JP2008052101A - Cemented optical element and optical apparatus using the same - Google Patents

Cemented optical element and optical apparatus using the same Download PDF

Info

Publication number
JP2008052101A
JP2008052101A JP2006229072A JP2006229072A JP2008052101A JP 2008052101 A JP2008052101 A JP 2008052101A JP 2006229072 A JP2006229072 A JP 2006229072A JP 2006229072 A JP2006229072 A JP 2006229072A JP 2008052101 A JP2008052101 A JP 2008052101A
Authority
JP
Japan
Prior art keywords
optical
correction member
base material
optical element
expansion coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006229072A
Other languages
Japanese (ja)
Inventor
Hiroki Tomonaga
裕樹 朝長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP2006229072A priority Critical patent/JP2008052101A/en
Publication of JP2008052101A publication Critical patent/JP2008052101A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a cemented optical element which can suppress shape change of an optical functional face due to change of environment such as temperature and humidity. <P>SOLUTION: In the cemented optical element which is constituted by cementing a resin submaterial 2a consisting of an optical material onto the optical functional face s1 of a glass base material 1a consisting of the optical material, a correction member 2b for suppressing deformation of a cemented optical element main body part due to material difference between the glass base material 1a and the resin submaterial 2a is cemented onto at least one optical functional face of the glass base material 1a or the resin submaterial 2a or onto a face ranging thereto. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、材質の異なる少なくとも2つの部品を接合又は一体化して成る接合レンズや複合レンズを含む接合光学素子及びこれを用いた光学装置に関する。   The present invention relates to a cemented optical element including a cemented lens or a compound lens obtained by cementing or integrating at least two parts made of different materials, and an optical apparatus using the same.

この種、接合光学素子の具体例な形態としては、材質の異なる2つのガラスレンズが接着剤により接合されたものや、ガラスレンズの光学面上にエネルギー硬化型樹脂が形成されたもの等が挙げられる。   Specific examples of this type of bonded optical element include those in which two glass lenses of different materials are bonded with an adhesive, and those in which an energy curable resin is formed on the optical surface of the glass lens. It is done.

一般に、光学素子は、温度変化や湿度変化等の環境変化によって何らかの形状変化を生じる(以下、この環境変化によって光学素子に生じる変形を「環境変形」という)。ここで、光学素子の環境変形が非相似的であれば、各光学機能面の曲率半径等の幾何学的形状が設計値から大きく変化し、その光学素子を用いた光学系が本来発揮すべき光学機能に狂いが生じる。よって、光学素子には、環境変化に対して相似的に変形することが求められる。   In general, an optical element undergoes some shape change due to an environmental change such as a temperature change or a humidity change (hereinafter, a deformation generated in the optical element due to the environmental change is referred to as an “environmental deformation”). Here, if the environmental deformation of the optical element is non-similar, the geometric shape such as the radius of curvature of each optical functional surface greatly changes from the design value, and the optical system using the optical element should be originally exhibited. Optical function is distorted. Therefore, the optical element is required to be deformed similarly to the environmental change.

しかして、光学素子が、環境変化によりどのような幾何学的形状変化をするかは、温度や湿度などの周囲環境を表す変数(以下、「環境変数」という)に依存する光学素子自身の温度や吸水量などの状態変数の空間的分布と、この状態変数に応じた光学素子の長さ又は体積の変化率として定義される光学素子自身の熱膨張係数や湿度膨張係数など材料物性値の空間的分布に依存する。   Therefore, how the geometrical shape of the optical element changes due to environmental changes depends on variables representing the surrounding environment such as temperature and humidity (hereinafter referred to as “environment variables”). Spatial distribution of state variables such as temperature and water absorption, and material property values such as the thermal expansion coefficient and humidity expansion coefficient of the optical element itself, defined as the rate of change of the length or volume of the optical element according to the state variable Depends on the distribution.

すなわち、状態変数や材料物性値の空間的分布が重要であり、それぞれの空間的分布の少なくとも一方が不均一である場合、光学素子は非相似的な変形が生じるおそれがある。
また、光学素子自体は、上記のような状態変数や材料物性値の空間的分布の不均一性を有していなくても、光学素子自身がレンズ枠等に強く固定さている場合等には、環境変化によって光学素子は非相似的な変形を生じるおそれがある。
That is, the spatial distribution of state variables and material property values is important, and if at least one of the respective spatial distributions is non-uniform, the optical element may be deformed unsimilarly.
In addition, even if the optical element itself does not have the nonuniformity of the spatial distribution of the state variables and material property values as described above, when the optical element itself is strongly fixed to the lens frame or the like, There is a possibility that the optical element may be deformed in a non-similar manner due to environmental changes.

このような光学素子の環境変形に関連して、従来、多くの検討が行われている。
例えば、特許文献1は、光学素子の支持構造に関するものであり、光学素子と支持部材との間に両部品に比べて柔らかい弾性部材を介して光学素子を支持し、弾性部材の比較的大きな変形により光学素子にかかる外力を低減することによって、光学素子の光学面の歪み発生を抑制する点が開示されている。
Many studies have been made in the past in connection with such environmental deformation of optical elements.
For example, Patent Document 1 relates to a support structure for an optical element. The optical element is supported between the optical element and the support member via an elastic member that is softer than both components, and the elastic member is relatively deformed. Thus, it is disclosed that the generation of distortion on the optical surface of the optical element is suppressed by reducing the external force applied to the optical element.

また、特許文献2も、光学素子の支持構造に関し、光学素子と支持部材との間に設けたベース部材により、光軸方向以外の方向への両者の相対移動を許容し、光学素子に加わる外力を低減することによって、光学素子の光学機能面の歪み発生を抑制する点が開示されている。   Patent Document 2 also relates to a support structure for an optical element, and an external force applied to the optical element by allowing relative movement of both in a direction other than the optical axis direction by a base member provided between the optical element and the support member. It is disclosed that the occurrence of distortion on the optical functional surface of the optical element is suppressed by reducing the above.

これら特許文献1及び特許文献2は、主として光学素子と支持部材との接続関係を改良し、光学素子の変形と支持部材の変形を独立させるという設計思想に基づく。
また、特許文献3は、異種材質の複数のレンズを有するレンズユニットの構造に関し、温湿度による膨張率が大きく異なるレンズを接着し、そのうち膨張率の小さいレンズの方をレンズ枠と嵌合・保持することによって、温湿度変化によるレンズの寸法変化を抑える点が開示されている。これは、個々のレンズ外径とレンズ枠穴内径とのクリアランスに着目し、これを温湿度による膨張率の観点から評価し、どのレンズをレンズ枠に固定すべきかを定めるという設計思想に基づく。
These Patent Documents 1 and 2 are mainly based on the design concept of improving the connection relationship between the optical element and the support member and making the deformation of the optical element independent of the deformation of the support member.
Patent Document 3 relates to the structure of a lens unit having a plurality of lenses made of different materials, and bonds lenses having greatly different expansion coefficients due to temperature and humidity, and fits and holds the lens having the smaller expansion coefficient with the lens frame. By doing this, it is disclosed that the dimensional change of the lens due to the temperature and humidity change is suppressed. This is based on the design concept of paying attention to the clearance between each lens outer diameter and lens frame hole inner diameter, evaluating this from the viewpoint of the expansion coefficient due to temperature and humidity, and determining which lens should be fixed to the lens frame.

また、特許文献4は、反射ミラーの熱変形抑制機構に関するものであり、不均一な熱分布を熱電素子、光電素子、焦電素子を用いて検知し、このときの起電力によって圧電素子を歪ませることで反射ミラーの熱変形を抑制する点が開示されている。これは、主として各種電気的センサを用いてリアルタイムに反射ミラーの変形を制御するという設計思想に基づく。   Patent Document 4 relates to a thermal deformation suppression mechanism of a reflective mirror, and detects a non-uniform heat distribution using a thermoelectric element, a photoelectric element, and a pyroelectric element, and distorts the piezoelectric element by an electromotive force at this time. The point which suppresses the thermal deformation of a reflective mirror by being disclosed is disclosed. This is mainly based on the design concept of controlling the deformation of the reflecting mirror in real time using various electrical sensors.

更に、特許文献5は、熱膨張係数の異なる2つの材料から成る接合樹脂レンズに関し、接着剤の機械的物性及び接合面の曲率半径等に制限を設けた点が開示されている。これは、2枚の樹脂レンズに介在させる接着剤として軟質接着剤を選択し、さらには光学機能面の曲率に制限を設けることによって、2枚の樹脂レンズの変形を独立させるという設計思想に基づく。
特開2001−343576号公報 特開平10−186196号公報 特開平8−234070号公報 特開2002−100551号公報 特許第3068641号公報
Further, Patent Document 5 discloses a point in which a mechanical property of an adhesive, a radius of curvature of a joint surface, and the like are limited with respect to a joint resin lens made of two materials having different thermal expansion coefficients. This is based on a design philosophy that a soft adhesive is selected as an adhesive interposed between two resin lenses, and further, the deformation of the two resin lenses is made independent by limiting the curvature of the optical function surface. .
JP 2001-343576 A JP-A-10-186196 JP-A-8-234070 JP 2002-100551 A Japanese Patent No. 3068641

しかしながら、前述した従来例は、いずれも光学素子の環境変形を扱うものであるが、接合光学素子の環境変形に関しては、必ずしも汎用的かつ実用的な解決策を提供しているものではない。   However, all of the conventional examples described above deal with the environmental deformation of the optical element. However, the environmental deformation of the cemented optical element does not necessarily provide a general and practical solution.

例えば、特許文献1や特許文献2では、支持する光学素子が均一の材質から成る場合には成立するが、接合レンズや複合レンズのように、光学素子自身に内在する材質の空間的分布、すなわち熱膨張係数や湿度膨張係数の空間的分布によって非相似的な環境変形を生じるような接合光学素子については、その効果が十分に発揮されないおそれがある。   For example, Patent Document 1 and Patent Document 2 hold when the optical element to be supported is made of a uniform material, but the spatial distribution of the material inherent in the optical element itself, such as a cemented lens or a compound lens, that is, For a bonded optical element that causes non-similar environmental deformation due to the spatial distribution of the thermal expansion coefficient and the humidity expansion coefficient, the effect may not be sufficiently exhibited.

また、特許文献3の場合、レンズとレンズ枠から成るレンズユニット全体として環境変形を抑えるという観点では、ある程度の効果が期待されるが、レンズユニットの構成要素である接合光学素子(接合レンズ)単体に生じる非相似的な環境変形に関しては、必ずしも十分なものとは言えない。   In the case of Patent Document 3, a certain effect can be expected from the viewpoint of suppressing environmental deformation as a whole lens unit including a lens and a lens frame, but a cemented optical element (junction lens) as a component of the lens unit alone. As for non-similar environmental deformations that occur in Japan, it is not necessarily sufficient.

また、特許文献4では、熱電素子や光電素子等を適切に設計・配置できれば、接合光学素子を含む光学素子全般の熱変形問題に対する有効な解決策となりうるが、機構が複雑であり、コストや省スペースの観点から、民生用機器や小型レンズ系への搭載は難しい。   Further, in Patent Document 4, if a thermoelectric element, a photoelectric element, and the like can be appropriately designed and arranged, it can be an effective solution to the thermal deformation problem of the entire optical element including the bonded optical element, but the mechanism is complicated, and the cost and From the viewpoint of space saving, it is difficult to mount on consumer devices and small lens systems.

更に、特許文献5では、接合レンズの温度変形の抑制という観点では有効であるが、接合光学素子の剛性、組立精度などの観点ではデメリットにもなりえる。また、この技術が発揮されるに必要な接合面の曲率半径に対する制限は、光学設計の自由度を狭めるものであり、汎用性に乏しいといえる。   Furthermore, Patent Document 5 is effective from the viewpoint of suppressing temperature deformation of the cemented lens, but can also be disadvantageous in terms of rigidity of the cemented optical element and assembly accuracy. In addition, the restriction on the radius of curvature of the joint surface necessary for demonstrating this technique narrows the degree of freedom in optical design, and it can be said that the versatility is poor.

以上のように、従来から、光学素子の環境変形に対する検討が様々なされているが、特に接合レンズ又は複合レンズのような接合光学素子の通常使用において不可避的に発生する環境変化による光学機能面の形状変化(環境変形)及び光学機能の狂い、更にその対策について実用上有効なものは開示されていなかった。   As described above, various studies have been made on the environmental deformation of optical elements. In particular, the optical functional surface due to environmental changes that inevitably occur during normal use of cemented optical elements such as cemented lenses or compound lenses. There has been no disclosure of practically effective measures for shape change (environmental deformation), optical function failure, and countermeasures.

本発明は、斯かる課題を解決するためになされたもので、その目的とするところは、温度や湿度等の環境変化による光学機能面の形状変化を抑制することのできる接合光学素子及びそれを用いた光学装置を提供することにある。   The present invention has been made to solve such a problem, and an object of the present invention is to provide a bonded optical element capable of suppressing a change in shape of an optical functional surface due to an environmental change such as temperature and humidity, and a bonding optical element thereof. It is to provide an optical device used.

前記目的を達成するため、請求項1に係る発明は、
光学材料からなる基材の光学機能面に、基材に対して所定の光学機能を付与する光学材料からなる副材が接合された本体部と、
前記基材又は前記副材の少なくとも一方の光学機能面又はこれに連なる面に接合され、
前記基材と前記副材との材質の相違に起因する前記本体部の変形を抑制する補正部材を接合してなることを特徴とする。
In order to achieve the object, the invention according to claim 1
A main body part in which a secondary material made of an optical material that gives a predetermined optical function to the base material is bonded to the optical function surface of the base material made of an optical material;
Bonded to at least one optical functional surface of the base material or the auxiliary material or a surface connected to the optical functional surface,
A correction member that suppresses deformation of the main body due to a difference in material between the base material and the auxiliary material is joined.

請求項2に係る発明は、請求項1に記載の接合光学素子において、
前記補正部材は、前記本体部に光学機能を付与することを特徴とする。
請求項3に係る発明は、請求項1に記載の接合光学素子において、
前記補正部材は、前記本体部の有効光学面の周囲に接合されていることを特徴とする。
The invention according to claim 2 is the bonded optical element according to claim 1,
The correction member imparts an optical function to the main body.
The invention according to claim 3 is the bonded optical element according to claim 1,
The correction member is bonded around the effective optical surface of the main body.

請求項4に係る発明は、請求項1に記載の接合光学素子において、
前記補正部材は回転対称な形状を有し、その中心軸と前記本体部の光軸とが略一致していることを特徴とする。
The invention according to claim 4 is the bonding optical element according to claim 1,
The correction member has a rotationally symmetric shape, and a center axis thereof substantially coincides with an optical axis of the main body.

請求項5に係る発明は、請求項1に記載の接合光学素子において、
前記補正部材は環状をなし、その中心軸と前記本体部の光軸とが略一致していることを特徴とする。
The invention according to claim 5 is the bonded optical element according to claim 1,
The correction member has an annular shape, and the center axis thereof substantially coincides with the optical axis of the main body.

請求項6に係る発明は、請求項5に記載の接合光学素子において、
前記補正部材は、その環状部内径が前記本体部の有効光学面の径よりも大きいことを特徴とする。
The invention according to claim 6 is the bonded optical element according to claim 5,
The correction member is characterized in that an inner diameter of the annular portion is larger than a diameter of an effective optical surface of the main body portion.

請求項7に係る発明は、請求項1に記載の接合光学素子において、
前記補正部材は、複数の副補正部材からなることを特徴とする。
請求項8に係る発明は、請求項1に記載の接合光学素子において、
前記補正部材は、少なくとも2つの材質の異なる副補正部材からなることを特徴とする。
The invention according to claim 7 is the bonded optical element according to claim 1,
The correction member includes a plurality of sub correction members.
The invention according to claim 8 is the bonded optical element according to claim 1,
The correction member is composed of at least two sub correction members made of different materials.

請求項9に係る発明は、請求項1に記載の接合光学素子において、
前記基材と前記副材は、その熱膨張係数又は湿度膨張係数の少なくともいずれか一方が異なっていることを特徴とする。
The invention according to claim 9 is the bonded optical element according to claim 1,
The base material and the secondary material are different in at least one of thermal expansion coefficient and humidity expansion coefficient.

請求項10に係る発明は、請求項1に記載の接合光学素子において、
前記基材と前記副材は夫々1つの部材から成り、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαs1、前記補正部材の熱膨張係数をαs2としたとき、
αs1がαBより大きければ、αs2がαBより大きい前記補正部材を、
αs1がαBより小さければ、αs2がαBより小さい前記補正部材を、
前記基材と前記副材の接合面とは異なる前記基材の光学機能面又はそれに連なる面に接合することを特徴とする。
The invention according to claim 10 is the bonded optical element according to claim 1,
Each of the base material and the auxiliary material is composed of one member.
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αs1, and the thermal expansion coefficient of the correction member is αs2,
If αs1 is larger than αB, the correction member whose αs2 is larger than αB is
If αs1 is smaller than αB, the correction member having αs2 smaller than αB is
The bonding surface of the base material and the auxiliary material is bonded to an optical function surface of the base material or a surface connected to the optical function surface.

請求項11に係る発明は、請求項1に記載の接合光学素子において、
前記基材と前記副材が夫々1つの部材から成り、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαsl、前記補正部材の熱膨張係数をαs2としたとき、
αs1がαBより大きければ、αs2がαs1より小さい前記補正部材を、
αs1がαBより小さければ、αs2がαs1より大きい前記補正部材を、
前記基材と前記副材の接合面とは異なる前記副材の光学機能面又はそれに連なる面に接合することを特徴とする。
The invention according to claim 11 is the bonded optical element according to claim 1,
The base material and the secondary material are each composed of one member,
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αsl, and the thermal expansion coefficient of the correction member is αs2,
If αs1 is larger than αB, the correction member whose αs2 is smaller than αs1 is
If αs1 is smaller than αB, the correction member in which αs2 is larger than αs1,
It is characterized in that the base material and the secondary material are joined to an optical functional surface of the secondary material different from the joint surface or a surface connected thereto.

請求項12に係る発明は、請求項1に記載の接合光学素子において、
前記基材及び前記副材が夫々1つの部材から成り、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαsl、前記補正部材の熱膨張係数をαs2としたとき、
αslがαBより大きければ、αs2がαs1より大きい前記補正部材を、
αslがαBより小さければ、αs2がαs1より小さい前記補正部材を、
前記基材と前記副材の接合部を除く前記副材の光学機能面又はそれに連なる面に接合することを特徴とする。
The invention according to claim 12 is the bonded optical element according to claim 1,
Each of the base material and the auxiliary material is composed of one member,
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αsl, and the thermal expansion coefficient of the correction member is αs2,
If αsl is larger than αB, the correction member having αs2 larger than αs1 is
If αsl is smaller than αB, the correction member in which αs2 is smaller than αs1,
It joins to the optical function surface of the said submaterial except the junction part of the said base material and the said submaterial, or the surface connected to it.

請求項13に係る発明は、請求項1に記載の接合光学素子において、
前記基材及び前記副材が夫々1つの部材から成り、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαsl、前記補正部材の熱膨張係数をαs2としたとき、
αs1がαBより大きければ、αs2がαBより小さい前記補正部材を、
αs1がαBより小さければ、αs2がαBより大きい前記補正部材を、
前記基材と前記副材の接合部を除く前記基材の光学機能面又はそれに連なる面に接合することを特徴とする。
The invention according to claim 13 is the bonded optical element according to claim 1,
Each of the base material and the auxiliary material is composed of one member,
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αsl, and the thermal expansion coefficient of the correction member is αs2,
If αs1 is larger than αB, the correction member whose αs2 is smaller than αB is
If αs1 is smaller than αB, the correction member having αs2 larger than αB is
It joins to the optical function surface of the said base material except the junction part of the said base material and the said submaterial, or the surface connected to it.

請求項14に係る発明は、請求項1に記載の接合光学素子において、
前記基材と前記副材が夫々1つの部材から成り、前記基材と前記副材とは、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαs1、前記補正部材の熱膨張係数をαs2としたとき、
αs1がαBより大きければ、αs2がαs1より小さく、かつαBより大きい前記補正部材を、
αslがαBより小さければ、αs2がαs1より大きく、かつαBより小さい前記補正部材を、介して接合されることを特徴とする。
The invention according to claim 14 is the bonded optical element according to claim 1,
The base material and the secondary material are each composed of one member, and the base material and the secondary material are:
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αs1, and the thermal expansion coefficient of the correction member is αs2,
If αs1 is larger than αB, the correcting member is such that αs2 is smaller than αs1 and larger than αB.
If αsl is smaller than αB, αs2 is larger than αs1 and is joined via the correction member smaller than αB.

請求項15に係る発明は、請求項1に記載の接合光学素子において、
前記基材と前記副材は、互いに材料物性の異なるガラスであることを特徴とする。
請求項16に係る発明は、請求項1に記載の接合光学素子において、
前記基材はガラス、前記副材はエネルギー硬化型樹脂であることを特徴とする。
The invention according to claim 15 is the bonded optical element according to claim 1,
The base material and the subsidiary material are glasses having different material properties.
The invention according to claim 16 is the bonded optical element according to claim 1,
The base material is glass, and the secondary material is an energy curable resin.

請求項17に係る発明は、請求項1に記載の接合光学素子において、
前記補正部材は、前記基材又は前記副材の材質と同一であることを特徴とする。
請求項18に係る発明は、請求項1に記載の接合光学素子において、
前記副材は複数設けられ、前記基材又は他の副材又は前記補正部材の少なくともいずれか1つの光学機能面又はこれに連なる面に接合されていることを特徴とする。
The invention according to claim 17 is the bonded optical element according to claim 1,
The correction member is the same as the material of the base material or the auxiliary material.
The invention according to claim 18 is the bonded optical element according to claim 1,
A plurality of the auxiliary materials are provided, and are joined to at least one optical function surface of the base material, the other auxiliary material, or the correction member or a surface connected thereto.

請求項19に係る発明の光学装置は、請求項1〜18のいずれかに記載の接合光学素子を少なくとも1つ備えていることを特徴とする。   An optical device according to a nineteenth aspect includes at least one cemented optical element according to any one of the first to eighteenth aspects.

本発明によれば、環境変化による接合光学素子の光学機能面の曲率半径等の面形状変化を効率的に抑制することができる。   According to the present invention, it is possible to efficiently suppress surface shape changes such as the radius of curvature of the optical function surface of the cemented optical element due to environmental changes.

以下、図面に基づき本発明の実施の形態を説明する。
図1は、接合光学素子の実施形態としての複合レンズの断面図を示している。ここで、複合レンズとは、一般的には、ガラスレンズの少なくとも1つの光学機能面に樹脂層等を形成してなるものをいう。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a cross-sectional view of a compound lens as an embodiment of a cemented optical element. Here, the compound lens generally refers to a lens formed by forming a resin layer or the like on at least one optical functional surface of a glass lens.

ただし、本発明が適用可能な複合レンズの構成としては、「ガラスレンズ+樹脂層」に限らず、「樹脂レンズ(プラスチックレンズ)+樹脂層」、「ガラスレンズ+ガラス層」、「樹脂レンズ+ガラス層」でも適用可能である。   However, the configuration of the compound lens to which the present invention can be applied is not limited to “glass lens + resin layer”, but “resin lens (plastic lens) + resin layer”, “glass lens + glass layer”, “resin lens + It can also be applied to a “glass layer”.

図1は、通常の複合レンズの断面図を示している。この複合レンズは、凹レンズを構成するガラス基材1aの第2光学面s2に、エネルギー硬化型の樹脂副材2aが密着接合された構造を有している。そして、主として第1光学面s1、第2光学面s2、第3光学面s3の面形状(曲率半径、非球面係数など)や、それら光学機能面の光軸方向間隔、及びガラス基材1aと樹脂副材2aの材質(主に屈折率、アツべ数に注目する)を任意に選択することで、所定の光学機能を発現することができる。なお、この複合レンズは、光軸3を中心軸とする軸対称形をなしている。   FIG. 1 shows a cross-sectional view of a normal compound lens. This compound lens has a structure in which an energy curable resin sub-material 2a is tightly bonded to the second optical surface s2 of the glass substrate 1a constituting the concave lens. And the surface shape (curvature radius, aspherical coefficient, etc.) of the first optical surface s1, the second optical surface s2, and the third optical surface s3, the optical axis direction spacing of these optical functional surfaces, and the glass substrate 1a. By arbitrarily selecting the material of the resin secondary material 2a (mainly paying attention to the refractive index and the hot number), a predetermined optical function can be exhibited. This compound lens has an axisymmetric shape with the optical axis 3 as the central axis.

この複合レンズは、ガラス基材1aと樹脂副材2aの材質が異なっている。そして、全体として、熱膨張係数や湿度膨張係数などの材料物性値が光軸方向に対して空間的非対称性を有している。このため、温度変化や湿度変化等の環境変化に応じて、複合レンズの断面形状は上凸又は下凸の反り変形をすることが予想される。
(第1の実施形態)
図2は、本発明の第1実施形態である複合レンズの断面図を示している。この複合レンズは、図1の通常の複合レンズのガラス基材1aの第1光学面s1、及びそれに連なる面s7に、新たにエネルギー硬化型の補正部材2bが密着接合された構造を有している。なお、この複合レンズも、光軸3を中心軸とする軸対称形をなしている。また、「連なる面s7」とは、複合レンズ本体部の有効光学面としての第1光学面s1、第2光学面s2、及び第3光学面s3の外周側の面等をいう。これは、一般に環境変形に対する補正が可能な位置ということができるが、その意義については後述する。
In this composite lens, the materials of the glass substrate 1a and the resin sub-material 2a are different. As a whole, material property values such as a thermal expansion coefficient and a humidity expansion coefficient have spatial asymmetry with respect to the optical axis direction. For this reason, it is anticipated that the cross-sectional shape of the compound lens will be warped and deformed upward or downward depending on environmental changes such as temperature changes and humidity changes.
(First embodiment)
FIG. 2 shows a cross-sectional view of the compound lens according to the first embodiment of the present invention. This compound lens has a structure in which an energy curable correction member 2b is newly tightly bonded to the first optical surface s1 of the glass substrate 1a of the normal compound lens in FIG. Yes. This compound lens also has an axisymmetric shape with the optical axis 3 as the central axis. Further, the “continuous surface s7” refers to the outer peripheral surface of the first optical surface s1, the second optical surface s2, and the third optical surface s3 as the effective optical surface of the compound lens body. This can generally be said to be a position where correction for environmental deformation is possible, the significance of which will be described later.

図2において、新たに設けた補正部材2bは、温度変化や湿度変化等の環境変化に応じた複合レンズ本体部の反り変形を補正する役割を有している。このような補正部材2bを用いたことで、本実施形態の複合レンズは、通常の複合レンズよりも、複合レンズ全体としての上凸又は下凸の反り変形が抑制される。   In FIG. 2, the newly provided correction member 2 b has a role of correcting warpage deformation of the compound lens main body according to environmental changes such as temperature change and humidity change. By using such a correction member 2b, the compound lens of the present embodiment can suppress the upward or downward convex warping deformation of the entire compound lens, as compared with a normal compound lens.

更に、この補正部材2bは、変形を補正する機能に加えて、例えば絞り機能等の光学的な付加価値を付与する機能を有することもでき、このような場合には、「付加部材」と呼ぶこともできる。但し、本実施形態の説明では、補正部材2bを、主として変形の補正部材として用いる場合を例として説明する。   Further, the correction member 2b may have a function of adding optical added value such as a diaphragm function in addition to the function of correcting deformation. In such a case, the correction member 2b is referred to as an “additional member”. You can also. However, in the description of the present embodiment, the case where the correction member 2b is used mainly as a deformation correction member will be described as an example.

以下、本実施形態の複合レンズの環境変形の抑制機能について、通常の複合レンズの環境変形と比較しながら説明する。
始めに、複合レンズの環境変形を考える上での前提条件を定める。第1に、複合レンズの幾何学的形状は光学設計形状であり、これはある基準温度(通常は室温)で達成されているものとする。以下、このような光学設計のベースとなる温度を設計基準温度という。
Hereinafter, the function of suppressing the environmental deformation of the compound lens of the present embodiment will be described in comparison with the environmental deformation of a normal compound lens.
First, preconditions for considering the environmental deformation of the compound lens are determined. First, the geometric shape of the compound lens is an optical design shape, which is achieved at some reference temperature (usually room temperature). Hereinafter, such a temperature as a base of optical design is referred to as a design reference temperature.

第2に、環境変化としては設計基準温度からの温度変化のみとし、環境変形に関係する材料物性値としては熱膨張係数のみを考慮する。また、複合レンズの温度分布は均一であるとする。   Secondly, only the temperature change from the design reference temperature is taken as the environmental change, and only the thermal expansion coefficient is considered as the material property value related to the environmental deformation. Further, it is assumed that the temperature distribution of the compound lens is uniform.

前述した前提条件のもと、複合レンズに温度変化による環境変形(温度変形、熱変形)が生じた状態を考える。図3及び図4に、各々の複合レンズが冷却され温度が低下した場合の環境変形の模式図を示す。   Consider a state in which an environmental deformation (temperature deformation, thermal deformation) due to a temperature change has occurred in the compound lens under the preconditions described above. FIG. 3 and FIG. 4 are schematic views of environmental deformation when each compound lens is cooled and the temperature is lowered.

図3に示すように、通常の複合レンズにおいては、冷却され温度が低下した場合は、矢印4aで示すように上凸の反り変形が生じる。これは、一般に樹脂の方がガラスよりも熱膨張係数が大きく、同じ温度変化量を与えた場合、樹脂副材2aの方がガラス基材1aよりも熱歪み量が大きくなるからである。なお、逆に、加熱されて温度が上昇した場合は、矢印4aと逆向きの下凸の反り変形が生じる。   As shown in FIG. 3, in a normal compound lens, when cooled and the temperature is lowered, an upward convex warping deformation occurs as indicated by an arrow 4a. This is because the resin generally has a larger coefficient of thermal expansion than glass, and when the same temperature change amount is given, the resin sub-material 2a has a larger amount of thermal strain than the glass substrate 1a. On the contrary, when the temperature rises due to heating, downward convex warping deformation in the direction opposite to the arrow 4a occurs.

通常の複合レンズでは、温度が下がれば下がるほど、又は上がれば上がるほど、すなわち温度が設計基準温度から離れれば離れるほど、各光学機能面s1,s2,s3の曲率半径等で表現される面形状が設計値からずれていく。ゆえに、このような複合レンズを用いた光学系は、複合レンズを用いない光学系に比べて、光学性能が温度変化に敏感であることが多い。よって、所定の光学性能を満足させるためには、使用可能温度範囲を狭くせざるをえない。   In a normal compound lens, the surface shape expressed by the radius of curvature of the optical function surfaces s1, s2, s3, etc., as the temperature decreases or increases, that is, as the temperature departs from the design reference temperature. Deviates from the design value. Therefore, an optical system using such a composite lens is often more sensitive to temperature changes in optical performance than an optical system that does not use a composite lens. Therefore, in order to satisfy the predetermined optical performance, the usable temperature range must be narrowed.

次に、図4に示すように、本実施形態の複合レンズでは、温度低下に伴い、樹脂副材2aとガラス基材1aとの熱膨張係数の差によって矢印4aで示す向きの反り変形が誘発される。しかし、新たに設けた補正部材2bとガラス基材1aとの熱膨張係数の差によって矢印4bで示す向きの反り変形が誘発される。よって、両者の反り変形は相殺され、全体として複合レンズに生じる反り変形量は小さくなる。なお、複合レンズが加熱されて温度が上昇した場合も、同様の理由で複合レンズ全体としての反り変形量は小さくなる。   Next, as shown in FIG. 4, in the compound lens of the present embodiment, warping deformation in the direction indicated by the arrow 4a is induced by the difference in thermal expansion coefficient between the resin secondary material 2a and the glass substrate 1a as the temperature decreases. Is done. However, the warp deformation in the direction indicated by the arrow 4b is induced by the difference in thermal expansion coefficient between the newly provided correction member 2b and the glass substrate 1a. Therefore, the warp deformations of both are canceled out, and the amount of warp deformation generated in the compound lens as a whole becomes small. Even when the temperature of the compound lens is increased due to heating, the warp deformation amount of the entire compound lens becomes small for the same reason.

つまり、本実施形態の複合レンズにおいては、新たに設けた補正部材2bは、ガラス基材1aと樹脂副材2aからなる接合光学素子の環境変形を小さくする効果、すなわち変形補正部材としての役割を果たすことがわかる。   That is, in the compound lens of the present embodiment, the newly provided correction member 2b has the effect of reducing the environmental deformation of the cemented optical element composed of the glass substrate 1a and the resin sub-material 2a, that is, the role as a deformation correction member. You can see that

しかも、本実施形態における反り変形抑制効果は、温度変化に応じて必要な分だけ自律的に発現されるという特徴をもつ。すなわち、温度が設計基準温度からどれだけ離れているかに関係なく、またそのような温度に関する情報を何らかの手段で検知する特別な装置を用いることなく、接合光学素子自身の構造的な特徴によって最適な反り変形抑制効果が得られる。   In addition, the warp deformation suppressing effect in the present embodiment has a feature that it is autonomously expressed by a necessary amount according to a temperature change. In other words, it is optimal depending on the structural characteristics of the bonding optical element itself, regardless of how far the temperature is from the design reference temperature, and without using a special device for detecting such temperature information by any means. A warp deformation suppressing effect is obtained.

すなわち、本実施形態においては、通常の複合レンズに比べて、複合レンズ全体として温度変化による反り変形を効果的に抑制可能であるため、所定の光学性能を保証する使用可能温度範囲を広げることができる。言い換えると、本実施形態の複合レンズを用いた光学装置の光学性能は、通常の複合レンズを用いた光学装置よりも、温度変化にロバストであるといえる。   That is, in the present embodiment, since the warp deformation due to temperature change can be effectively suppressed as a whole compound lens as compared with a normal compound lens, the usable temperature range that guarantees a predetermined optical performance can be expanded. it can. In other words, it can be said that the optical performance of the optical device using the compound lens of the present embodiment is more robust to temperature changes than the optical device using a normal compound lens.

なお、本実施形態において、温度変化による非相似的な変形である反り変形を抑制するためには、図4で示したように、ガラス基材1aと樹脂副材2aだけによる反り変形を相殺するのに、効果的な場所に補正部材2bを密着接合させることが望ましい。   In the present embodiment, in order to suppress the warpage deformation that is a non-similar deformation due to a temperature change, as shown in FIG. 4, the warpage deformation due to only the glass substrate 1 a and the resin sub-material 2 a is offset. However, it is desirable that the correction member 2b be tightly bonded to an effective place.

このため、本実施形態では、複合レンズの各構成部分(ガラス基材1a及び樹脂副材2a)と、新たに設ける補正部材2bとの熱膨張係数に関する相対関係を考慮し、新たに設ける補正部材2bを密着させる面を、ガラス基材1aの第1光学面s1、又はそれに連なる面s7としている。   For this reason, in this embodiment, the correction member newly provided in consideration of the relative relationship regarding the thermal expansion coefficient between each component (glass substrate 1a and resin secondary material 2a) of the compound lens and the correction member 2b newly provided. The surface to which 2b is brought into close contact is defined as the first optical surface s1 of the glass substrate 1a or the surface s7 connected thereto.

なお、新たに設ける補正部材2bの材質がエネルギー硬化型樹脂ではなく、その熱膨張係数が樹脂副材2aよりも小さい場合は、新たに設ける補正部材2bは、ガラス基材1aとエネルギー硬化型の樹脂副材2aの接合面s2ではない第3光学面s3、又はそれに連なる面に形成すると良い。   In addition, when the material of the newly provided correction member 2b is not energy curable resin and its thermal expansion coefficient is smaller than that of the resin secondary material 2a, the newly provided correction member 2b is made of glass substrate 1a and energy curable resin. It is good to form in the 3rd optical surface s3 which is not the joint surface s2 of the resin submaterial 2a, or the surface connected to it.

ただし、ガラス基材1aと樹脂副材2aからなる通常の複合レンズを用いた場合、製作の難易度やコスト等を考慮すると、温度変形抑制のために新たに設ける補正部材2bの材質としては、エネルギー硬化型樹脂を選択するのが望ましい。   However, in the case of using a normal compound lens composed of the glass base material 1a and the resin sub-material 2a, considering the difficulty of production, cost, etc., as the material of the correction member 2b newly provided for suppressing temperature deformation, It is desirable to select an energy curable resin.

このように、補正部材2bを、通常の複合レンズの光学面又はそれに連なる面に新たに形成することは、温度変化による反り変形の主原因である複合レンズにおける光軸方向の熱膨張係数の非対称性に対し、そのバランスを取る(対称性を高める)という設計思想に基づく。   As described above, when the correction member 2b is newly formed on the optical surface of the normal compound lens or a surface connected thereto, the asymmetry of the thermal expansion coefficient in the optical axis direction in the compound lens, which is the main cause of the warp deformation due to the temperature change. It is based on the design philosophy of balancing the nature (increasing symmetry).

つまり、ガラス基材1aと樹脂副材2aの2層からなる複合レンズの場合、新たに3層目として補正部材2bを設け、サンドイッチ構造とすることによって、全体として光軸方向の熱膨張係数の対称性を高めることができる。   That is, in the case of a compound lens composed of two layers of the glass substrate 1a and the resin sub-material 2a, the correction member 2b is newly provided as the third layer, and a sandwich structure is formed. Symmetry can be increased.

また、本実施形態において、新たに設けた補正部材2bの形状は環状をなし、その図示しない中心軸は、ガラス基材1aと樹脂副材2aを含む光学系の光軸3と略一致している。そして、この場合の補正部材2bの穴部の内径D2は、ガラス基材1aの第1光学面s1の光学有効径Dlよりも大きいことが望ましい。   In the present embodiment, the shape of the newly provided correction member 2b is annular, and the center axis (not shown) substantially coincides with the optical axis 3 of the optical system including the glass substrate 1a and the resin sub-material 2a. Yes. In this case, the inner diameter D2 of the hole of the correction member 2b is desirably larger than the optical effective diameter Dl of the first optical surface s1 of the glass substrate 1a.

なお、新たに設けた補正部材2bの形状を、一般的な回転対称形としても良い。すなわち、前述した環状体は光学系の中心側に穴が形成されている場合であるのに対し、穴のない回転対称形としてもかまわない。例えば、補正部材2bが複合光学素子の光学有効面内において、光軸方向厚さが薄く光学機能面形状が被接合面の光学機能面形状とほぼ等しければ、穴がなくても光学的性能にほとんど影響を及ぼさないからである。   Note that the shape of the newly provided correction member 2b may be a general rotationally symmetric shape. That is, the above-described annular body is a case where a hole is formed on the center side of the optical system, but may be a rotationally symmetric shape without a hole. For example, if the correction member 2b is thin in the optical axis direction in the optical effective surface of the composite optical element and the optical functional surface shape is substantially equal to the optical functional surface shape of the bonded surface, the optical performance can be improved even without a hole. This is because it has almost no effect.

本実施形態の補正部材2bの幾何学的特徴は、通常の複合レンズに対して、設計基準温度における光学設計(光学機能)に影響を及ぼすことなく、温度変化による環境変形の抑制効果を達成可能としている。   The geometric characteristics of the correction member 2b of the present embodiment can achieve an effect of suppressing environmental deformation due to a temperature change without affecting the optical design (optical function) at the design reference temperature with respect to a normal compound lens. It is said.

つまり、本実施形態においては、前述したように、必ずしも複合レンズ及び光学系の新規設計技術としてのみ実現されるものではなく、通常の複合レンズ及びこれを用いた光学部品の改良技術(付加価値の付与)としても実現される。   In other words, in the present embodiment, as described above, it is not necessarily realized only as a new design technology for a composite lens and an optical system, but an improvement technology (added-value technology) for a normal composite lens and an optical component using the same. Granted).

なお、本実施形態の補正部材2bは、ガラス基材1aの第2光学面s2に元々形成されている樹脂副材2aと同一のものとすることが望ましい。
これは、樹脂副材2aと補正部材2bの材質を統一することにより、温度変化に限らず様々な環境変化による複合レンズの反り変形を包括的に抑制することが期待されるからである。つまり、樹脂副材2aと補正部材2bの材質が同じであれば、どのような環境変化に対しても樹脂副材2aと補正部材2bの体積変化挙動は同じとなり、温度変形対策として定めた複合レンズの構造設計が、そのまま湿度変化等のあらゆる環境変化による反り変形対策としても機能すると考えられる。
In addition, as for the correction member 2b of this embodiment, it is desirable to make it the same as the resin submaterial 2a originally formed in the 2nd optical surface s2 of the glass base material 1a.
This is because by unifying the material of the resin sub-material 2a and the correction member 2b, it is expected to comprehensively suppress warpage deformation of the compound lens due to various environmental changes as well as temperature changes. In other words, if the material of the resin secondary material 2a and the correction member 2b are the same, the volume change behavior of the resin secondary material 2a and the correction member 2b will be the same for any environmental change, and the composite defined as a measure against temperature deformation. It is considered that the structural design of the lens functions as a countermeasure against warp deformation caused by any environmental change such as humidity change.

更に、樹脂副材2aと補正部材2bの材質を統一することで、複合レンズ成形機の構造が複雑化するのを防ぎ、樹脂材料の調達コストの削減等の副次的な効果も期待される。
なお、本実施形態における補正部材2bの幾何学的及び材質的な特徴は、本発明を実施するための1形態にすぎない。例えば、新たに設けた補正部材2bは、ガラス基材1aと樹脂副材2aの少なくとも一方の光学機能面又はこれに連なる面に、複数に分割されて接合されていても構わない。また、それらの複数領域は、互いに異なる材質から成っていても構わない。
Furthermore, by unifying the materials of the resin secondary material 2a and the correction member 2b, it is possible to prevent the complex lens molding machine from becoming complicated, and to expect secondary effects such as reduction in the procurement cost of the resin material. .
Note that the geometric and material features of the correction member 2b in this embodiment are only one form for carrying out the present invention. For example, the newly provided correction member 2b may be divided into a plurality of pieces and joined to at least one optical function surface of the glass base material 1a and the resin sub-material 2a or a surface connected thereto. The plurality of regions may be made of different materials.

また、本実施形態の複合レンズに対する要求項目として、通常の複合レンズに対し光学機能の変化を許容してでも温度変化による反り変形の抑制効果を狙う場合は、新たに設けた補正部材2bの形状は必ずしも環状体である必要はない。また、その中心軸は必ずしもガラス基材1aと樹脂副材2aから成る複合レンズの光軸3と近似的に一致する必要はない。更に、その穴部の内径D2は、必ずしもガラス基材1aの第1光学面s1の有効光学径Dlよりも大きい必要はない。   In addition, as a requirement for the compound lens of the present embodiment, the shape of the newly provided correction member 2b is used when aiming at the effect of suppressing warpage deformation due to a temperature change even if the change in optical function is allowed with respect to a normal compound lens. Is not necessarily a ring. Further, the central axis does not necessarily need to approximately coincide with the optical axis 3 of the compound lens composed of the glass substrate 1a and the resin sub-material 2a. Furthermore, the inner diameter D2 of the hole does not necessarily need to be larger than the effective optical diameter Dl of the first optical surface s1 of the glass substrate 1a.

また、本実施形態において、新たに設ける補正部材2bのサイズは、この補正部材2bの材質として何を選択するかによって変化する。これは、基本的に補正部材2bとその被着材である相手(ガラス基材1a又は樹脂副材2a)との熱膨張係数の差に依存する。一般に、この差が大きいほど新たに設ける補正部材2bのサイズは小さくて済む。   In the present embodiment, the size of the correction member 2b newly provided varies depending on what is selected as the material of the correction member 2b. This basically depends on the difference in coefficient of thermal expansion between the correction member 2b and the counterpart (glass substrate 1a or resin sub-material 2a) that is the adherend. Generally, the larger the difference, the smaller the size of the newly provided correction member 2b.

ここで、ガラス基材1a、樹脂副材2a、及び補正部材2bの熱膨張係数の関係と、補正部材2bの接合位置との関係を列挙する。なお、ガラス基材1aと樹脂副材2aは夫々単一の部材から成るものとし、ガラス基材1aの熱膨張係数をαB、樹脂副材2aの熱膨張係数をαs1、補正部材2bの熱膨張係数をαs2とする。   Here, the relationship between the thermal expansion coefficients of the glass substrate 1a, the resin secondary material 2a, and the correction member 2b and the relationship between the bonding positions of the correction member 2b are listed. The glass base material 1a and the resin secondary material 2a are each composed of a single member, the thermal expansion coefficient of the glass base material 1a is αB, the thermal expansion coefficient of the resin secondary material 2a is αs1, and the thermal expansion of the correction member 2b. The coefficient is αs2.

以上において、第1の例として、例えば、αs1がαBより大きければ、αs2がαBより大きい補正部材2bを、また、αs1がαBより小さければ、αs2がαBより小さい補正部材2bを、ガラス基材1aと樹脂副材2aの接合面とは異なるガラス基材1aの光学機能面又はそれに連なる面に接合する。この場合の構成を図5に示す。   In the above, as a first example, for example, if αs1 is larger than αB, the correction member 2b is larger than αB, and if αs1 is smaller than αB, the correction member 2b is smaller than αB. It joins to the optical function surface of the glass base material 1a different from the joining surface of 1a and the resin submaterial 2a, or the surface connected to it. The configuration in this case is shown in FIG.

第2の例として、例えば、αs1がαBより大きければ、αs2がαs1より小さい補正部材2bを、また、αs1がαBより小さければ、αs2がαs1より大きい補正部材2bを、ガラス基材1aと樹脂副材2aの接合面とは異なる樹脂副材2aの光学機能面又はそれに連なる面に接合する。この場合の構成を図6に示す。   As a second example, for example, if αs1 is larger than αB, the correction member 2b is smaller than αs1, and if αs1 is smaller than αB, the correction member 2b is larger than αs1 and the glass substrate 1a and the resin. It joins to the optical function surface of the resin secondary material 2a different from the joint surface of the secondary material 2a or the surface connected to it. The configuration in this case is shown in FIG.

第3の例として、例えば、αslがαBより大きければ、αs2がαs1より大きい補正部材2bを、また、αslがαBより小さければ、αs2がαs1より小さい補正部材2bを、ガラス基材1aと樹脂副材2aの接合面を小領域として含む樹脂副材2aの光学機能面又はそれに連なる面に接合する。この場合の構成を図7に示す。   As a third example, for example, if αsl is greater than αB, the correction member 2b having αs2 larger than αs1 is used. If αsl is smaller than αB, the correction member 2b having αs2 smaller than αs1 is formed using the glass substrate 1a and the resin. It joins to the optical function surface of the resin secondary material 2a including the joining surface of the secondary material 2a as a small region or a surface connected to it. The configuration in this case is shown in FIG.

第4の例として、例えば、αs1がαBより大きければ、αs2がαBより小さい補正部材2bを、また、αs1がαBより小さければ、αs2がαBより大きい補正部材2bを、ガラス基材1aと樹脂副材2aの接合面を小領域として含むガラス基材1aの光学機能面又はそれに連なる面に接合する。この場合の構成を図8に示す。   As a fourth example, for example, if αs1 is larger than αB, the correction member 2b is smaller than αB. If αs1 is smaller than αB, the correction member 2b is larger than αB. It joins to the optical function surface of the glass base material 1a which contains the joining surface of the submaterial 2a as a small area, or the surface connected to it. The configuration in this case is shown in FIG.

第5の例として、例えば、αs1がαBより大きければ、αs2がαs1より小さく、かつαBより大きい補正部材2bを、また、αslがαBより小さければ、αs2がαs1より大きく、かつαBより小さい補正部材2bを介して、ガラス基材1aと樹脂副材2aが接合される。この場合の構成を図9に示す。   As a fifth example, for example, if αs1 is larger than αB, the correction member 2b is smaller than αs1 and larger than αB, and if αsl is smaller than αB, αs2 is larger than αs1 and smaller than αB. The glass substrate 1a and the resin secondary material 2a are joined via the member 2b. The configuration in this case is shown in FIG.

なお、新たに設ける補正部材2bのサイズを含む幾何学的形状については、有限要素法による構造解析によってその効果を確認しつつ最良のものを見つけることが望ましい。
また、本実施形態では、主として環境変形として温度変形だけに着目したが、温度を湿度、熱膨張係数を湿度膨張係数と置き換えれば、複合レンズの構造は、基本的にそのまま湿度変化による反り変形の抑制構造としても機能する。
As for the geometric shape including the size of the newly provided correction member 2b, it is desirable to find the best one while confirming the effect by the structural analysis by the finite element method.
Further, in this embodiment, only the temperature deformation is mainly focused on as the environmental deformation. However, if the temperature is replaced with the humidity and the thermal expansion coefficient is replaced with the humidity expansion coefficient, the structure of the compound lens is basically the same as the warp deformation due to the humidity change. It also functions as a suppression structure.

また、本実施形態の複合レンズは、ガラス基材1aと樹脂副材2a、及び補正部材2bの3部品が密着接合して構成されているが、これら構成部品の数には限定されないことは言うまでもない。すなわち、本発明が適用できる複合レンズは、ガラス基材とエネルギー硬化型の樹脂副材が複数密着接合して成るものでも構わない。   In addition, the compound lens of the present embodiment is configured by closely bonding the three parts of the glass substrate 1a, the resin secondary material 2a, and the correction member 2b, but it goes without saying that the number of these components is not limited. Yes. In other words, the compound lens to which the present invention can be applied may be one in which a plurality of glass substrates and energy curable resin sub-materials are closely bonded.

ここでは、本実施形態の複合レンズの環境変形に関する有限要素法による構造解析の結果を、通常の複合レンズの場合と比較して示す。
図10は、ガラス基材1aに樹脂副材2aが密着接合されて成る通常の複合レンズのシミュレーションモデルを示している。
Here, the result of the structural analysis by the finite element method relating to the environmental deformation of the compound lens of the present embodiment is shown in comparison with the case of a normal compound lens.
FIG. 10 shows a simulation model of a normal compound lens in which a resin sub-material 2a is closely bonded to a glass substrate 1a.

図11は、ガラス基材1aに樹脂副材2a及び補正部材2bが密着接合されて成る本実施形態の複合レンズのシミュレーションモデルを示している。なお、シミュレーションモデルは軸対称モデルとし、複合レンズの断面形状は光軸中心から右半分のみを示す。   FIG. 11 shows a simulation model of the compound lens of the present embodiment in which the resin sub-material 2a and the correction member 2b are tightly bonded to the glass substrate 1a. The simulation model is an axisymmetric model, and the cross-sectional shape of the compound lens shows only the right half from the center of the optical axis.

図12は、設計基準温度20℃である通常の複合レンズを、−60℃に冷却した際の光軸方向(光軸3の方向)の変位分布図である。
図13は、設計基準温度20℃である本実施形態の複合レンズを、−60℃に冷却した際の光軸方向変位分布図である。
FIG. 12 is a displacement distribution diagram in the optical axis direction (the direction of the optical axis 3) when a normal compound lens having a design reference temperature of 20 ° C. is cooled to −60 ° C.
FIG. 13 is an optical axis direction displacement distribution diagram when the compound lens of the present embodiment having a design reference temperature of 20 ° C. is cooled to −60 ° C.

図14は、設計基準温度20℃である通常の複合レンズを、100℃に加熱した際の光軸方向変位分布図である。
図15は、設計基準温度20℃である本実施形態の複合レンズを、100℃に加熱した際の光軸方向変位分布図である。
FIG. 14 is an optical axis direction displacement distribution diagram when a normal compound lens having a design reference temperature of 20 ° C. is heated to 100 ° C.
FIG. 15 is an optical axis direction displacement distribution diagram when the compound lens of the present embodiment having a design reference temperature of 20 ° C. is heated to 100 ° C.

なお、図12、図13、図14、図15における変位分布図において、等高線で表す光軸方向変位の範囲は統一している。また、これらの変位分布図は変形図も兼ねており、変形倍率は60倍としている。   In the displacement distribution diagrams in FIGS. 12, 13, 14, and 15, the range of displacement in the optical axis direction represented by contour lines is unified. Further, these displacement distribution diagrams also serve as deformation diagrams, and the deformation magnification is 60 times.

図12及び図14に示すように、通常の複合レンズでは、ガラス基材1aに斜めの等高線が生じ、複合レンズ全体として明確な反り変形が認められる。これに対し、図13及び図15に示すように、本実施形態の複合レンズでは、そのようなガラス基材1aに対する斜めの等高線は見られず、複合レンズ全体として反り変形が抑えられていることがわかる。   As shown in FIGS. 12 and 14, in the normal compound lens, oblique contour lines are generated in the glass substrate 1 a, and clear warp deformation is recognized as the entire compound lens. On the other hand, as shown in FIGS. 13 and 15, in the compound lens of the present embodiment, such oblique contour lines with respect to the glass substrate 1a are not seen, and warpage deformation is suppressed as a whole compound lens. I understand.

すなわち、本実施形態の複合レンズでは、通常の複合レンズに比べて、温度変化に伴う各光学機能面形状の設計値からのずれ量が小さい。このことをガラス基材1aの第1光学面s1についてグラフ化した結果を図16及び図17に示す。   That is, in the compound lens of the present embodiment, the amount of deviation from the design value of each optical function surface shape accompanying a change in temperature is smaller than that of a normal compound lens. The results of graphing this for the first optical surface s1 of the glass substrate 1a are shown in FIGS.

図16は、通常の複合レンズの光軸方向変位を示し、図17は、本実施形態の複合レンズの光軸方向変位を示している。
この図16及び図17を比較すると、本実施形態の複合レンズは、通常の複合レンズに比べて、―60℃〜100℃にわたる温度変化によるガラス基材laの第1光学面s1の形状変化量(光学方向への設計値からの偏差5)を半分以下に抑制できていることがわかる。すなわち、本実施形態の複合レンズは、通常の複合レンズに比べて、温度環境変化に対してロバストな光学性能を持つといえる。
(第2の実施形態)
本実施形態では、図18に示すような接合レンズを考える。ここで、接合レンズとは、一般には、材質の異なる2つ以上のガラスレンズを接着剤等を介して接着接合してなるものをいう。ただし、本発明が適用可能な接合レンズの構成は、「ガラスレンズ+ガラスレンズ」に限らず、「ガラスレンズ+樹脂レンズ」、「樹脂レンズ+樹脂レンズ」でも適用可能である。
FIG. 16 shows the displacement in the optical axis direction of a normal compound lens, and FIG. 17 shows the displacement in the optical axis direction of the compound lens of this embodiment.
When comparing FIG. 16 and FIG. 17, the compound lens of this embodiment has a shape change amount of the first optical surface s1 of the glass substrate la due to a temperature change from −60 ° C. to 100 ° C. as compared with a normal compound lens. It can be seen that (deviation 5 from the design value in the optical direction) can be suppressed to half or less. That is, it can be said that the compound lens of the present embodiment has an optical performance that is more robust with respect to changes in temperature environment than a normal compound lens.
(Second Embodiment)
In this embodiment, a cemented lens as shown in FIG. 18 is considered. Here, the cemented lens generally refers to a lens formed by bonding and bonding two or more glass lenses made of different materials via an adhesive or the like. However, the configuration of the cemented lens to which the present invention can be applied is not limited to “glass lens + glass lens”, but can also be applied to “glass lens + resin lens” and “resin lens + resin lens”.

図18は、通常の接合レンズの断面図を示している。この複合レンズは、凸レンズを構成するガラス基材11aの第2光学面s12に、凹レンズを構成するガラス副材12aが接着接合された構造を有している。そして、主として第1光学面s11、第2光学面s12、第3光学面s13の面形状やそれら光学機能面の光軸方向間隔、及びガラス基材11aとガラス副材12aの材質を任意に設計することよって所定の光学機能を発現している。なお、この通常の接合レンズは、光軸13を中心軸とする軸対称形をなしている。   FIG. 18 shows a cross-sectional view of a normal cemented lens. This compound lens has a structure in which a glass secondary material 12a constituting a concave lens is adhesively bonded to a second optical surface s12 of a glass substrate 11a constituting a convex lens. Then, the surface shape of the first optical surface s11, the second optical surface s12, and the third optical surface s13, the distance between the optical function surfaces in the optical axis direction, and the materials of the glass base material 11a and the glass auxiliary material 12a are arbitrarily designed. Thus, a predetermined optical function is expressed. This normal cemented lens has an axisymmetric shape with the optical axis 13 as the central axis.

また、図18において、ガラス基材11aとガラス副材12aは互いに材質の異なるガラスでできている。つまり、この接合レンズ全体としては、一般に熱膨張係数や湿度膨張係数などの材料物性値が光軸方向に対して空間的非対称性をもつ。これにより、温度変化や湿度変化等の環境変化に応じて、接合レンズの断面形状は上凸又は下凸の反り変形をすることが予想される。   Moreover, in FIG. 18, the glass base material 11a and the glass subsidiary material 12a are made of different glass materials. That is, as a whole of this cemented lens, generally, material property values such as a thermal expansion coefficient and a humidity expansion coefficient have a spatial asymmetry with respect to the optical axis direction. Thereby, it is expected that the cross-sectional shape of the cemented lens is warped and deformed upward or downward depending on environmental changes such as temperature change and humidity change.

図19は、本実施形態の接合レンズの断面図を示している。この接合レンズは、通常の接合レンズのガラス基材11aの第1光学面s11、及びそれに連なる面s17に、新たに補正部材12bが接着接合された構成を有している。なお、本実施形態の接合レンズも、光軸13を中心軸とする軸対称形をなしている。   FIG. 19 shows a cross-sectional view of the cemented lens of the present embodiment. This cemented lens has a configuration in which a correction member 12b is newly bonded and joined to a first optical surface s11 of a glass substrate 11a of a normal cemented lens and a surface s17 continuous therewith. Note that the cemented lens of the present embodiment also has an axisymmetric shape with the optical axis 13 as the central axis.

本実施形態の接合レンズにおいて、新たに設けた補正部材12bは、温度変化や湿度変化等の環境変化に応じた接合レンズ本体部としての反り変形を補正する役割を有している。この補正部材12bの導入により、本実施形態の接合レンズは通常の接合レンズよりも、接合レンズ全体としての上凸又は下凸の反り変形が抑制される。   In the cemented lens of the present embodiment, the newly provided correction member 12b has a role of correcting warpage deformation as the cemented lens main body according to environmental changes such as temperature change and humidity change. With the introduction of the correction member 12b, the cemented lens of the present embodiment suppresses the upward or downward convex warping deformation of the cemented lens as a whole, as compared with a normal cemented lens.

なお、本実施形態の接合レンズの環境変形の抑制機能については、前述した第1実施形態の複合レンズと同様であるので、詳細な説明を省略する。図20,図21に、その模式図を示す。   In addition, since the function of suppressing the environmental deformation of the cemented lens of the present embodiment is the same as that of the above-described compound lens of the first embodiment, detailed description thereof is omitted. 20 and 21 are schematic diagrams.

また、本実施形態の接合レンズにおいて、新たに設けた補正部材12bの材質は、元々ガラス基材11aに接着接合されていたガラス副材12aと同材質のガラスとしたが、本発明はこれに限定するものではい。すなわち、新たに設ける補正部材12bの材質としては、ゴム、プラスチック、金属等を用いることもできる。   In the cemented lens of the present embodiment, the newly provided correction member 12b is made of the same material as the glass secondary material 12a that is originally bonded and bonded to the glass substrate 11a. It ’s not limited. That is, rubber, plastic, metal, or the like can be used as the material of the correction member 12b newly provided.

なお、新たに設ける補正部材12bは、元々の接合レンズの温度変形による反り変形を抑制する効果がある場所に接着接合する必要がある。例えば、新たな補正部材12bを、その補正部材12bを含む接合レンズ全体における熱膨張係数の光軸方向への対称性がより高まるような場所に接着接合する。   The newly provided correction member 12b needs to be adhesively bonded to a place where there is an effect of suppressing warpage deformation due to temperature deformation of the original cemented lens. For example, the new correction member 12b is bonded and bonded to a place where the symmetry in the optical axis direction of the thermal expansion coefficient of the entire cemented lens including the correction member 12b is further increased.

次に、本実施形態の接合レンズの環境変形に関する有限要素法による構造解析の結果を、通常の接合レンズの場合と比較して示す。
図22は、ガラス基材11aにガラス副材12aが接着接合されてなる通常の接合レンズのシミュレーションモデルを示している。
Next, the result of the structural analysis by the finite element method regarding the environmental deformation of the cemented lens of the present embodiment is shown in comparison with the case of a normal cemented lens.
FIG. 22 shows a simulation model of a normal cemented lens in which a glass secondary material 12a is bonded and bonded to a glass substrate 11a.

図23は、ガラス基材11aにガラス副材12a及び補正部材12bが接着接合されてなる本実施形態の接合レンズのシミュレーションモデルを示している。
図24は、設計基準温度20℃である通常の複合レンズを、−60℃に冷却した際の光軸方向(光軸13の方向)の変位分布図である。
FIG. 23 shows a simulation model of the cemented lens of the present embodiment in which the glass secondary material 12a and the correction member 12b are bonded and bonded to the glass substrate 11a.
FIG. 24 is a displacement distribution diagram in the optical axis direction (direction of the optical axis 13) when a normal compound lens having a design reference temperature of 20 ° C. is cooled to −60 ° C.

図25は、設計基準温度20℃である本実施形態の複合レンズを、−60℃に冷却した際の光軸方向変位分布図である。
図26は、設計基準温度20℃である通常の複合レンズを、100℃に加熱した際の光軸方向変位分布図である。
FIG. 25 is an optical axis direction displacement distribution diagram when the compound lens of the present embodiment having a design reference temperature of 20 ° C. is cooled to −60 ° C.
FIG. 26 is a displacement distribution diagram in the optical axis direction when a normal compound lens having a design reference temperature of 20 ° C. is heated to 100 ° C.

図27は、設計基準温度20℃である本実施形態の複合レンズを、100℃に加熱した際の光軸方向変位分布図である。
なお、図24から図27における変位分布図は変形図も兼ねており、変形倍率は100倍としている。
FIG. 27 is a displacement distribution diagram in the optical axis direction when the compound lens of the present embodiment having a design reference temperature of 20 ° C. is heated to 100 ° C.
The displacement distribution diagrams in FIGS. 24 to 27 also serve as deformation diagrams, and the deformation magnification is 100 times.

また、図28及び図29に、ガラス基材11aの第1光学面s11の変形の様子を示す。
図24から図29を見ると明らかなように、本実施形態の接合レンズは、通常の接合レンズに比べて、−60℃〜100℃にわたる温度変化によるガラス基材11aの第1光学面s11の形状変化量(光学方向への設計値からの偏差15)を大幅に抑制できることがわかる。すなわち、本実施形態の接合レンズは、通常の接合レンズに比べて、温度環境変化に対してロバストな光学性能を持つといえる。
28 and 29 show how the first optical surface s11 of the glass substrate 11a is deformed.
As is apparent from FIGS. 24 to 29, the cemented lens of the present embodiment has the first optical surface s11 of the glass substrate 11a due to a temperature change over −60 ° C. to 100 ° C. as compared with a normal cemented lens. It can be seen that the amount of change in shape (deviation 15 from the design value in the optical direction) can be significantly suppressed. That is, it can be said that the cemented lens of the present embodiment has an optical performance that is more robust with respect to changes in temperature environment than an ordinary cemented lens.

通常の複合レンズの断面図である。It is sectional drawing of a normal compound lens. 第1の実施形態の複合レンズの断面図である。It is sectional drawing of the compound lens of 1st Embodiment. 通常の複合レンズを冷却した場合の変形を表す模式図である。It is a schematic diagram showing a deformation | transformation at the time of cooling a normal compound lens. 第1の実施形態の複合レンズを冷却した場合の変形を表す模式図である。It is a schematic diagram showing a deformation | transformation at the time of cooling the compound lens of 1st Embodiment. 第1の実施形態の複合レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the compound lens of 1st Embodiment. 第1の実施形態の複合レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the compound lens of 1st Embodiment. 第1の実施形態の複合レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the compound lens of 1st Embodiment. 第1の実施形態の複合レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the compound lens of 1st Embodiment. 第1の実施形態の複合レンズの構成を示す模式図である。It is a schematic diagram which shows the structure of the compound lens of 1st Embodiment. 通常の複合レンズのシミュレーションモデルを示す図である。It is a figure which shows the simulation model of a normal compound lens. 第1の実施形態の複合レンズのシミュレーションモデルを示す図である。It is a figure which shows the simulation model of the compound lens of 1st Embodiment. 通常の複合レンズを冷却した場合のシミュレーションモデルを示す図である。It is a figure which shows the simulation model at the time of cooling a normal compound lens. 第1の実施形態の複合レンズを冷却した場合の光軸方向変位分布を示す図である。It is a figure which shows the optical axis direction displacement distribution at the time of cooling the compound lens of 1st Embodiment. 通常の複合レンズを加熱した場合の光軸方向変位分布を示す図である。It is a figure which shows the optical axis direction displacement distribution at the time of heating a normal compound lens. 第1の実施形態の複合レンズを加熱した場合の光軸方向変位分布を示す図である。It is a figure which shows the optical axis direction displacement distribution at the time of heating the compound lens of 1st Embodiment. 通常の複合レンズを加熱・冷却した場合の光学機能面の変形を示す図である。It is a figure which shows the deformation | transformation of the optical function surface at the time of heating and cooling a normal compound lens. 第1の実施形態の複合レンズを加熱・冷却した場合の光学機能面の変形を示す図である。It is a figure which shows the deformation | transformation of the optical function surface at the time of heating and cooling the compound lens of 1st Embodiment. 通常の接合レンズの断面図である。It is sectional drawing of a normal cemented lens. 第2の実施形態の接合レンズの断面図である。It is sectional drawing of the cemented lens of 2nd Embodiment. 通常の接合レンズを冷却した場合の変形を表す模式図である。It is a schematic diagram showing a deformation | transformation at the time of cooling a normal cemented lens. 第2の実施形態の接合レンズを冷却した場合の変形を表す模式図である。It is a schematic diagram showing a deformation | transformation at the time of cooling the cemented lens of 2nd Embodiment. 通常の接合レンズのシミュレーションモデルを示す図である。It is a figure which shows the simulation model of a normal cemented lens. 第2の実施形態の接合レンズのシミュレーションモデルを示す図である。It is a figure which shows the simulation model of the cemented lens of 2nd Embodiment. 通常の接合レンズを冷却した場合の光軸方向変位分布を示す図である。It is a figure which shows the optical axis direction displacement distribution at the time of cooling a normal cemented lens. 第2の実施形態の接合レンズを冷却した場合の光軸方向変位分布を示す図である。It is a figure which shows the optical axis direction displacement distribution at the time of cooling the cemented lens of 2nd Embodiment. 通常の接合レンズを加熱した場合の光軸方向変位分布を示す図である。It is a figure which shows the optical axis direction displacement distribution at the time of heating a normal cemented lens. 第2の実施形態の接合レンズを加熱した場合の光軸方向変位分布を示す図である。It is a figure which shows the optical axis direction displacement distribution at the time of heating the cemented lens of 2nd Embodiment. 通常の接合レンズを加熱・冷却した場合の光学機能面の変形を示す図である。It is a figure which shows the deformation | transformation of the optical function surface at the time of heating and cooling a normal cemented lens. 第2の実施形態の接合レンズを加熱・冷却した場合の光学機能面の変形を示す図である。It is a figure which shows the deformation | transformation of the optical function surface at the time of heating and cooling the cemented lens of 2nd Embodiment.

符号の説明Explanation of symbols

1a ガラス基材
2a 樹脂副材
2b 補正部材
3 光軸
4a 上凸の反り変形を表す
4b 下凸の反り変形を表す
5 温度変化による光学機能面の形状変化量
12a ガラス副材
12b 補正部材
13 光軸
14a 上凸の反り変形を表す
14b 下凸の反り変形を表す
15 温度変化による光学機能面の形状変化量
s1 第1光学面
s2 第2光学面
s3 第3光学面
s7 準ずる面
11a ガラス基材
s11 第1光学面
s12 第2光学面
s13 第3光学面
s17 準ずる面
D1 光学有効径
D2 補正部材2bの穴部の内径
D11 光学有効径
D12 補正部材12bの穴部の内径
DESCRIPTION OF SYMBOLS 1a Glass base material 2a Resin secondary material 2b Correction member 3 Optical axis 4a 4b Expressing upward convex warpage deformation 5 Depressing downward convex warpage deformation 5 Amount of optical function surface shape change due to temperature change 12a Glass secondary material 12b Correction member 13 Light Axis 14a 14b representing upward convex warpage deformation 15 representing downward convex warpage deformation Amount of change in shape of optical functional surface s1 due to temperature change s1 First optical surface s2 Second optical surface s3 Third optical surface s7 Similar surface 11a Glass substrate s11 First optical surface s12 Second optical surface s13 Third optical surface s17 Similar surface D1 Effective optical diameter D2 Inner diameter D11 of correction member 2b Optical effective diameter D12 Inner diameter of correction member 12b

Claims (19)

光学材料からなる基材の光学機能面に、基材に対して所定の光学機能を付与する光学材料からなる副材が接合された本体部と、
前記基材又は前記副材の少なくとも一方の光学機能面又はこれに連なる面に接合され、
前記基材と前記副材との材質の相違に起因する前記本体部の変形を抑制する補正部材を接合してなる、
ことを特徴とする接合光学素子。
A main body part in which a secondary material made of an optical material that gives a predetermined optical function to the base material is bonded to the optical function surface of the base material made of an optical material;
Bonded to at least one optical functional surface of the base material or the auxiliary material or a surface connected to the optical functional surface,
It is formed by bonding a correction member that suppresses deformation of the main body due to a difference in material between the base material and the auxiliary material.
A bonded optical element.
前記補正部材は、前記本体部に光学機能を付与する、
ことを特徴とする請求項1に記載の接合光学素子。
The correction member provides an optical function to the main body.
The bonded optical element according to claim 1.
前記補正部材は、前記本体部の有効光学面の周囲に接合されている、
ことを特徴とする請求項1に記載の接合光学素子。
The correction member is bonded around the effective optical surface of the main body,
The bonded optical element according to claim 1.
前記補正部材は回転対称な形状を有し、その中心軸と前記本体部の光軸とが略一致している、
ことを特徴とする請求項1に記載の接合光学素子。
The correction member has a rotationally symmetric shape, and the center axis thereof substantially coincides with the optical axis of the main body part.
The bonded optical element according to claim 1.
前記補正部材は環状をなし、その中心軸と前記本体部の光軸とが略一致している、
ことを特徴とする請求項1に記載の接合光学素子。
The correction member has an annular shape, and the central axis of the correction member substantially coincides with the optical axis of the main body.
The bonded optical element according to claim 1.
前記補正部材は、その環状部内径が前記本体部の有効光学面の径よりも大きい、
ことを特徴とする請求項5に記載の接合光学素子。
The correction member has an annular inner diameter larger than the diameter of the effective optical surface of the main body,
The bonded optical element according to claim 5.
前記補正部材は、複数の副補正部材からなる、
ことを特徴とする請求項1に記載の接合光学素子。
The correction member is composed of a plurality of sub correction members.
The bonded optical element according to claim 1.
前記補正部材は、少なくとも2つの材質の異なる副補正部材からなる、
ことを特徴とする請求項1に記載の接合光学素子。
The correction member includes at least two sub correction members made of different materials.
The bonded optical element according to claim 1.
前記基材と前記副材は、その熱膨張係数又は湿度膨張係数の少なくともいずれか一方が異なっている、
ことを特徴とする請求項1に記載の接合光学素子。
The base material and the secondary material are different in at least one of their thermal expansion coefficient or humidity expansion coefficient,
The bonded optical element according to claim 1.
前記基材と前記副材は夫々1つの部材から成り、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαs1、前記補正部材の熱膨張係数をαs2としたとき、
αs1がαBより大きければ、αs2がαBより大きい前記補正部材を、
αs1がαBより小さければ、αs2がαBより小さい前記補正部材を、
前記基材と前記副材の接合面とは異なる前記基材の光学機能面又はそれに連なる面に接合する、
ことを特徴とする請求項1に記載の接合光学素子。
Each of the base material and the auxiliary material is composed of one member.
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αs1, and the thermal expansion coefficient of the correction member is αs2,
If αs1 is larger than αB, the correction member whose αs2 is larger than αB is
If αs1 is smaller than αB, the correction member having αs2 smaller than αB is
Bonding to the optical functional surface of the substrate different from the bonding surface of the substrate and the secondary material or a surface connected to it,
The bonded optical element according to claim 1.
前記基材と前記副材が夫々1つの部材から成り、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαsl、前記補正部材の熱膨張係数をαs2としたとき、
αs1がαBより大きければ、αs2がαs1より小さい前記補正部材を、
αs1がαBより小さければ、αs2がαs1より大きい前記補正部材を、
前記基材と前記副材の接合面とは異なる前記副材の光学機能面又はそれに連なる面に接合する、
ことを特徴とする請求項1に記載の接合光学素子。
The base material and the secondary material are each composed of one member,
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αsl, and the thermal expansion coefficient of the correction member is αs2,
If αs1 is larger than αB, the correction member whose αs2 is smaller than αs1 is
If αs1 is smaller than αB, the correction member in which αs2 is larger than αs1,
Bonding to the optical function surface of the secondary material different from the bonding surface of the base material and the secondary material or a surface continuous therewith,
The bonded optical element according to claim 1.
前記基材及び前記副材が夫々1つの部材から成り、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαsl、前記補正部材の熱膨張係数をαs2としたとき、
αslがαBより大きければ、αs2がαs1より大きい前記補正部材を、
αslがαBより小さければ、αs2がαs1より小さい前記補正部材を、
前記基材と前記副材の接合部を除く前記副材の光学機能面又はそれに連なる面に接合する、
ことを特徴とする請求項1に記載の接合光学素子。
Each of the base material and the auxiliary material is composed of one member,
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αsl, and the thermal expansion coefficient of the correction member is αs2,
If αsl is larger than αB, the correction member having αs2 larger than αs1 is
If αsl is smaller than αB, the correction member in which αs2 is smaller than αs1,
Bonding to the optical function surface of the secondary material excluding the joint portion of the base material and the secondary material or a surface connected to it.
The bonded optical element according to claim 1.
前記基材及び前記副材が夫々1つの部材から成り、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαsl、前記補正部材の熱膨張係数をαs2としたとき、
αs1がαBより大きければ、αs2がαBより小さい前記補正部材を、
αs1がαBより小さければ、αs2がαBより大きい前記補正部材を、
前記基材と前記副材の接合部を除く前記基材の光学機能面又はそれに連なる面に接合する、
ことを特徴とする請求項1に記載の接合光学素子。
Each of the base material and the auxiliary material is composed of one member,
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αsl, and the thermal expansion coefficient of the correction member is αs2,
If αs1 is larger than αB, the correction member whose αs2 is smaller than αB is
If αs1 is smaller than αB, the correction member having αs2 larger than αB is
Bonding to the optical functional surface of the base material or a surface connected to the base material excluding the joint portion of the base material and the auxiliary material,
The bonded optical element according to claim 1.
前記基材と前記副材が夫々1つの部材から成り、前記基材と前記副材とは、
前記基材の熱膨張係数をαB、前記副材の熱膨張係数をαs1、前記補正部材の熱膨張係数をαs2としたとき、
αs1がαBより大きければ、αs2がαs1より小さく、かつαBより大きい前記補正部材を、
αslがαBより小さければ、αs2がαs1より大きく、かつαBより小さい前記補正部材を、
介して接合される、
ことを特徴とする請求項1に記載の接合光学素子。
The base material and the secondary material are each composed of one member, and the base material and the secondary material are:
When the thermal expansion coefficient of the base material is αB, the thermal expansion coefficient of the secondary material is αs1, and the thermal expansion coefficient of the correction member is αs2,
If αs1 is larger than αB, the correcting member is such that αs2 is smaller than αs1 and larger than αB.
If αsl is smaller than αB, αs2 is larger than αs1 and smaller than αB.
Joined through,
The bonded optical element according to claim 1.
前記基材と前記副材は、互いに材料物性の異なるガラスである、
ことを特徴とする請求項1に記載の接合光学素子。
The base material and the secondary material are glasses having different material properties from each other.
The bonded optical element according to claim 1.
前記基材はガラス、前記副材はエネルギー硬化型樹脂である、
ことを特徴とする請求項1に記載の接合光学素子。
The base material is glass, and the secondary material is an energy curable resin.
The bonded optical element according to claim 1.
前記補正部材は、前記基材又は前記副材の材質と同一である、
ことを特徴とする請求項1に記載の接合光学素子。
The correction member is the same as the material of the base material or the auxiliary material,
The bonded optical element according to claim 1.
前記副材は複数設けられ、前記基材又は他の副材又は前記補正部材の少なくともいずれか1つの光学機能面又はこれに連なる面に接合されている、
ことを特徴とする請求項1に記載の接合光学素子。
A plurality of the auxiliary materials are provided and bonded to at least one optical functional surface of the base material or another auxiliary material or the correction member or a surface connected thereto.
The bonded optical element according to claim 1.
請求項1〜18のいずれかに記載の接合光学素子を少なくとも1つ備えている、
ことを特徴とする光学装置。
It comprises at least one bonding optical element according to any one of claims 1 to 18.
An optical device.
JP2006229072A 2006-08-25 2006-08-25 Cemented optical element and optical apparatus using the same Withdrawn JP2008052101A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006229072A JP2008052101A (en) 2006-08-25 2006-08-25 Cemented optical element and optical apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006229072A JP2008052101A (en) 2006-08-25 2006-08-25 Cemented optical element and optical apparatus using the same

Publications (1)

Publication Number Publication Date
JP2008052101A true JP2008052101A (en) 2008-03-06

Family

ID=39236204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006229072A Withdrawn JP2008052101A (en) 2006-08-25 2006-08-25 Cemented optical element and optical apparatus using the same

Country Status (1)

Country Link
JP (1) JP2008052101A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045863A (en) * 2013-08-28 2015-03-12 奇景光電股▲ふん▼有限公司 Image acquisition assembly and lens unit array of the same
JP2016071038A (en) * 2014-09-29 2016-05-09 富士フイルム株式会社 Optical substrate, optical element, optical element barrel, and optical device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015045863A (en) * 2013-08-28 2015-03-12 奇景光電股▲ふん▼有限公司 Image acquisition assembly and lens unit array of the same
CN104423004A (en) * 2013-08-28 2015-03-18 奇景光电股份有限公司 Image-capturing assembly and array lens units thereof
JP2016071038A (en) * 2014-09-29 2016-05-09 富士フイルム株式会社 Optical substrate, optical element, optical element barrel, and optical device

Similar Documents

Publication Publication Date Title
US10609191B2 (en) Electronic device including glass
US20090244725A1 (en) Optical lens group and related lens module
JP2006178382A (en) Optical element, optical element holding structure, optical element lens-barrel and optical communication module
JP2000131583A (en) Structure for holding optical member
US20110096314A1 (en) Optical device, exposure apparatus using same, and device manufacturing method
JP2006113414A (en) Optical element holding apparatus, lens barrel, exposure apparatus, and method for manufacturing micro device
JPH04171401A (en) Junction resin lens
WO2008081903A1 (en) Imaging device and information code reading device
US8054565B2 (en) Lens optical system and photoelectric encoder
US20240085957A1 (en) Display device
JP2008052101A (en) Cemented optical element and optical apparatus using the same
JP6407031B2 (en) Optical reader and method of manufacturing optical reader
JP2008040296A (en) Deformable mirror
JP2010040152A (en) Optical pickup device and laser welding structure of optical component
JP2004205776A (en) Optical unit
Ryaboy Analysis of thermal stress and deformation in elastically bonded optics
JP4262986B2 (en) Scanning system partially including an objective system with high NA made of plastic
US11644683B2 (en) Optical element including at least two diffractive layers
KR102443493B1 (en) Optical lens, camera module and assembly method thereof
JP4713908B2 (en) Lens system and photoelectric encoder using the same
CN116149001A (en) Stress control method and optical device
WO2020042802A1 (en) Optical lens, camera module and assembling method
JP5174729B2 (en) Image reading device
JP2015018041A (en) Optical lens device
JP4672278B2 (en) Optical lens device, laser device, and optical lens positioning method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110