferred when only the outer periphery of the hollow fiber membrane bundle 4 needs to have a small surface opening diameter of 15.

一方、湿式加熱の場合には、液体により熱が伝わるため中空糸膜束4の径方向中央部も熱が伝わりやすく、加熱収縮による表面開孔径15の小径化は中空糸膜束4の径方向中央部にまで及ぼすことが出来る。このときの液体の種類は、中空糸膜束4の加熱温度以上の沸点を有する液体であれば良い。例えば、純水、シリコンオイル、ポリエチレングリコール等の熱媒を適宜使用することが出来る。また、純水を用いると、安全性、取り扱い性、清浄性に優れ好ましい。   On the other hand, in the case of wet heating, since heat is transmitted by the liquid, heat is also easily transmitted to the central portion in the radial direction of the hollow fiber membrane bundle 4, and the reduction of the surface opening diameter 15 due to heat shrinkage is the radial direction of the hollow fiber membrane bundle 4. Can affect up to the center. The type of liquid at this time may be a liquid having a boiling point equal to or higher than the heating temperature of the hollow fiber membrane bundle 4. For example, a heat medium such as pure water, silicon oil, or polyethylene glycol can be used as appropriate. Moreover, when pure water is used, it is excellent in safety | security, handleability, and cleanliness, and preferable.

中空糸膜3の清浄性が要求される用途で且つ収縮させる温度が純水の沸点より高い場合には、例えば、シリコンオイル、ポリエチレングリコール等の高沸点液体を用い後に洗浄することも可能である。また、純水を用いる場合でも、例えば4.7気圧加圧空間内で水を加熱することで150℃まで部分加熱することが可能となる。   In applications where the cleanliness of the hollow fiber membrane 3 is required and the shrinking temperature is higher than the boiling point of pure water, for example, it is possible to wash later using a high boiling point liquid such as silicon oil or polyethylene glycol. . Further, even when pure water is used, partial heating up to 150 ° C. can be performed by heating water in, for example, a 4.7 atmosphere pressure space.

さらには、湿式加熱を行う際、加熱する液体の沸点以下で行うことが好ましい。沸騰した状態では液体の表面以外でも蒸発がおこるため液体の体積が膨張し、加熱したい範囲以上に熱が伝わってしまう可能性がある。   Furthermore, when performing wet heating, it is preferable to carry out below the boiling point of the liquid to heat. In a boiled state, evaporation occurs on the surface other than the surface of the liquid, so that the volume of the liquid expands and heat may be transmitted beyond the range to be heated.

(中空糸膜束支持固定工程)
次に、ケース5内部に収納された中空糸膜束4の端部の、過熱工程によって中空糸膜3の外表面7の表面開孔径15が縮径された部分を、ポッティング材によってケース5内部に支持固定する。
ケース5内部に収納された中空糸膜束4の端部のケース5内部への支持固定は、例えば、中空糸膜束4を構成する各中空糸膜3の端部の間に、ケース5端部の開口部からポッティング材を充填させることによって行う。このとき、有効膜部12を残した状態で、這い上がり部13が加熱処理した中空糸膜3の端部の範囲内に収まるように、ポッティング材を充填する。
(Hollow fiber membrane bundle support and fixing process)
Next, a portion of the end portion of the hollow fiber membrane bundle 4 accommodated in the case 5 in which the surface opening diameter 15 of the outer surface 7 of the hollow fiber membrane 3 is reduced by the overheating process is formed inside the case 5 with a potting material. Support and fix to.
The end of the hollow fiber membrane bundle 4 accommodated in the case 5 is supported and fixed to the inside of the case 5, for example, between the ends of the hollow fiber membranes 3 constituting the hollow fiber membrane bundle 4. It is performed by filling a potting material from the opening of the part. At this time, the potting material is filled so that the scooping portion 13 is within the range of the end portion of the heat-treated hollow fiber membrane 3 with the effective membrane portion 12 remaining.

ここで、作用・効果について説明する。
本実施の形態の製造方法によれば、ケース5内部に中空糸膜束4を挿入したまま、中空糸膜束4端部の加熱を行うことができる。また、加熱工程の終了後に中空糸膜束4をケースから出し入れすることなく、そのまま端部の固定を行うことができる。
したがって、ケース5内に中空糸膜束4を挿入する工程と、ポッティング材によって中空糸膜束4をケース内に支持固定する工程との間に、単純な加熱工程を加えるだけでよいため、生産性を低下させることがない。
Here, the function and effect will be described.
According to the manufacturing method of the present embodiment, the end of the hollow fiber membrane bundle 4 can be heated while the hollow fiber membrane bundle 4 is inserted into the case 5. Further, the end portion can be fixed as it is without removing the hollow fiber membrane bundle 4 from the case after the heating step.
Therefore, it is only necessary to add a simple heating process between the process of inserting the hollow fiber membrane bundle 4 into the case 5 and the process of supporting and fixing the hollow fiber membrane bundle 4 in the case with the potting material. It does not deteriorate the sex.

また、一種類の中空糸膜3を用い、中空糸膜束4の端部をケース5の外側から加熱するだけで、熱収縮により這い上がり部13に被覆される部分の表面開孔径15を有効膜部12の表面開孔径11よりも小さくすることができる。
したがって、新規に二種類の表面開孔径11,15を有する膜を開発する必要がない。
In addition, by using one type of hollow fiber membrane 3 and heating the end of the hollow fiber membrane bundle 4 from the outside of the case 5, the surface opening diameter 15 of the portion covered by the scooping portion 13 due to thermal contraction is effective. It can be made smaller than the surface opening diameter 11 of the film part 12.
Therefore, it is not necessary to newly develop a film having two types of surface opening diameters 11 and 15.

また、ケース5への挿入前に、中空糸膜束4の端部を加熱して、這い上がり部13に被覆される部分の中空糸膜3の表面開孔径15を小さくする場合には、中空糸膜3は加熱収縮により捲縮するため、中空糸膜束4が径方向に嵩張って、ケース5への挿入が困難となる。
しかし、ケース5に中空糸膜束4を挿入してから加熱することで、加熱によって嵩張る前にケース5に挿入することができる。したがって、中空糸膜束4のケースへの挿入が容易になる。
In addition, when the end of the hollow fiber membrane bundle 4 is heated before insertion into the case 5 to reduce the surface opening diameter 15 of the hollow fiber membrane 3 in the portion covered by the scooping portion 13, the hollow fiber membrane bundle 4 is hollow. Since the yarn membrane 3 is crimped by heat shrinkage, the hollow fiber membrane bundle 4 becomes bulky in the radial direction, and insertion into the case 5 becomes difficult.
However, when the hollow fiber membrane bundle 4 is inserted into the case 5 and then heated, it can be inserted into the case 5 before being bulked by heating. Therefore, the hollow fiber membrane bundle 4 can be easily inserted into the case.

また、ポッティング材の這い上がり部13によって被覆される部分の中空糸膜3の表面開孔径15が、有効膜部12の表面開孔径11より小さくなっている。すなわち、分離、透過、ろ過等の膜の機能にかかわる部分の表面開孔径11は必要とする表面開孔径11でありながら、ポッティング材と接触する部分は表面開孔径15が小さくなっている。
したがって、中空糸膜3としての性能を維持しながら、這い上がり部分13における中空糸膜3の損傷を防ぐことが出来る。
Further, the surface opening diameter 15 of the hollow fiber membrane 3 in the portion covered with the rising portion 13 of the potting material is smaller than the surface opening diameter 11 of the effective membrane portion 12. That is, the surface opening diameter 11 of the portion related to the function of the membrane such as separation, permeation, and filtration is the required surface opening diameter 11, but the portion that contacts the potting material has a small surface opening diameter 15.
Therefore, it is possible to prevent damage to the hollow fiber membrane 3 in the scooping portion 13 while maintaining the performance as the hollow fiber membrane 3.

尚、上述した実施の形態では、一種類の中空糸膜を用い、這い上がり部によって被覆される部分の中空糸膜外表面の表面開孔径を縮径する手法について説明したが、この発明は、二種類の膜を用い、ケース内表面近接する部分の中空糸膜の表面開孔径を小開孔径とする手法に適用することも可能である。  In the above-described embodiment, a method of reducing the surface opening diameter of the outer surface of the hollow fiber membrane of the portion covered by the scooping portion using one type of hollow fiber membrane has been described. It is also possible to apply to a method in which two types of membranes are used, and the surface aperture diameter of the hollow fiber membrane in the portion close to the inner surface of the case is made small.

すなわち、中空糸膜モジュールの用途に適した表面開孔径を有する中空糸膜を束ね、更にその外周に表面開孔径の小さい中空糸膜束を巻きつける方法を採ることが出来る。
また、樹脂固定部のみに小表面開孔径の中空糸膜層を設けることも可能である。
これらは、必要とする表面開孔径を有した中空糸膜束の外周に中空糸膜束の中空糸膜表面開孔径より小さい表面開孔径を有する中空糸膜層を巻く手法である。
That is, a method of bundling a hollow fiber membrane having a surface opening diameter suitable for the use of the hollow fiber membrane module and winding a hollow fiber membrane bundle having a small surface opening diameter around the outer periphery thereof can be employed.
It is also possible to provide a hollow fiber membrane layer having a small surface opening diameter only on the resin fixing portion.
These are methods in which a hollow fiber membrane layer having a surface opening diameter smaller than the hollow fiber membrane surface opening diameter of the hollow fiber membrane bundle is wound around the outer periphery of the hollow fiber membrane bundle having a required surface opening diameter.

ここで、中空糸膜は、枷巻きやバンドルと呼ばれる中空糸膜の集束体として扱うことも出来るが、単数或いは複数の中空糸膜フィラメントを一定幅で複数回折り返し、折り返し部を拘束糸条にて拘束して得られる一般にラッセル編地と呼ばれる中空糸膜シート状物として取り扱うと作業性の面で優れる。
即ち本発明によれば、表面開孔径の異なる二種類の中空糸膜を用いて中空糸膜束を作製することも出来るし、一種類の中空糸膜を用いて部分的に表面開孔径を小さくすることも可能である。
Here, the hollow fiber membrane can be handled as a bundle of hollow fiber membranes called a wound or bundle, but one or more hollow fiber membrane filaments are folded back multiple times with a certain width, and the folded portion is used as a constraining yarn. When handled as a hollow fiber membrane sheet, generally called a Russell knitted fabric, obtained by restraining it, it is excellent in terms of workability.
That is, according to the present invention, a hollow fiber membrane bundle can be produced using two types of hollow fiber membranes having different surface aperture diameters, or the surface aperture diameter can be partially reduced using one type of hollow fiber membrane. It is also possible to do.

また、這い上がり部に存在する中空糸膜の表面開孔径がその他の部分より小さくなっている中空糸膜束をケース内に挿入する方法としては、特に捕らわれるものでは無く、二種類の中空糸膜を用いて中空糸膜束の外周に表面開孔径の小さい中空糸膜層を設ける場合には、中空糸膜束のラッセル編地と中空糸膜層のラッセル編地を連続して編み立てる、或いは連結して中空糸膜束と中空糸膜層からなる中空糸膜巻体とすることで、ケース挿入時の中空糸膜のずれを防ぐことが出来る。   Moreover, as a method of inserting a hollow fiber membrane bundle in which the surface opening diameter of the hollow fiber membrane present in the scooping portion is smaller than the other portions into the case, it is not particularly caught, and two types of hollow fiber membranes When the hollow fiber membrane layer having a small surface opening diameter is provided on the outer periphery of the hollow fiber membrane bundle using the knitted fabric, the raschel knitted fabric of the hollow fiber membrane bundle and the raschel knitted fabric of the hollow fiber membrane layer are continuously knitted, or By connecting to form a hollow fiber membrane wound body comprising a hollow fiber membrane bundle and a hollow fiber membrane layer, the hollow fiber membrane can be prevented from shifting when the case is inserted.

また、中空糸膜は、膜厚方向にほぼ均一に微細孔が分布する均質膜でも、膜表面に緻密層が存在する非対称膜でもよい。   The hollow fiber membrane may be a homogeneous membrane in which fine pores are distributed almost uniformly in the film thickness direction, or an asymmetric membrane having a dense layer on the membrane surface.

また、ポッティング材に埋没した中空糸膜は外力が加わっても変形することが無いためこの部分の表面開孔径は有効膜部と同等であっても一向に差し支えない。即ち、少なくとも這い上がり部に被覆される部分の中空糸膜の表面開孔径がその他の部分に存在する中空糸膜の表面開孔径より小さくなっていればよい。
また、ポッティング材の這い上がり量は中空糸膜の密集具合や、ポッティング樹脂の硬化前の流動具合により、厳密に制御することが難しいので、中空糸膜長手方向の表面開孔径の小孔径化は、這い上がりの可能性のある部分まで小孔径化しておくと安心である。
Further, since the hollow fiber membrane embedded in the potting material does not deform even when an external force is applied, the surface opening diameter of this portion may be equal to that of the effective membrane portion. That is, it is only necessary that the surface opening diameter of the hollow fiber membrane at least in the portion covered by the scooping portion is smaller than the surface opening diameter of the hollow fiber membrane existing in the other portion.
In addition, since the amount of creeping up of the potting material is difficult to control precisely due to the density of the hollow fiber membranes and the flow before the potting resin is cured, the surface pore diameter in the longitudinal direction of the hollow fiber membranes can be reduced. It is safe to reduce the diameter of the hole until there is a possibility of creeping up.

また、中空糸膜モジュールの中空糸膜束の径方向に関しては、中空糸膜破損箇所はケース近傍、中空糸膜束外周部分に集中していることから、ポッティング材の這い上がり部且つ中空糸膜束外周部に存在する中空糸膜の表面開孔径がその他の部分に存在する中空糸膜の表面開孔径より小さくなっていれば一定の効果を得ることが出来るが、外周の耐久性が向上してもより内周側の這い上がり部で中空糸膜の破損が起こる可能性は高いため、中空糸膜束径方向の中心に至るまで小孔径化がなされていることが好ましい。   Further, with respect to the radial direction of the hollow fiber membrane bundle of the hollow fiber membrane module, the hollow fiber membrane breakage points are concentrated in the vicinity of the case and the outer peripheral part of the hollow fiber membrane bundle. A certain effect can be obtained if the surface opening diameter of the hollow fiber membrane existing in the outer peripheral portion of the bundle is smaller than the surface opening diameter of the hollow fiber membrane existing in the other portion, but the durability of the outer periphery is improved. However, since there is a high possibility that the hollow fiber membrane will be damaged at the further inner side, the pore diameter is preferably reduced to the center in the radial direction of the hollow fiber membrane bundle.

また、上述の実施の形態では、中空糸膜束及び中空糸モジュールの断面形状を円筒形として表したが、断面形状は矩形、平型、等適宜選択できる。   Moreover, in the above-mentioned embodiment, although the cross-sectional shape of the hollow fiber membrane bundle and the hollow fiber module was represented as a cylindrical shape, the cross-sectional shape can be appropriately selected such as a rectangular shape or a flat shape.

また、中空糸膜の素材は、可撓性を有するものであればよく、例えば、ポリエチレン、ポリプロピレン、ポリ(3−メチルブテン−1)、ポリ(4−メチルペンテン−1)等のポリオレフィン系ポリマー、ポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系ポリマー、ポリスチレン、ポリエーテルエーテルケトン、ポリエーテルケトン等のポリマーを用いることができる。   The material of the hollow fiber membrane may be any material having flexibility, for example, a polyolefin-based polymer such as polyethylene, polypropylene, poly (3-methylbutene-1), poly (4-methylpentene-1), Fluorine polymers such as polyvinylidene fluoride and polytetrafluoroethylene, and polymers such as polystyrene, polyether ether ketone, and polyether ketone can be used.

また、ポッティング材は特に限定されるものではなく、熱硬化樹脂や熱可塑性樹脂等を適宜選択して使用することができるが、例えば、ウレタン樹脂、エポキシ樹脂、シリコン樹脂等の熱硬化樹脂を用いた場合に、本発明の効果をより好適に得ることが出来る傾向にある。
特に、中空糸膜の素材と可撓性において開きの大きい組み合わせとなるポッティング材を選定した場合に、特に大きな効果を得ることが出来る。例えば、薬液を処理するための中空糸膜モジュールの場合、耐薬液性の高いポッティング樹脂は一般に可撓性が低く硬い材質のものが多いので、薬液処理分野で応用される中空糸膜モジュールに特に大きな効果を発揮する。
The potting material is not particularly limited, and a thermosetting resin, a thermoplastic resin, or the like can be appropriately selected and used. For example, a thermosetting resin such as a urethane resin, an epoxy resin, or a silicon resin is used. If so, the effects of the present invention tend to be obtained more suitably.
In particular, when a potting material that is a combination of a hollow fiber membrane material and a flexible opening is selected, a particularly great effect can be obtained. For example, in the case of a hollow fiber membrane module for processing a chemical solution, a potting resin having high chemical resistance is generally a material having a low flexibility and a hard material. Demonstrate great effect.

即ち、本発明によれば、中空糸膜モジュールの中空糸膜及びポッティング材を選定する際、それぞれの部材の基本性能を主体に選定してもポッティング材這い上がり部の中空糸膜の破損を防ぐことが出来、部材選定の範囲を大幅に広げることが出来る。   That is, according to the present invention, when selecting the hollow fiber membrane and the potting material of the hollow fiber membrane module, even if the basic performance of each member is selected as a main component, the hollow fiber membrane at the rising portion of the potting material is prevented from being damaged. And the range of member selection can be greatly expanded.

本発明者らは、這い上がり部分の破損の挙動を明らかにするため、中空糸膜表面にポッティング材をコーティングしたサンプルを作製し、以下の実験を行った。
実験の詳細は、ポリエチレン製三層複合中空糸膜MHF200TL(三菱レイヨン・エンジニアリング(株)製)に、乾熱処理なし、80℃乾熱処理、120℃乾熱処理を施し、さらにそれぞれの三層複合中空糸膜1本1本にエポキシ樹脂をコーティングし固化させた物とコーティングしていない物の計6点の試料を作製し、下記条件で強伸度測定したものである。
また、80℃乾熱処理時の中空糸膜収縮率は6%、表面開孔径は0.1μmで、120℃乾熱処理時の中空糸膜収縮率は40%、表面開孔径は0.05μmであった。熱処理前の中空糸膜表面開孔径は0.1μmであった。
強伸度測定条件は、試長50mm、ヘッドスピード50mm、測定環境温度20℃、測定環境湿度65%RHであった。
熱処理なし、80℃処理、120℃処理それぞれのコーティングなしの試料を100としたコーティング後の強伸度の値を図6に示す。図6において、破断強度を白色柱、破断伸度を黒色柱として表している。また、図中「−」は、「コーティングなし」、または、「熱処理なし」を表している。
The present inventors made a sample in which a hollow fiber membrane surface was coated with a potting material in order to clarify the breakage behavior of the scooping portion, and conducted the following experiment.
For details of the experiment, polyethylene three-layer composite hollow fiber membrane MHF200TL (manufactured by Mitsubishi Rayon Engineering Co., Ltd.) was subjected to no heat treatment, 80 ° C dry heat treatment, 120 ° C dry heat treatment, and each three-layer composite hollow fiber A total of 6 samples were prepared, one for each film coated with an epoxy resin and solidified, and the other uncoated. The strength and elongation were measured under the following conditions.
Further, the hollow fiber membrane shrinkage rate at 80 ° C. dry heat treatment was 6% and the surface pore diameter was 0.1 μm, the hollow fiber membrane shrinkage rate at 120 ° C. dry heat treatment was 40%, and the surface pore diameter was 0.05 μm. It was. The hole diameter of the hollow fiber membrane surface before the heat treatment was 0.1 μm.
The strength elongation measurement conditions were a test length of 50 mm, a head speed of 50 mm, a measurement environment temperature of 20 ° C., and a measurement environment humidity of 65% RH.
FIG. 6 shows the values of the strength and elongation after coating, with 100 as the uncoated sample for each of the heat treatment, 80 ° C. treatment and 120 ° C. treatment. In FIG. 6, the breaking strength is represented as a white column and the breaking elongation is represented as a black column. In the figure, “-” represents “no coating” or “no heat treatment”.

図6に示すように、破断強度に関しては全試料ともコーティングの有無にかかわらず一定であるのに対し、破断伸度は乾熱処理なし及び80℃乾熱処理のコーティングあり品は極端な低下を示している。一方、120℃乾熱処理品についてはコーティングの有無による破断伸度の低下はない。
上述の強伸度測定結果は、乾熱処理なし及び80℃乾熱処理のコーティングありのものはコーティング層破断時に中空糸膜も同時に破断してしまうのに対し、120℃乾熱処理品はコーティング層破断時も中空糸膜の形状は維持しつつ、中空糸膜としての破断伸度を発現するものであることを示している。
As shown in FIG. 6, the breaking strength of all samples is constant regardless of the presence or absence of coating, whereas the breaking elongation is extremely low for products without dry heat treatment and with 80 ° C. dry heat treatment coating. Yes. On the other hand, with respect to the 120 ° C. dry heat-treated product, the elongation at break does not decrease due to the presence or absence of coating.
The above-mentioned results of the measurement of high elongation show that when the coating layer is not subjected to dry heat treatment and with 80 ° C dry heat treatment, the hollow fiber membrane also breaks simultaneously when the coating layer breaks, whereas the 120 ° C dry heat treatment product breaks when the coating layer breaks. This also shows that the hollow fiber membrane exhibits the elongation at break while maintaining the shape of the hollow fiber membrane.

また、這い上がり部分の中空糸膜表面開孔径の好ましい範囲については、現段階では上述のように、ポッティング材這い上がり部を模した試料を作製し強伸度の測定結果から、破断伸度の変化の少ない表面開孔径を見つける方法が確実であり好ましい。このとき、ポッティング材這い上がり部を模した試料を、中空糸膜モジュールに実際に使用する流体と一定時間接触させた試料も作製し、併せて実験すると、流体との接触による中空糸膜及びポッティング材の膨潤や溶解、脆化等の劣化の影響も加味したより好ましい表面開孔径を選定することが出来好ましい。当然ながら、本発明者らは今後も鋭意検討を進め、ポッティング材の材質や剛性や中空糸膜表面を被覆する厚み、中空糸膜の素材や膜厚や表面開孔径や空孔率及び各部材の使用流体に対する耐久性等の関連する要因を勘案し、設計的事項である好ましい表面開孔径を明らかにして行くことは言うまでも無い。   In addition, as for the preferable range of the hollow fiber membrane surface opening diameter of the scooping up part, as described above, a sample imitating the scooping up part of the potting material was prepared, and from the measurement result of the high elongation, A method of finding a surface opening diameter with little change is reliable and preferable. At this time, a sample imitating the potting material scooping part was also prepared by contacting the fluid actually used in the hollow fiber membrane module for a certain period of time. A more preferable surface opening diameter can be selected in consideration of the influence of deterioration such as swelling, dissolution and embrittlement of the material. Of course, the present inventors will continue to study diligently, and the material and rigidity of the potting material, the thickness covering the surface of the hollow fiber membrane, the material and film thickness of the hollow fiber membrane, the surface opening diameter, the porosity, and each member Needless to say, a preferable surface opening diameter, which is a design matter, is clarified in consideration of related factors such as durability against the fluid used.

ポリエチレン製多孔質中空糸膜EX270T(三菱レイヨン・エンジニアリング(株)製)を熱処理し、ウレタン樹脂でコーティングしたものの強伸度を測定した。表1に、熱処理だけの中空糸膜の破断伸度を100としたコーティング後の破断伸度の値を示した。表1には熱処理による中空糸膜の収縮率、空孔率、表面開孔径の変化も参考として記載した。   A polyethylene porous hollow fiber membrane EX270T (manufactured by Mitsubishi Rayon Engineering Co., Ltd.) was heat-treated, and the strength and elongation of what was coated with a urethane resin were measured. Table 1 shows the values of the breaking elongation after coating, with the breaking elongation of the hollow fiber membrane only by heat treatment being 100. Table 1 also shows changes in the shrinkage rate, porosity, and surface pore diameter of the hollow fiber membrane due to heat treatment as a reference.

Figure 2008055304
Figure 2008055304

表1の破断伸度から、乾熱処理120℃で破断伸度の低下がないことが判る。
次に、EX270Tの中空糸膜束を作製し、図5に示した加熱容器に挿入し、中空糸膜束端部を120℃で加熱し、外径40mm、長さ110mmの中空糸膜束を得た。このとき、中空糸膜の加熱巾は35mmで、加熱前の中空糸膜束の長さは収縮率を見越して163mmのものを用意した。
得られた中空糸膜束を長さ110mm、内径40mmの円筒状ケースにウレタン樹脂によりポッティングを行い更にポッティング端部を10mmカットし中空糸膜束の中空部を開口させ、ケースの両端に水の入出口を取り付け、中空糸膜モジュールを得た。
ケース内の中空糸膜充填率は45%で、全ての中空糸膜がポッティング材に埋没した状態の長さは10mm、這い上がり部分は0mmから10mmとなっていた。
加熱巾が35mmであることから、這い上がり部分を含めてポッティング材と膜の接する部分は全て加熱されていることが判る。また、中空糸膜の内径は270μm、外径は380μm、有効膜面積は0.5mであった。
得られた中空糸膜モジュールの中空糸膜外表面側から水を通水し、濾過流量を測定したところ、18L/min・0.1MPaであった。
From the breaking elongation in Table 1, it can be seen that there is no decrease in breaking elongation at 120 ° C. by dry heat treatment.
Next, a hollow fiber membrane bundle of EX270T was prepared, inserted into the heating container shown in FIG. 5, and the end of the hollow fiber membrane bundle was heated at 120 ° C. to obtain a hollow fiber membrane bundle having an outer diameter of 40 mm and a length of 110 mm. Obtained. At this time, the heating width of the hollow fiber membrane was 35 mm, and the length of the hollow fiber membrane bundle before heating was 163 mm in anticipation of the shrinkage rate.
The obtained hollow fiber membrane bundle was potted with a urethane resin into a cylindrical case having a length of 110 mm and an inner diameter of 40 mm, and the potting end portion was cut by 10 mm to open the hollow portion of the hollow fiber membrane bundle, and water was added to both ends of the case. An inlet / outlet was attached to obtain a hollow fiber membrane module.
The filling rate of the hollow fiber membrane in the case was 45%, the length of all hollow fiber membranes embedded in the potting material was 10 mm, and the creeping portion was 0 mm to 10 mm.
Since the heating width is 35 mm, it can be seen that all the portions where the potting material and the film are in contact with each other including the creeping portion are heated. The hollow fiber membrane had an inner diameter of 270 μm, an outer diameter of 380 μm, and an effective membrane area of 0.5 m 2 .
Water was passed from the hollow fiber membrane outer surface side of the obtained hollow fiber membrane module, and the filtration flow rate was measured and found to be 18 L / min · 0.1 MPa.

[比較例1]
EX270Tの中空糸膜束を作製し、中空糸膜束全体を120℃で加熱し、外径40mm、長さ110mmの中空糸膜束を得た。得られた中空糸膜束を用い実施例2と同じく中空糸膜モジュールを作製し、濾過流量を測定したところ、3L/min・0.1MPaであった。
[Comparative Example 1]
An EX270T hollow fiber membrane bundle was prepared, and the entire hollow fiber membrane bundle was heated at 120 ° C. to obtain a hollow fiber membrane bundle having an outer diameter of 40 mm and a length of 110 mm. Using the obtained hollow fiber membrane bundle, a hollow fiber membrane module was produced in the same manner as in Example 2, and the filtration flow rate was measured and found to be 3 L / min · 0.1 MPa.

[参考例1]
EX270Tを用い外径40mm、長さ110mmの中空糸膜束を得た。得られた中空糸膜束を用い実施例1と同じく中空糸膜モジュールを作製し、濾過流量を測定したところ、18L/min・0.1MPaであった。
実施例2、比較例1及び参考例1から明らかなように、中空糸膜モジュールはポッティング部のみ表面開孔径の小孔径化がなされているのでモジュールとしての基本性能、この場合は濾過流量が損なわれることがない。
[Reference Example 1]
A hollow fiber membrane bundle having an outer diameter of 40 mm and a length of 110 mm was obtained using EX270T. Using the obtained hollow fiber membrane bundle, a hollow fiber membrane module was produced in the same manner as in Example 1, and the filtration flow rate was measured. As a result, it was 18 L / min · 0.1 MPa.
As is clear from Example 2, Comparative Example 1 and Reference Example 1, the hollow fiber membrane module has a surface pore diameter reduced only at the potting portion, so the basic performance as a module, in this case, the filtration flow rate is impaired. It will not be.

ポリエチレン製三層複合中空糸膜MHF200TL(三菱レイヨン・エンジニアリング(株)製)を熱処理し、エポキシ樹脂でコーティングしたものの強伸度を測定した。表2に、熱処理だけの中空糸膜の破断伸度を100としたコーティング後の破断伸度の値を示した。表2には熱処理による中空糸膜の収縮率、空孔率、表面開孔径の変化も参考として記載した。   A polyethylene three-layer composite hollow fiber membrane MHF200TL (manufactured by Mitsubishi Rayon Engineering Co., Ltd.) was heat-treated, and the tensile strength of the coated with an epoxy resin was measured. Table 2 shows the values of the elongation at break after coating when the elongation at break of the hollow fiber membrane only by heat treatment is taken as 100. In Table 2, changes in the shrinkage rate, porosity, and surface pore diameter of the hollow fiber membrane due to heat treatment are also described for reference.

Figure 2008055304
Figure 2008055304

表2の破断伸度から、乾熱処理120℃で破断伸度の低下がないことが判る。
次に、MHF200TLの中空糸膜束を作製し、図5に示した加熱容器に挿入し、中空糸膜束端部を120℃で加熱し、更に反対側の端部も同じように120℃で加熱し、外径40mm、長さ120mmの中空糸膜束を得た。
このとき、中空糸膜の加熱巾は35mmで、加熱前の中空糸膜束の長さは収縮率を見越して176mmのものを用意した。得られた中空糸膜束を長さ120mm、内径40mmの円筒状ケースにエポキシ樹脂により中空糸膜束両端をポッティングし、更にポッティング端部を10mmカットして中空糸膜束の中空部を開口させ中空糸膜モジュールを得た。
ケースの有効膜部にあたる部分には複数のスリットが設けられてなり、ケース内の中空糸膜充填率は45%で、全ての中空糸膜がポッティング材に埋没した状態の長さは10mm、這い上がり部分は0mmから10mmとなっていた。加熱巾が35mmであることから、這い上がり部分を含めてポッティング材と膜の接する部分は全て加熱されていることが判る。また、中空糸膜の内径は270μm、外径は380μm、有効膜面積は0.6m2であった。
得られた中空糸膜モジュールの両端に水の入出口を取り付け、中空糸膜内部に通じる空間に水を流入させ水を充満させた後水の出口を閉じ、水の入り口から水圧の加圧と開放を繰り返す繰り返し耐圧試験を行った。加圧回数230000回でポッティング樹脂が着いていない部分の中空糸膜が破損した。繰り返し耐圧試験の条件は次のとおりであった。加圧圧力は0.35MPa、加圧時間は10秒、圧力開放時間は10秒、温度は40℃であった。
From the breaking elongation in Table 2, it can be seen that there is no decrease in breaking elongation at 120 ° C. by dry heat treatment.
Next, a hollow fiber membrane bundle of MHF200TL is prepared, inserted into the heating container shown in FIG. 5, the end of the hollow fiber membrane bundle is heated at 120 ° C., and the opposite end is similarly heated at 120 ° C. Heating was performed to obtain a hollow fiber membrane bundle having an outer diameter of 40 mm and a length of 120 mm.
At this time, the heating width of the hollow fiber membrane was 35 mm, and the length of the hollow fiber membrane bundle before heating was 176 mm in anticipation of the shrinkage rate. The hollow fiber membrane bundle thus obtained was potted on a cylindrical case having a length of 120 mm and an inner diameter of 40 mm with epoxy resin at both ends of the hollow fiber membrane bundle, and the potting end portion was cut by 10 mm to open the hollow portion of the hollow fiber membrane bundle. A hollow fiber membrane module was obtained.
The portion corresponding to the effective membrane portion of the case is provided with a plurality of slits, the filling rate of the hollow fiber membrane in the case is 45%, and the length of all hollow fiber membranes embedded in the potting material is 10 mm. The rising part was 0 mm to 10 mm. Since the heating width is 35 mm, it can be seen that all the portions where the potting material and the film are in contact with each other including the creeping portion are heated. The hollow fiber membrane had an inner diameter of 270 μm, an outer diameter of 380 μm, and an effective membrane area of 0.6 m 2.
Water inlets and outlets are attached to both ends of the obtained hollow fiber membrane module, water is poured into the space leading to the inside of the hollow fiber membrane, the water is filled, the water outlet is closed, and water pressure is increased from the water inlet. The pressure resistance test was repeated repeatedly. The portion of the hollow fiber membrane where the potting resin was not applied was damaged after the pressure was increased 230,000 times. The conditions of the repeated pressure test were as follows. The pressing pressure was 0.35 MPa, the pressing time was 10 seconds, the pressure release time was 10 seconds, and the temperature was 40 ° C.

[比較例2]
MHF200TLの中空糸膜束を作製し、加熱処理無しで実施例2と同じく中空糸膜モジュールを作製し、繰り返し耐圧試験を行ったところ、加圧回数20000回でポッティング樹脂が這い上がっている部分の中空糸膜が破損した。
実施例3及び比較例2から明らかなように、ポッティング樹脂這い上がり部の破損を防ぐことが出来るので、長寿命化を図ることが出来る。
[Comparative Example 2]
A hollow fiber membrane bundle of MHF200TL was produced, a hollow fiber membrane module was produced in the same manner as in Example 2 without any heat treatment, and repeated pressure resistance tests were conducted. The hollow fiber membrane was damaged.
As is clear from Example 3 and Comparative Example 2, the potting resin scooping portion can be prevented from being damaged, so that the life can be extended.

本発明の第1の実施の形態に係る中空糸膜モジュールの概略断面図である。It is a schematic sectional drawing of the hollow fiber membrane module which concerns on the 1st Embodiment of this invention. 図1の這い上がり部近傍における部分拡大概略断面図である。FIG. 2 is a partially enlarged schematic cross-sectional view in the vicinity of a scooping portion in FIG. 1. 従来の中空糸膜モジュールの這い上がり部近傍における部分拡大概略断面図である。It is a partial expansion schematic sectional drawing in the vicinity of the creeping-up part of the conventional hollow fiber membrane module. 本発明の第2の実施の形態に係る這い上がり部近傍における部分拡大概略断面図である。It is a partial expanded schematic sectional drawing in the vicinity of the scooping part which concerns on the 2nd Embodiment of this invention. 本方法発明の実施の形態に係る加熱工程の概略斜視図である。It is a schematic perspective view of the heating process which concerns on embodiment of this method invention. 実施例1の強伸度の変化率を示す図である。It is a figure which shows the change rate of the strong elongation of Example 1.

符号の説明Explanation of symbols

1 中空糸膜モジュール
3 中空糸膜
4 中空糸膜束
5 ケース
7 外表面
8 孔
11 表面開孔径(有効膜部の外表面の孔の径)
12 有効膜部
13 這い上がり部
14 充填部
15 這い上がり部に被覆された中空糸膜の外表面の表面開孔径(孔の径)
18 易破断部

DESCRIPTION OF SYMBOLS 1 Hollow fiber membrane module 3 Hollow fiber membrane 4 Hollow fiber membrane bundle 5 Case 7 Outer surface 8 Hole 11 Surface opening diameter (The diameter of the hole of the outer surface of an effective membrane part)
12 Effective membrane part 13 Scooping part 14 Filling part 15 Surface opening diameter (hole diameter) of the outer surface of the hollow fiber membrane covered with the scooping part
18 Easy break

Claims (3)

外表面に開孔する多数の孔を有する複数の中空糸膜を束ねた中空糸膜束をケース内に収納し、前記中空糸膜束がポッティング材により有効膜部を残して前記ケース内に支持固定されてなる中空糸膜モジュールであって、
前記中空糸膜の外表面を這い上がるように被覆する前記ポッティング材により形成された這い上がり部と、前記孔に入り込む前記ポッティング材により形成された充填部とを備え、これら這い上がり部と充填部との界面に易破断部を形成したことを特徴とする中空糸膜モジュール。
A hollow fiber membrane bundle in which a plurality of hollow fiber membranes having a large number of holes opened on the outer surface are bundled is accommodated in the case, and the hollow fiber membrane bundle is supported in the case leaving an effective membrane portion by a potting material. A hollow fiber membrane module that is fixed,
The scooping portion formed by the potting material that covers the outer surface of the hollow fiber membrane so as to scoop up, and the filling portion formed by the potting material that enters the hole, the scooping portion and the filling portion A hollow fiber membrane module characterized in that an easily breakable part is formed at the interface with the hollow fiber membrane module.
前記這い上がり部に被覆された前記中空糸膜の外表面における前記孔の径が、前記有効膜部の外表面の前記孔の径よりも小さいことを特徴とする請求項1記載の中空糸膜モジュール。   The hollow fiber membrane according to claim 1, wherein the diameter of the hole on the outer surface of the hollow fiber membrane covered by the scooping portion is smaller than the diameter of the hole on the outer surface of the effective membrane portion. module. 外表面に開孔する多数の孔を有する複数の中空糸膜を束ねた中空糸膜束をケース内に挿入する工程と、前記中空糸膜束の端部をポッティング材により有効膜部を残して前記ケース内に支持固定する工程を有する中空糸膜モジュールの製造方法であって、
前記ケース内に前記中空糸膜束を挿入する工程と、前記ポッティング材により前記中空糸膜束を前記ケース内に支持固定する工程との間に、前記ポッティング材により被覆される前記中空糸膜束の端部を前記ケース外部から加熱する工程を有することを特徴とする中空糸膜モジュールの製造方法。

A step of inserting a hollow fiber membrane bundle in which a plurality of hollow fiber membranes having a large number of holes opened on the outer surface are bundled into a case, and leaving an effective membrane portion at the end portion of the hollow fiber membrane bundle with a potting material A method for producing a hollow fiber membrane module comprising a step of supporting and fixing in the case,
The hollow fiber membrane bundle covered with the potting material between the step of inserting the hollow fiber membrane bundle into the case and the step of supporting and fixing the hollow fiber membrane bundle in the case with the potting material A method of manufacturing a hollow fiber membrane module, comprising a step of heating an end of the hollow fiber from the outside of the case.

JP2006234517A 2006-08-30 2006-08-30 Hollow fiber membrane module and method for producing hollow fiber membrane module Expired - Fee Related JP4933864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006234517A JP4933864B2 (en) 2006-08-30 2006-08-30 Hollow fiber membrane module and method for producing hollow fiber membrane module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006234517A JP4933864B2 (en) 2006-08-30 2006-08-30 Hollow fiber membrane module and method for producing hollow fiber membrane module

Publications (2)

Publication Number Publication Date
JP2008055304A true JP2008055304A (en) 2008-03-13
JP4933864B2 JP4933864B2 (en) 2012-05-16

Family

ID=39238689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006234517A Expired - Fee Related JP4933864B2 (en) 2006-08-30 2006-08-30 Hollow fiber membrane module and method for producing hollow fiber membrane module

Country Status (1)

Country Link
JP (1) JP4933864B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828989A (en) * 2019-12-25 2022-07-29 住友电工超效能高分子股份有限公司 Method for manufacturing hollow fiber membrane module and hollow fiber membrane module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594403A (en) * 1982-06-28 1984-01-11 Kuraray Co Ltd Hollow yarn type filter element
JPS61141903A (en) * 1984-12-15 1986-06-28 Mitsubishi Rayon Co Ltd Preparation of hollow yarn membrane module
JPH022834A (en) * 1989-01-17 1990-01-08 Toyobo Co Ltd Production of element for separating fluid
JPH02107318A (en) * 1988-10-14 1990-04-19 Daicel Chem Ind Ltd Membrane module of hollow fiber type
JPH06296835A (en) * 1993-04-12 1994-10-25 Nok Corp Hollow yarn membrane module and production thereof
JPH10305218A (en) * 1997-05-07 1998-11-17 Nikkiso Co Ltd Hollow fiber module and its production

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594403A (en) * 1982-06-28 1984-01-11 Kuraray Co Ltd Hollow yarn type filter element
JPS61141903A (en) * 1984-12-15 1986-06-28 Mitsubishi Rayon Co Ltd Preparation of hollow yarn membrane module
JPH02107318A (en) * 1988-10-14 1990-04-19 Daicel Chem Ind Ltd Membrane module of hollow fiber type
JPH022834A (en) * 1989-01-17 1990-01-08 Toyobo Co Ltd Production of element for separating fluid
JPH06296835A (en) * 1993-04-12 1994-10-25 Nok Corp Hollow yarn membrane module and production thereof
JPH10305218A (en) * 1997-05-07 1998-11-17 Nikkiso Co Ltd Hollow fiber module and its production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114828989A (en) * 2019-12-25 2022-07-29 住友电工超效能高分子股份有限公司 Method for manufacturing hollow fiber membrane module and hollow fiber membrane module

Also Published As

Publication number Publication date
JP4933864B2 (en) 2012-05-16

Similar Documents

Publication Publication Date Title
JP3908939B2 (en) Method for producing hollow fiber membrane module
EP2181758B1 (en) A hollow-fibre membrane assembly having the function of preventing the membrane filaments from cracking
JP2000342932A (en) Potting method for separation membrane
US10350549B2 (en) Hollow fiber membrane module and method for manufacturing hollow fiber membrane module
WO2013146080A1 (en) Hollow fiber membrane module and production method therefor
EP2292318B1 (en) Process for manufacturing a hollow fiber module for deaeration
CN103140277A (en) Tubesheet and method for making and using the same
JP5609975B2 (en) Method for repairing leaked portion of hollow fiber membrane module and hollow fiber membrane module
JP5391704B2 (en) Hollow fiber membrane module
JP4933864B2 (en) Hollow fiber membrane module and method for producing hollow fiber membrane module
KR101319414B1 (en) One-body typed submerged hollow fiber membrane module and preparation method thereof
US20110111126A1 (en) Method for forming hollow fiber bundles
JP2009018283A (en) Hollow fiber membrane module and manufacturing method thereof
JP5291530B2 (en) Hollow fiber membrane module and manufacturing method thereof
JPH11319504A (en) Manufacture of hollow fiber membrane module
JP4499435B2 (en) Container for concrete repair agent and method for producing the same
JP2836791B2 (en) Method for manufacturing hollow fiber bundle cartridge and cartridge case used in the method
US9925730B2 (en) Method for forming hollow fiber bundles
JPH0549875A (en) Hollow-fiber membrane module
JP2000033245A (en) Fluororesin composite membrane and its production
JP2013230470A (en) Hollow fiber membrane module
JPH0924253A (en) Hollow yarn membrane module
JP4509690B2 (en) Method for manufacturing separation membrane module
JP6834532B2 (en) Hollow fiber membrane module repair method and hollow fiber membrane module
JPH10202074A (en) Asymmetric structural fluororesin tube, production thereof, deaerating method using the tube and device therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090713

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20100803

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20101019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110208

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120217

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees