JP2008052877A - Magnetic recording medium - Google Patents

Magnetic recording medium Download PDF

Info

Publication number
JP2008052877A
JP2008052877A JP2006231187A JP2006231187A JP2008052877A JP 2008052877 A JP2008052877 A JP 2008052877A JP 2006231187 A JP2006231187 A JP 2006231187A JP 2006231187 A JP2006231187 A JP 2006231187A JP 2008052877 A JP2008052877 A JP 2008052877A
Authority
JP
Japan
Prior art keywords
magnetic
layer
recording
hard
magnetic layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006231187A
Other languages
Japanese (ja)
Inventor
Katsuya Oikawa
克哉 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2006231187A priority Critical patent/JP2008052877A/en
Publication of JP2008052877A publication Critical patent/JP2008052877A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a high-density magnetic recoding medium in which an increase in demagnetizing field is suppressed in a magnetic recording layer. <P>SOLUTION: In the magnetic recording medium having the magnetic recording layer 5 in which a plurality of magnetic regions 22 are separately provided in a base material made of a nonmagnetic material 21, the magnetic region 22 has at least one soft magnetic layer 23 and at least one hard magnetic layer 25 at least in an in-plane direction of the magnetic recording layer, and a nonmagnetic layer 24 made of a nonmagnetic material between the soft magnetic layer 23 and the hard magnetic layer 25. The average magnetic anisotropy energy density of the soft magnetic layer is preferably smaller than the average magnetic anisotropy energy density of the hard magnetic layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、高密度磁気記録が可能な磁気記録媒体に関するものである。   The present invention relates to a magnetic recording medium capable of high density magnetic recording.

近年、情報量の増大化に伴いハードディスクドライブ(以下、「HDD」という。)等の磁気記録媒体の面記録密度の向上が期待されており、磁気記録媒体上の各記録ビットサイズは数10nm程度の極めて微細なものになってきている。   In recent years, as the amount of information increases, it is expected that the surface recording density of a magnetic recording medium such as a hard disk drive (hereinafter referred to as “HDD”) is improved, and the recording bit size on the magnetic recording medium is about several tens of nm. It has become extremely fine.

従来の長手磁気記録方式の磁気記録媒体では、記録密度の高い領域の記録ビット内の減磁界が強くなるため、磁性粒子径が比較的大きいうちから「熱揺らぎ」の影響を受けやすい。これに対し、垂直磁気記録方式の磁気記録媒体では、膜厚方向に磁性粒子を成長させることで、媒体表面の粒径は小さいまま磁化最小単位体積を大きくできるため、「熱揺らぎ」の影響を抑制できるためさらなる高密度記録方式として期待されている。   In the conventional longitudinal magnetic recording type magnetic recording medium, since the demagnetizing field in the recording bit in the high recording density region becomes strong, it is easily affected by “thermal fluctuation” from a relatively large magnetic particle diameter. On the other hand, in the magnetic recording medium of the perpendicular magnetic recording system, by growing the magnetic particles in the film thickness direction, the minimum unit volume of magnetization can be increased while the particle diameter of the medium surface is small. Since it can be suppressed, it is expected as a further high-density recording method.

垂直磁気記録方式を採用した垂直磁気記録媒体の磁気記録層材料としては、これまで主に、CoCrPt、CoCrTa等の合金材料が用いられてきた。これらの合金材料では、結晶粒界に非磁性材料であるCrが偏析することにより、個々の結晶粒が磁気的に分離され、高い保磁力(Hc)など磁気記録媒体として必要な特性を発現する。このような結晶粒界へのCrの偏析は、面内媒体では、加熱や基板バイアス印加など成膜プロセスの工夫により促進されてきた。   Conventionally, alloy materials such as CoCrPt and CoCrTa have been mainly used as magnetic recording layer materials for perpendicular magnetic recording media employing the perpendicular magnetic recording system. In these alloy materials, Cr, which is a nonmagnetic material, segregates at the crystal grain boundaries, so that individual crystal grains are magnetically separated, and the characteristics necessary for a magnetic recording medium such as high coercive force (Hc) are exhibited. . Such segregation of Cr to the crystal grain boundary has been promoted in the in-plane medium by devising a film forming process such as heating or applying a substrate bias.

しかし、垂直磁気記録媒体では、面内媒体と同様に加熱や基板バイアス印加を施してもCrの偏析量が少なく、それが原因で媒体ノイズが高くなってしまうことが問題となっていた。   However, the perpendicular magnetic recording medium has a problem in that the amount of Cr segregation is small even when heating or substrate bias application is performed as in the case of the in-plane medium, and the medium noise increases due to this.

この問題を解決する方法として、酸化物や窒化物を結晶粒界に偏析させることにより、結晶粒の磁気的な分離を促進するグラニュラー媒体が提案されている。例えば、CoCrPt−SiO2グラニュラー膜では、CoCrPt結晶粒の周囲をSiO2が取り囲むように偏析し、これにより個々のCoCrPt結晶粒は磁気的に分離される。このように、グラニュラー膜では合金材料の相分離(磁気相分離)を利用するのではなく、酸化物や窒化物など合金材料と固溶しにくい非晶質材料を加えることが特徴である。そのために、従来のCoCr系材料を磁気記録層とする媒体と比較して媒体ノイズが低減できることが確認されている。 As a method for solving this problem, there has been proposed a granular medium that promotes magnetic separation of crystal grains by segregating oxides and nitrides to crystal grain boundaries. For example, in a CoCrPt—SiO 2 granular film, the CoCrPt crystal grains are segregated so as to surround the SiO 2 , whereby the individual CoCrPt crystal grains are magnetically separated. As described above, the granular film is characterized in that it does not use phase separation (magnetic phase separation) of the alloy material but adds an amorphous material that is not easily dissolved in the alloy material, such as oxide or nitride. Therefore, it has been confirmed that medium noise can be reduced as compared with a medium using a conventional CoCr-based material as a magnetic recording layer.

さらに磁気的結合を分断する目的で特許文献1のような媒体構成が開示されている。特許文献1では非磁性体層に自己組織的に形成されたナノメートルサイズのホール(以降ナノホールと称する)に磁性体を坎合することで、各ホール内に坎合された磁性体間の結合がグラニュラ媒体に比べ効果的に分断されることで媒体ノイズの低減効果が大きい。   Further, a medium configuration as disclosed in Patent Document 1 is disclosed for the purpose of breaking the magnetic coupling. In Patent Document 1, a magnetic material is combined with nanometer-sized holes (hereinafter referred to as nanoholes) formed in a self-organized manner in a non-magnetic material layer, thereby coupling the magnetic materials combined in each hole. Is effectively divided as compared with a granular medium, so that the effect of reducing medium noise is great.

このような自己組織化的にナノホールを作成する方法としては例えば、特許文献1では相分離構造を形成する材料を用いて、柱状の部材がそれを取り囲む領域に分散した構造を形成し、当該柱状の部材を除去することにより多孔質層を得る方法が開示されている。   As a method for creating nanoholes in such a self-organized manner, for example, in Patent Document 1, a material in which a phase-separated structure is formed is used to form a structure in which columnar members are dispersed in a region surrounding the columnar member. A method for obtaining a porous layer by removing these members is disclosed.

また特許文献2ではアルミニウムやアルミニウムを含む合金を、シュウ酸やリン酸等の溶液中で陽極酸化処理して孔を形成する方法が開示されている。
ナノホールを形成する非磁性体層として、例えばSiO2、Al23、TiO2などの酸化物や、Si34、AlN、TiNなどの窒化物、TiCなどの炭化物、BN等の硼化物が用いられ、これらの非磁性体層中に選択的に強磁性体領域が形成される。
Patent Document 2 discloses a method of forming holes by anodizing aluminum or an alloy containing aluminum in a solution such as oxalic acid or phosphoric acid.
Examples of nonmagnetic layers forming nanoholes include oxides such as SiO 2 , Al 2 O 3 , and TiO 2 , nitrides such as Si 3 N 4 , AlN, and TiN, carbides such as TiC, and borides such as BN. And a ferromagnetic region is selectively formed in these nonmagnetic layers.

特にこれらのようなナノホールに磁性体を坎合した垂直記録媒体では、孤立磁性体領域を周期的に配列させ、1孤立磁性体領域に1ビットを記録する方式が可能となりより高密度記録が達成されることが期待される。   In particular, in perpendicular recording media in which magnetic materials are combined with nanoholes such as these, isolated magnetic regions can be periodically arranged to record one bit in one isolated magnetic region, thereby achieving higher density recording. Is expected to be.

しかしながら、このような1孤立磁性領域に1ビットを記録する方式で高密度記録を達成するため孤立領域の面密度を増加させると、反磁界により記録磁化が不安定になりやすいという問題点を有していた。   However, in order to achieve high density recording by recording 1 bit in such an isolated magnetic region, if the surface density of the isolated region is increased, the recording magnetization tends to become unstable due to the demagnetizing field. Was.

特に垂直磁気記録の場合は磁極が磁気記録層表面に発生し、孤立磁性領域の密度を上げるほど磁気記録層表面に発生する磁極密度が増加するため、反磁界による影響は増加することとなる。この影響は垂直磁気記録媒体を通常のM−Hループで評価した時には媒体角型比の劣化として現れる。即ち、M−Hループ曲線の保持力Hcでの磁化増加対印加磁界増加ΔM/ΔHの傾きが小さくなり、保磁力の大きさが小さい場合には印加磁化がない場合の残留磁化の大きさを小さくしてしまう。またこの反磁界の影響で記録時ノイズの発生が増加する。   In particular, in the case of perpendicular magnetic recording, a magnetic pole is generated on the surface of the magnetic recording layer, and as the density of the isolated magnetic region is increased, the density of the magnetic pole generated on the surface of the magnetic recording layer is increased. This effect appears as deterioration of the medium squareness ratio when the perpendicular magnetic recording medium is evaluated by a normal MH loop. That is, the slope of the increase in magnetization with respect to the holding force Hc of the MH loop curve versus the increase in applied magnetic field ΔM / ΔH is small, and when the magnitude of the coercive force is small, the magnitude of the residual magnetization when there is no applied magnetization. Make it smaller. In addition, the occurrence of noise during recording increases due to the influence of the demagnetizing field.

このような反磁界の影響を防ぐために、特許文献3には、非記録領域で分断された複数の孤立磁性領域をパターニングし、該孤立磁性領域に磁化方向が互いに反平行の複数の磁区を形成する垂直磁気記録媒体が開示されている。   In order to prevent the influence of such a demagnetizing field, in Patent Document 3, a plurality of isolated magnetic regions separated by non-recording regions are patterned, and a plurality of magnetic domains whose magnetization directions are antiparallel to each other are formed in the isolated magnetic regions. A perpendicular magnetic recording medium is disclosed.

図4を用いて特許文献3に開示された従来例について説明する。なお説明は特に本従来技術について特徴的なものについて行い、当該技術分野について広く知られている部分に関しては省略を加えることもある。図4中401は不図示の基板上に作成せれた軟磁性裏打ち層、402は非磁性下地層、403は垂直磁気記録層、404は磁性領域、405非磁性領域、406は磁区、407は記録用磁気ヘッドである。   A conventional example disclosed in Patent Document 3 will be described with reference to FIG. The description will be made particularly on the characteristic features of the prior art, and the portions that are widely known in the technical field may be omitted. In FIG. 4, 401 is a soft magnetic backing layer formed on a substrate (not shown), 402 is a nonmagnetic underlayer, 403 is a perpendicular magnetic recording layer, 404 is a magnetic area, 405 nonmagnetic area, 406 is a magnetic domain, and 407 is a recording. Magnetic head.

本従来例はHDDなどのディスク状の垂直記録媒体へ適用するものである。具体的には、回転動作に耐える機械特性をもつアルミなどのディスク状基板(表記略)にスパッタ等で成膜された軟磁性裏打ち層401、非磁性下地層402、垂直磁気記録層403から構成される垂直磁気記録媒体である。垂直磁気記録層403は電子線描画法などにより非磁性領域405中に複数の磁性領域404をパターングされてなる。垂直磁気記録層403には同層を保護するための保護層や記録用磁気ヘッド407を円滑に滑走させるための潤滑層が設けられることが多い。   This conventional example is applied to a disk-shaped perpendicular recording medium such as an HDD. Specifically, it is composed of a soft magnetic backing layer 401, a nonmagnetic underlayer 402, and a perpendicular magnetic recording layer 403 formed on a disk-like substrate (not shown) such as aluminum having mechanical properties that can withstand rotational motion by sputtering or the like. Perpendicular magnetic recording media. The perpendicular magnetic recording layer 403 is formed by patterning a plurality of magnetic regions 404 in a nonmagnetic region 405 by an electron beam drawing method or the like. The perpendicular magnetic recording layer 403 is often provided with a protective layer for protecting the same layer and a lubricating layer for smoothly sliding the recording magnetic head 407.

記録用磁気ヘッド407はディスク状の媒体の回転によって、媒体表面に対して数十から二百ナノメートルの間隔で浮上し滑走する。記録する情報データに応じて記録用磁気ヘッド407より略媒体表面に垂直に記録印加磁界が印加される。   The recording magnetic head 407 floats and slides at an interval of several tens to two hundred nanometers with respect to the medium surface by the rotation of the disk-shaped medium. A recording applied magnetic field is applied from the recording magnetic head 407 substantially perpendicular to the medium surface in accordance with the information data to be recorded.

記録印加磁界は記録用磁気ヘッド407の主磁極より、主磁極鉛直下の垂直磁気記録層403、非磁性下地層402を略膜面垂直に貫通する。そして、軟磁性裏打ち層401を通って記録用磁気ヘッド407主磁極後方の副磁極位置で非磁性下地層402、垂直磁気記録層403を貫通して記録用磁気ヘッド407の副磁極へ達する。このように記録用磁気ヘッド407の主磁極、副磁極と垂直記録媒体の軟磁性裏打ち層401で略閉磁回路を形成するため、記録印加磁界が途中で発散しにくくなっている。これにより垂直磁気記録層403中で磁界の強度が低下したり、磁界印加領域が拡散する影響が抑制される。   The recording applied magnetic field penetrates the perpendicular magnetic recording layer 403 and the nonmagnetic underlayer 402 perpendicular to the main magnetic pole perpendicularly to the film surface from the main magnetic pole of the recording magnetic head 407. Then, it passes through the soft magnetic underlayer 401 and passes through the nonmagnetic underlayer 402 and the perpendicular magnetic recording layer 403 at the sub magnetic pole position behind the main magnetic pole for recording 407 and reaches the sub magnetic pole of the recording magnetic head 407. As described above, since the substantially closed magnetic circuit is formed by the main magnetic pole and the sub magnetic pole of the recording magnetic head 407 and the soft magnetic backing layer 401 of the perpendicular recording medium, it is difficult for the applied magnetic field to diverge midway. As a result, the magnetic field strength in the perpendicular magnetic recording layer 403 is reduced, and the influence of diffusion of the magnetic field application region is suppressed.

軟磁性裏打ち層401は上記のように印加磁界の効果的な利用のため設けられるが、軟磁性裏打ち層401内の磁壁によるスパイクノイズの発生を抑制する目的で、面内で磁気異方性容易軸を配向させたり、反強磁性膜を含む多層構成とすることも可能である。   The soft magnetic backing layer 401 is provided for effective use of the applied magnetic field as described above. However, in order to suppress the occurrence of spike noise due to the domain wall in the soft magnetic backing layer 401, the magnetic anisotropy is easily generated in the plane. It is also possible to have a multilayer structure in which the axes are oriented or an antiferromagnetic film is included.

垂直磁気記録層403の磁性領域404は磁気異方性容易軸が垂直磁気記録層403面に垂直方向を向いており、磁性領域404内の磁化は記録情報に応じて上または下方向を向く。また各磁性領域404は非磁性領域405で分断されており、磁気的交換結合などの磁気的結合が断たれている。   In the magnetic region 404 of the perpendicular magnetic recording layer 403, the easy axis of magnetic anisotropy faces the direction perpendicular to the surface of the perpendicular magnetic recording layer 403, and the magnetization in the magnetic region 404 faces upward or downward depending on the recording information. Each magnetic region 404 is divided by a nonmagnetic region 405, and magnetic coupling such as magnetic exchange coupling is broken.

このため各磁性領域404間は磁性領域の磁化が発生する静磁相互作用である反磁界を通して以外は互いに影響を及ぼしあわない。垂直磁気記録層403表面での磁性領域404の面積密度が小さい時には、表面に現れる磁極の大きさが小さい。そのため、この反磁界の大きさは小さく、各磁性領域404は独立に磁化方向の反転ができるため、一般にこのような磁性領域が非磁性領域により分離された垂直磁気記録層構成の媒体は記録時のノイズが小さいものとなる。   Therefore, the magnetic regions 404 do not affect each other except through a demagnetizing field that is a magnetostatic interaction in which magnetization of the magnetic regions is generated. When the area density of the magnetic region 404 on the surface of the perpendicular magnetic recording layer 403 is small, the size of the magnetic pole appearing on the surface is small. For this reason, the magnitude of this demagnetizing field is small, and each magnetic region 404 can independently reverse the magnetization direction. Therefore, in general, a medium having a perpendicular magnetic recording layer structure in which such a magnetic region is separated by a nonmagnetic region is used for recording. The noise will be small.

一方高密度化のため、垂直磁気記録層403表面での磁性領域404表面の密度を増やし磁性領域404間の間を小さくしていくと、反磁界の影響により、記録印加磁界などの外部磁界の印加がなくとも磁性領域404の磁化が反転して記録情報の破壊が生じやすくなる。   On the other hand, when the density of the magnetic region 404 on the surface of the perpendicular magnetic recording layer 403 is increased and the space between the magnetic regions 404 is reduced for the purpose of increasing the density, an external magnetic field such as a recording applied magnetic field is affected by the demagnetizing field. Even if no voltage is applied, the magnetization of the magnetic region 404 is reversed and the recorded information is easily destroyed.

特許文献3では磁性領域404は3つの磁区406からなり、各磁区内の磁化は略揃っているが、磁区間の磁化の方向は反平行の方向となっている。このため磁性領域404を単一磁区とする構成にくらべ、表面へ現れる磁極の大きさが小さいものとなる。また反平行の磁区領域が隣接するため、磁性領域404で発生する静磁界が磁区同士で相殺して磁気的閉磁回路を形成し、隣接する磁性領域への反磁界の影響が小さいものとなる。これにより記録密度を上げて行っても反磁界の影響は増大することなく記録特性に優れた媒体が提供できる。   In Patent Document 3, the magnetic region 404 includes three magnetic domains 406, and the magnetizations in the respective magnetic domains are substantially aligned, but the magnetization directions of the magnetic sections are antiparallel. For this reason, the magnetic poles appearing on the surface are smaller in size than the configuration in which the magnetic region 404 is a single magnetic domain. Further, since the antiparallel magnetic domain regions are adjacent to each other, the static magnetic fields generated in the magnetic regions 404 cancel each other to form a magnetic closed magnetic circuit, and the influence of the demagnetizing field on the adjacent magnetic regions is small. As a result, even if the recording density is increased, the medium having excellent recording characteristics can be provided without increasing the influence of the demagnetizing field.

しかしながらこのような従来技術では磁性領域内に互いに反平行の磁区が作られるように記録をし、それを信号として再生しなければならなかった。例えば特許文献3ではある磁性領域に”1”の信号(これを例えば上向きの磁化方向とする)を記録するには、その隣接に逆向きの磁化方向をもつ磁区が磁性領域内に存在する必要がある。このためこの”1”の上向きの磁化方向の領域の前後に”0”の下向きの磁化を記録しなければならない。このため記録時の信号処理方式を従来のものと変更する必要があり、従来のHDD装置へそのまま適用することはできない。   However, in such a conventional technique, recording must be performed so that magnetic domains that are antiparallel to each other are formed in the magnetic region and reproduced as a signal. For example, in Patent Document 3, in order to record a signal of “1” (for example, an upward magnetization direction) in a certain magnetic region, a magnetic domain having a reverse magnetization direction needs to exist in the magnetic region adjacent to the magnetic region. There is. Therefore, “0” downward magnetization must be recorded before and after the “1” upward magnetization region. For this reason, it is necessary to change the signal processing method at the time of recording from the conventional one, and it cannot be applied as it is to the conventional HDD device.

さらにこのような従来例では高密度化のために磁性領域を小さくしていく際に以下のような問題点を有していた。即ち、磁性領域内の連続磁性体中に複数の磁区を構成するためには、磁区の間に磁壁と呼ばれる磁化方向の変異領域が存在する。この磁壁の大きさは磁性体の磁気特性によって決定されるが、一般に磁性領域を小さくしていって磁壁の大きさ(厚さ)以下では磁化方向の揃った複数の磁区は存在できない。このため磁性領域の大きさが限定され、高密度化に不適切な構成となってしまう。   Furthermore, such conventional examples have the following problems when the magnetic region is made smaller for higher density. That is, in order to form a plurality of magnetic domains in the continuous magnetic material in the magnetic region, there is a magnetization direction variation region called a domain wall between the magnetic domains. The size of the domain wall is determined by the magnetic characteristics of the magnetic material. Generally, however, a plurality of magnetic domains with uniform magnetization directions cannot exist if the magnetic region is made smaller and the domain wall size (thickness) or less. For this reason, the size of the magnetic region is limited, and the configuration becomes inappropriate for high density.

磁壁の厚みσと磁性体磁気特性の関係は、例えば非特許文献1に以下の式1のように記載されている。   The relationship between the domain wall thickness σ and the magnetic material magnetic properties is described, for example, in Non-Patent Document 1 as shown in Equation 1 below.

Figure 2008052877
Figure 2008052877

ここで、Aは磁性材料の交換定数、Kは磁性材料の磁気異方性エネルギー密度であり、cは定数で結晶や磁壁を挟む磁区の磁化の方向によるが、本従来例のように磁壁の前後で180度磁化の方向が変化するときには一般にπ(円周率)以上の大きさとなる。   Here, A is the exchange constant of the magnetic material, K is the magnetic anisotropy energy density of the magnetic material, and c is a constant and depends on the direction of magnetization of the magnetic domain sandwiching the crystal or domain wall. When the direction of the 180-degree magnetization changes before and after, it is generally larger than π (circumference).

この式(1)より計算すると磁壁の厚みσは一般的な磁気記録用の硬磁性材料で10nm程度以上、磁気異方性エネルギー密度が従来の磁性体より一桁程度大きいといわれるFePt、FePdの規則化合金材料でも4nm程度以上の値となる。このため磁化方向の揃った複数の磁区とその間の複数の磁壁を設けるためには磁性領域の大きさは数十ナノメートル、特に30nm程度以上の大きさが必要となる。   When calculated from this equation (1), the domain wall thickness σ is about 10 nm or more in a general hard magnetic material for magnetic recording, and the magnetic anisotropy energy density is about one digit larger than that of a conventional magnetic material. Even the ordered alloy material has a value of about 4 nm or more. For this reason, in order to provide a plurality of magnetic domains having the same magnetization direction and a plurality of domain walls therebetween, the size of the magnetic region needs to be several tens of nanometers, particularly about 30 nm or more.

このため、単純計算でも1ビットあたり25nm平方以下の磁性領域となる1テラビット/平方インチを超えるような高密度記録を行う媒体には適した構成とはなっていないという問題点を有していた。
特開2004−237429号公報 特開2002−175621号公報 特開2003−030812号公報 太田恵造著、「磁気工学の基礎II」p.272−273、共立出版株式会社、1972年発行
For this reason, even a simple calculation has a problem that the configuration is not suitable for a medium that performs high-density recording exceeding 1 terabit / square inch, which is a magnetic region of 25 nm square or less per bit. .
JP 2004-237429 A JP 2002-175621 A Japanese Patent Laid-Open No. 2003-030812 Keizo Ota, “Basics of Magnetic Engineering II” p. 272-273, Kyoritsu Publishing Co., Ltd., published in 1972

特許文献3に記載の従来技術では磁性領域内に複数の磁区を形成するために記録時に特別な方式を用いねばならず、通常のHDD装置と同様の記録方式をそのまま適用できず、信号処理の過程が複雑化するという問題を有していた。   In the prior art described in Patent Document 3, a special method must be used at the time of recording in order to form a plurality of magnetic domains in the magnetic region, and a recording method similar to that of a normal HDD device cannot be applied as it is. The process was complicated.

さらに特許文献3に記載の従来技術では磁性領域内で複数の磁区を有するために、境界が一定厚みの磁壁をもち、磁壁部分では磁化方向が変化するため有効な記録領域として用いられないために、磁性領域の大きさが制限される。このため磁性領域が小さくできず高密度化がしにくいという問題点を有していた。   Furthermore, since the conventional technique described in Patent Document 3 has a plurality of magnetic domains in the magnetic region, the boundary has a domain wall having a constant thickness, and the magnetization direction changes in the domain wall portion, so that it is not used as an effective recording region. The size of the magnetic region is limited. For this reason, there is a problem that the magnetic region cannot be reduced and it is difficult to increase the density.

本発明は、これらの問題点を解消し、高密度な磁気記録媒体を提供するものである。特に、本発明は、磁気記録層が非磁性材料で磁気的に分断された複数の磁性領域をもつ構成の磁気記録媒体に於いて、磁気記録層の反磁界の増加を抑制して、媒体の高密度化を達成するものである。   The present invention solves these problems and provides a high-density magnetic recording medium. In particular, in the magnetic recording medium having a structure in which the magnetic recording layer has a plurality of magnetic regions magnetically separated by a nonmagnetic material, an increase in the demagnetizing field of the magnetic recording layer is suppressed, and High density is achieved.

上記の課題を解決する磁気記録媒体は、非磁性材からなる母材中にそれぞれ独立して複数の磁性領域が設けられている磁気記録層を有する磁気記録媒体において、前記磁性領域は少なくとも磁気記録層面内方向に軟磁性層および硬磁性層をそれぞれ少なくとも一層以上有し、かつ該軟磁性層と硬磁性層間に非磁性材からなる非磁性層を有することを特徴とする。   A magnetic recording medium for solving the above problems is a magnetic recording medium having a magnetic recording layer in which a plurality of magnetic regions are independently provided in a base material made of a non-magnetic material, wherein the magnetic region is at least magnetic recording It is characterized by having at least one or more soft magnetic layers and hard magnetic layers in the in-plane direction, and having a nonmagnetic layer made of a nonmagnetic material between the soft magnetic layer and the hard magnetic layer.

前記磁性領域には、硬磁性層を中心として該硬磁性層を取り囲んで非磁性層が設けられ、該非磁性層を取り囲んで軟磁性層が設けられていることが好ましい。
前記磁性領域には、軟磁性層を中心として該軟磁性層を取り囲んで非磁性層が設けられ、該非磁性層を取り囲んで硬磁性層が設けられていることが好ましい。
Preferably, the magnetic region is provided with a nonmagnetic layer surrounding the hard magnetic layer around the hard magnetic layer, and a soft magnetic layer surrounding the nonmagnetic layer.
Preferably, the magnetic region is provided with a nonmagnetic layer surrounding the soft magnetic layer around the soft magnetic layer, and a hard magnetic layer is provided surrounding the nonmagnetic layer.

前記磁性領域には、硬磁性層を中心として該硬磁性層を挟んで非磁性層が設けられ、該非磁性層を挟んで軟磁性層が設けられていることが好ましい。
前記磁性領域には、軟磁性層を中心として該軟磁性層を挟んで非磁性層が設けられ、該非磁性層を挟んで硬磁性層が設けられていることが好ましい。
In the magnetic region, it is preferable that a nonmagnetic layer is provided with the hard magnetic layer sandwiched around the hard magnetic layer, and a soft magnetic layer is provided with the nonmagnetic layer sandwiched therebetween.
In the magnetic region, it is preferable that a nonmagnetic layer is provided with the soft magnetic layer sandwiched around the soft magnetic layer, and a hard magnetic layer is provided with the nonmagnetic layer sandwiched therebetween.

前記軟磁性層の平均磁気異方性エネルギー密度が、硬磁性層の平均磁気異方性エネルギー密度より小さいことが好ましい。
前記軟磁性層と硬磁性層との磁化方向は記録用外部磁界が印加されない状態で反平行を向いていることが好ましい。
The average magnetic anisotropy energy density of the soft magnetic layer is preferably smaller than the average magnetic anisotropy energy density of the hard magnetic layer.
It is preferable that the magnetization directions of the soft magnetic layer and the hard magnetic layer are antiparallel when no external recording magnetic field is applied.

前記軟磁性層と硬磁性層との磁化方向は記録用外部磁界が印加された状態で該印加磁界の方向に平行となることが好ましい。
前記軟磁性層の磁化方向は記録用外部磁界が印加された後、硬磁性層の磁化方向に反平行となることが好ましい。
The magnetization directions of the soft magnetic layer and the hard magnetic layer are preferably parallel to the direction of the applied magnetic field when an external recording magnetic field is applied.
The magnetization direction of the soft magnetic layer is preferably antiparallel to the magnetization direction of the hard magnetic layer after an external recording magnetic field is applied.

前記軟磁性層の磁気記録層面での断面積と飽和磁化の大きさの積が、硬磁性層の磁気記録層面での断面積と飽和磁化の大きさの積より小さいことが好ましい。
前記硬磁性層の磁気記録層面での断面積と飽和磁化の大きさの積が、軟磁性層の磁気記録層面での断面積と飽和磁化の大きさの積より小さいことが好ましい。
The product of the cross-sectional area of the soft magnetic layer on the magnetic recording layer surface and the magnitude of the saturation magnetization is preferably smaller than the product of the cross-sectional area on the magnetic recording layer surface of the hard magnetic layer and the magnitude of the saturation magnetization.
The product of the cross-sectional area of the hard magnetic layer on the surface of the magnetic recording layer and the magnitude of the saturation magnetization is preferably smaller than the product of the cross-sectional area of the soft magnetic layer on the surface of the magnetic recording layer and the magnitude of the saturation magnetization.

本発明によれば、高密度な磁気記録媒体を提供することができる。特に、本発明は、磁気記録層が非磁性材料で磁気的に分断された複数の磁性領域をもつ構成の磁気記録媒体に於いて、磁性記録膜の反磁界の増加を抑制して、媒体の高密度化を達成することができる。   According to the present invention, a high-density magnetic recording medium can be provided. In particular, according to the present invention, in a magnetic recording medium having a structure in which the magnetic recording layer has a plurality of magnetic regions magnetically separated by a nonmagnetic material, an increase in the demagnetizing field of the magnetic recording film is suppressed, and Densification can be achieved.

以下、本発明を詳細に説明する。
図1、図2を用いて本発明の実施形態について説明する。図1は本発明に関わる磁気記録媒体の断面の構成図である。図中1は基板、2は下地層、3は軟磁性裏打ち層、4は非磁性下地層、5は磁気記録層、6は保護層、7は潤滑層である。
Hereinafter, the present invention will be described in detail.
An embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a sectional view of a magnetic recording medium according to the present invention. In the figure, 1 is a substrate, 2 is an underlayer, 3 is a soft magnetic underlayer, 4 is a nonmagnetic underlayer, 5 is a magnetic recording layer, 6 is a protective layer, and 7 is a lubricating layer.

ここでは本発明をHDDのディスク状媒体に適用した構成について説明する。その場合には図8に示すように、上記磁気記録媒体81を読み取り書き込み用磁気ヘッド83、磁気ヘッド83を所望の記録位置へ移動させる磁気ヘッド駆動部84、モーターなどによりディスク状磁気記録媒体81を回転駆動する磁気記録媒体駆動部82、信号処理部85、等からなるHDD装置に組み込むことができる。しかしながら、本発明の主要な構成は一般の磁気記録媒体の磁気記録層に適用が可能であり、固形基板上に垂直磁気記録層を有する媒体に対して使用でき、本発明の適用範囲をディスク状回転媒体に限るものではない。   Here, a configuration in which the present invention is applied to an HDD disk-shaped medium will be described. In this case, as shown in FIG. 8, the magnetic recording medium 81 is read and written by a magnetic head 83, a magnetic head driving unit 84 for moving the magnetic head 83 to a desired recording position, a disk-like magnetic recording medium 81 by a motor, and the like. Can be incorporated into an HDD device including a magnetic recording medium driving unit 82 that rotates and a signal processing unit 85. However, the main configuration of the present invention can be applied to a magnetic recording layer of a general magnetic recording medium, and can be used for a medium having a perpendicular magnetic recording layer on a solid substrate. It is not limited to a rotating medium.

基板1はガラス、アルミニウム、カーボン基板やプラスチック基板、Si基板などからなり上部の各層を加持するものである。なお、基板は、磁気記録層5への信号の記録、同層からの磁気信号の再生が良好に行える機械特性を備えるものであれば他の材質を用いても良い。   The substrate 1 is made of glass, aluminum, a carbon substrate, a plastic substrate, a Si substrate, etc., and holds the upper layers. Other materials may be used for the substrate as long as they have mechanical characteristics that allow good recording of signals on the magnetic recording layer 5 and reproduction of magnetic signals from the same layer.

下地層2は、基板1上に軟磁性裏打ち層3以降の各層を構成する上で基板1の表面あれ等の影響を除去するため、酸素・水分などから上層の各層を保護するため、また基板1の硬度補強、上層との密着性向上のために設けられる。下地層2は、以上の目的を達成するものであればその材料、膜厚などは自由に取れる。一般にはNiPなどをめっき法などで基板1上に数ナノメートルから数百ナノメートル厚で作成される。さらに軟磁性裏打ち層3の磁気特性を制御する効果をもたせてもよい。   The underlayer 2 is used to protect the upper layers from oxygen, moisture, etc. in order to remove the influence of the surface roughness of the substrate 1 and so on when the layers after the soft magnetic backing layer 3 are formed on the substrate 1. 1 for reinforcing the hardness and improving the adhesion with the upper layer. As long as the underlayer 2 achieves the above object, its material, film thickness, etc. can be freely taken. In general, NiP or the like is formed with a thickness of several nanometers to several hundred nanometers on the substrate 1 by a plating method or the like. Furthermore, an effect of controlling the magnetic characteristics of the soft magnetic backing layer 3 may be provided.

軟磁性裏打ち層3は磁気記録媒体へ記録磁気ヘッドより発生する磁界で情報書き込みを行う際に、磁気記録層5内で磁束が収斂し磁界強度を強めるとともに記録膜面垂直方向へ磁界の方向が揃う目的で設けられる。特に垂直磁気記録用のモノポール記録磁気ヘッドを用いて、記録磁気ヘッドの記録用主磁極(モノポール)、軟磁性裏打ち層3、記録磁気ヘッドの副磁極で磁束の還流を生じ閉磁回路を構成することで良好な磁気記録がなされる。磁束を収斂するために高透磁率な材料例えばNiFe合金(パーマロイ)などやFeTaC、CoZrNbなどのアモルファス軟磁性材料が使用できるが、上層の膜材料との成膜上の整合から他の高透磁率材料を用いてもよい。また軟磁性裏打ち層3内での磁壁の移動によるスパイクノイズの防止を目的に多層構成、反強磁性磁性材の利用、配向制御などを行ってもよい。膜厚はほぼ100ナノメートル以下になると磁束収斂の効果が低下するが、厚すぎると生産性や媒体耐久性が劣化するため、数百ナノメートルから数ミクロン程度をとることが好ましい。   The soft magnetic underlayer 3 converges magnetic flux in the magnetic recording layer 5 to increase the magnetic field strength and writes the magnetic field in the direction perpendicular to the recording film surface when information is written to the magnetic recording medium by the magnetic field generated by the recording magnetic head. It is provided for the purpose of alignment. In particular, using a monopole recording magnetic head for perpendicular magnetic recording, a closed magnetic circuit is formed by generating magnetic flux reflux at the recording magnetic pole (monopole) of the recording magnetic head, the soft magnetic underlayer 3, and the auxiliary magnetic pole of the recording magnetic head. As a result, good magnetic recording is performed. High magnetic permeability materials such as NiFe alloy (Permalloy) and amorphous soft magnetic materials such as FeTaC and CoZrNb can be used for converging magnetic flux, but other high magnetic permeability due to alignment with the upper film material. Materials may be used. Further, for the purpose of preventing spike noise due to the movement of the domain wall in the soft magnetic backing layer 3, a multilayer structure, use of an antiferromagnetic magnetic material, orientation control, and the like may be performed. When the film thickness is about 100 nanometers or less, the effect of magnetic flux convergence is reduced. However, when the film thickness is too thick, productivity and medium durability are deteriorated. Therefore, it is preferable to take about several hundred nanometers to several microns.

非磁性下地層4は軟磁性裏打ち層3と磁気記録層5の磁気的結合を制御する目的と、磁気記録層5成膜時の配向制御などの目的で設けられる。
磁気記録層5は膜面垂直方向に記録情報信号に応じて磁化の方向を記録する記録膜である。本発明の特徴は主に磁気記録層5の構成にあるため、後に磁気記録層5の構成に関して図2を用いて説明する。
The nonmagnetic underlayer 4 is provided for the purpose of controlling the magnetic coupling between the soft magnetic underlayer 3 and the magnetic recording layer 5 and for the purpose of controlling the orientation during the formation of the magnetic recording layer 5.
The magnetic recording layer 5 is a recording film that records the direction of magnetization in accordance with the recording information signal in the direction perpendicular to the film surface. Since the feature of the present invention is mainly in the configuration of the magnetic recording layer 5, the configuration of the magnetic recording layer 5 will be described later with reference to FIG.

保護層6は上層の潤滑層7や外気、媒体表面への外部からの衝撃などから磁気記録層5を保護する目的でカーボン、特にダイヤモンドライクカーボン(DLC)を成膜して作成される。   The protective layer 6 is formed by depositing carbon, particularly diamond-like carbon (DLC), for the purpose of protecting the magnetic recording layer 5 from the upper lubricating layer 7, the outside air, and external impact on the medium surface.

潤滑層7は浮上磁気ヘッドによる記録再生のため、媒体表面と浮上磁気ヘッドの潤滑性向上のためのもので通常のHDD媒体で利用されるもの、たとえばPFPE(パーフルオロポリエーテル)等が使用できる。   The lubricating layer 7 is used for improving the lubricity of the medium surface and the flying magnetic head for recording and reproduction by the flying magnetic head, and can be used for ordinary HDD media, such as PFPE (perfluoropolyether). .

記録時には潤滑層7表面上の浮上型磁気記録ヘッドより本垂直磁気媒体へほぼ媒体面垂直方向の記録磁界を印加する。磁気記録ヘッドはモノポール型ヘッドと言われるものが記録磁界が収斂し記録磁界を効率的に磁気記録層5へ印加できるため好ましい。浮上型磁気記録ヘッドは潤滑層7表面上を十数ナノメートルのフライングハイトで浮上滑走し、主磁極より本垂直磁気媒体のほぼ垂直方向に磁界を発生する。発生する磁界は磁気記録ヘッド−潤滑層7表面間の間隔、潤滑層7、保護層6を通過し磁気記録層5内の記録部の磁化を所定の記録方向(媒体面垂直の上下方向の何れか)に反転させ、非磁性下地層4を通って軟磁性裏打ち層3へ達する。軟磁性裏打ち層3の高透磁率のため膜面に平行となった磁界は、磁気記録ヘッドヘッド後方で非磁性下地層4、磁気記録層5、保護層6、潤滑層7を横断して磁気記録ヘッドの主磁極後方の副磁極へ達する。   At the time of recording, a recording magnetic field in the direction perpendicular to the medium surface is applied from the floating magnetic recording head on the surface of the lubricating layer 7 to the perpendicular magnetic medium. A magnetic recording head called a monopole head is preferable because the recording magnetic field converges and the recording magnetic field can be efficiently applied to the magnetic recording layer 5. The flying magnetic recording head floats and slides on the surface of the lubricant layer 7 with a flying height of several tens of nanometers, and generates a magnetic field from the main pole in a direction substantially perpendicular to the perpendicular magnetic medium. The generated magnetic field passes through the gap between the magnetic recording head and the surface of the lubricating layer 7, the lubricating layer 7, and the protective layer 6, and changes the magnetization of the recording portion in the magnetic recording layer 5 in a predetermined recording direction (up and down direction perpendicular to the medium surface). To the soft magnetic backing layer 3 through the nonmagnetic underlayer 4. The magnetic field parallel to the film surface due to the high magnetic permeability of the soft magnetic underlayer 3 crosses the nonmagnetic underlayer 4, the magnetic recording layer 5, the protective layer 6, and the lubricating layer 7 behind the magnetic recording head. It reaches the sub magnetic pole behind the main magnetic pole of the recording head.

図2は本発明を実施する第一の実施形態に於ける磁気記録層の構成を示す図である。図2中5は図1と同様に磁気記録層を表す。22は磁性領域、21は各磁性領域22を磁気的に分離する非磁性材、23は磁性領域22を構成する軟磁性層、23は磁性領域22を構成する非磁性層、25は磁性領域22を構成する硬磁性層である。本発明の本実施形態に関わる磁性領域22の特徴は、少なくとも磁気記録層面内方向に磁性領域22の径方向に内・外に渡って二層以上の磁性層とそれらの間に非磁性層24を設けた構成とし、磁性層はそれぞれに軟磁性層23、硬磁性層25から構成される。また本発明に関わる複数の磁性領域22の特徴は磁気記録層面方向に磁気的に分断されて存在するところにある。   FIG. 2 is a diagram showing the configuration of the magnetic recording layer in the first embodiment for carrying out the present invention. In FIG. 2, 5 denotes a magnetic recording layer as in FIG. 22 is a magnetic region, 21 is a nonmagnetic material that magnetically separates each magnetic region 22, 23 is a soft magnetic layer constituting the magnetic region 22, 23 is a nonmagnetic layer constituting the magnetic region 22, and 25 is a magnetic region 22. Is a hard magnetic layer. The magnetic region 22 according to this embodiment of the present invention is characterized by at least two magnetic layers extending inward and outward in the radial direction of the magnetic region 22 in the in-plane direction of the magnetic recording layer and the nonmagnetic layer 24 therebetween. The magnetic layers are composed of a soft magnetic layer 23 and a hard magnetic layer 25, respectively. A feature of the plurality of magnetic regions 22 according to the present invention is that they are magnetically separated in the direction of the magnetic recording layer surface.

本発明を実施する第一の形態は硬磁性層25を内径とする該円柱の磁性体構造の外径に沿って非磁性層24を有し、さらにその外径に沿って磁気記録層5面内方向に軟磁性層23を有するものである。なお、磁気記録層面内方向とは、磁気記録層の膜表面に対して平行な任意の方向を示し、例えば図2の矢印8で表される方向である。   The first embodiment for carrying out the present invention has a nonmagnetic layer 24 along the outer diameter of the cylindrical magnetic body structure having the hard magnetic layer 25 as an inner diameter, and further has a magnetic recording layer 5 surface along the outer diameter. The soft magnetic layer 23 is provided in the inward direction. The in-plane direction of the magnetic recording layer indicates an arbitrary direction parallel to the film surface of the magnetic recording layer and is, for example, a direction represented by an arrow 8 in FIG.

本発明の磁性領域を構成する磁性層は図2の硬磁性層25、軟磁性層23の二層に限らず硬磁性材、軟磁性材の多層の構成とすることが可能である。本発明の特徴は磁性領域内の磁性材を、磁性記録層面内方向に硬磁性材からなる硬磁性層、軟磁性材からなる軟磁性層の多層の構造とし、硬磁性材層と軟磁性材層の境界に非磁性材の層を設けることである。   The magnetic layer constituting the magnetic region of the present invention is not limited to the two layers of the hard magnetic layer 25 and the soft magnetic layer 23 shown in FIG. 2, and a multilayer structure of hard magnetic material and soft magnetic material can be used. A feature of the present invention is that the magnetic material in the magnetic region has a multilayer structure of a hard magnetic layer made of a hard magnetic material and a soft magnetic layer made of a soft magnetic material in the in-plane direction of the magnetic recording layer, and the hard magnetic material layer and the soft magnetic material It is to provide a nonmagnetic material layer at the boundary of the layers.

多層構成をとり各層での磁気特性を変化させることにより、磁性領域内の磁気特性を調整できるという利点を有する。ただし硬磁性材層、軟磁性材層を多層に構成する場合には作成プロセスが複雑になり、またその境界ごとに非磁性層を設けるため、磁性領域全体の径が大きくなり、高密度化には不利な構成となる。   By taking a multilayer structure and changing the magnetic characteristics in each layer, there is an advantage that the magnetic characteristics in the magnetic region can be adjusted. However, when the hard magnetic material layer and soft magnetic material layer are composed of multiple layers, the production process becomes complicated, and a nonmagnetic layer is provided at each boundary. Is disadvantageous.

軟磁性層、硬磁性層の磁気異方性エネルギー密度、飽和磁化は各層内で場所による分布をもっても良い。
本発明による軟磁性層23、硬磁性層25の違いは該当層の平均磁気異方性エネルギー密度の大きさによる。本発明による軟磁性層とは該当層の平均磁気異方性エネルギー密度が硬磁性層の平均磁気異方性エネルギー密度よりも小さいものをいう。なお、平均磁気異方性エネルギーとは、軟磁性層23及び/または硬磁性層25を多層の膜からなる多層構成とした場合、あるいは軟磁性層23及び/または硬磁性層25の各層内で磁気異方性エネルギー密度が場所による分布を持つ場合に軟磁性層23及び/または硬磁性層25ごとにとった磁気異方性エネルギー密度の平均値を意味する。
The magnetic anisotropy energy density and saturation magnetization of the soft magnetic layer and the hard magnetic layer may have a distribution depending on the location in each layer.
The difference between the soft magnetic layer 23 and the hard magnetic layer 25 according to the present invention depends on the average magnetic anisotropy energy density of the corresponding layer. The soft magnetic layer according to the present invention means a layer in which the average magnetic anisotropy energy density of the corresponding layer is smaller than the average magnetic anisotropy energy density of the hard magnetic layer. The average magnetic anisotropy energy means that the soft magnetic layer 23 and / or the hard magnetic layer 25 has a multilayer structure composed of multiple layers, or in each layer of the soft magnetic layer 23 and / or the hard magnetic layer 25. It means the average value of the magnetic anisotropy energy density taken for each of the soft magnetic layer 23 and / or the hard magnetic layer 25 when the magnetic anisotropy energy density has a distribution depending on the location.

平均磁気異方性エネルギー密度、平均飽和磁化の違いは軟磁性層、硬磁性層を構成材料の構成元素の違いによってもよい。また平均磁気異方性エネルギー密度、平均飽和磁化の違いは軟磁性層、硬磁性層を構成材料の構成元素の組成比の違いによってもよい。また平均磁気異方性エネルギー、平均飽和磁化の違いは軟磁性層、硬磁性層を構成材料の結晶構造の違いによってもよい。さらに平均磁気異方性エネルギー密度、平均飽和磁化の違いは以上の組み合わせによって軟磁性層、硬磁性層間に生じせしめてもよい。   The difference in average magnetic anisotropy energy density and average saturation magnetization may be due to the difference in constituent elements of the constituent materials of the soft magnetic layer and the hard magnetic layer. The difference between the average magnetic anisotropy energy density and the average saturation magnetization may be due to the difference in the composition ratio of the constituent elements of the soft magnetic layer and the hard magnetic layer. The difference in average magnetic anisotropy energy and average saturation magnetization may be due to the difference in crystal structure of the constituent materials of the soft magnetic layer and the hard magnetic layer. Further, the difference between the average magnetic anisotropy energy density and the average saturation magnetization may be caused between the soft magnetic layer and the hard magnetic layer by the above combination.

図5を用いて本発明による磁気記録層5付近での反磁界発生の抑制効果を説明する。図5(a)は非磁性材に埋め込まれた磁性領域が硬磁性材料のみから構成された磁気記録媒体の1つの磁性領域の周囲の模式断面図である。図5(b)は本発明に於ける1つの磁性領域22の磁化の配置とその周囲の模式断面図である。23,24,25は図2と同様に軟磁性層23、非磁性層24、硬磁性層25を表し、26は磁性領域22によって発生する磁界の磁束線を模式的にあらわしたものである。図5(a)、(b)ともに磁気情報を担う硬磁性材部分の硬磁性層25は上向きに磁化されている場合を示す。   The effect of suppressing the generation of the demagnetizing field near the magnetic recording layer 5 according to the present invention will be described with reference to FIG. FIG. 5A is a schematic cross-sectional view around one magnetic region of a magnetic recording medium in which a magnetic region embedded in a nonmagnetic material is composed only of a hard magnetic material. FIG. 5B is a schematic cross-sectional view of the arrangement of the magnetization of one magnetic region 22 and its surroundings in the present invention. 2, 24, and 25 represent the soft magnetic layer 23, the nonmagnetic layer 24, and the hard magnetic layer 25 as in FIG. 2, and 26 schematically represents the magnetic flux lines of the magnetic field generated by the magnetic region 22. FIGS. 5A and 5B both show the case where the hard magnetic layer 25 of the hard magnetic material portion that carries magnetic information is magnetized upward.

図5(a)の磁気記録媒体では磁性領域が一様に上向きに磁化されているため、当該領域の磁気記録層5の上下表面に磁極が励起され、これによる反磁界が磁気記録層5の表面付近に発生する。この反磁界は一般に磁気記録層5の面方向には比較的広い領域まで減衰することがないため、一般にある磁性領域は周囲の広範囲に存在する他の磁性領域からの反磁界を受けることとなる。たとえばある磁性領域の磁化の向きが周囲の磁性領域からの反磁界の総和の方向と反平行にある場合には当該磁性領域の磁化の向きが反転しやすくなり、記録の保持能力が低くなる。また記録磁界の印加時にも磁化方向の反転が起こりやすくなる。一方当該磁性領域の磁化の向きが周囲の磁性領域からの反磁界の総和の方向と平行にある場合には記録磁界の印加時にも磁化方向の反転が生じにくくなる。当該磁性領域で感じる反磁界の大きさは周囲の磁性領域の各々の磁化の方向によって決まるため、周囲の広範囲に存在する他の磁性領域の各々の磁化の向きの影響を受ける。   In the magnetic recording medium of FIG. 5A, the magnetic region is uniformly magnetized upward, so that the magnetic poles are excited on the upper and lower surfaces of the magnetic recording layer 5 in the region, and the demagnetizing field is thereby generated in the magnetic recording layer 5. Occurs near the surface. Since this demagnetizing field generally does not attenuate to a relatively wide area in the plane direction of the magnetic recording layer 5, in general, a certain magnetic area receives a demagnetizing field from other surrounding magnetic areas. . For example, when the magnetization direction of a certain magnetic region is antiparallel to the direction of the sum of the demagnetizing fields from the surrounding magnetic regions, the magnetization direction of the magnetic region is easily reversed, and the recording retention capability is lowered. In addition, the magnetization direction is easily reversed when a recording magnetic field is applied. On the other hand, when the magnetization direction of the magnetic region is parallel to the direction of the total demagnetizing field from the surrounding magnetic regions, the magnetization direction is not easily reversed even when a recording magnetic field is applied. Since the magnitude of the demagnetizing field felt in the magnetic region is determined by the direction of magnetization of each surrounding magnetic region, it is influenced by the direction of magnetization of each of the other magnetic regions existing in a wide range.

そのため、記録時には記録磁気ヘッドの印加磁界のほか、このような周囲の磁性領域の各々の磁化の方向による統計的な反磁界の外乱を受けて記録ノイズを発生する。また非記録時にもこのような反磁界のばらつきによって記録保持能力のバラツキが生じてしまう。   For this reason, during recording, recording noise is generated due to the disturbance of the demagnetizing field due to the magnetization direction of each of the surrounding magnetic regions in addition to the magnetic field applied to the recording magnetic head. In addition, even during non-recording, variations in the record holding ability are caused by such variations in the demagnetizing field.

一方、本発明では、図5(b)に示す様に、磁性領域22が軟磁性層23、非磁性層24、硬磁性層25からなり、このうち軟磁性層23と硬磁性層25の磁化方向は磁気記録層5面に垂直に互いに反平行となっている。このため軟磁性層23、硬磁性層25の各磁化によって発生する反磁界は相殺し、磁力線26は軟磁性層23、硬磁性層25の磁気記録層5の表面で還流している。このため磁性領域22が発生する反磁界は磁気記録層5の膜面方向では距離に対して急激減少する。このため、ある磁性領域に着目した時に、当該磁性領域より遠方の磁性領域から発生する反磁界の影響が減少する。その結果当該磁性領域にかかる反磁界のバイアスはその値自体が小さいものとなると同時に影響をあたえる周囲の磁性領域の範囲が小さくなるため、その値のバラツキが小さくなる。これにより記録時に発生する記録ノイズが抑制される。また非記録時にも磁性領域22にかかる反磁界のバイアスもその値とバラツキが小さいため記録保持能力のバラツキは押さえられ、記録媒体全体での記録保持が均一化する。   On the other hand, in the present invention, as shown in FIG. 5B, the magnetic region 22 is composed of a soft magnetic layer 23, a nonmagnetic layer 24, and a hard magnetic layer 25, and among these, the magnetization of the soft magnetic layer 23 and the hard magnetic layer 25. The directions are perpendicular to the surface of the magnetic recording layer 5 and antiparallel to each other. For this reason, the demagnetizing fields generated by the respective magnetizations of the soft magnetic layer 23 and the hard magnetic layer 25 cancel each other, and the magnetic force lines 26 are refluxed on the surfaces of the magnetic recording layer 5 of the soft magnetic layer 23 and the hard magnetic layer 25. Therefore, the demagnetizing field generated by the magnetic region 22 decreases rapidly with respect to the distance in the film surface direction of the magnetic recording layer 5. For this reason, when focusing on a certain magnetic region, the influence of the demagnetizing field generated from the magnetic region far from the magnetic region is reduced. As a result, the value of the demagnetizing field bias applied to the magnetic region becomes small, and at the same time, the range of the surrounding magnetic region that affects the magnetic region becomes small. This suppresses recording noise that occurs during recording. Further, since the demagnetizing field bias applied to the magnetic region 22 is small in variation and non-recording, the variation in the recording retention capability is suppressed, and the recording retention in the entire recording medium is made uniform.

また再生信号となる硬磁性層25の磁化からの磁界のうち磁性領域22上方向での強度に関しては軟磁性層23の磁化からの磁界により相殺されて強度は落ちるものの、硬磁性層25真上では相殺分が相対的に少なくなる。そのため、磁気記録層5表面での再生磁界の平面的な強度分布はよりシャープなものとなり、再生時の再生磁界分布の平面解像度が向上することとなる。このため該構造では磁気信号再生にも再生磁界分布のエッジ検出が容易となり結果的に再生信号品質を向上させる効果を有する。   Of the magnetic field from the magnetization of the hard magnetic layer 25 that becomes the reproduction signal, the intensity in the upper direction of the magnetic region 22 is offset by the magnetic field from the magnetization of the soft magnetic layer 23 and the intensity drops, but the intensity just drops. Then the offset is relatively small. For this reason, the planar intensity distribution of the reproducing magnetic field on the surface of the magnetic recording layer 5 becomes sharper, and the planar resolution of the reproducing magnetic field distribution during reproduction is improved. For this reason, in this structure, the edge of the reproduction magnetic field distribution can be easily detected for magnetic signal reproduction, and as a result, the reproduction signal quality is improved.

特に硬磁性層25と反平行の磁化を持つ軟磁性層23からの磁界により再生信号強度を劣化させない為には軟磁性層の磁気記録層面内方向の厚みを無造作に厚くとることは好ましくない。この厚みは軟磁性層23の磁化の大きさ等にもより、硬磁性層25の磁気記録層5面での断面積と飽和磁化Msの大きさの積、及び軟磁性層23の磁気記録層5面での断面積と飽和磁化Msの大きさの積、が各々磁気記録層5表面に励起する磁極の大きさとほぼ同じになる。磁性領域22全体として再生信号となる硬磁性層25の磁化方向による磁界を再生ヘッドで検出する。そのためには、軟磁性層23の厚みは、軟磁性層23の磁気記録層5面での断面積と飽和磁化Msの大きさの積が硬磁性層25の磁気記録層5面での断面積と飽和磁化Msの大きさの積の半分以下となることが好ましい。軟磁性層23の厚み及び飽和磁化Msを大きくすることで反磁界抑制効果は高まるが、再生信号強度は低くなる。好ましくは軟磁性層23の磁気記録層5面での断面積と飽和磁化Msの大きさの積(A)と硬磁性層25の磁気記録層5面での断面積と飽和磁化Msの大きさの積(B)の比は、A:B=1:10から1:2程度となることが好ましい。   In particular, it is not preferable to increase the thickness of the soft magnetic layer in the in-plane direction of the magnetic recording layer in order to prevent the reproduction signal intensity from being deteriorated by the magnetic field from the soft magnetic layer 23 having antiparallel magnetization to the hard magnetic layer 25. This thickness depends on the magnitude of the magnetization of the soft magnetic layer 23, etc., and the product of the cross-sectional area of the hard magnetic layer 25 on the surface of the magnetic recording layer 5 and the magnitude of the saturation magnetization Ms, and the magnetic recording layer of the soft magnetic layer 23. The product of the cross-sectional area at the five planes and the magnitude of the saturation magnetization Ms is approximately the same as the size of the magnetic pole excited on the surface of the magnetic recording layer 5. A magnetic field due to the magnetization direction of the hard magnetic layer 25 that is a reproduction signal for the entire magnetic region 22 is detected by the reproduction head. For this purpose, the thickness of the soft magnetic layer 23 is set so that the product of the cross-sectional area of the soft magnetic layer 23 on the surface of the magnetic recording layer 5 and the magnitude of the saturation magnetization Ms is the cross-sectional area of the hard magnetic layer 25 on the surface of the magnetic recording layer 5. And half the product of the magnitudes of the saturation magnetization Ms. By increasing the thickness of the soft magnetic layer 23 and the saturation magnetization Ms, the demagnetizing field suppressing effect is enhanced, but the reproduction signal intensity is decreased. Preferably, the product (A) of the cross-sectional area of the soft magnetic layer 23 on the surface of the magnetic recording layer 5 and the magnitude of the saturation magnetization Ms, and the cross-sectional area of the hard magnetic layer 25 on the surface of the magnetic recording layer 5 and the magnitude of the saturation magnetization Ms. The ratio of the product (B) is preferably about A: B = 1: 10 to 1: 2.

本発明の磁性領域22の第一の特徴は、記録保持時に磁性領域22内に互いに反平行の磁化方向をもつ領域を、平均磁気異方性エネルギー密度が異なる軟磁性層23と硬磁性層25とから構成する点にある。このような構成から生じる本発明の磁性領域22の作用について以下に説明する。   The first feature of the magnetic region 22 of the present invention is that a region having anti-parallel magnetization directions in the magnetic region 22 at the time of recording and holding is divided into a soft magnetic layer 23 and a hard magnetic layer 25 having different average magnetic anisotropy energy densities. And is composed of The operation of the magnetic region 22 of the present invention resulting from such a configuration will be described below.

図6を用いて記録時の磁性領域22の記録時の磁化反転の様子について説明する。図6(a)は記録磁界印加前の磁気記録層5中の1つの磁性領域22に於ける磁化の様子を模式的にあらわしたものである。ここでは該磁性領域22は図の上方向に磁化方向が向くように記録されているとする。これに対応して磁性領域22の内側にある硬磁性層25は図の上方向に、外側にある軟磁性層23は図の下方向に磁化方向が向いている。硬磁性層25と軟磁性層23は互いに反平行の磁化方向を向くことで磁気記録層表面に発生する磁極を打ち消しあって、磁気記録層表面付近での反磁界の発生を防いでいる。   The state of magnetization reversal during recording of the magnetic region 22 during recording will be described with reference to FIG. FIG. 6A schematically shows the state of magnetization in one magnetic region 22 in the magnetic recording layer 5 before application of the recording magnetic field. Here, it is assumed that the magnetic region 22 is recorded so that the magnetization direction is upward in the figure. Correspondingly, the magnetization direction of the hard magnetic layer 25 inside the magnetic region 22 is directed upward in the figure, and the soft magnetic layer 23 located outside is oriented downward in the figure. The hard magnetic layer 25 and the soft magnetic layer 23 face each other in anti-parallel magnetization directions, thereby canceling out magnetic poles generated on the surface of the magnetic recording layer, thereby preventing the generation of a demagnetizing field near the surface of the magnetic recording layer.

磁性領域22に磁気記録を行うために不図示の記録ヘッドにより媒体の媒体面垂直方向へ記録磁界が印加される。ここで始めに記録された方向と逆方向、図の下方向に記録磁界Hextが印加されたとすると、この記録磁界Hextによって図6(b)に示すように硬磁性層25と軟磁性層23の磁化方向が平行になり、ともに図の下方向に磁化が向く。   In order to perform magnetic recording on the magnetic region 22, a recording magnetic field is applied in a direction perpendicular to the medium surface of the medium by a recording head (not shown). Here, assuming that a recording magnetic field Hext is applied in the direction opposite to the direction recorded first, and in the downward direction in the figure, the recording magnetic field Hext causes the hard magnetic layer 25 and the soft magnetic layer 23 to move as shown in FIG. The magnetization directions are parallel and the magnetization is directed downward in the figure.

磁気ヘッドからの記録磁界Hextがなくなった時点で図6(c)に示す配置に落ち着く。硬磁性層25は磁気異方性エネルギー密度が高いため磁化方向を保持する。これに対して軟磁性層23は硬磁性層25に比べ磁気異方性エネルギー密度が低いため、硬磁性層25によって発生する反磁界によって磁化方向が反転し、硬磁性層25に磁化方向と反平行の方向を向く事となる。その結果、図6(a)とは逆方向に、磁性領域22の内側にある硬磁性層25は図の下方向に、外側にある軟磁性層23は図の上方向に磁化方向が向き、硬磁性層25と軟磁性層23は互いに反平行の磁化方向を向く。このことで磁気記録層表面に発生する磁極を打ち消し合い磁気記録層表面に発生する反磁界は小さい値になる。   When the recording magnetic field Hext from the magnetic head disappears, the arrangement shown in FIG. Since the hard magnetic layer 25 has a high magnetic anisotropy energy density, it maintains the magnetization direction. On the other hand, since the soft magnetic layer 23 has a lower magnetic anisotropy energy density than the hard magnetic layer 25, the magnetization direction is reversed by the demagnetizing field generated by the hard magnetic layer 25, and the hard magnetic layer 25 is opposite to the magnetization direction. It will face the parallel direction. As a result, the magnetization direction of the hard magnetic layer 25 on the inner side of the magnetic region 22 is directed downward in the figure, and the soft magnetic layer 23 on the outer side is oriented upward in the figure in the opposite direction to FIG. The hard magnetic layer 25 and the soft magnetic layer 23 face anti-parallel magnetization directions. This cancels out the magnetic poles generated on the surface of the magnetic recording layer, and the demagnetizing field generated on the surface of the magnetic recording layer becomes a small value.

記録ヘッドからの記録磁界の方向が図6(a)に示す初期の磁性領域22の磁化方向と同じ方向に印加される場合は、例えば図6に従って図の上方向に記録磁界が印加されると、印加記録磁界により硬磁性層25と軟磁性層23の磁化は平行に揃って図の上方向を向く。記録ヘッドからの印加磁界がなくなった後には同様に硬磁性層25と軟磁性層23の磁気異方性エネルギーの大きさの違いから軟磁性層23の磁化方向のみが反転して図6(a)の磁化方向の配置で安定する。その結果図6(a)に示す初期状態に落ち着き反平行を向いた硬磁性層25と軟磁性層23の磁化により磁気記録層5表面付近での反磁界の発生が抑制される。   When the direction of the recording magnetic field from the recording head is applied in the same direction as the magnetization direction of the initial magnetic region 22 shown in FIG. 6A, for example, when the recording magnetic field is applied in the upward direction according to FIG. Due to the applied recording magnetic field, the magnetizations of the hard magnetic layer 25 and the soft magnetic layer 23 are aligned in parallel and face upward in the figure. Similarly, after the magnetic field applied from the recording head disappears, only the magnetization direction of the soft magnetic layer 23 is reversed due to the difference in magnitude of magnetic anisotropy energy between the hard magnetic layer 25 and the soft magnetic layer 23, as shown in FIG. ) Stable in the magnetization direction arrangement. As a result, generation of a demagnetizing field in the vicinity of the surface of the magnetic recording layer 5 is suppressed by the magnetization of the hard magnetic layer 25 and the soft magnetic layer 23 which are settled in the initial state shown in FIG.

以上のように本発明においては磁気異方性エネルギー密度が高い硬磁性層25の周囲に磁気異方性エネルギー密度の低い軟磁性層23を具備するため、その磁気異方性エネルギーの差によって軟磁性層23の磁化方向が自然に硬磁性層25の磁化方向と反平行方向を向く。このため、記録印加磁界などの外部手段を用いて軟磁性層23の磁化の向きを硬磁性層25の磁化の向きと反平行にそろえる必要がなく、外部からの磁界が印加されていない場合には自動的に図に示したような反平行の磁化配置が得られる。これにより記録ヘッドへの記録信号の変更や、外部手段をもちいた従来とは異なる記録方式をとることなく自動的に図に示したような反平行の磁化配置が磁性領域22内に構成される。これにより磁気記録層5表面付近での反磁界の発生が抑制されるという利点を有している。   As described above, in the present invention, since the soft magnetic layer 23 having a low magnetic anisotropy energy density is provided around the hard magnetic layer 25 having a high magnetic anisotropy energy density, the soft magnetic layer 23 having a low magnetic anisotropy energy density is provided. The magnetization direction of the magnetic layer 23 is naturally antiparallel to the magnetization direction of the hard magnetic layer 25. For this reason, it is not necessary to align the magnetization direction of the soft magnetic layer 23 antiparallel to the magnetization direction of the hard magnetic layer 25 using external means such as a recording applied magnetic field, and when no external magnetic field is applied. Automatically obtains an antiparallel magnetization arrangement as shown in the figure. As a result, an antiparallel magnetization arrangement as shown in the figure is automatically formed in the magnetic region 22 without changing the recording signal to the recording head or using a recording method different from the conventional one using external means. . This has the advantage that generation of a demagnetizing field near the surface of the magnetic recording layer 5 is suppressed.

本発明の磁性領域22の第二の特徴は、記録保持時に互い反平行の磁化方向を持つ軟磁性層23と硬磁性層25の間に磁気的結合、より正確には磁気交換結合を断つ非磁性層24を具備する点にある。   The second feature of the magnetic region 22 of the present invention is that the magnetic coupling, more precisely the magnetic exchange coupling between the soft magnetic layer 23 and the hard magnetic layer 25 which have antiparallel magnetization directions at the time of recording and holding is cut off. The magnetic layer 24 is provided.

この非磁性層24の効果について図を用いて説明する。図7(a)は軟磁性層23と硬磁性層25間に非磁性層24を設けない構成で軟磁性層23と硬磁性層25の磁化方向を反平行にした場合の両層間接合部分付近での磁化方向分布の模式図である。軟磁性層23、硬磁性層25内の磁化は強磁性体の磁気的交換結合相互作用の働きで隣接する磁化同士の方向を揃えようとする。この交換結合相互作用により、磁気異方性エネルギー密度の小さい軟磁性層23の、特に硬磁性層25との境界付近では磁化の方向が硬磁性層25の磁化の方向に揃おうとする。このため軟磁性層23と硬磁性層25の境界で直ちに磁化方向を反平行にすることが困難となり、軟磁性層23に硬磁性層25の磁化方向と反平行の磁化方向をもつ領域を有するためには境界面から磁化の方向が連続的に変化する遷移領域が必要となる。この遷移領域は磁壁と呼ばれこの磁壁の厚みはほほ磁性体の磁気特性によって見積もることができる。   The effect of the nonmagnetic layer 24 will be described with reference to the drawings. FIG. 7A shows the vicinity of the interlayer junction when the nonmagnetic layer 24 is not provided between the soft magnetic layer 23 and the hard magnetic layer 25 and the magnetization directions of the soft magnetic layer 23 and the hard magnetic layer 25 are antiparallel. It is a schematic diagram of the magnetization direction distribution in FIG. The magnetization in the soft magnetic layer 23 and the hard magnetic layer 25 tends to align the directions of adjacent magnetizations by the magnetic exchange coupling interaction of the ferromagnetic material. Due to this exchange coupling interaction, the magnetization direction of the soft magnetic layer 23 having a small magnetic anisotropy energy density, particularly in the vicinity of the boundary with the hard magnetic layer 25, tends to be aligned with the magnetization direction of the hard magnetic layer 25. For this reason, it is difficult to immediately make the magnetization direction antiparallel at the boundary between the soft magnetic layer 23 and the hard magnetic layer 25, and the soft magnetic layer 23 has a region having a magnetization direction antiparallel to the magnetization direction of the hard magnetic layer 25. For this purpose, a transition region in which the direction of magnetization continuously changes from the boundary surface is required. This transition region is called a domain wall, and the thickness of the domain wall can be estimated from the magnetic properties of the almost magnetic material.

前述の式1に従って代表的な軟磁性材料に関して計算すれば、この磁壁厚みが約100nmから数μmになる。このため高密度記録用に磁性領域22を磁気記録層5の表面で数十nm程度の大きさをしなければならない場合に、この磁性領域22内に軟磁性層23を具備しようとする場合には、軟磁性層23の厚みが薄いため磁壁を作ることができずに軟磁性層23の磁化方向を硬磁性層25の磁化方向と反平行にすることは不可能となる。また、磁気記録層5の表面で100nm以上の磁性領域22に軟磁性層23を構成した場合でも軟磁性層23内の磁壁部分から発生する磁界は硬磁性層25からの磁界を相殺する効果が弱い。磁気記録層5の反磁界を抑制するためにはより一層の軟磁性層23厚を必要とするため、このような構成で反磁界抑制効果を得るには磁性領域22の大きさはサブミクロン程度のものとなり、高密度記録には適用できない。   If the calculation is performed for a typical soft magnetic material according to the above-described equation 1, the domain wall thickness is about 100 nm to several μm. For this reason, when the magnetic region 22 needs to have a size of about several tens of nanometers on the surface of the magnetic recording layer 5 for high-density recording, when the soft magnetic layer 23 is to be provided in the magnetic region 22. Since the thickness of the soft magnetic layer 23 is thin, a domain wall cannot be formed, and the magnetization direction of the soft magnetic layer 23 cannot be made antiparallel to the magnetization direction of the hard magnetic layer 25. Even when the soft magnetic layer 23 is formed in the magnetic region 22 of 100 nm or more on the surface of the magnetic recording layer 5, the magnetic field generated from the domain wall portion in the soft magnetic layer 23 has the effect of canceling the magnetic field from the hard magnetic layer 25. weak. In order to suppress the demagnetizing field of the magnetic recording layer 5, a further soft magnetic layer 23 is required. Therefore, in order to obtain the effect of suppressing the demagnetizing field with such a configuration, the size of the magnetic region 22 is approximately submicron. And cannot be applied to high-density recording.

さらにいえば、この磁壁の厚みは硬磁性材料でも10nm程度以上、異方性定数が従来の磁性体より一桁程度大きいといわれるFePt、FePdの規則化合金材料でも4nm程度以上の値となる。そのため、硬磁性層25内にも数nmから10nmの磁壁が生じる。このため硬磁性層25からの再生磁界が低下したり、硬磁性層25の記録保持能力を低下させる。   More specifically, the thickness of the domain wall is about 10 nm or more even for a hard magnetic material, and about 4 nm or more for an ordered alloy material of FePt and FePd whose anisotropy constant is said to be about an order of magnitude larger than that of a conventional magnetic material. Therefore, a domain wall of several nm to 10 nm is also generated in the hard magnetic layer 25. For this reason, the reproducing magnetic field from the hard magnetic layer 25 is reduced, and the record holding ability of the hard magnetic layer 25 is reduced.

これに対し図7(b)に示した本発明の構成では軟磁性層23と硬磁性層25間に非磁性層24を設けているため、軟磁性層23と硬磁性層25間に磁気的交換結合相互作用がはたらくことがない。このため軟磁性層23の磁化方向は非磁性層24との境界付近より、硬磁性層25の磁化方向とは(磁気的交換結合の観点からは)独立な方向を向くことができる。また、硬磁性層25の発生する磁界の作用を受け、良好に硬磁性層25の磁化方向と反平行の方向へ向くことができる。   On the other hand, in the configuration of the present invention shown in FIG. 7B, since the nonmagnetic layer 24 is provided between the soft magnetic layer 23 and the hard magnetic layer 25, the magnetic layer between the soft magnetic layer 23 and the hard magnetic layer 25 is magnetic. Exchange coupling interactions do not work. For this reason, the magnetization direction of the soft magnetic layer 23 can be made independent of the magnetization direction of the hard magnetic layer 25 (from the viewpoint of magnetic exchange coupling) from near the boundary with the nonmagnetic layer 24. In addition, the magnetic field generated by the hard magnetic layer 25 is affected, and the magnetic direction of the hard magnetic layer 25 can be favorably antiparallel.

非磁性層24の厚みは軟磁性層23と硬磁性層25の磁気的交換結合を断つことができれば良く、磁気的交換結合は基本的には磁性材料の原子間の相互作用で発生する近接相互作用であるため、原理的には境界に非磁性原子が数原子層存在すればよい。実際には作成上の便宜より1nm以上数nm以下の厚さがあればよく、非磁性層24を介さない場合の磁壁厚みに比較すると極端に薄い膜厚で作成できるため100nm以下の磁性領域22でも領域内に、数十nm厚みの軟磁性層23と硬磁性層25を充分構成できる。   The thickness of the nonmagnetic layer 24 is not limited as long as the magnetic exchange coupling between the soft magnetic layer 23 and the hard magnetic layer 25 can be broken, and the magnetic exchange coupling is basically caused by the interaction between atoms of the magnetic material. In principle, it is only necessary that several atomic layers of nonmagnetic atoms exist at the boundary. Actually, it is sufficient that the thickness is 1 nm or more and several nm or less for the convenience of preparation, and the magnetic region 22 having a thickness of 100 nm or less can be formed because it can be formed with an extremely thin film thickness compared with the thickness of the domain wall without the nonmagnetic layer 24. However, the soft magnetic layer 23 and the hard magnetic layer 25 having a thickness of several tens of nm can be sufficiently formed in the region.

以下、実施例を示し本発明をさらに具体的に説明する。
実施例1
本実施例は多孔質部材の多数の孔に硬磁性材を坎合することで略円柱状の硬磁性層25を作成し、多孔質部材の母材を除去し硬磁性層25の外側に非磁性層24、軟磁性層23を作成した後にその間を非磁性材で埋め込んで図2に示した実施形態を作成する。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
In this example, a hard magnetic layer 25 having a substantially cylindrical shape is formed by combining a hard magnetic material into a large number of holes in the porous member, and the base material of the porous member is removed to remove the hard magnetic layer 25 from the outside. After the magnetic layer 24 and the soft magnetic layer 23 are formed, the space between the magnetic layer 24 and the soft magnetic layer 23 is filled with a non-magnetic material to create the embodiment shown in FIG.

本実施例の主眼は主に磁気記録層5の構成に関するものであり、磁気記録層5の下部構造である基板1から軟磁性裏打ち層3まで、および上部構造の保護層6、潤滑層7は従来のHDD用垂直記録媒体と同様の作成方法で作成できる。また磁気記録層5の作成に関しては非磁性下地層4を磁気記録層5に対する下地として使用する場合があるため、以下の説明は主に磁気記録層5と非磁性下地層4に関して行う。   The main point of this embodiment is mainly related to the configuration of the magnetic recording layer 5. The substrate 1, which is the lower structure of the magnetic recording layer 5, the soft magnetic backing layer 3, the protective layer 6 and the lubricating layer 7 of the upper structure are as follows. It can be created by a production method similar to that of a conventional HDD perpendicular recording medium. Since the nonmagnetic underlayer 4 may be used as the underlayer for the magnetic recording layer 5 when the magnetic recording layer 5 is formed, the following description will be mainly made with respect to the magnetic recording layer 5 and the nonmagnetic underlayer 4.

始めに軟磁性裏打ち層3上に非磁性下地層4と後に磁気記録層5を構成する多孔質部材を作成する。これを多孔質部材作成工程と称する。次に多孔質部材の孔中に硬磁性層25を構成する硬磁性材料を坎合する。これを硬磁性材坎合工程と称する。次に多孔質部材の母材部分の一部を除去し硬磁性材料部分を露出させる。これを多孔質母材除去工程と称する。次に露出した硬磁性材部分の上に非磁性層24を構成する非磁性材を積層する。これを非磁性材被覆過程と称する。さらにこの非磁性材の上に軟磁性層23を構成する軟磁性材を積層する。これを軟磁性材被覆工程と称する。さらに磁性領域を構成する軟磁性材で包まれた硬磁性材料部分を非磁性材で埋め込む。これを非磁性材への埋め込み工程と称する。最後に表面部分を整形し磁気記録層5とする。これを磁気記録層表面整形工程と称する。   First, a porous member constituting the nonmagnetic underlayer 4 and later the magnetic recording layer 5 is formed on the soft magnetic backing layer 3. This is called a porous member creation step. Next, the hard magnetic material constituting the hard magnetic layer 25 is combined in the hole of the porous member. This is called a hard magnetic material combining step. Next, a part of the base material portion of the porous member is removed to expose the hard magnetic material portion. This is called a porous base material removing step. Next, a nonmagnetic material constituting the nonmagnetic layer 24 is laminated on the exposed hard magnetic material portion. This is called a nonmagnetic material coating process. Further, a soft magnetic material constituting the soft magnetic layer 23 is laminated on the nonmagnetic material. This is called a soft magnetic material coating step. Further, a hard magnetic material portion wrapped with a soft magnetic material constituting the magnetic region is embedded with a nonmagnetic material. This is referred to as a process of embedding in a nonmagnetic material. Finally, the surface portion is shaped to form the magnetic recording layer 5. This is called a magnetic recording layer surface shaping step.

上記硬磁性材は磁気異方性エネルギー密度が高い一般の硬磁性材料であればかまわないが、特にL10規則化構造をとるFePt、FePd、CoPt、CoPdの何れかを用いることで高い磁気異方性エネルギー密度を確保することができる。この場合には多孔質部材の孔中に該材料を坎合後、熱処理により該材料にL10規則化を進行させる工程を含むことが好ましい。   The hard magnetic material may be a general hard magnetic material having a high magnetic anisotropy energy density, but particularly high magnetic anisotropy by using any of FePt, FePd, CoPt, and CoPd having an L10 ordered structure. Sexual energy density can be secured. In this case, it is preferable to include a step of bringing the material into L10 ordering by heat treatment after the material is combined in the pores of the porous member.

上記軟磁性材は磁気異方性エネルギーが低く、飽和磁化Msが高い一般の軟磁性材料であればよく、NiFe合金(パーマロイ)などを用いることもできる。また硬磁性層25との同種の、FeまたはCo、PtまたはPdの成分をもち規則化せれていない金属材料を用いることで小さい磁気異方性エネルギー密度をもつ軟磁性層23を構成することもできる。   The soft magnetic material may be a general soft magnetic material having low magnetic anisotropy energy and high saturation magnetization Ms, and NiFe alloy (permalloy) or the like can also be used. Further, the soft magnetic layer 23 having a small magnetic anisotropy energy density may be formed by using a metal material having the same kind of Fe, Co, Pt, or Pd as the hard magnetic layer 25 and not being ordered. it can.

また上記非磁性は非磁性の材料であればかまわないが、本実施例ではメッキにより軟磁性層23を作成するため導電性がありメッキ時に触媒として使用できるPt、Pdなどの貴金属が好ましい。   The nonmagnetic material may be any nonmagnetic material, but in this embodiment, the soft magnetic layer 23 is formed by plating, and therefore, noble metals such as Pt and Pd that are conductive and can be used as a catalyst during plating are preferable.

以下に図3を用いて、各工程についてのより具体的に説明する。
始めに軟磁性裏打ち層3上に非磁性下地層4を作成する。非磁性下地層4は磁気記録層5が磁気記録層となるように配向制御の機能をもつことが好ましい。また非磁性材被覆工程において電解メッキ法を用いる際に非磁性下地層4を電極の一部として使用するため導電性が必要となる。
Hereinafter, each step will be described in more detail with reference to FIG.
First, the nonmagnetic underlayer 4 is formed on the soft magnetic backing layer 3. The nonmagnetic underlayer 4 preferably has an orientation control function so that the magnetic recording layer 5 becomes a magnetic recording layer. In addition, when the electroplating method is used in the nonmagnetic material coating step, the nonmagnetic underlayer 4 is used as a part of the electrode, so that conductivity is required.

一方で軟磁性材被覆過程で非磁性下地層4に直接軟磁性材が付着すると後に磁性領域間が磁気的結合を生じてしまい磁気記録層5の記録特性にとって好ましくない。このため非磁性下地層4に導電性をもたせ、軟磁性材被覆工程で電解メッキを行う際に多孔質母材除去工程での母材の除去に際して磁気記録層4付近の一部母材を残す必要がある。   On the other hand, if the soft magnetic material directly adheres to the non-magnetic underlayer 4 during the soft magnetic material coating process, the magnetic regions will be magnetically coupled later, which is not preferable for the recording characteristics of the magnetic recording layer 5. For this reason, the nonmagnetic underlayer 4 is made conductive, and a part of the base material in the vicinity of the magnetic recording layer 4 is left when the base material is removed in the porous base material removing step when electrolytic plating is performed in the soft magnetic material coating step. There is a need.

配向制御のためには非磁性下地層4に(001)配向したMgOなどの配向制御層を挿入し、更に配向制御層の上にめっきのための電極層などを設けることも可能である。また、配向制御及び電極層の両者の役割を果たすZnO等を用いる事も可能である。ここで、孔に充填する磁性材料の配向を制御するために下地電極層の配向を(001)することが好ましい。   In order to control the orientation, it is possible to insert an (001) oriented orientation control layer such as MgO into the nonmagnetic underlayer 4 and further provide an electrode layer for plating on the orientation control layer. It is also possible to use ZnO or the like that plays both roles of orientation control and electrode layer. Here, the orientation of the base electrode layer is preferably (001) in order to control the orientation of the magnetic material filling the hole.

特に本発明の硬磁性材として磁気異方性エネルギー密度が大きいL10規則化合金を用いる場合には、磁性体におけるL10規則合金層のc軸を基板垂直方向に配向させるためには下地電極層が基板面に対して平行に正方状の結晶配列を有していることが好ましい。特に、fcc構造の(001)配向を利用することが好ましい。   In particular, when an L10 ordered alloy having a large magnetic anisotropy energy density is used as the hard magnetic material of the present invention, the base electrode layer is used to orient the c-axis of the L10 ordered alloy layer in the magnetic material in the direction perpendicular to the substrate. It is preferable to have a tetragonal crystal arrangement parallel to the substrate surface. In particular, it is preferable to use the (001) orientation of the fcc structure.

例えば非磁性下地層4の最下層を配向したMgOなどの配向制御層とし、該配向制御層に基づき、(001)配向を有するPtやPb膜をエピタキシャル成長させたものを非磁性下地層4とすることも好ましい形態である。配向制御のためにはc軸配向したZnO等を用いる事も可能である。ここで、孔に充填する磁性材料の配向を制御するために下地にはfcc構造を有する材料を用い、且つ(111)または(001)配向させることが好ましく、最も好適なのは(001)配向である。   For example, the bottom layer of the nonmagnetic underlayer 4 is an orientation control layer such as oriented MgO, and a nonmagnetic underlayer 4 is obtained by epitaxially growing a Pt or Pb film having (001) orientation based on the orientation control layer. This is also a preferred form. For the orientation control, c-axis oriented ZnO or the like can also be used. Here, in order to control the orientation of the magnetic material filling the hole, it is preferable to use a material having an fcc structure for the underlayer and to make the (111) or (001) orientation, and the most preferred is the (001) orientation. .

また非磁性下地層4にPtやPdを含む場合に軟磁性裏打ち層3へこれら金属が拡散するのを防ぐため、非磁性下地層4の下層部分を下引き層としてTiなどからなる保護層を構成することもできる。   In order to prevent these metals from diffusing into the soft magnetic underlayer 3 when the nonmagnetic underlayer 4 contains Pt or Pd, a protective layer made of Ti or the like is used with the lower layer portion of the nonmagnetic underlayer 4 as an undercoat layer. It can also be configured.

次に多孔質部材作成工程に付いて説明する。
始めに非磁性下地層4上に、後に磁気記録層5を構成する膜層を成膜し、その膜面内に複数の孔を作成する。
Next, the porous member creation process will be described.
First, a film layer that will later constitute the magnetic recording layer 5 is formed on the nonmagnetic underlayer 4, and a plurality of holes are formed in the film surface.

図3(a)に、複数の孔を有する多孔質部材300を示す。多孔質部材300の厚みは磁気記録層5と同等或いはそれ以上とする。磁気記録層5はほぼ100nm以下、好ましくは50nm以下、さらに好適には30nm以下であり、より好適には5nm以上30nm以下が好ましいた。そのため、それ以上に成膜し、作成された構造体表面を後工程としてエッチングなどで膜厚の調整を行うこともできるが、好ましくは磁気記録層5膜厚程度とする。   FIG. 3A shows a porous member 300 having a plurality of holes. The thickness of the porous member 300 is equal to or greater than that of the magnetic recording layer 5. The magnetic recording layer 5 was about 100 nm or less, preferably 50 nm or less, more preferably 30 nm or less, and more preferably 5 nm or more and 30 nm or less. For this reason, the film thickness can be further adjusted, and the thickness of the formed structure surface can be adjusted by etching or the like as a subsequent process, but the thickness of the magnetic recording layer 5 is preferably set to about 5.

部材を孔上面側から見ると、孔が図9のように分散した状態である。図3、図9において、301は孔、302は孔間に介在する孔壁である。この孔壁部に孔が分散配置されており、母材(あるいはマトリックス部)と表現する場合がある。図3の孔301は非磁性下地層4上に貫通している。   When the member is viewed from the upper surface side of the hole, the holes are dispersed as shown in FIG. 3 and 9, 301 is a hole, and 302 is a hole wall interposed between the holes. Holes are dispersedly arranged in the hole wall portion and may be expressed as a base material (or matrix portion). The hole 301 in FIG. 3 penetrates the nonmagnetic underlayer 4.

前記多孔質部材300において、多孔質部材300の孔301は、柱状の孔であるが、この複数の孔の平均直径は前記の硬磁性層25の径程度とする。「熱揺らぎ」効果の低減と記録密度化の観点から直径2nm以上30nm以下が好ましい。   In the porous member 300, the holes 301 of the porous member 300 are columnar holes, and the average diameter of the plurality of holes is about the diameter of the hard magnetic layer 25. From the viewpoint of reducing the “thermal fluctuation” effect and increasing the recording density, the diameter is preferably 2 nm or more and 30 nm or less.

前記多孔質部材300は、例えば、特開2004−237429号公報に記載されているように、アルミニウムやアルミニウムを含む合金を、シュウ酸やリン酸等の溶液中で陽極酸化処理して孔を形成することで得られる。当該方法によれば、酸化物であるアルミナを孔壁に有する多孔質体が形成される。   For example, as described in JP-A-2004-237429, the porous member 300 forms holes by anodizing aluminum or an alloy containing aluminum in a solution such as oxalic acid or phosphoric acid. It is obtained by doing. According to this method, a porous body having alumina as an oxide on the pore wall is formed.

また、例えば、特開2002−175621号公報に記載されているように、相分離構造を形成する材料を用いて、柱状の部材がそれを取り囲む領域に分散した構造を形成し、当該柱状の部材を除去することにより多孔質層を得ることができる。   Further, for example, as described in JP-A-2002-175621, a structure in which columnar members are dispersed in a region surrounding the material is formed using a material forming a phase separation structure, and the columnar members A porous layer can be obtained by removing.

孔径は1nm以上100nm以下、特に本実施形態で利用する形態の直径1nm以上30nm以下、更に直径1nm以上15nm以下で、且つ孔間の平均間隔20nm以下であるような鋳型を用いて、磁性体を坎合した構造体を作成するためには有用である。   Using a template having a pore diameter of 1 nm to 100 nm, particularly a diameter of 1 nm to 30 nm, particularly a diameter of 1 nm to 15 nm, and an average interval between holes of 20 nm or less in the form used in this embodiment, Useful for creating combined structures.

また孔の深さ(孔の長手方向の厚さ)は、5nm以上100nm以下、特に50nm以下、更に好ましくは30nm以下の深さを好適に作成できため、磁気記録層5膜厚を貫通した孔の深さを好適に構成できる。   Moreover, since the depth of the hole (thickness in the longitudinal direction of the hole) can be suitably formed to a depth of 5 nm or more and 100 nm or less, particularly 50 nm or less, more preferably 30 nm or less, the hole penetrating the magnetic recording layer 5 film thickness. The depth can be suitably configured.

以下に、特に特開2002−175621号公報に記載されている方法に基づいた例についてより詳しく説明する。
具体的には、柱状の部材の周囲が別な材料により構成される領域に取り囲まれている構造物を用意し、柱状部材を選択的に除去する。該構造物には前記領域を構成する材料が、前記柱状の部材を構成する材料と前記領域を構成する材料の全量に対して20atomic%以上70atomic%以下の割合で含まれている構造物である。上記割合の範囲であれば、実質的に柱状の部材がそれを取り囲むマトリックス領域に分散した構造体が実現される。ここで柱状の部材の構成材料としては、AlやMgなどが挙げられる。前記柱状の部材を取り囲む領域を構成する材料としては、Si、Ge、SiとGeの混合物(以降、SixGe1-x(0<x<1)と記載することがある。)などが挙げられる。
In the following, an example based on the method described in Japanese Patent Application Laid-Open No. 2002-175621 will be described in more detail.
Specifically, a structure in which the periphery of the columnar member is surrounded by a region made of another material is prepared, and the columnar member is selectively removed. The structure is a structure in which the material constituting the region is contained in a ratio of 20 atomic% to 70 atomic% with respect to the total amount of the material constituting the columnar member and the material constituting the region. . If it is the range of the said ratio, the structure which the columnar member disperse | distributed to the matrix area | region which surrounds it is implement | achieved. Here, examples of the constituent material of the columnar member include Al and Mg. Examples of the material constituting the region surrounding the columnar member include Si, Ge, and a mixture of Si and Ge (hereinafter, sometimes referred to as Si x Ge 1-x (0 <x <1)). It is done.

このような柱状の部材がそれらを取り囲む領域に分散した構造体を得るには、前記柱状の部材及びそれを取り囲む領域を構成する材料の両方を含むターゲットを用いたスパッタリング法などの非平衡成膜法により実現される。後述する実施例中においてより具体的に説明する。   In order to obtain a structure in which such columnar members are dispersed in a region surrounding them, non-equilibrium film formation such as sputtering using a target including both the columnar member and the material constituting the region surrounding the columnar members is provided. Realized by law. This will be described more specifically in the examples described later.

成膜後、柱状部材を選択的に除去する。例えば、柱状部材がAlの場合、2.8%に希釈したアンモニア水に浸漬することにより、Al部分が溶出し多孔質材料が形成される。その他、各種酸溶液等も使用することが可能である。マトリックッス部はAl柱状部材の溶解後酸化されてSiO2またはGeO2、及びSiO2とGeO2の混合物となる。 After the film formation, the columnar member is selectively removed. For example, when the columnar member is Al, by immersing it in ammonia water diluted to 2.8%, the Al portion is eluted and a porous material is formed. In addition, various acid solutions can also be used. The matrix portion is oxidized after the Al columnar member is melted to become SiO 2 or GeO 2 and a mixture of SiO 2 and GeO 2 .

次に硬磁性材充填工程に付いて説明する。
多孔質部材300の複数の孔内に、第一の作成方法では硬磁性材料を充填する。図3(b)に、孔301内に内包充填物303を充填し余剰な充填材料を研磨等により除去した構造を示す。
Next, the hard magnetic material filling step will be described.
In the first creation method, a hard magnetic material is filled into the plurality of holes of the porous member 300. FIG. 3B shows a structure in which the inner filling material 303 is filled in the holes 301 and excess filling material is removed by polishing or the like.

充填物303は磁気異方性エネルギー密度が大きい硬磁性材料である。例えばCoCrPtなどをスパッタ法、CVD法、蒸着法等のドライプロセスやメッキ法により充填することもできる.磁気異方性エネルギー密度がより大きなL10規則化合金のFePt、FePd、CoPt、CoPdなどを充填することが好ましい。   The filling 303 is a hard magnetic material having a large magnetic anisotropic energy density. For example, CoCrPt or the like can be filled by a dry process such as a sputtering method, a CVD method, a vapor deposition method, or a plating method. It is preferable to fill the L10 ordered alloy FePt, FePd, CoPt, CoPd, etc. having a larger magnetic anisotropy energy density.

このとき最も充填性に優れる手法はメッキ法である。非磁性下地層4にPt又はPd、その他の導電性金属成分を含有させる。非磁性下地層4を電極とし充填する材料に応じて、Pt,Pd原料としてヘキサクロロ白金(IV)酸塩、ヘキサクロロPd酸塩を、Fe、Coの原料としてそれぞれの塩化塩、硫酸塩を含んだメッキ液を用いて電解メッキを行えばよい。   At this time, the method having the best filling property is a plating method. The nonmagnetic underlayer 4 contains Pt or Pd and other conductive metal components. Depending on the material to be filled with the nonmagnetic underlayer 4 as an electrode, Pt and Pd raw materials included hexachloroplatinum (IV) acid salt and hexachloroPd acid salt, and Fe and Co raw materials each including chloride and sulfate. Electrolytic plating may be performed using a plating solution.

なお、めっき浴中のFeイオンは比較的不安定であり沈殿物を形成しやすいので、Feイオンの安定化のために、錯化剤を添加することもできる。錯化剤には酒石酸、クエン酸、コハク酸、マロン酸、リンゴ酸、グルコン酸や、これらの塩から適宜選択される。特に酒石酸もしくはその塩および/またはクエン酸もしくはその塩、更には、酒石酸ナトリウムおよび/または酒石酸アンモニウムを用いることが好ましい。   In addition, since Fe ions in the plating bath are relatively unstable and easily form precipitates, a complexing agent may be added to stabilize the Fe ions. The complexing agent is appropriately selected from tartaric acid, citric acid, succinic acid, malonic acid, malic acid, gluconic acid, and salts thereof. In particular, it is preferable to use tartaric acid or a salt thereof and / or citric acid or a salt thereof, and sodium tartrate and / or ammonium tartrate.

また、ヘキサクロロ白金(IV)酸塩の経時変化を抑制するために、NaClなどのCl−イオンを過剰に含む溶液とすることも効果的である。必要に応じてアンモニウムイオンを添加することによりヘキサクロロ白金(IV)酸アンモニウムの錯体を形成し溶液中での安定化を更に促進することも可能である。   Moreover, in order to suppress the time-dependent change of hexachloroplatinum (IV) acid salt, it is also effective to use a solution containing excessive Cl- ions such as NaCl. If necessary, ammonium ions may be added to form a complex of ammonium hexachloroplatinate (IV) to further promote stabilization in the solution.

めっき液中に加える原料の割合、及びめっき電位の制御を行い、Fe、またはCo組成とPt、Pd組成がほぼ同等となりL10規則化組成と同等になるようにする。充填直後のFePt、FePd、CoPt、CoPdは一般にL10規則化されていないのでこの段階で400℃以上650℃以下で数十分から数時間の熱処理を行いL10規則化を進行させる熱処理過程を行うことが好ましい。またこの熱処理は還元雰囲気下、真空下または水素雰囲気下で行なう事が好ましい。特に水素雰囲気下で熱処理を行なう事が好ましい。   The ratio of the raw material added to the plating solution and the plating potential are controlled so that the Fe or Co composition and the Pt and Pd compositions are substantially equivalent and the L10 ordered composition. Since FePt, FePd, CoPt, and CoPd immediately after filling are generally not L10 ordered, a heat treatment process in which L10 ordering proceeds by performing heat treatment at 400 ° C. to 650 ° C. for several tens of minutes to several hours at this stage. Is preferred. The heat treatment is preferably performed in a reducing atmosphere, a vacuum, or a hydrogen atmosphere. It is particularly preferable to perform heat treatment in a hydrogen atmosphere.

一方、充填にスパッタ法、CVD法、蒸着法等のドライプロセスを用いることも可能である。特に、アークプラズマガンは、イオン化された金属粒子を成膜するイオンプレーティングに近い手法であり、ダマシン等の配線形成において埋め込み性能に優れる成膜手法であることが証明されている。また、基板バイアスをかけることにより充填性が良好となる。   On the other hand, it is also possible to use a dry process such as sputtering, CVD, or vapor deposition for filling. In particular, the arc plasma gun is a technique close to ion plating for forming ionized metal particles, and has been proved to be a film forming technique excellent in embedding performance in the formation of wiring such as damascene. Further, the filling property is improved by applying the substrate bias.

この他、堆積する粒子が基板に対して直進性良く飛散する、例えばイオンビームスパッタ等も孔内への埋め込みに適した手法である。しかしながら、ドライプロセスを用いる場合、孔内のみならず孔壁上へも成膜されるため、充填性が悪化する可能性がある。故に、本実施例の硬磁性材の充填にドライプロセスを用いるに際して、硬磁性層25の直径が50nm以下の場合には(磁気記録層厚)/(硬磁性層)で示されるアスペクト比が2以下のものに適用することが好ましい。より好ましくはアスペクト比が1以下のものにドライプロセスが好適に適用できる。また、必要に応じて、孔壁上の堆積物をエッチングプロセスにより取り除く工程と、充填工程とを交互に行なう事で充填性を改善する事も可能である。   In addition, for example, ion beam sputtering is also a method suitable for embedding in a hole, in which deposited particles are scattered with good straightness with respect to the substrate. However, when a dry process is used, the film is formed not only in the hole but also on the hole wall, so that the filling property may be deteriorated. Therefore, when a dry process is used for filling the hard magnetic material of this embodiment, when the diameter of the hard magnetic layer 25 is 50 nm or less, the aspect ratio represented by (magnetic recording layer thickness) / (hard magnetic layer) is 2. It is preferable to apply to the following. More preferably, the dry process can be suitably applied to an aspect ratio of 1 or less. Further, if necessary, the filling property can be improved by alternately performing the step of removing the deposit on the hole wall by the etching process and the filling step.

充填工程にて溢れ出た部分は研磨等の手法により除去するのが好ましい。
次に多孔質母材除去工程に付いて説明する。
図3(c)に多孔質母材除去工程で母材の一部を除去した構造を示す。
It is preferable to remove the portion overflowing in the filling step by a technique such as polishing.
Next, the porous base material removing step will be described.
FIG. 3C shows a structure in which a part of the base material is removed in the porous base material removing step.

母材302は図3(a)の工程でアルミの陽極酸化を用いる場合はアルミナであり、相分離構造を用いた場合はSiまたはGe、またはSi,Geの酸化物であるためNaOH等のアルカリ溶液またはフッ化水素などで除去が可能である。溶液の種類、濃度及び温度などを制御することにより、母材材料の溶解速度及び溶解量を制御することが可能となり、図3(c)のように母材の一部を残すことが可能である。図3(c)に示すように孔301内の内包充填物303は露出して突起構造体304となり、除去し残した母材残部305が突起構造体304間に非磁性下地層4を被覆して残っている。   The base material 302 is alumina when aluminum anodization is used in the process of FIG. 3A, and is Si or Ge, or an oxide of Si or Ge when a phase separation structure is used. It can be removed with a solution or hydrogen fluoride. By controlling the type, concentration, temperature, etc. of the solution, it is possible to control the dissolution rate and amount of the base material, and it is possible to leave a part of the base material as shown in FIG. is there. As shown in FIG. 3C, the inclusion filling 303 in the hole 301 is exposed to form a protruding structure 304, and the remaining base material remaining 305 covers the nonmagnetic underlayer 4 between the protruding structures 304. It remains.

本工程により、上に凸な突起状構造体304が形成される。突起状構造体304は硬磁性体材、特に好ましくはL1規則化したFePt、FePd、CoPt、CoPd合金である。   Through this step, a projecting structure 304 protruding upward is formed. The protruding structure 304 is a hard magnetic material, particularly preferably an L1 ordered FePt, FePd, CoPt, or CoPd alloy.

これを硬磁性層25とし、その上に非磁性層24、軟磁性層23を順次作成する。非磁性層24、軟磁性層23は各々金属非磁性材、軟磁性材をメッキ法によって被覆していくことで作成できる。   This is used as a hard magnetic layer 25, and a nonmagnetic layer 24 and a soft magnetic layer 23 are sequentially formed thereon. The nonmagnetic layer 24 and the soft magnetic layer 23 can be formed by coating a metal nonmagnetic material and a soft magnetic material, respectively, by plating.

次に非磁性材被覆過程並びに軟磁性材被覆工程について説明する。
非磁性層24の材料としてPt、Pdなどを用い、非磁性下地層4,突起状構造体304を電極として電解メッキにより突起状構造体304上にPt、Pdなどの皮膜を作成し、これを非磁性層24とする。突起状構造体304間は多孔質母材除去工程で除去し残した母材残部305で被覆されている。そのため、メッキ液と電極である非磁性下地層4が直接接触しないため、Pt、Pd皮膜が形成されず、図3(d)に示すように硬磁性層25の露出部分のみに非磁性層24が形成される。図3(c)で硬磁性層25のみで構成された突起状構造体304は非磁性層24が被覆された突起状構造体306になる。
Next, the nonmagnetic material coating process and the soft magnetic material coating process will be described.
Pt, Pd or the like is used as the material of the nonmagnetic layer 24, and a film such as Pt or Pd is formed on the protruding structure 304 by electrolytic plating using the nonmagnetic underlayer 4 and the protruding structure 304 as an electrode. The nonmagnetic layer 24 is used. The space between the protruding structures 304 is covered with a base material remaining part 305 that has been removed by the porous base material removing step. Therefore, the plating solution and the nonmagnetic underlayer 4 that is an electrode are not in direct contact, so that no Pt or Pd film is formed, and only the exposed portion of the hard magnetic layer 25 is exposed to the nonmagnetic layer 24 as shown in FIG. Is formed. In FIG. 3C, the protruding structure 304 constituted only by the hard magnetic layer 25 becomes a protruding structure 306 covered with the nonmagnetic layer 24.

電解メッキはヘキサクロロ白金(IV)酸塩、或いはヘキサクロロPd酸塩を含んだメッキ液を用いて行えばよい。特に非磁性下地層4としてPtを用いる場合にはヘキサクロロ白金(IV)酸塩の経時変化を抑制するために、NaClなどのCl-イオンを過剰に含む溶液とすることも効果的である。必要に応じてアンモニウムイオンを添加することによりヘキサクロロ白金(IV)酸アンモニウムの錯体を形成し溶液中での安定化を更に促進することも可能である。 The electrolytic plating may be performed using a plating solution containing hexachloroplatinum (IV) acid salt or hexachloro Pd acid salt. In particular, when Pt is used as the nonmagnetic underlayer 4, it is also effective to use a solution containing excessive Cl - ions such as NaCl in order to suppress the change with time of the hexachloroplatinum (IV) acid salt. If necessary, ammonium ions may be added to form a complex of ammonium hexachloroplatinate (IV) to further promote stabilization in the solution.

さらに、非磁性下地層4、突起状構造体306を電極として電解メッキで軟磁性材を皮膜することで突起状構造体306上に軟磁性層23を積層する。軟磁性材としてパーマロイなどを用いてメッキを行う。たとえば硫酸ニッケル、塩化ニッケル、硫酸鉄の混合液に緩衝剤として硼酸、添加剤としてサッカリンナトリウム、界面活性剤としてラウリル酸ソーダなどを添加したメッキ液を用いて電解メッキを行えばよい。パーマロイのFeとNiの組成比は主に電圧とメッキ液中の硫酸鉄の成分でコントロールできる。   Further, the soft magnetic layer 23 is laminated on the projecting structure 306 by coating the soft magnetic material by electrolytic plating using the nonmagnetic underlayer 4 and the projecting structure 306 as an electrode. Plating is performed using permalloy as a soft magnetic material. For example, electrolytic plating may be performed using a plating solution in which boric acid as a buffer, sodium saccharin as an additive, sodium laurate as a surfactant, and the like are added to a mixed solution of nickel sulfate, nickel chloride, and iron sulfate. The composition ratio of permalloy Fe and Ni can be controlled mainly by the voltage and the iron sulfate component in the plating solution.

このようにして図3(e)に示す様に、突起状構造体306に軟磁性層23が被覆された突起状構造体307が形成される。非磁性材の被覆工程と同様にして母材残部305で非磁性下地層4が被覆され直接メッキ液に接触することがないため、各突起状構造体307間には磁性材が付着せず、各突起状構造体307間が磁気的に結合することはない。   In this way, as shown in FIG. 3E, the protruding structure 307 in which the protruding structure 306 is covered with the soft magnetic layer 23 is formed. Since the nonmagnetic underlayer 4 is covered with the base material remainder 305 in the same manner as the nonmagnetic material coating step and does not come into direct contact with the plating solution, the magnetic material does not adhere between the protruding structures 307. The protruding structures 307 are not magnetically coupled.

メッキされる軟磁性層23の厚みは厚いほど硬磁性層25からの反磁界を相殺する効果が高いが軟磁性層23の厚みが厚いほど磁性領域の大きさが大きくなるため、記録密度の観点からは好ましくない。反磁界相殺効果との兼ね合いにもよるが、硬磁性層25の半径程度かそれ以下にすることが望ましい。磁性領域の大きさを10nm以上40nm程度以下にする場合には、軟磁性層23の厚は数nmから10nm程度にとることが好ましく、この厚みはメッキで充分被覆される厚みである。   The thicker the soft magnetic layer 23 to be plated is, the higher the effect of canceling the demagnetizing field from the hard magnetic layer 25 is. However, the thicker the soft magnetic layer 23 is, the larger the magnetic area is. Is not preferable. Although depending on the balance with the demagnetizing field canceling effect, it is desirable to set the radius of the hard magnetic layer 25 to about or less. When the size of the magnetic region is 10 nm or more and about 40 nm or less, the thickness of the soft magnetic layer 23 is preferably about several nm to 10 nm, and this thickness is a thickness sufficiently covered with plating.

最後に非磁性体への埋め込み工程および磁気記録層表面整形工程を行う。
埋め込む非磁性材21は非磁性で、接触する軟磁性層23を劣化させないものであればよいが、例えばSiO2やSiN2をスパッタ、CVD、蒸着などにより埋め込めばよい。埋め込み後磁気記録層5の表面を平坦化するために研磨、エッチングなどの磁気記録層表面整形工程を行うこうが好ましい。これらの工程後に図3(f)のような磁性層5が作成できる。
Finally, an embedding process in a non-magnetic material and a magnetic recording layer surface shaping process are performed.
The nonmagnetic material 21 to be embedded may be any material that is nonmagnetic and does not degrade the soft magnetic layer 23 that is in contact therewith. For example, SiO 2 or SiN 2 may be embedded by sputtering, CVD, vapor deposition, or the like. In order to flatten the surface of the magnetic recording layer 5 after embedding, it is preferable to perform a magnetic recording layer surface shaping step such as polishing and etching. After these steps, the magnetic layer 5 as shown in FIG.

最終的に記録媒体とするためには、上記のように作成された磁気記録層5上に、この後通常の成膜プロセスを用いて保護層6、潤滑層7を作成すればよい。   In order to finally make a recording medium, the protective layer 6 and the lubricating layer 7 may be formed on the magnetic recording layer 5 formed as described above using a normal film formation process.

実施例2
本実施例は、非磁性材に埋め込まれた略円柱状の磁性領域の中心部分を軟磁性材料からなる軟磁性層、外周部分を硬磁性材料からからなる硬磁性層として構成し、両磁性層間に非磁性層を設けたものである。
Example 2
In this embodiment, the central portion of the substantially cylindrical magnetic region embedded in the nonmagnetic material is configured as a soft magnetic layer made of a soft magnetic material, and the outer peripheral portion is formed as a hard magnetic layer made of a hard magnetic material. Is provided with a nonmagnetic layer.

図10に本実施例に於ける磁気記録層5の構成を示す。図10中5は図1と同様に磁気記録層を表す。また図2と同様に22は磁性領域、21は各磁性領域22を磁気的に分離する非磁性材、23は磁性領域22を構成する軟磁性層である。23は磁性領域22を構成する非磁性層、25は磁性領域22を構成する硬磁性層である。本実施例に関わる磁性領域22の特徴は、実施例1とは反対に該円柱状の磁性領域22の径方向の内側に軟磁性材料からなる軟磁性層23、外側に硬磁性材料からなる硬磁性層25を設け、両磁性層の間に非磁性層24を具備するものである。また実施例1と同様に軟磁性層、硬磁性層は二層以上の多層構成とし、その間に非磁性層を具備する構成でも良い。   FIG. 10 shows the configuration of the magnetic recording layer 5 in this embodiment. In FIG. 10, 5 denotes a magnetic recording layer as in FIG. As in FIG. 2, 22 is a magnetic region, 21 is a nonmagnetic material that magnetically separates each magnetic region 22, and 23 is a soft magnetic layer that constitutes the magnetic region 22. Reference numeral 23 denotes a nonmagnetic layer constituting the magnetic region 22, and reference numeral 25 denotes a hard magnetic layer constituting the magnetic region 22. In contrast to the first embodiment, the magnetic region 22 according to the present embodiment is characterized by a soft magnetic layer 23 made of a soft magnetic material on the inner side in the radial direction of the cylindrical magnetic region 22 and a hard magnetic material made of a hard magnetic material on the outer side. A magnetic layer 25 is provided, and a nonmagnetic layer 24 is provided between both magnetic layers. Similarly to the first embodiment, the soft magnetic layer and the hard magnetic layer may have a multilayer structure of two or more layers, and a nonmagnetic layer may be provided between them.

図11に本実施例における磁気記録層5上の磁性領域22付近での反磁界の様子と記録磁界印加時での磁気領域内の磁化の反転の様子を示す。図11(a)は記録磁化が印加されていないときの磁性領域22内の磁化方向とその付近での反磁界を模式的に示す。図11(b)から(d)は記録磁界印加時前後の磁性領域22内の磁化方向の反転の様子を模式的に示したものである。図中の符号は図5、図6と同じものを指す。   FIG. 11 shows a state of a demagnetizing field in the vicinity of the magnetic region 22 on the magnetic recording layer 5 and a state of magnetization reversal in the magnetic region when a recording magnetic field is applied. FIG. 11A schematically shows the magnetization direction in the magnetic region 22 and the demagnetizing field in the vicinity thereof when no recording magnetization is applied. FIGS. 11B to 11D schematically show the reversal of the magnetization direction in the magnetic region 22 before and after the recording magnetic field is applied. The reference numerals in the figure are the same as those in FIGS.

図11(a)で本実施例では磁性領域22の中心付近の軟磁性層23と磁性領域22の周囲の硬磁性層25の磁化方向は反平行であり、図5と同様に磁力線が閉磁回路を構成することで周辺への反磁界の発生を抑制する効果がある。   In FIG. 11A, in this embodiment, the magnetization directions of the soft magnetic layer 23 near the center of the magnetic region 22 and the hard magnetic layer 25 around the magnetic region 22 are antiparallel, and the magnetic lines of force are closed magnetic circuit as in FIG. Is effective in suppressing the generation of a demagnetizing field in the periphery.

図11(b)は記録磁界印加前、図11(c)は記録磁界印加時、図11(d)は記録磁界印加後の磁性領域22内の磁化方向を模式的に示す。記録磁気ヘッドより印加された記録磁界Hextにより図11(c)では軟磁性層23、硬磁性層25とも磁化の方向が平行となり記録磁界Hextの方向へ揃う。記録磁界がなくなった図11(d)では磁気異方性エネルギー密度が大きい硬磁性層25は磁化の方向を保持する。磁気異方性エネルギー密度が小さい軟磁性層23は硬磁性層25からの反磁界で磁化の方向を反転し、硬磁性層25と軟磁性層23の磁化の方向が反平行となって安定する。   FIG. 11B schematically shows the magnetization direction in the magnetic region 22 before applying the recording magnetic field, FIG. 11C when the recording magnetic field is applied, and FIG. Due to the recording magnetic field Hext applied from the recording magnetic head, the magnetization directions of both the soft magnetic layer 23 and the hard magnetic layer 25 are parallel to each other in the direction of the recording magnetic field Hext in FIG. In FIG. 11D in which the recording magnetic field disappears, the hard magnetic layer 25 having a large magnetic anisotropy energy density maintains the magnetization direction. The soft magnetic layer 23 having a small magnetic anisotropy energy density reverses the magnetization direction by the demagnetizing field from the hard magnetic layer 25, and the magnetization directions of the hard magnetic layer 25 and the soft magnetic layer 23 are antiparallel and stabilized. .

実施例1とは異なり、記録磁界Hext印加後で磁化方向を反転する軟磁性層23が磁性領域22の中心部分に存在する。第一の実施形態と同様に硬磁性層25の磁化方向を信号の記録方向として磁気記録媒体に情報記録を行うことも可能である。その場合には再生すべき信号を発生する硬磁性層25が磁性領域22の周囲に存在するため孤立ピットの再生信号波形がブロードになり再生解像度の点からは好ましくない。   Unlike the first embodiment, a soft magnetic layer 23 that reverses the magnetization direction after applying the recording magnetic field Hext exists in the central portion of the magnetic region 22. As in the first embodiment, it is possible to record information on the magnetic recording medium with the magnetization direction of the hard magnetic layer 25 as the signal recording direction. In this case, since the hard magnetic layer 25 for generating a signal to be reproduced exists around the magnetic region 22, the reproduction signal waveform of the isolated pit becomes broad, which is not preferable from the viewpoint of reproduction resolution.

これ点より本実施例では、再生信号時と記録信号時の磁界の方向を反転した逆位相記録方式をとることも可能である。具体的には記録する信号に対応した磁化方向を磁性領域22中心に存在する軟磁性層23の磁化方向に担わせればよい。このため硬磁性層25の磁気記録層5面での断面積と飽和磁化Msの大きさの積が軟磁性層23の磁気記録層5面での断面積と飽和磁化Msの大きさの積の半分以下となるようにする。これにより再生ヘッドが磁性領域22の中心部分上にある場合検出する磁界の方向は磁性領域22中心に存在する軟磁性層23の磁化方向となる。この方向は図11に示したように印加した記録磁界の方向とは逆方向となっている。   From this point, in this embodiment, it is also possible to adopt an anti-phase recording method in which the directions of the magnetic fields at the time of the reproduction signal and the recording signal are reversed. Specifically, the magnetization direction corresponding to the signal to be recorded may be assigned to the magnetization direction of the soft magnetic layer 23 existing at the center of the magnetic region 22. Therefore, the product of the cross-sectional area of the hard magnetic layer 25 on the surface of the magnetic recording layer 5 and the magnitude of the saturation magnetization Ms is the product of the cross-sectional area of the soft magnetic layer 23 on the surface of the magnetic recording layer 5 and the magnitude of the saturation magnetization Ms. Try to be less than half. As a result, the direction of the magnetic field detected when the reproducing head is on the central portion of the magnetic region 22 is the magnetization direction of the soft magnetic layer 23 existing at the center of the magnetic region 22. This direction is opposite to the direction of the applied recording magnetic field as shown in FIG.

図11で示した如く、印加記録磁界の方向は硬磁性層25の磁化方向に記録されるが、印加後は図11(d)のように硬磁性層25からの反磁界で軟磁性層23は硬磁性層25の磁化方向と必ず反平行の方向にある。そのため、再生時の磁性領域22からの再生磁界の方向は記録時の印加磁界の方向と逆極性となっている。換言すれが、再生信号と記録信号を180度位相を変えた逆位相で記録、或いは再生することで記録信号を再生信号の対応が可能である。   As shown in FIG. 11, the direction of the applied recording magnetic field is recorded in the magnetization direction of the hard magnetic layer 25. After the application, the soft magnetic layer 23 is demagnetized by the demagnetizing field from the hard magnetic layer 25 as shown in FIG. Is always in an antiparallel direction to the magnetization direction of the hard magnetic layer 25. For this reason, the direction of the reproducing magnetic field from the magnetic region 22 at the time of reproduction is opposite to the direction of the applied magnetic field at the time of recording. In other words, the recording signal can correspond to the reproduction signal by recording or reproducing the reproduction signal and the recording signal in the opposite phase with the phase changed by 180 degrees.

本実施例では軟磁性層23の厚み及び飽和磁化Msを大きくすることで反磁界抑制効果、及び再生信号強度は高まるが、軟磁性層23の体積が小さくなると熱揺らぎの影響を受け易くなり磁化方向を保持しにくくなる。しかしながら軟磁性層23にL10規則化合金のFePt、FePd、CoPt、CoPdを用いることにより従来硬磁性材料の1桁程度大きい磁気異方性エネルギー密度を得られる。そのため、好ましくは軟磁性層23の磁気記録層5面での断面積と飽和磁化Msの大きさの積と硬磁性層25の磁気記録層5面での断面積と飽和磁化Msの大きさの積の比は10:1から2:1程度とすることが可能である。   In the present embodiment, the demagnetizing field suppressing effect and the reproduction signal intensity are increased by increasing the thickness and saturation magnetization Ms of the soft magnetic layer 23. However, if the volume of the soft magnetic layer 23 is decreased, the soft magnetic layer 23 is easily affected by thermal fluctuations. It becomes difficult to hold the direction. However, by using the L10 ordered alloy FePt, FePd, CoPt, or CoPd for the soft magnetic layer 23, a magnetic anisotropy energy density that is about one digit larger than that of a conventional hard magnetic material can be obtained. Therefore, preferably, the product of the cross-sectional area of the soft magnetic layer 23 on the surface of the magnetic recording layer 5 and the magnitude of the saturation magnetization Ms, and the cross-sectional area of the hard magnetic layer 25 on the surface of the magnetic recording layer 5 and the magnitude of the saturation magnetization Ms. The product ratio can be about 10: 1 to 2: 1.

本実施例の記録信号は従来の記録信号を逆位相にとることが必要となり従来のHDD記録装置の信号処理回路に若干の変更が必要となるが、主な変更は信号位相の反転ですむため従来技術の特許文献3に記載の装置に比べ簡易に実現できる。   The recording signal of this embodiment needs to take the conventional recording signal in the opposite phase, and the signal processing circuit of the conventional HDD recording apparatus needs to be slightly changed, but the main change is the inversion of the signal phase. Compared to the device described in Patent Document 3 of the prior art, this can be realized more easily.

本実施例による磁気記録層5を作成するためには実施例1とほぼ同様に多孔質部材の多数の孔に磁性材を坎合することで略円柱状の磁性層を作成する。その後、多孔質部材の母材を除去し該磁性の外側に非磁性層、磁性層を作成した後にその間を非磁性材で埋め込んで図10に示した実施形態を作成すればよい。実施例1との相違は、始めに多孔質部材の孔に坎合する磁性材料を軟磁性材料に、非磁性層上に被覆する磁性材料を硬磁性材料とする点にある。各磁性層、非磁性層の坎合及び被覆は第一の実施例と同様に電解メッキを用いればよく、電解メッキ手順を交換すればほぼ第一の実施例と同等の工程で作成できるため、詳細は省略する。   In order to create the magnetic recording layer 5 according to the present embodiment, a substantially cylindrical magnetic layer is formed by combining a magnetic material into a large number of holes in the porous member in substantially the same manner as in the first embodiment. Thereafter, the base material of the porous member is removed, a nonmagnetic layer and a magnetic layer are formed outside the magnetism, and the space between the layers is filled with a nonmagnetic material to create the embodiment shown in FIG. The difference from the first embodiment is that a magnetic material which is firstly fitted into the pores of the porous member is a soft magnetic material, and a magnetic material which is coated on the nonmagnetic layer is a hard magnetic material. The combination and coating of each magnetic layer and non-magnetic layer may be made by electrolytic plating in the same manner as in the first embodiment, and can be created in substantially the same process as in the first embodiment by replacing the electrolytic plating procedure. Details are omitted.

概要を以下に記せば、始めに軟磁性裏打ち層3上に非磁性下地層4と後に磁気記録層5を構成する多孔質部材を作成する。次に多孔質部材の孔中に軟磁性層23を構成する軟磁性材料を坎合する。次に多孔質部材の母材部分の一部を除去し軟磁性材料部分を露出させる。次に露出した軟磁性材部分の上に非磁性層24を構成する非磁性材を積層する。さらにこの非磁性材の上に硬磁性層25を構成する硬磁性材を積層する。さらに磁性領域を構成する軟磁性材で包まれた硬磁性材料部分を非磁性材で埋め込む。最後に表面部分を整形し磁気記録層5とする。   The outline will be described below. First, a porous member constituting the nonmagnetic underlayer 4 and the magnetic recording layer 5 later is formed on the soft magnetic backing layer 3. Next, the soft magnetic material constituting the soft magnetic layer 23 is combined in the pores of the porous member. Next, a part of the base material portion of the porous member is removed to expose the soft magnetic material portion. Next, a nonmagnetic material constituting the nonmagnetic layer 24 is laminated on the exposed soft magnetic material portion. Further, a hard magnetic material constituting the hard magnetic layer 25 is laminated on the nonmagnetic material. Further, a hard magnetic material portion wrapped with a soft magnetic material constituting the magnetic region is embedded with a nonmagnetic material. Finally, the surface portion is shaped to form the magnetic recording layer 5.

軟磁性材の坎合は非磁性下地層4を電極とした電解メッキで行うことができる。非磁性下地層4は第一の実施例と同様に電極として使用するため導電性を有する膜、例えばPtなどを成膜して得られる。たとえば硫酸ニッケル、塩化ニッケル、硫酸鉄の混合液に緩衝剤として硼酸、添加剤としてサッカリンナトリウム、界面活性剤としてラウリル酸ソーダなどを添加したメッキ液を用いる。そして、電解メッキを行いパーマロイからなる軟磁性層23を孔内に坎合すればよい。   The soft magnetic material can be combined by electrolytic plating using the nonmagnetic underlayer 4 as an electrode. The nonmagnetic underlayer 4 is obtained by forming a conductive film such as Pt for use as an electrode as in the first embodiment. For example, a plating solution in which boric acid as a buffer, sodium saccharin as an additive, sodium laurate as a surfactant, etc. is added to a mixed solution of nickel sulfate, nickel chloride and iron sulfate. Then, electrolytic plating may be performed to fit the soft magnetic layer 23 made of permalloy into the hole.

その後多孔質母材に一部をアルカリ溶液などで除去し、露出した軟磁性層23を電極としてヘキサクロロ白金(IV)酸塩、或いはヘキサクロロPd酸塩を含んだメッキ液を用いてPtまたはPdからなる非磁性層24を被覆する。その後実施例1に記載のメッキ液を用いてFePt、或いはFePd、CoPt、CoPdの何れかをメッキする。メッキ後400度から650度で水素雰囲気中で熱処理を行いL10規則化合金の硬磁性層25を作成する。   Thereafter, a part of the porous base material is removed with an alkaline solution or the like, and the exposed soft magnetic layer 23 is used as an electrode from Pt or Pd using a plating solution containing hexachloroplatinum (IV) or hexachloroPd. The nonmagnetic layer 24 is coated. Thereafter, using the plating solution described in Example 1, either FePt or FePd, CoPt, or CoPd is plated. After plating, heat treatment is performed in a hydrogen atmosphere at 400 to 650 degrees to form a hard magnetic layer 25 of an L10 ordered alloy.

最後にSiO2などをスパッタして突起部分を埋め込んで磁気記録層5を作成すればよい。 Finally, the magnetic recording layer 5 may be formed by sputtering SiO 2 or the like and filling the protrusions.

実施例3
本実施例は、従来技術に於ける特許文献3記載の磁気記録媒体に本発明を適用したものである。
Example 3
In this embodiment, the present invention is applied to a magnetic recording medium described in Patent Document 3 in the prior art.

図12に本実施例における磁気記録層の構成を示す。符合は図2と同様に記載されており、21は非磁性材、22は磁性領域、23は磁性領域を構成する軟磁性層、24は磁性領域を構成する非磁性層、25は磁性領域を構成する硬磁性層である。   FIG. 12 shows the configuration of the magnetic recording layer in this example. The reference numerals are the same as in FIG. 2, 21 is a nonmagnetic material, 22 is a magnetic region, 23 is a soft magnetic layer constituting the magnetic region, 24 is a nonmagnetic layer constituting the magnetic region, and 25 is a magnetic region. It is the hard magnetic layer which comprises.

本実施例は磁性領域22の磁気記録層5面方向断面が略方形をとることと、非磁性層24、並びに軟磁性層23が硬磁性層25を取り囲んで連続な層を形成しておらず、硬磁性層25を挟んで記録トラック方向に硬磁性層25の前後に配されている。   In this embodiment, the cross section of the magnetic region 22 in the plane of the magnetic recording layer 5 has a substantially square shape, and the nonmagnetic layer 24 and the soft magnetic layer 23 surround the hard magnetic layer 25 and do not form a continuous layer. The hard magnetic layer 25 is disposed before and after the hard magnetic layer 25 in the recording track direction.

本構成に於いても図5に示した如く、硬磁性層25と軟磁性層23の磁化が反平行を向くことによって記録トラック方向に対しては反磁界を相殺する効果が生じる。
本実施例では非磁性下地層上に磁気異方性エネルギー密度が高い硬磁性体を成膜する。次に、電子描画法、光干渉リソグラフィ法、X線リソグラフィ法、走査プローブ顕微鏡法、イオンビームリソグラフィ法などで始めに硬磁性層25のパターンを作成する。特に一酸化炭素とアンモニアの混合ガスによる反応性イオンエッチングを用いて硬磁性層25のパターンを作成することが好ましい。硬磁性層材料は、L1規則化したFePt、FePd、CoPt、CoPd合金、あるいはCoCrPt、CoCrTa等の従来使用されている磁性体をスパッタ法等のドライ成膜、メッキ法等のウエット成膜何れの成膜方法で成膜しても良い。
Also in this configuration, as shown in FIG. 5, the magnetization of the hard magnetic layer 25 and the soft magnetic layer 23 are antiparallel, so that the effect of canceling the demagnetizing field with respect to the recording track direction is produced.
In this embodiment, a hard magnetic material having a high magnetic anisotropy energy density is formed on the nonmagnetic underlayer. Next, a pattern of the hard magnetic layer 25 is first created by an electron drawing method, an optical interference lithography method, an X-ray lithography method, a scanning probe microscope method, an ion beam lithography method, or the like. In particular, the pattern of the hard magnetic layer 25 is preferably formed by reactive ion etching using a mixed gas of carbon monoxide and ammonia. The hard magnetic layer material can be made of L1 ordered FePt, FePd, CoPt, CoPd alloy, or a conventionally used magnetic material such as CoCrPt, CoCrTa, etc. You may form into a film by the film-forming method.

硬磁性層25のパターン作成後非磁性層24、軟磁性層23を斜め蒸着法によって硬磁性層25パターンの側面に成膜する。非磁性層24の材質はPt、Pdなどでも良いが、より安価なSiO2、Si34、Al23などの酸化物、窒化物を用いても良い。また軟磁性層25の材料として飽和磁化Msが大きく磁気異方性エネルギー密度が低い軟磁性材料で蒸着、スパッタリング法が可能なものであればよいが、特に実施例1、2と同様にパーマロイ材を用いることができる。 After creating the pattern of the hard magnetic layer 25, the nonmagnetic layer 24 and the soft magnetic layer 23 are formed on the side surfaces of the hard magnetic layer 25 pattern by oblique vapor deposition. The material of the nonmagnetic layer 24 may be Pt, Pd, or the like, but a cheaper oxide such as SiO 2 , Si 3 N 4 , Al 2 O 3 , or nitride may be used. The soft magnetic layer 25 may be made of a soft magnetic material having a large saturation magnetization Ms and a low magnetic anisotropy energy density as long as it can be deposited and sputtered. Can be used.

最後に磁性領域22をSiO2、Si34、Al23などの非磁性材に埋め込んで表面を研磨、エッチングなどで仕上げればよい。
本実施例ではパターニングプロセスを使用するため、主にメッキ法を用いた実施例1、2と比較して硬磁性層23、非磁性層24、軟磁性層25に使用する材料に選択幅が広く取れる。特に非磁性層24に実施例1、2のようなPt、Pd以外の安価な材料が選択できるという利点を有する。
Finally, the magnetic region 22 may be embedded in a nonmagnetic material such as SiO 2 , Si 3 N 4 , Al 2 O 3, and the surface may be polished and etched.
Since the patterning process is used in this embodiment, the selection range of the materials used for the hard magnetic layer 23, the nonmagnetic layer 24, and the soft magnetic layer 25 is wider than those of the first and second embodiments using mainly the plating method. I can take it. In particular, the nonmagnetic layer 24 has an advantage that an inexpensive material other than Pt and Pd as in the first and second embodiments can be selected.

本実施例では非磁性層24、並びに軟磁性層23が硬磁性層25を取り囲んで連続な層を形成しておらず、硬磁性層25を挟んで記録トラック方向に硬磁性層25の前後に配されているものに関して説明した。また、磁性領域22の間隔が広いものに関しては記録トラックと垂直方向にも斜め蒸着を行うことで非磁性層24、並びに軟磁性層23が硬磁性層25を取り囲んで構成することも可能である。   In this embodiment, the nonmagnetic layer 24 and the soft magnetic layer 23 do not form a continuous layer surrounding the hard magnetic layer 25, and are arranged before and after the hard magnetic layer 25 in the recording track direction across the hard magnetic layer 25. I explained what was arranged. In addition, for those having a wide interval between the magnetic regions 22, the nonmagnetic layer 24 and the soft magnetic layer 23 can surround the hard magnetic layer 25 by performing oblique vapor deposition in the direction perpendicular to the recording track. .

また本実施例では主に記録トラック方向に反磁界を相殺するため記録トラックと垂直方向には反磁界の相殺が起こりにくいという欠点を有する。しかしながら一般にトラック方向はヘッドの走行方向であるために記録密度が高く、トラック垂直方向にはヘッドのトラックング制御の精度の影響でトラック方向ほど記録密度が上げられない。このため磁性領域22間の幅は一般にトラック垂直方向はトラック方向より広く取られるため、本構成でも簡便に記録ノイズを低減する効果がある。   Further, since the present embodiment mainly cancels the demagnetizing field in the recording track direction, it has a drawback that the demagnetizing field hardly cancels in the direction perpendicular to the recording track. However, since the track direction is generally the head running direction, the recording density is high, and in the track vertical direction, the recording density cannot be increased as much as the track direction due to the influence of the head tracking control. For this reason, since the width between the magnetic regions 22 is generally wider in the track vertical direction than in the track direction, this configuration also has an effect of easily reducing recording noise.

特に磁気記録層5の表面をトラック方向に凹凸を設けた構成にすることでトラック垂直方向の反磁界による磁気記録層5間での記録感度のバラツキを少なくすることも可能である。   In particular, it is possible to reduce variations in recording sensitivity between the magnetic recording layers 5 due to the demagnetizing field in the track vertical direction by providing the surface of the magnetic recording layer 5 with irregularities in the track direction.

本発明に係る磁気記録媒体は、HDD装置などの高密度磁気記録装置、及びそれら装置を含む情報処理装置、画像記録装置などに利用が可能である。   The magnetic recording medium according to the present invention can be used in high-density magnetic recording devices such as HDD devices, information processing devices including these devices, image recording devices, and the like.

本発明に関わる垂直記録媒体の構成を示す図せある。1 is a diagram illustrating a configuration of a perpendicular recording medium according to the present invention. 本発明に関わる第一の実施形態の磁気記録層の構成を示す図である。It is a figure which shows the structure of the magnetic-recording layer of 1st embodiment in connection with this invention. 本発明に関わる垂直記録媒体の磁気記録層の作成方法を説明するための図である。It is a figure for demonstrating the creation method of the magnetic-recording layer of the perpendicular recording medium concerning this invention. 従来例に於ける垂直記録媒体の構成を示す図である。It is a figure which shows the structure of the perpendicular | vertical recording medium in a prior art example. 本発明の第一の実施形態における磁性領域付近の磁界の様子をあらわす図である。It is a figure showing the mode of the magnetic field near magnetic field in a first embodiment of the present invention. 本発明の第一の実施形態における磁性領域内の磁化の方向を表す模式図である。It is a schematic diagram showing the direction of the magnetization in the magnetic area | region in 1st embodiment of this invention. 本発明に於ける非磁性層の効果を説明するための図である。It is a figure for demonstrating the effect of the nonmagnetic layer in this invention. 本発明に関わる垂直記録媒体を利用した磁気記録装置の構成を示す図である。It is a figure which shows the structure of the magnetic-recording apparatus using the perpendicular recording medium concerning this invention. 本発明に関わる磁気記録層の作成方法における多孔質部材を示す図である。It is a figure which shows the porous member in the preparation methods of the magnetic-recording layer concerning this invention. 本発明に関わる第二の実施形態の磁気記録層の構成を示す図である。It is a figure which shows the structure of the magnetic-recording layer of 2nd embodiment in connection with this invention. 本発明の第二の実施形態における磁性領域内の磁化の方向を表す模式図である。It is a schematic diagram showing the direction of the magnetization in the magnetic area | region in 2nd embodiment of this invention. 本発明に関わる第二の実施形態の磁気記録層の構成を示す図である。It is a figure which shows the structure of the magnetic-recording layer of 2nd embodiment in connection with this invention.

符号の説明Explanation of symbols

1 基板
2 下地層
3 軟磁性裏打ち層
4 非磁性下地層
5 磁気記録層
6 保護層
7 潤滑層
8 磁気記録層の膜面に対して平行方向
21 非磁性材
22 磁性領域
23 軟磁性層
24 非磁性層
25 硬磁性層
26 磁束線
300 多孔質部材
301 孔
302 母材
303 内包充填物
304 突起状構造体(硬磁性体)
305 母材残部
306 突起状構造体(非磁性材被覆)
307 突起状構造体(軟磁性材被覆)
401 軟磁性裏打ち層
402 非磁性下地層
403 垂直磁気記録層
404 磁性領域
405 非磁性領域
406 磁区
407 記録用磁気ヘッド
DESCRIPTION OF SYMBOLS 1 Substrate 2 Underlayer 3 Soft magnetic backing layer 4 Nonmagnetic underlayer 5 Magnetic recording layer 6 Protective layer 7 Lubricating layer 8 Parallel to the film surface of the magnetic recording layer 21 Nonmagnetic material 22 Magnetic region 23 Soft magnetic layer 24 Non Magnetic layer 25 Hard magnetic layer 26 Magnetic flux line 300 Porous member 301 Hole 302 Base material 303 Encapsulated material 304 Protruding structure (hard magnetic material)
305 Base material remainder 306 Protruding structure (non-magnetic material coating)
307 Protruding structure (coated with soft magnetic material)
401 Soft magnetic backing layer 402 Nonmagnetic underlayer 403 Perpendicular magnetic recording layer 404 Magnetic region 405 Nonmagnetic region 406 Magnetic domain 407 Magnetic head for recording

Claims (11)

非磁性材からなる母材中にそれぞれ独立して複数の磁性領域が設けられている磁気記録膜を有する磁気記録媒体において、前記磁性領域は少なくとも磁気記録膜の面内方向に軟磁性層および硬磁性層をそれぞれ少なくとも一層以上有し、かつ該軟磁性層と硬磁性層間に非磁性材からなる非磁性層を有することを特徴とする磁気記録媒体。   In a magnetic recording medium having a magnetic recording film in which a plurality of magnetic regions are independently provided in a base material made of a non-magnetic material, the magnetic region has at least a soft magnetic layer and a hard layer in the in-plane direction of the magnetic recording film. A magnetic recording medium comprising at least one magnetic layer and a nonmagnetic layer made of a nonmagnetic material between the soft magnetic layer and the hard magnetic layer. 前記磁性領域には、硬磁性層を中心として該硬磁性層を取り囲んで非磁性層が設けられ、該非磁性層を取り囲んで軟磁性層が設けられていることを特徴とする請求項1記載の磁気記録媒体。   2. The magnetic region according to claim 1, wherein a nonmagnetic layer is provided surrounding the hard magnetic layer around the hard magnetic layer, and a soft magnetic layer is provided surrounding the nonmagnetic layer. Magnetic recording medium. 前記磁性領域には、軟磁性層を中心として該軟磁性層を取り囲んで非磁性層が設けられ、該非磁性層を取り囲んで硬磁性層が設けられていることを特徴とする請求項1記載の磁気記録媒体。   2. The magnetic region according to claim 1, wherein a nonmagnetic layer is provided surrounding the soft magnetic layer around the soft magnetic layer, and a hard magnetic layer is provided surrounding the nonmagnetic layer. Magnetic recording medium. 前記磁性領域には、硬磁性層を中心として該硬磁性層を挟んで非磁性層が設けられ、該非磁性層を挟んで軟磁性層が設けられていることを特徴とする請求項1記載の磁気記録媒体。   2. The magnetic region according to claim 1, wherein a nonmagnetic layer is provided with the hard magnetic layer sandwiched around the hard magnetic layer, and a soft magnetic layer is provided with the nonmagnetic layer sandwiched therebetween. Magnetic recording medium. 前記磁性領域には、軟磁性層を中心として該軟磁性層を挟んで非磁性層が設けられ、該非磁性層を挟んで硬磁性層が設けられていることを特徴とする請求項1記載の磁気記録媒体。   2. The magnetic region according to claim 1, wherein a nonmagnetic layer is provided with the soft magnetic layer sandwiched around the soft magnetic layer, and a hard magnetic layer is provided with the nonmagnetic layer sandwiched therebetween. Magnetic recording medium. 前記軟磁性層の平均磁気異方性エネルギー密度が、硬磁性層の平均磁気異方性エネルギー密度より小さいことを特徴とする請求項1乃至5のいずれかの項に記載の磁気記録媒体。   6. The magnetic recording medium according to claim 1, wherein an average magnetic anisotropy energy density of the soft magnetic layer is smaller than an average magnetic anisotropy energy density of the hard magnetic layer. 前記軟磁性層と硬磁性層との磁化方向は記録用外部磁界が印加されない状態で反平行を向いていることを特徴とする請求項1乃至6のいずれかの項に記載の磁気記録媒体。   7. The magnetic recording medium according to claim 1, wherein the magnetization directions of the soft magnetic layer and the hard magnetic layer are antiparallel when no external recording magnetic field is applied. 前記軟磁性層と硬磁性層との磁化方向は記録用外部磁界が印加された状態で該印加磁界の方向に平行となることを特徴とする請求項1乃至6のいずれかの項に記載の磁気記録媒体。   7. The magnetization direction of the soft magnetic layer and the hard magnetic layer is parallel to the direction of the applied magnetic field when an external recording magnetic field is applied. Magnetic recording medium. 前記軟磁性層の磁化方向は記録用外部磁界が印加された後、硬磁性層の磁化方向に反平行となることを特徴とする特許請求項7または8記載の磁気記録媒体。   9. The magnetic recording medium according to claim 7, wherein the magnetization direction of the soft magnetic layer is antiparallel to the magnetization direction of the hard magnetic layer after an external recording magnetic field is applied. 前記軟磁性層の磁気記録膜面での断面積と飽和磁化の大きさの積が、硬磁性層の磁気記録膜面での断面積と飽和磁化の大きさの積より小さいことを特徴とする請求項1乃至9のいずれかの項に記載の磁気記録媒体。   The product of the cross-sectional area of the soft magnetic layer on the magnetic recording film surface and the magnitude of the saturation magnetization is smaller than the product of the cross-sectional area on the magnetic recording film surface of the hard magnetic layer and the magnitude of the saturation magnetization. The magnetic recording medium according to claim 1. 前記硬磁性層の磁気記録膜面での断面積と飽和磁化の大きさの積が、軟磁性層の磁気記録膜面での断面積と飽和磁化の大きさの積より小さいことを特徴とする請求項1乃至9のいずれかの項に記載の磁気記録媒体。   The product of the cross-sectional area of the hard magnetic layer on the magnetic recording film surface and the magnitude of the saturation magnetization is smaller than the product of the cross-sectional area on the magnetic recording film surface of the soft magnetic layer and the magnitude of the saturation magnetization. The magnetic recording medium according to claim 1.
JP2006231187A 2006-08-28 2006-08-28 Magnetic recording medium Pending JP2008052877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006231187A JP2008052877A (en) 2006-08-28 2006-08-28 Magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006231187A JP2008052877A (en) 2006-08-28 2006-08-28 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JP2008052877A true JP2008052877A (en) 2008-03-06

Family

ID=39236769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006231187A Pending JP2008052877A (en) 2006-08-28 2006-08-28 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JP2008052877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238317A (en) * 2008-03-27 2009-10-15 Fujitsu Ltd Magnetic recording medium, magnetic recording/reproduction device, and method of manufacturing magnetic recording medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009238317A (en) * 2008-03-27 2009-10-15 Fujitsu Ltd Magnetic recording medium, magnetic recording/reproduction device, and method of manufacturing magnetic recording medium

Similar Documents

Publication Publication Date Title
JP4469774B2 (en) Magnetic recording medium and magnetic recording apparatus
JP4637040B2 (en) Magnetic recording medium and method for manufacturing the same
WO2009116412A1 (en) Magnetic recording medium and method for manufacturing magnetic recording medium
JP2006286105A (en) Magnetic recording medium and magnetic storage device
US20060093863A1 (en) Magnetic recording medium, manufacturing process thereof, and magnetic recording apparatus
JP2004348952A (en) Soft magnetic film for vertical recording disk
JP2004118956A (en) Magnetic recording medium
JP2007323724A (en) Patterned medium and manufacturing method, and magnetic recording and reproducing device
JP5575172B2 (en) Magnetic recording medium, magnetic recording / reproducing apparatus, and method of manufacturing magnetic recording medium
US20110205665A1 (en) Covalently bound monolayer for a protective carbon overcoat
JP2011014191A (en) Perpendicular magnetic recording medium and magnetic storage device
JP2009110607A (en) Magnetic recording medium, its manufacturing method and magnetic recording system
JP2009110606A (en) Magnetic recording medium, manufacturing method thereof, and magnetic storage device
JP2009146532A (en) Perpendicular magnetic recording medium and magnetic storage device
JP5245734B2 (en) Magnetic recording medium and method for manufacturing the same
JP5112533B2 (en) Perpendicular magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus
JP2009026353A (en) Perpendicular magnetic recording medium
JP4220475B2 (en) Magnetic recording medium and method for manufacturing the same, magnetic recording apparatus and magnetic recording method
JP2008052877A (en) Magnetic recording medium
JP2002197635A (en) Magnetic recording medium, method of manufacturing for the same and magnetic recording and reproducing device
JP2006190486A (en) Perpendicular magnetic recording medium, recording method and reproducing method thereof, and magnetic storage device
JP4550776B2 (en) Patterned magnetic recording medium and magnetic recording apparatus
JP3864637B2 (en) Magnetic recording medium
JP4342793B2 (en) Method for manufacturing disk substrate for perpendicular magnetic recording medium and perpendicular magnetic recording disk
JP4865078B1 (en) Magnetic recording medium, manufacturing method thereof, and magnetic recording / reproducing apparatus