JP2008054509A - Method for determining ratio of viable bacteria, dead bacteria and pseudo-viable bacteria - Google Patents

Method for determining ratio of viable bacteria, dead bacteria and pseudo-viable bacteria Download PDF

Info

Publication number
JP2008054509A
JP2008054509A JP2006231878A JP2006231878A JP2008054509A JP 2008054509 A JP2008054509 A JP 2008054509A JP 2006231878 A JP2006231878 A JP 2006231878A JP 2006231878 A JP2006231878 A JP 2006231878A JP 2008054509 A JP2008054509 A JP 2008054509A
Authority
JP
Japan
Prior art keywords
bacteria
dead
viable
dye
determining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006231878A
Other languages
Japanese (ja)
Other versions
JP4876251B2 (en
Inventor
Bokukun Shirai
睦訓 白井
Yoshinao Azuma
慶直 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaguchi University NUC
Original Assignee
Yamaguchi University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaguchi University NUC filed Critical Yamaguchi University NUC
Priority to JP2006231878A priority Critical patent/JP4876251B2/en
Publication of JP2008054509A publication Critical patent/JP2008054509A/en
Application granted granted Critical
Publication of JP4876251B2 publication Critical patent/JP4876251B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily and quickly determining the life or death of bacteria in high accuracy. <P>SOLUTION: The method for effectively and easily determining the life or death of bacterial cell comprises semi-drying treatment of a specimen containing bacterial cells and the treatment with physiological salt solution and/or a surfactant solution before or after the staining of the specimen with two kinds of dyes, i.e. a dye specifically staining viable bacteria and a dye specifically staining dead bacteria. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、試料中に含まれる細菌の生死判別を効率的かつ正確に行う方法に関し、より詳しくは、増殖や代謝といった実質的な生命活動を停止した細菌であって、一部の酵素系などが活性を保持している場合であっても死菌として判別が可能な細菌の生死判別方法に関する。   The present invention relates to a method for efficiently and accurately determining the viability of bacteria contained in a sample. More specifically, the present invention relates to a bacterium that has stopped substantial life activity such as growth and metabolism, such as some enzyme systems. The present invention relates to a method for distinguishing between live and dead bacteria that can be identified as killed even when the activity of the microorganism is retained.

試料中に含まれる細菌の生死の判別は、例えば食品などにおいて殺菌処理の効果などを検証するために重要である。特に多くの試料の検定を行う場合など、迅速かつ正確に細菌の生死を判別する必要がある。従来、試料中に含まれる細菌の生死を判別する方法としては、細胞を発色させる複数の化学物質に接触させ、発色光の波長差と発色量から細胞の生死を検出する方法、液体試料中のATP量を測定することで、生菌数を測定する方法、試料の一部を培養し、増殖してきた細菌を検量する方法などが開示されている(特許文献1−3)。しかしながら従来の方法は、検定の精度が不足していたり、処理工程に時間がかかりすぎたりするといった問題点があった。   The determination of the life or death of bacteria contained in a sample is important for verifying the effect of sterilization treatment in foods, for example. In particular, it is necessary to quickly and accurately determine whether a bacterium is alive or not, such as when many samples are assayed. Conventionally, as a method of discriminating the life and death of bacteria contained in a sample, a method of detecting cell viability from the wavelength difference and color development amount of colored light by contacting cells with a plurality of chemical substances that develop color, A method for measuring the number of viable bacteria by measuring the amount of ATP, a method for culturing a part of the sample, and calibrating the proliferating bacteria are disclosed (Patent Documents 1-3). However, the conventional method has a problem that the accuracy of the test is insufficient or the processing process takes too much time.

また、特に試料に殺菌処理などを行った際、増殖や代謝といった実質的な生命活動そのものは停止しているにもかかわらず、酵素系などが活性を保持している「疑似生菌(後に定義する)」については、従来の細菌生死判別方法では生菌として認識されてしまうといった問題もあった。
特開2001−286296 微生物計量方法および微生物計量装置 特開平09−075098 植物飲料中の生菌数の測定方法 特開平06−113887 生菌数推定方法
Also, especially when the sample is sterilized, even though substantial life activity itself such as growth and metabolism has stopped, the “pseudo-viable bacteria” (defined later) ”)” Was also recognized as a living bacterium in the conventional bacterial viability determination method.
Patent application title: Microorganism weighing method and microorganism weighing apparatus Method for measuring the number of viable bacteria in plant beverages Method for estimating viable cell count

上記の現状に鑑み、本発明は、複数種の色素、すなわち生菌を選択的に染色する色素と死菌を選択的に染色する色素を組み合わせて使用することにより、細菌の生死割合を精度良く、簡便かつ迅速に判別する方法を提供することを目的とする。   In view of the above-mentioned present situation, the present invention uses a combination of a plurality of types of dyes, that is, a dye that selectively stains viable bacteria and a dye that selectively stains dead bacteria, thereby accurately determining the viability ratio of bacteria. An object of the present invention is to provide a method for simple and quick discrimination.

また本発明は、細菌生死の判別において、従来方法では生菌として誤認されてしまうおそれのあった「疑似生菌」を正しく死菌として認識する方法を提供することも目的とする。   Another object of the present invention is to provide a method of correctly recognizing “pseudo-viable bacteria”, which may be misidentified as viable bacteria in the conventional method, in determining whether bacteria are alive or dead.

本明細書及び特許請求の範囲において、次の用語は、それぞれ以下の定義に従って用いられるものとする。「生菌色素」とは、生菌(生きている細菌)によって細胞内に取り込まれ、生菌を着色するが、死菌(死んでいる細菌)を着色する能力は有しない色素をいう。
「死菌色素」とは、生菌の細胞膜孔を通過し得ないか、または生菌の細胞内にいったん取り込まれても排出され、生菌を着色することはできないが、死菌に対しては細胞内に入り込み、DNAと結合するなどして細胞内にとどまり、死菌を着色する能力を有する色素をいう。
「全菌色素」とは、生菌、死菌にかかわらず細菌を染色可能な色素をいう。
「疑似生菌」とは、増殖や代謝の機能を失い実質的な生命活動を停止した死菌であるが、細胞膜などの一部の酵素系などが活性を保持しているものをいう。
In the present specification and claims, the following terms shall each be used according to the following definitions: A “viable dye” refers to a dye that is taken into cells by viable bacteria (living bacteria) and colors viable bacteria, but does not have the ability to color dead bacteria (dead bacteria).
“Dead fungus pigment” means that it cannot pass through the cell membrane pores of viable bacteria, or once discharged into live cells, it cannot be colored, but Refers to a dye that has the ability to enter cells, stay in the cells by binding to DNA, etc., and color dead bacteria.
“Whole fungal pigment” refers to a pigment capable of staining bacteria regardless of whether they are viable or dead.
A “pseudo-viable bacterium” refers to a dead bacterium that has lost its functions of growth and metabolism and has stopped substantial vital activity, but retains activity in some enzyme systems such as cell membranes.

本発明者らは、殺菌効果の検証等、試料中の細菌の存在状態を正確かつ迅速に知る方法を得るべく種々の方法を検討し、その結果、疑似生菌を確実に死菌として測定しうる方法を見いだし、本発明を完成させた。   The present inventors examined various methods to obtain a method for accurately and quickly knowing the existence state of bacteria in a sample, such as verification of the bactericidal effect, and as a result, reliably measured pseudo-viable bacteria as dead bacteria. The method that can be obtained was found and the present invention was completed.

すなわち本発明の第1の態様は、生菌、死菌及び生命活動を停止して酵素活性を保持した疑似生菌が含まれる混合試料において、各菌の存在割合を判別する方法であって、該混合試料を半乾燥処理し、次いで塩類溶液及び/または界面活性剤溶液で処理する工程、生菌色素による細菌染色工程及び死菌色素による細菌染色工程を含むことを特徴とする、それぞれの状態にある細菌の存在割合を判別する方法を提供する。   That is, the first aspect of the present invention is a method for determining the abundance of each bacterium in a mixed sample containing live bacteria, dead bacteria, and pseudo-viable bacteria that retains enzyme activity by stopping life activity, Each state characterized by comprising a step of semi-drying the mixed sample and then treating with a salt solution and / or a surfactant solution, a bacterial staining step with a viable dye, and a bacterial staining step with a dead fungus dye A method for determining the abundance of bacteria present in

本発明の第2の態様は、第1の態様に記載の判別方法において、混合試料を半乾燥処理し、次いで塩類溶液及び/または界面活性剤溶液で処理する工程を行い、その後生菌色素による細菌の染色工程と死菌色素による細菌の染色工程を同時または順次行うことを特徴とする、生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   According to a second aspect of the present invention, in the determination method according to the first aspect, the mixed sample is subjected to a semi-drying treatment, and then a step of treating with a salt solution and / or a surfactant solution, and thereafter using a viable dye. Provided is a method for discriminating the existence ratio of live bacteria, dead bacteria, and pseudo-bacteria, which comprises performing a bacterial staining process and a bacterial staining process with a dead bacteria pigment simultaneously or sequentially.

本発明の第3の態様は、生菌色素がフルオレセイン系蛍光色素である、第1または第2の態様に記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   According to a third aspect of the present invention, there is provided the method for determining the abundance ratio of viable, dead, and pseudobacteria according to the first or second aspect, wherein the viable dye is a fluorescein fluorescent dye.

本発明の第4の態様は、生菌色素が6−カルボキシフルオレセインジアセテートである、第3の態様に記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   According to a fourth aspect of the present invention, there is provided the method for determining the abundance ratio of viable, dead, and pseudobacteria according to the third aspect, wherein the viable dye is 6-carboxyfluorescein diacetate.

本発明の第5の態様は、死菌色素がヨウ化プロピジウムである、第1から第4の態様のうちいずれか1つに記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   According to a fifth aspect of the present invention, there is provided the method for determining a presence ratio of viable bacteria, dead bacteria, and pseudo-bacteria according to any one of the first to fourth aspects, wherein the dead bacteria pigment is propidium iodide. To do.

本発明の第6の態様は、生菌色素が6−カルボキシフルオレセインジアセテートであり、死菌色素がヨウ化プロピジウムである、第1または第2の態様に記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   According to a sixth aspect of the present invention, there is provided a viable cell, dead cell or pseudo-bacteria according to the first or second mode, wherein the viable cell dye is 6-carboxyfluorescein diacetate and the dead cell dye is propidium iodide. Provide a method for determining the existence ratio of.

本発明の第7の態様は、生菌色素または死菌色素のいずれか一方が全菌色素で置き換えられた、第1から第6の態様うちいずれか1つに記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   According to a seventh aspect of the present invention, in any one of the first to sixth aspects, the viable bacteria, dead bacteria and Provided is a method for determining the existence ratio of pseudo-bacteria.

本発明の第8の態様は、全菌色素が4’,6−ジアミジノ−2−フェニルインドール二塩酸塩である、第7の態様に記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   The eighth aspect of the present invention is the method for determining the abundance ratio of viable, dead, and pseudobacteria according to the seventh aspect, wherein the total microbial pigment is 4 ′, 6-diamidino-2-phenylindole dihydrochloride I will provide a.

本発明の第9の態様は、塩類溶液が塩化ナトリウム水溶液である、第1から第8の態様のうちいずれか1つに記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   According to a ninth aspect of the present invention, there is provided the method for determining the abundance ratio of viable, dead, and pseudobacteria according to any one of the first to eighth aspects, wherein the salt solution is an aqueous sodium chloride solution. .

本発明の第10の態様は、塩化ナトリウム水溶液の濃度が、0.75%−0.95%の範囲内である、第9の態様に記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   According to a tenth aspect of the present invention, the concentration ratio of the aqueous sodium chloride solution is within a range of 0.75% to 0.95%, and the existence ratio determination of the viable bacteria, dead bacteria and pseudobacteria according to the ninth aspect is performed. Provide a method.

本発明の第11の態様は、界面活性剤が、ポリオキシエチレンソルビタンモノラウレートである、第1から第10の態様のうちいずれか1つに記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   The eleventh aspect of the present invention is the presence of viable, dead, and pseudobacteria according to any one of the first to tenth aspects, wherein the surfactant is polyoxyethylene sorbitan monolaurate. Provide a percentage discrimination method.

本発明の第12の態様は、ポリオキシエチレンソルビタンモノラウレートの濃度が、10−5%から10−9%の範囲内である、第11の態様に記載の生菌、死菌及び疑似細菌の存在割合判別方法を提供する。   The twelfth aspect of the present invention is the live bacteria, killed bacteria and pseudo-bacteria according to the eleventh aspect, wherein the concentration of polyoxyethylene sorbitan monolaurate is in the range of 10-5% to 10-9% Provide a method for determining the existence ratio of.

本発明の第13の態様は、第1から第12のうちいずれか1つに記載の各工程により、生菌、死菌及び疑似細菌を含む混合試料をそれぞれ蛍光染色し、分光光度計を用いて該混合試料の蛍光測定を行うことを特徴とする、生菌/死菌の存在比率計測方法を提供する。   In a thirteenth aspect of the present invention, each of the steps described in any one of the first to twelfth steps is used to fluorescently stain a mixed sample containing live bacteria, dead bacteria, and pseudobacteria, and a spectrophotometer is used. The present invention provides a method for measuring the existence ratio of viable / dead bacteria, which comprises measuring the fluorescence of the mixed sample.

本発明の提供する細菌の生死判別方法を利用することにより、これまでは生菌と区別できなかった疑似生菌を、死菌として判別する事が可能となり、より精度の高い殺菌効果の検証方法を提供できる。また本発明は、細菌生死判別方法における標準であった「菌の培養工程」を含まず、時間と人的労力を大幅に削減可能である。従来、特に食品関連の殺菌処理においては、可否の判定に3−4日を要していたが、本発明の利用によりこれを数時間で行うことが可能となる。   By using the method for determining the viability of bacteria provided by the present invention, it becomes possible to discriminate pseudo-viable bacteria that could not be distinguished from viable bacteria as dead bacteria, and a more accurate method for verifying the bactericidal effect Can provide. In addition, the present invention does not include the “bacterial culture process” that is the standard in the bacterial life / death discrimination method, and can greatly reduce time and human labor. Conventionally, especially in food-related sterilization processing, 3-4 days were required for the determination of availability, but this can be performed in several hours by using the present invention.

本発明は、生菌、死菌及び疑似生菌を含む混合試料(混合試料とは、これら3種の状態にある菌が含まれる可能性のある試料を指すものであり、実際にはそのうちの1種または2種のみが存在する場合も対象とされるものである)に対し、半乾燥処理を行い、次いで塩類溶液及び/または界面活性剤溶液処理を行う工程、生菌色素による細菌染色工程及び死菌色素による細菌染色工程を適当な順序または同時に行うことによって、細菌の状態別割合や存在個体数をも判別可能な方法である。もちろん上記の工程は、1つの試料に対して行うことができるし、また各工程の1つまたは2つごとに試料を分割して処理を行うことも可能である。各工程と対応する細菌の状態とは、表1に示す関係となる。

Figure 2008054509
The present invention is a mixed sample containing live bacteria, dead bacteria and pseudo-viable bacteria (mixed sample refers to a sample that may contain bacteria in these three states, and actually This is also a case where only one or two types are present), a semi-drying process followed by a salt solution and / or a surfactant solution process, a bacterial dyeing process with viable pigment In addition, by performing the bacterial staining step with the dead bacteria pigment in an appropriate order or simultaneously, it is possible to discriminate the proportion of bacteria and the number of existing individuals. Of course, the above-described steps can be performed on one sample, or the sample can be divided and processed at one or two of the steps. Table 1 shows the relationship between each step and the corresponding bacterial state.
Figure 2008054509

表1において、A処理により(1)及び(3)が着色され、その存在(全菌色素を用いた場合には合計量)が確認される。また予め検量線などを作成するなどして、その着色の状態から存在量を算出することも可能である。B処理によっては、(2)が着色され、死菌の存在が確認される。A処理の場合と同様、検量線等により存在量も算出可能である。次に、C処理を行った後にA処理を行うことにより、(1)の存在を確認すると同時に生菌として判別されるおそれのある(3)を着色しないことが可能となり、更にC処理を行った後にB処理を行えば、(2)と(3)の合計量の存在が確認され、その量も算出可能となる。C処理を行った後でA処理とB処理の両方を行えば、特にA処理による発色(蛍光含む)とB処理による発色(蛍光含む)とを異なる色調にすることで、(1)、(2)及び(3)のそれぞれを判別することも可能となり、もちろんそれらの存在比を知ることも可能となる。   In Table 1, (1) and (3) are colored by the A treatment, and the presence thereof (the total amount when all the fungal dyes are used) is confirmed. It is also possible to calculate the abundance from the colored state by creating a calibration curve or the like in advance. Depending on the B treatment, (2) is colored and the presence of dead bacteria is confirmed. As in the case of process A, the abundance can be calculated using a calibration curve or the like. Next, by performing the A process after performing the C process, it becomes possible to confirm the presence of (1) and at the same time not to color (3), which may be identified as viable bacteria, and further perform the C process. Then, if the B process is performed, the presence of the total amount of (2) and (3) is confirmed, and the amount can also be calculated. If both the A process and the B process are performed after the C process, the color development by the A process (including fluorescence) and the color development by the B process (including fluorescence) are changed to different colors (1), ( It is also possible to determine each of 2) and (3), and of course, it is possible to know their abundance ratio.

更にまた、細菌の混合試料を複数個に分割しておき、予めA処理及び/またはB処理を施した試料について、それぞれの細菌の状態を把握し、また前記分割した別の試料を用いてC処理を行い、その後A処理及び/またはB処理を行って、各処理について得られたデータを比較すれば、混合試料中の細菌の状態ごとの数量や比率などを求めることが可能となる。なお、試料中の細菌の状態を知る目的に応じ、生菌色素または死菌色素のうちいずれか一方を全菌色素に代替することも可能であり、全菌色素で置き換えた方法もまた本発明に含まれるものである。   Furthermore, a mixed sample of bacteria is divided into a plurality of samples, the state of each bacteria is grasped for a sample that has been subjected to A treatment and / or B treatment in advance, and C If processing is performed, then processing A and / or processing B is performed, and the data obtained for each processing is compared, it is possible to determine the quantity, ratio, etc., of each bacterial state in the mixed sample. Depending on the purpose of knowing the state of the bacteria in the sample, either the viable dye or the dead fungus dye can be replaced with the whole fungus dye. Is included.

生菌色素と死菌色素の組み合わせとしては、両者が判別可能であればどの様なものでも良いが、例えば蛍光色素であって各々異なる自家蛍光の波長を有するもの、好ましくは、赤色蛍光と緑色蛍光を有する色素を組み合わせれば、通常の蛍光顕微鏡を用いた観察で容易に細菌の生死が判別でき、かつ同一視野内で生菌/死菌比なども計測可能となる。   Any combination of viable and dead dyes may be used as long as they can be distinguished. For example, fluorescent dyes having different autofluorescence wavelengths, preferably red fluorescence and green If a dye having fluorescence is combined, it is possible to easily determine the viability of the bacteria by observation using a normal fluorescence microscope, and it is possible to measure the viable / dead ratio within the same field of view.

本発明において生菌と死菌の判別を助ける重要な手段として、染色前の細菌試料に対して半乾燥処理と塩類溶液及び/または界面活性剤による処理を行うことが有効である。ATP量の定量など、細菌の生理活性に関わる物質の測定をする場合、細菌は既に死んでいるのにもかかわらず膜系の酵素などが活性を有していると、これらの酵素の活性により「生菌」と認識されてしまうことが多い。この点を解決するために、細菌試料を含む溶液を予め寒天プレートなどの上に滴下し、水分を寒天に吸収させることで半乾燥処理を行い、更に塩類溶液及び/または界面活性剤で処理し、死菌の酵素系の代謝活性を低下させる事が有効である。これらの処理によっても、生菌はその活性に影響を受けることはない。半乾燥処理についてはその手法に特に限定はなく、例えば上述の様にプレート上に溶液を滴下して5−30分程度、好適には10分間おくだけでも良い。また塩類溶液の種類は特に限定されないが、アルカリ金属塩またはアルカリ土類金属塩、中でもナトリウム塩またはカリウム塩が好ましい、これらの塩類溶液は一般に水溶液であり、その濃度は例えば0.75%−0.95%のNaCl、好ましくは0.85%のNaClで1−3時間程度処理する事が有効である。界面活性剤も試料に合わせて適宜選択すればよく、その種類は本発明を限定するものではないが、生菌に対して影響を与えないとう観点からも中性界面活性剤が好ましく、例えば生物学実験で一般に用いられるポリオキシエチレンソルビタンモノラウレート(商品名Tween20、ICI Americas社製)であれば10−5から10−9%の範囲内、好ましくは10−7%の濃度で1−3時間処理することで、死菌の代謝活性を生菌と区別可能な程度まで低下させる事が可能である。Tween20の濃度は、大腸菌などのグラム陰性菌の場合は10−7〜10−9%、グラム陽性球菌では10−6〜10−7%が好適な濃度である。塩類溶液による処理と界面活性剤による処理は、別々に行っても良いが、反応時間の短縮の観点から同時に行うのでも良い。 In the present invention, as an important means for assisting discrimination between viable and dead bacteria, it is effective to perform a semi-drying treatment and a treatment with a salt solution and / or a surfactant on a bacterial sample before staining. When measuring substances related to the physiological activity of bacteria, such as quantifying the amount of ATP, if the bacteria are already dead but membrane enzymes are active, the activity of these enzymes It is often recognized as “live bacteria”. In order to solve this problem, a solution containing a bacterial sample is dropped in advance on an agar plate or the like, and a semi-drying process is performed by absorbing moisture into the agar, and further, a salt solution and / or a surfactant is used. It is effective to reduce the metabolic activity of the enzyme system of dead bacteria. Even with these treatments, viable bacteria are not affected by their activity. The method for the semi-drying treatment is not particularly limited. For example, as described above, the solution may be dropped on the plate for about 5 to 30 minutes, preferably 10 minutes. The kind of the salt solution is not particularly limited, but an alkali metal salt or an alkaline earth metal salt, particularly a sodium salt or a potassium salt is preferable. These salt solutions are generally aqueous solutions, and the concentration thereof is, for example, 0.75% -0. It is effective to treat with 95% NaCl, preferably 0.85% NaCl for about 1-3 hours. The surfactant may be appropriately selected according to the sample, and the type of the surfactant is not limited to the present invention. However, the neutral surfactant is preferable from the viewpoint of not affecting the living bacteria. In the case of polyoxyethylene sorbitan monolaurate (trade name Tween 20, manufactured by ICI Americas) generally used in the experiment, it is within a range of 10 −5 to 10 −9 %, preferably at a concentration of 10 −7 % for 1 to 3 hours. By processing, it is possible to reduce the metabolic activity of dead bacteria to such an extent that it can be distinguished from live bacteria. The concentration of Tween 20 is preferably 10 −7 to 10 −9 % in the case of Gram negative bacteria such as E. coli, and 10 −6 to 10 −7 % in Gram positive cocci. The treatment with the salt solution and the treatment with the surfactant may be performed separately, or may be performed simultaneously from the viewpoint of shortening the reaction time.

本発明で用いる生菌色素を更に詳しく述べれば、フルオレセイン(Fluorescein)系の蛍光色素が好適である。Calcein−AM、Fluorescein diacetate、サクシニミジルエステルなどフルオレセインを基本骨格に持つ蛍光色素は、フルオレセイン骨格のフェノール性水酸基がアセチル基などで保護されるため脂溶性に富み、細胞膜を容易に通過できるという性質を持つ。細胞外では、エステル保護基のため蛍光が抑えられているが、細胞内に入ると細胞内に存在するエステラーゼにより加水分解を受け、蛍光を示すようになる。加えて、加水分解を受けることでこれらの色素は脂溶性が減少し、細胞内から外に溶出できなくなり、結果的に生きている細胞内にとどまってこれを染色することになる。エステラーゼ活性が無い死細胞では一連の反応が起こらず、細胞は蛍光で染色されない。生菌色素としては上記の性質を持った蛍光色素が好ましく、より好ましくは6−カルボキシフルオレセインジアセテートが適している。   In more detail, the viable dye used in the present invention is preferably a fluorescein fluorescent dye. Fluorescent dyes with fluorescein as the basic skeleton, such as calcein-AM, fluorescein diacetate, succinimidyl ester, etc., are rich in lipid solubility because the phenolic hydroxyl group of the fluorescein skeleton is protected by acetyl groups, etc., and can easily pass through cell membranes have. Outside the cell, the fluorescence is suppressed due to the ester protecting group, but when entering the cell, it is hydrolyzed by the esterase present in the cell and becomes fluorescent. In addition, these dyes are less lipophilic due to hydrolysis and cannot be eluted out of the cell, resulting in staying in living cells and staining them. A series of reactions does not occur in dead cells without esterase activity, and the cells are not stained with fluorescence. The viable dye is preferably a fluorescent dye having the above properties, more preferably 6-carboxyfluorescein diacetate.

本発明における死菌色素を更に詳しく述べれば、DNA結合性の蛍光色素であって、分子の大きさが生きた細胞の細胞膜を通過できない程度の大きさの蛍光色素である。これらの色素は死んだ細胞には入り込むことができ、細胞内で核DNAに結合する。ヨウ化プロピジウム(分子量668.39)は上記目的に適した死菌色素の一例である。   The dead dye in the present invention will be described in more detail. It is a DNA-binding fluorescent dye that has a molecular size that cannot pass through the cell membrane of a living cell. These dyes can enter dead cells and bind to nuclear DNA within the cell. Propidium iodide (molecular weight 668.39) is an example of a killed dye suitable for the above purpose.

本発明で色素を用いる際、重要なのは生菌色素と死菌色素の組み合わせである。すなわち両者がそれぞれ別の波長を有する蛍光色素で細菌試料を染色する事により、生菌と、死菌に加えて膜系の酵素などが活性を残した菌を区別する事が可能となる。下記実施例でも述べるとおり、上記色素の組み合わせとして、生菌色素として6−カルボキシフルオレセインアセテート(またはSYT9色素)、死菌色素としてヨウ化プロピジウムを用いれば、生菌と死菌を効果的に判別可能となる。   When using a pigment | dye in this invention, what is important is the combination of a living microbe pigment | dye and a dead microbe pigment | dye. That is, by staining bacterial samples with fluorescent dyes having different wavelengths, it is possible to distinguish between live bacteria and bacteria in which membrane-based enzymes and the like remain active in addition to dead bacteria. As described in the following examples, viable and dead bacteria can be distinguished effectively by using 6-carboxyfluorescein acetate (or SYT9 dye) as a viable dye and propidium iodide as a killed dye as a combination of the above dyes. It becomes.

本発明においては、生菌色素または死菌色素のどちらか一方を全菌色素(生菌・死菌にかかわらず細菌を染色可能な色素)で置き換えることも可能である。この場合においても、生菌色素と置き換えた場合には死菌色素と異なる蛍光を発するもの、死菌色素と置き換えた場合には生菌色素と異なる蛍光を発するものであれば良く、色素の種類などはこれまで細菌染色に用いられてきたものの中から適宜選択すれば良い。その中でも特に、4’,6−ジアミジノ−2−フェニルインドール二塩酸塩(DAPI)などは多くの細胞でDNA蛍光染色用のコントロールとして用いられており、好適である。   In the present invention, it is also possible to replace either the viable dye or the dead fungus dye with a whole fungus dye (a dye that can stain bacteria regardless of whether it is live or dead). Even in this case, any substance that emits fluorescence different from that of dead bacteria when replaced with viable dyes, or any substance that emits fluorescence different from that of viable bacteria when replaced with dead bacteria dyes may be used. And the like may be appropriately selected from those conventionally used for bacterial staining. Among them, 4 ', 6-diamidino-2-phenylindole dihydrochloride (DAPI) is particularly suitable as a control for DNA fluorescence staining in many cells.

下記実施例に示すとおり、本発明ではサンプルに含まれる細菌に対して生菌染色と死菌染色を行うため、分光光度計を用いて特定の波長を検出することにより、検出された蛍光の強度を生菌と死菌の存在比率に変換することが可能である。予め菌を全く含まない溶液の蛍光と特定量の生菌を含む溶液の蛍光を測定しておき、これを基準に試料中の生菌色素の波長と死菌色素の波長それぞれについて蛍光強度を測定し、この比を取ることによって溶液中にどれだけの生菌とどれだけの死菌が存在しているかを簡便に算出することが可能となる。標準の溶液や分光光度計などは必要に応じて利用可能なものを利用すれば良く、本発明を限定するものではない。   As shown in the examples below, in the present invention, in order to perform viable and dead bacterial staining on the bacteria contained in the sample, the intensity of the detected fluorescence is detected by detecting a specific wavelength using a spectrophotometer. Can be converted into the abundance ratio of live and dead bacteria. Measure the fluorescence intensity of a solution containing no bacteria in advance and the fluorescence of a solution containing a specific amount of viable bacteria, and measure the fluorescence intensity for each of the wavelengths of viable and dead dyes in the sample. By taking this ratio, it is possible to easily calculate how many live bacteria and how many dead bacteria exist in the solution. Standard solutions, spectrophotometers, and the like may be used as necessary, and are not intended to limit the present invention.

本発明における生菌と死菌の判別方法を、殺菌に係る試料に適用することによって、殺菌効果の検証方法としても利用可能である。例えば殺菌が必要な飲料水などを試料とし、殺菌後にこの試料に対して生菌色素と死菌色素による染色を行い、上記に示した塩類溶液及び/または界面活性剤溶液処理を行うことによって、この中に含まれる生菌と死菌の存在を算出し、殺菌の効果がどれだけあったかを殺菌前の試料と比較して検証することが可能となる。以下に本発明の実施例を述べるが、本発明は実施例にのみ限定されるものではない。   By applying the method for discriminating between live bacteria and dead bacteria in the present invention to a sample for sterilization, it can be used as a method for verifying the sterilization effect. For example, a sample of drinking water that needs to be sterilized, and after sterilization, this sample is stained with live and dead dyes, and the salt solution and / or surfactant solution treatment described above is performed. It is possible to calculate the presence of live bacteria and dead bacteria contained therein and verify how much the effect of sterilization was compared with the sample before sterilization. Examples of the present invention will be described below, but the present invention is not limited to the examples.

(大腸菌の調整) 実施例中、全ての操作において細菌は大腸菌(Escherichia coli)を用いた。大腸菌を5mlのLB培地(1%ペプトン、0.5%酵母エキス、0.5%NaCl)に植菌し、37℃で14時間程度培養した。14時間後に培養液の吸光度(670nm)を測定し、値が2.0となるよう溶液を調整した。大腸菌の培養液(懸濁液)1mlを10000×g、10分間、4℃で遠心して、細菌を沈殿させ、1mlの0.85%NaCl水溶液で再懸濁した。   (Preparation of E. coli) In the examples, Escherichia coli was used as a bacterium in all operations. E. coli was inoculated into 5 ml of LB medium (1% peptone, 0.5% yeast extract, 0.5% NaCl) and cultured at 37 ° C. for about 14 hours. After 14 hours, the absorbance (670 nm) of the culture solution was measured, and the solution was adjusted to a value of 2.0. 1 ml of a culture solution (suspension) of Escherichia coli was centrifuged at 10,000 × g for 10 minutes at 4 ° C. to precipitate the bacteria and resuspended in 1 ml of 0.85% NaCl aqueous solution.

(大腸菌の生死標準曲線用コントロールの作成) 上記の大腸菌再懸濁液50μlを1mlの70%イソプロピルアルコールに加え、室温で1時間処理して完全に殺菌して死菌サンプルとした。また、大腸菌再懸濁液50μlを1mlの0.85%NaCl水溶液に加え、こちらを生菌サンプルとした。死菌、生菌サンプル溶液を10000×g、10分間、4℃で遠心し、細菌の沈殿を回収した。この沈殿を1mlの0.85%NaCl水溶液で2回洗浄した後、0.1mlの0.85%NaCl水溶液に懸濁させた。   (Preparation of control for E. coli standard of life and death) 50 μl of the above E. coli resuspension was added to 1 ml of 70% isopropyl alcohol, treated at room temperature for 1 hour and completely sterilized to obtain a dead cell sample. In addition, 50 μl of E. coli resuspension was added to 1 ml of 0.85% NaCl aqueous solution, and this was used as a viable cell sample. The dead bacteria and live bacteria sample solution was centrifuged at 10,000 × g for 10 minutes at 4 ° C., and the bacterial precipitate was collected. The precipitate was washed twice with 1 ml of 0.85% NaCl aqueous solution and then suspended in 0.1 ml of 0.85% NaCl aqueous solution.

(UV照射による殺菌) プラスチック板の上に生菌の大腸菌懸濁液50μlを数個置き、UV非照射部(生菌のコントロール)にはアルミホイルでカバーをした。室温条件下で、254nmの紫外線を2J/cmの強さで1分間照射した。照射後懸濁液をチューブに回収し、10000×g、10分間、4℃で遠心して細菌を沈殿させ、0.1mlの0.85%NaCl水溶液に再懸濁させた。 (Sterilization by UV irradiation) Several 50 μl of live Escherichia coli suspension was placed on a plastic plate, and the UV non-irradiated part (control of live bacteria) was covered with aluminum foil. Under room temperature conditions, ultraviolet rays of 254 nm were irradiated at an intensity of 2 J / cm 2 for 1 minute. After irradiation, the suspension was collected in a tube, centrifuged at 10000 × g for 10 minutes at 4 ° C. to precipitate bacteria, and resuspended in 0.1 ml of 0.85% NaCl aqueous solution.

(UV照射後のサンプル処理) UV照射を行った0.1ml大腸菌懸濁液(非照射をコントロールとした)をそれぞれLB寒天培地上に滴下し、10分間程度放置して懸濁液を一時的に寒天培地に吸収させ、菌体を半乾燥状態においた。その後、大腸菌を1mlの0.85%NaCl溶液を用いて寒天培地表面より回収し、10000×g、10分間、4℃で遠心して細菌を沈殿させ、0.1mlの0.85%NaCl溶液(10−7%Tween20含有)に再懸濁させた。この再懸濁液を60分間、37℃で処理した。半乾燥処理のコントロールとして、UV照射を行った0.1ml大腸菌懸濁液をチューブに入れ、10分間氷上で放置したものを用意した。 (Sample treatment after UV irradiation) Each 0.1 ml E. coli suspension subjected to UV irradiation (non-irradiation as a control) was dropped on an LB agar medium and left for about 10 minutes to temporarily suspend the suspension. The cells were absorbed in an agar medium and the cells were placed in a semi-dry state. Thereafter, E. coli was recovered from the surface of the agar medium using 1 ml of 0.85% NaCl solution, centrifuged at 10000 × g for 10 minutes at 4 ° C. to precipitate the bacteria, and 0.1 ml of 0.85% NaCl solution ( 10-7 % Tween 20). This resuspension was treated for 60 minutes at 37 ° C. As a control for the semi-drying treatment, a 0.1 ml E. coli suspension subjected to UV irradiation was placed in a tube and allowed to stand on ice for 10 minutes.

(生菌・死菌の染色) 半乾燥処理後の大腸菌再懸濁液から50μlを分取し、生菌色素として6−カルボキシフルオレセインジアセテート(またはSYT9色素)を、死菌色素としてヨウ化プロピジウムをそれぞれ加えた。溶液入りチューブを15分間振とう処理し、染色した大腸菌懸濁液を0.85%NaCl水溶液を用いて30−50倍に希釈し、蛍光分光計を用いて蛍光を測定した。蛍光顕微鏡を用いた観察には、懸濁液を希釈せずにスライドグラス上に分取し観察した。蛍光分光器の励起波長は488nmを用い、緑色蛍光は515−530nmを、赤色蛍光は590−620nmを測定した。   (Dyeing of live and dead bacteria) 50 μl is taken from the re-suspension of Escherichia coli after semi-drying treatment, and 6-carboxyfluorescein diacetate (or SYT9 dye) is used as a live fungus dye and propidium iodide as a dead fungus dye Was added respectively. The tube with the solution was shaken for 15 minutes, the stained E. coli suspension was diluted 30-50 times with 0.85% NaCl aqueous solution, and fluorescence was measured using a fluorescence spectrometer. For observation using a fluorescence microscope, the suspension was collected on a slide glass without dilution and observed. The excitation wavelength of the fluorescence spectrometer was 488 nm, green fluorescence was measured at 515-530 nm, and red fluorescence was measured at 590-620 nm.

(生菌と死菌の色素染色の結果) 図1に示すとおり、生きている大腸菌はヨウ化プロピジウムによって染色されず、6−カルボキシフルオレセインジアセテートによってのみ染色されて緑色の蛍光を発するのが観察された(左図)。一方、イソプロピルアルコールを用いて完全に殺菌せしめた菌(死菌)は、ヨウ化プロピジウムによって染色され赤色蛍光が観察された(右図)。これにより、本発明の染色法により生菌と死菌を区別することが可能となることが明らかとなった。また、作成した大腸菌の生死標準曲線用生菌/死菌サンプルを用い、生菌と死菌の割合が図2横軸の値(生存率=生菌比率で表される)のようになるように生菌サンプルと死菌サンプルを混合して調整した。その混合細菌液を用いて緑色蛍光と赤色蛍光の測定を行い、その比を算出した。グラフ横軸は全菌体中における生菌の占める割合(%)を、縦軸は緑色(515nm)/赤色(590nm)比を表す。全菌体中における生菌の割合と、緑色/赤色蛍光の比率はグラフの様に正の相関関係を示すことが明らかとなり、この緑色/赤色比を用いて溶液内の生菌の比率を求めることも可能となった。   (Results of dye staining of live and dead bacteria) As shown in FIG. 1, it is observed that living E. coli is not stained with propidium iodide but is stained only with 6-carboxyfluorescein diacetate and emits green fluorescence. (Left figure). On the other hand, the bacteria (dead bacteria) completely sterilized with isopropyl alcohol were stained with propidium iodide and red fluorescence was observed (right figure). Thereby, it became clear that it is possible to distinguish between live bacteria and dead bacteria by the staining method of the present invention. In addition, using the prepared live bacteria / dead bacteria sample for E. coli standard curve, the ratio of live bacteria to dead bacteria is as shown on the horizontal axis in FIG. 2 (survival rate = live cell ratio). A live cell sample and a dead cell sample were mixed and prepared. Using the mixed bacterial solution, green fluorescence and red fluorescence were measured, and the ratio was calculated. The horizontal axis of the graph represents the ratio (%) of the living cells in the whole cells, and the vertical axis represents the ratio of green (515 nm) / red (590 nm). It becomes clear that the ratio of viable bacteria in the whole cell and the ratio of green / red fluorescence show a positive correlation as shown in the graph, and the ratio of viable bacteria in the solution is obtained using this green / red ratio. It became possible.

(UVによる殺菌と色素染色の結果) UVの1分間の照射によって、細菌は増殖不可能な菌(死菌)となった(図3)。図3中、左図はプレート上のスポットの模式図を表し、数字は細菌の希釈系列を示す。右写真は実際の紫外線照射/未照射のプレートの写真を表す。紫外線未照射のプレート(左)では、各スポットで大腸菌が増殖してコロニーが観察されるのに対し、UV照射プレート(右)では、高密度の菌を含む溶液でもコロニーの形成が見られず、UV照射によって細菌が確実に死んでいることを示している。しかし、6−カルボキシフルオレセインジアセテートとヨウ化プロピジウムによる染色では、UV照射による増殖不可能な菌(死菌)は生菌と同様な染色像を示した。この死菌を、前記方法で示した半乾燥処理と0.85%NaCl水溶液(10−7%Tween20含有)で1時間以上処理し、前記の染色法で6−カルボキシフルオレセインアセテートとヨウ化プロピジウムにより染色し、その蛍光の緑色/赤色比率を算出した(図4)。図2で用いた機器とは別の機器で測定を行ったため、図4では完全に死んでいる菌の蛍光強度比が3.3付近の値を示している。UV照射後、塩化ナトリウム/界面活性剤溶液処理を行わなかった細菌では、生きている菌に塩化ナトリウム/界面活性剤処理を行ったものと同様の緑色/赤色比率を示し、細菌の生死が蛍光の比率からは判別できなかったが、UV照射後に塩化ナトリウム/界面活性剤溶液処理を行った細菌では、緑色/赤色比率の数字はイソプロピルアルコールを用いて完全に殺菌した菌と同様のレベルにまで低下し、UV照射後の菌を死菌として判別可能であることが示された。また食塩/界面活性剤溶液処理については、1時間行ったものと2−3時間行ったものの間に明瞭な差はなく、1時間の処理で十分な効果が得られることが明らかとなった。 (Results of UV disinfection and dye staining) By irradiation with UV for 1 minute, bacteria became non-growth bacteria (dead bacteria) (FIG. 3). In FIG. 3, the left figure shows the schematic diagram of the spot on a plate, and a number shows the dilution series of bacteria. The right picture shows a picture of the actual UV irradiated / unirradiated plate. In the UV-irradiated plate (left), Escherichia coli grows at each spot and colonies are observed. On the UV-irradiated plate (right), no colonies are formed even in a solution containing high-density bacteria. This shows that the bacteria are surely dead by UV irradiation. However, by staining with 6-carboxyfluorescein diacetate and propidium iodide, bacteria that could not grow by UV irradiation (dead bacteria) showed the same stained image as live bacteria. The dead bacteria were treated with the semi-dry treatment shown in the above method and a 0.85% NaCl aqueous solution (containing 10 −7 % Tween 20) for 1 hour or longer, and the 6-carboxyfluorescein acetate and propidium iodide were used in the above staining method. Staining was performed and the green / red ratio of the fluorescence was calculated (FIG. 4). Since the measurement was performed using a device different from the device used in FIG. 2, the fluorescence intensity ratio of the completely dead bacteria is a value near 3.3 in FIG. 4. Bacteria that were not treated with sodium chloride / surfactant solution after UV irradiation showed a green / red ratio similar to that of the living bacteria treated with sodium chloride / surfactant. However, the number of green / red ratios for bacteria that were treated with sodium chloride / surfactant solution after UV irradiation was similar to that of bacteria that were completely sterilized using isopropyl alcohol. It was shown that the bacteria after UV irradiation could be distinguished as dead bacteria. In addition, regarding the salt / surfactant solution treatment, there was no clear difference between the one-hour treatment and the 2-3-hour treatment, and it was revealed that the treatment for one hour can provide a sufficient effect.

作成した大腸菌の生死標準曲線用の殺菌コントロールの染色像を示す。生菌、死菌の両サンプルを生菌色素である6−カルボキシフルオレセインジアセテート(商品名:SYT9)と死菌色素であるヨウ化プロピジウムで染色し、励起波長480nmを用い、緑色蛍光(左図の生菌)では520nmを、赤色蛍光(右図の死菌)は600nmの蛍光を観察した。左図(生菌)では死菌色素が細胞内から代謝により排出され、ほとんど赤色染色が見られないのに対して、右図(死菌)では死菌色素により菌体が染色され、鮮やかな赤色蛍光が観察された。The dyeing | staining image of the bactericidal control for the life-and-death standard curve of produced E. coli is shown. Both live and dead samples are stained with 6-carboxyfluorescein diacetate (trade name: SYT9), which is a viable dye, and propidium iodide, which is a killed dye, using an excitation wavelength of 480 nm and green fluorescence (left figure). 520 nm, and red fluorescence (dead bacteria in the right figure) was observed at 600 nm. In the left figure (live bacteria), dead dyes are excreted from the cells by metabolism, and almost no red staining is seen, whereas in the right figure (dead bacteria), the cells are stained with dead dyes and vivid Red fluorescence was observed. 生菌と死菌の割合と緑色蛍光/赤色蛍光の関係を示す。図中グラフ横軸は全菌体中における生菌の占める割合(%)を、縦軸は緑色/赤色比を表す。作成した大腸菌の生死標準曲線用のサンプルを用いて、生菌と死菌の割合がグラフのようになるように調整した。その混合細菌液を用いて緑色蛍光と赤色蛍光の測定を行い、その比を算出した。The relationship between the ratio of live bacteria and dead bacteria and green fluorescence / red fluorescence is shown. In the graph, the horizontal axis represents the proportion (%) of the living cells in the whole cells, and the vertical axis represents the green / red ratio. Using the prepared sample for the standard curve for life and death of Escherichia coli, the ratio of live cells to dead cells was adjusted as shown in the graph. Using the mixed bacterial solution, green fluorescence and red fluorescence were measured, and the ratio was calculated. 紫外線照射により増殖能が喪失した様子を示す。左図はプレート上のスポットの模式図を表し、数字は細菌の希釈系列を示す。右写真は実際の紫外線照射/未照射のプレートの写真を表す。紫外線未照射のプレート(左)では、各スポットで大腸菌が増殖してコロニーが観察されるのに対し、UV照射プレート(右)では、高密度の菌を含む溶液でもコロニーの形成が見られず、UV照射によって細菌の増殖能が喪失していることを示している。It shows a state in which the growth ability has been lost by ultraviolet irradiation. The left figure shows a schematic diagram of spots on the plate, and the numbers indicate the bacterial dilution series. The right picture shows a picture of the actual UV irradiated / unirradiated plate. In the UV-irradiated plate (left), Escherichia coli grows at each spot and colonies are observed. On the UV-irradiated plate (right), no colonies are formed even in a solution containing high-density bacteria. This shows that the ability of bacteria to grow is lost by UV irradiation. UVの照射後の細菌に対する処理(NaCl、Tween20)による、緑色蛍光と赤色蛍光の比を未処理のもの等と比較して示す。UV未照射の菌にNaCl、Tween20処理を行っても緑色/赤色蛍光比率(=生菌/死菌比率)にほとんど影響は無く、またUV照射後NaCl、Tween20処理を行わないサンプル(氷上に放置)では生菌/死菌比率はUV未照射と差がなかったが、UV照射後の菌にNaCl及びTween20処理を行うと、生菌として計測される割合が減少し、1時間の処理で十分この効果が見られることが明らかとなった。The ratio of green fluorescence to red fluorescence by treatment with bacteria (NaCl, Tween 20) after UV irradiation is shown in comparison with untreated ones. Treatment of NaCl-unirradiated bacteria with NaCl or Tween 20 has almost no effect on the green / red fluorescence ratio (= viable / dead bacteria ratio), and samples that are not treated with NaCl or Tween 20 after UV irradiation (left on ice) ), The ratio of viable bacteria / dead bacteria was not different from that of unirradiated UV, but when the bacteria after UV irradiation were treated with NaCl and Tween 20, the proportion measured as viable bacteria decreased, and treatment for 1 hour was sufficient It became clear that this effect was seen.

Claims (13)

生菌、死菌及び生命活動を停止して酵素活性を保持した疑似生菌が含まれる混合試料において、各菌の存在割合を判別する方法であって、該混合試料を半乾燥処理し、次いで塩類溶液及び/または界面活性剤溶液で処理する工程、生菌色素による細菌染色工程及び死菌色素による細菌染色工程を含むことを特徴とする、それぞれの状態にある細菌の存在割合を判別する方法。   In a mixed sample containing live bacteria, dead bacteria, and pseudo-viable bacteria that have retained enzyme activity by stopping life activity, a method for determining the abundance ratio of each bacterium, the mixed sample being semi-dried, A method for determining the abundance of bacteria in each state, comprising a step of treating with a salt solution and / or a surfactant solution, a step of staining with a bacterium dye, and a step of staining with a dead bacterium dye . 請求項1に記載の判別方法において、混合試料を半乾燥処理し、次いで塩類溶液及び/または界面活性剤溶液で処理する工程を行い、その後生菌色素による細菌の染色工程と死菌色素による細菌の染色工程を同時または順次行うことを特徴とする、生菌、死菌及び疑似細菌の存在割合判別方法。   2. The discrimination method according to claim 1, wherein the mixed sample is subjected to a semi-drying treatment, and then a step of treating with a salt solution and / or a surfactant solution, followed by a step of staining the bacteria with viable pigment and a bacterium with dead pigment. A method for discriminating the presence ratio of viable bacteria, dead bacteria, and pseudo-bacteria, characterized in that the staining step is simultaneously or sequentially performed. 生菌色素がフルオレセイン系蛍光色素である、請求項1または請求項2に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the abundance ratio of viable, dead, and pseudobacteria according to claim 1 or 2, wherein the viable dye is a fluorescein fluorescent dye. 生菌色素が6−カルボキシフルオレセインジアセテートである、請求項3に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the abundance ratio of viable, dead, and pseudobacteria according to claim 3, wherein the viable dye is 6-carboxyfluorescein diacetate. 死菌色素がヨウ化プロピジウムである、請求項1から請求項4のうちいずれか1項に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the presence ratio of live bacteria, dead bacteria, and pseudo-bacteria according to any one of claims 1 to 4, wherein the dead bacteria pigment is propidium iodide. 生菌色素が6−カルボキシフルオレセインジアセテートであり、死菌色素がヨウ化プロピジウムである、請求項1または請求項2に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the presence ratio of viable, dead, and pseudobacteria according to claim 1 or 2, wherein the viable dye is 6-carboxyfluorescein diacetate and the dead fungus is propidium iodide. 生菌色素または死菌色素のいずれか一方が全菌色素で置き換えられた、請求項1から請求項6のうちいずれか1項に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the presence ratio of viable bacteria, dead bacteria, and pseudo-bacteria according to any one of claims 1 to 6, wherein either one of the viable dye or the dead fungus dye is replaced with a whole fungus dye. 全菌色素が4’,6−ジアミジノ−2−フェニルインドール二塩酸塩である、請求項7に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the presence ratio of viable, dead, and pseudobacteria according to claim 7, wherein the total fungal pigment is 4 ', 6-diamidino-2-phenylindole dihydrochloride. 塩類溶液が塩化ナトリウム水溶液である、請求項1から請求項8のうちいずれか1項に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the presence ratio of viable, dead, and pseudobacteria according to any one of claims 1 to 8, wherein the salt solution is an aqueous sodium chloride solution. 塩化ナトリウム水溶液の濃度が、0.75%−0.95%の範囲内である、請求項9に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the presence ratio of viable, dead, and pseudobacteria according to claim 9, wherein the concentration of the aqueous sodium chloride solution is in the range of 0.75% to 0.95%. 界面活性剤が、ポリオキシエチレンソルビタンモノラウレートである、請求項1から請求項10のうちいずれか1項に記載の生菌、死菌及び疑似細菌の存在割合判別方法。   The method for determining the presence ratio of viable, dead, and pseudobacteria according to any one of claims 1 to 10, wherein the surfactant is polyoxyethylene sorbitan monolaurate. ポリオキシエチレンソルビタンモノラウレートの濃度が、10−5%から10−9%の範囲内である、請求項11に記載の生菌、死菌及び疑似細菌の存在割合判別方法。 The method according to claim 11, wherein the concentration of polyoxyethylene sorbitan monolaurate is in the range of 10-5 % to 10-9 %. 請求項1から請求項12のうちいずれか1項に記載の各工程により、生菌、死菌及び疑似細菌を含む混合試料をそれぞれ蛍光染色し、分光光度計を用いて該混合試料の蛍光測定を行うことを特徴とする、生菌/死菌の存在比率計測方法。   A mixed sample containing live bacteria, dead bacteria, and pseudo bacteria is fluorescently stained by each step according to any one of claims 1 to 12, and fluorescence measurement of the mixed sample is performed using a spectrophotometer. A method for measuring the existence ratio of viable / dead bacteria, characterized in that
JP2006231878A 2006-08-29 2006-08-29 Method for determining the presence ratio of live bacteria, dead bacteria and pseudo-viable bacteria Active JP4876251B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231878A JP4876251B2 (en) 2006-08-29 2006-08-29 Method for determining the presence ratio of live bacteria, dead bacteria and pseudo-viable bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231878A JP4876251B2 (en) 2006-08-29 2006-08-29 Method for determining the presence ratio of live bacteria, dead bacteria and pseudo-viable bacteria

Publications (2)

Publication Number Publication Date
JP2008054509A true JP2008054509A (en) 2008-03-13
JP4876251B2 JP4876251B2 (en) 2012-02-15

Family

ID=39238004

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231878A Active JP4876251B2 (en) 2006-08-29 2006-08-29 Method for determining the presence ratio of live bacteria, dead bacteria and pseudo-viable bacteria

Country Status (1)

Country Link
JP (1) JP4876251B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192565A1 (en) * 2013-05-29 2014-12-04 株式会社サタケ Microorganism testing method
WO2017115768A1 (en) * 2015-12-28 2017-07-06 合同会社日本理化学開発 Device for determining live/dead bacterial state, and method for determining live/dead bacterial state using said device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275998A (en) * 1996-04-11 1997-10-28 Nippon Mizushiyori Giken:Kk Instantaneous identification of microorganism and device therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09275998A (en) * 1996-04-11 1997-10-28 Nippon Mizushiyori Giken:Kk Instantaneous identification of microorganism and device therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192565A1 (en) * 2013-05-29 2014-12-04 株式会社サタケ Microorganism testing method
JP2014230514A (en) * 2013-05-29 2014-12-11 株式会社サタケ Inspection method of microorganisms
CN105431544A (en) * 2013-05-29 2016-03-23 株式会社佐竹 Microorganism testing method
US9856506B2 (en) 2013-05-29 2018-01-02 Satake Corporation Method for examining microorganisms
WO2017115768A1 (en) * 2015-12-28 2017-07-06 合同会社日本理化学開発 Device for determining live/dead bacterial state, and method for determining live/dead bacterial state using said device
JPWO2017115768A1 (en) * 2015-12-28 2018-10-18 合同会社日本理化学開発 Live and dead bacteria state determination device, and live and dead bacteria state determination method using the same device
JP2021036908A (en) * 2015-12-28 2021-03-11 合同会社日本理化学開発 Method for determining state of live or dead bacteria or fungi using device for determining state of live or dead bacteria or fungi
US11118209B2 (en) 2015-12-28 2021-09-14 Nihon Rikagaku Kaihatsu Llc. Device for determining live/dead bacterial state and method for determining live/dead bacterial state using the device
US11939621B2 (en) 2015-12-28 2024-03-26 Nihon Rikagaku Kaihatsu Llc. Device for determining live/dead bacterial state and method for determining live/dead bacterial state using the device

Also Published As

Publication number Publication date
JP4876251B2 (en) 2012-02-15

Similar Documents

Publication Publication Date Title
CN102203588B (en) Methods for separation, characterization and/or identification of microorganisms using spectroscopy
CN102317777B (en) Methods for the characterization of microorganisms on solid or semi-solid media
CN102272601B (en) Methods for separation and characterization of microorganisms using identifier agents
RU2517618C2 (en) Method and system for determining quality of cultivated cells
Tijdens et al. Estimates of bacterial and phytoplankton mortality caused by viral lysis and microzooplankton grazing in a shallow eutrophic lake
CN102272602A (en) Methods for the isolation and identification of microorganisms
US4094745A (en) Method of staining microscopic organisms
JP2010213598A (en) Method for examining efficacy of antimicrobial agent to microorganism
US20120315627A1 (en) Method for determining the effectiveness of sterilization and/or disinfection process
EP2789692B1 (en) Method for measuring cells, and reagent for cell measurement
CA1089339A (en) Method of staining micro-organisms
JP4876251B2 (en) Method for determining the presence ratio of live bacteria, dead bacteria and pseudo-viable bacteria
JP4830103B2 (en) Bioactivity determination method and bioactivity determination kit
Sammarro Silva et al. Analytical challenges and perspectives of assessing viability of Giardia muris cysts and Cryptosporidium parvum oocysts by live/dead simultaneous staining
ES2893198T3 (en) A method of quantifying the capacity of individual bacterial cell cultures using culture-independent parameters
EP4310192A1 (en) Method of determining the existence and/or degree of resistance of microorganisms to antimicrobial agents
EP4089179A1 (en) Processes for microbiological detection and determination of antimicrobial susceptibility in clinical, environmental or food samples
Kamisetti et al. Surface plasmon coupled emission enabled silver-C60 nano-biosensors for sensitive detection of tuberculosis
JP2010068718A (en) Means for specifying cell type using virus
McDaniels et al. Comparison of rapid methods to evaluate chlorine inactivation of the biological agent E. coli O157: H7
Hügler et al. Validation of the FISH-based detection and quantification of E. coli and
JP2013078270A (en) Microorganism test method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110809

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20111101

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150