JP2008051769A - Direction finding system - Google Patents

Direction finding system Download PDF

Info

Publication number
JP2008051769A
JP2008051769A JP2006230803A JP2006230803A JP2008051769A JP 2008051769 A JP2008051769 A JP 2008051769A JP 2006230803 A JP2006230803 A JP 2006230803A JP 2006230803 A JP2006230803 A JP 2006230803A JP 2008051769 A JP2008051769 A JP 2008051769A
Authority
JP
Japan
Prior art keywords
protractor
true north
measuring device
substrate
north
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006230803A
Other languages
Japanese (ja)
Other versions
JP4950597B2 (en
Inventor
Yasuhiko Murase
安彦 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyudenko Corp
Original Assignee
Kyudenko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyudenko Corp filed Critical Kyudenko Corp
Priority to JP2006230803A priority Critical patent/JP4950597B2/en
Publication of JP2008051769A publication Critical patent/JP2008051769A/en
Application granted granted Critical
Publication of JP4950597B2 publication Critical patent/JP4950597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Support Of Aerials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direction finding system capable of simply carrying to a high altitude such as a steel tower and accurately measuring an azimuthal angle of an installation such as an antenna. <P>SOLUTION: A substrate having an engaging part to be engaged with an object to be measured is provided. An upright axis is provided on the substrate, and in addition, a line passing through the axis is drawn on a surface of the substrate to form a directional line of the line. A protractor having four points of the compass marked is rotatably put over the axis. A true north measuring device is provided on the protractor with its true north indicating part aligning with a position indicating the north of the protractor. The true north measuring device is rotated together with the protractor, and while the true north indicating part is directed in the true north direction, a difference in angle between the true north and the directional line can be measured by the protractor. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、太陽位置に基づいて方位角度を調べ、アンテナ等の設置物の方位角の測定を行うための方位測定装置に関するものである。   The present invention relates to an azimuth measuring apparatus for examining an azimuth angle based on a sun position and measuring an azimuth angle of an installation such as an antenna.

従来、例えば携帯電話用の基地局のアンテナの設置の方位角を確認する方法として、特定の目標物とアンテナとの位置関係を目視で確認しその目標物の正確な位置を地図に記入する方法、磁石式コンパスにより方位を測定しその方位とアンテナの向きを確認する方法、真北測定器により真北を測定し真北に対するアンテナの向きを確認する方法等が提案されている(真北測定器について特許文献1〜3)。   Conventionally, for example, as a method of confirming the azimuth angle of installation of a base station for a mobile phone, a method of visually confirming the positional relationship between a specific target and the antenna and entering the exact position of the target on a map , The method of measuring the direction with a magnetic compass and confirming the direction and the direction of the antenna, the method of measuring the true north with a true north measuring instrument and confirming the direction of the antenna with respect to the true north, etc. Patent documents 1 to 3).

また、市販のカーナビゲーションシステムを使って、上空のGPS衛星から測位し、その位置情報から方位角度を求める手段も提案されている。   In addition, means has been proposed in which a commercially available car navigation system is used to perform positioning from a GPS satellite in the sky and the azimuth angle is obtained from the position information.

一方、パラボラアンテナ等の方位角度の調整装置としては、太陽光を利用する装置(特許文献4,5)や、GPSアンテナを用いる装置が提案されている(特許文献6)。   On the other hand, devices that use sunlight (Patent Documents 4 and 5) and devices that use a GPS antenna have been proposed as azimuth angle adjusting devices such as parabolic antennas (Patent Document 6).

実公昭61−045447号公報Japanese Utility Model Publication No. 61-045447 実公昭53−036131号公報Japanese Utility Model Publication No. 53-036131 特開昭51−020870号公報Japanese Patent Laid-Open No. 51-020870 特開昭59−97206号公報JP 59-97206 A 特開平9−36635号公報JP 9-36635 A 特開平11−31912号公報Japanese Patent Laid-Open No. 11-31912

ところで、地図と景観(目標物)とを目視で比較する方法は、目印となる建築物や構築物がない場合は方位を確認できないし、樹木の生長等で景観が変化することにより目標物の確認が困難になる等の課題があった。   By the way, the method of visually comparing the map and the landscape (target) cannot confirm the direction when there is no building or structure to be a landmark, and confirm the target by changing the landscape due to the growth of trees, etc. There were problems such as becoming difficult.

また、磁気コンパスによる方位測定手段は、アンテナから出る電波や、鉄筋・鉄骨を使った建築物、高圧線、乗物、設備類などから出る電磁波が地磁気測定に影響を及ぼすため信頼性が低いとの課題があった。   In addition, the direction measurement means using a magnetic compass has low reliability because electromagnetic waves emitted from antennas and electromagnetic waves emitted from buildings, high-voltage lines, vehicles, and equipment using reinforcing bars and steel frames affect geomagnetic measurements. There was a problem.

この点、真北測定器による方位測定は、磁気的な影響を受けないので正確な測定が可能であるが、方位測定した真北を基準とするアンテナ等の設置方位の角度を正確に読み取る手段が無く、当該アンテナの真北に対する設置方位を簡便に測定できる装置が求められていた。   In this respect, azimuth measurement with a true north measuring instrument is not affected magnetically, so accurate measurement is possible, but means for accurately reading the angle of the installation azimuth of an antenna etc. with reference to the true north measured There has been a demand for a device that can easily measure the installation orientation of the antenna with respect to the true north.

また、カーナビゲーションシステムによる方位測定は、カーナビゲーションシステムがGPS衛星の位置を確認するときの誤差や、衛星の時計とカーナビゲーションシステムの時計との誤差や、周囲の建物からのマルチパス(反射波)の影響によって位置測定に数mの誤差を生じるため、この位置情報から求めた方位角度にも誤差を生じた。   In addition, azimuth measurement by the car navigation system includes errors when the car navigation system confirms the position of the GPS satellite, errors between the satellite clock and the clock of the car navigation system, and multipaths (reflected waves) from surrounding buildings. ) Caused an error of several meters in the position measurement, and thus an error was also caused in the azimuth angle obtained from the position information.

さらには特許文献4〜6に示されるものはパラボラアンテナ用であり、他のアンテナには適用し難いものであった。また、特許文献6に示すものはGPSアンテナを2つ使用する必要があり、装置構成が複雑高価となるため、より簡便な方法でアンテナ等の対象物の方位を確認し得る装置が求められていた。   Furthermore, those shown in Patent Documents 4 to 6 are for parabolic antennas and are difficult to apply to other antennas. Further, the device shown in Patent Document 6 requires the use of two GPS antennas, and the device configuration is complicated and expensive. Therefore, a device that can confirm the orientation of an object such as an antenna by a simpler method is required. It was.

本発明は、簡便な構成で持ち運びも容易で、アンテナ等の対象物の方位角度を精度よく測定できる方位測定装置を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an azimuth measuring apparatus that can easily carry around with a simple configuration and can accurately measure the azimuth angle of an object such as an antenna.

本発明は上記課題を解決するために、
第1に、基板と該基板を測定対象物に水平に係合するための係合手段とを備えた基板部を設け、上記基板上に直立軸を設けると共に、上記基板の板面に上記直立軸を通る直線を描いて当該直線により方向線を形成し、上記直立軸に少なくとも北位置を記した分度器を回転自在に軸挿すると共に、上記分度器上に真北測定器を上記分度器の北を示す位置にその真北指示部を一致させた状態で固設し、上記真北測定器を分度器と共に回転させて上記真北指示部を真北方向に向けた状態において、当該真北と上記方向線との角度差を上記分度器により測定可能としたものであることを特徴とする方位測定装置により構成される。
In order to solve the above problems, the present invention
First, a substrate portion including a substrate and an engaging means for horizontally engaging the substrate with an object to be measured is provided, an upright shaft is provided on the substrate, and the upright is placed on the plate surface of the substrate. A straight line passing through the axis is drawn to form a direction line, and a protractor with at least the north position on the upright axis is rotatably inserted, and a true north measuring instrument is placed on the protractor north of the protractor. In the state where the true north indicator is aligned with the indicated position, the true north measuring device is rotated together with the protractor, and the true north indicator is oriented in the true north direction. The azimuth measuring device is characterized in that the angle difference from the line can be measured by the protractor.

上記係合手段は例えば4つの脚(3)により構成することができる。上記基板部は例えば上記脚(3)と基板(2)により構成することができる。上記分度器は例えば全方位板(4)により構成することができる。上記直立軸は例えばボルト(22)により構成することができる。このように構成すると、測定対象物(例えばアンテナ)の方向表示(例えば矢印10)に基板の方向線を合わせるように上記対象物に当該測定装置を装着し、真北測定器によって真北を測定したときに、真北測定器が示す真北方向と基板に描かれた方向線との角度を分度器によって正確かつ容易に読み取ることができる。   The engaging means can be constituted by, for example, four legs (3). The substrate portion can be constituted by the leg (3) and the substrate (2), for example. The protractor can be constituted by, for example, an omnidirectional plate (4). The upright shaft can be constituted by, for example, a bolt (22). If comprised in this way, the said measuring apparatus will be mounted | worn with the said object so that the direction line of a board | substrate may be matched with the direction display (for example, arrow 10) of a measurement object (for example, antenna), and a true north may be measured with a true north measuring device Then, the angle between the true north direction indicated by the true north measuring instrument and the direction line drawn on the substrate can be accurately and easily read by the protractor.

第2に、上記真北測定器は、上記分度器上に載置された平板状の時刻目盛板と、上記真北指示部を有し上記目盛板に対して直交する直立板と、上記直立板と上記時刻目盛板との間に張設された日影糸を具備しており、当該真北測定器を上記分度器と共に回転させて、日影糸の上記時刻目盛板への投影時刻を真太陽時に一致させたとき、上記真北指示部が真北を指示するものであることを特徴とする上記第1記載の方位測定装置により構成される。   Secondly, the true north measuring device includes a flat time scale plate placed on the protractor, an upright plate having the true north indicating portion and orthogonal to the scale plate, and the upright plate. And the time scale plate, and the true north measuring device is rotated together with the protractor so that the projection time of the shade thread on the time scale plate is changed to true sun. When the time coincides, the true north indicating unit indicates true north. The azimuth measuring apparatus according to the first aspect is configured.

このように構成すると、太陽光を用いた真北測定を行うことができ、地磁気やその他の電磁波等の影響を受けることがないため、測定対象物の方位を正確に測定し得る。   If constituted in this way, true north measurement using sunlight can be performed, and since it is not influenced by geomagnetism or other electromagnetic waves, the orientation of the measurement object can be accurately measured.

第3に、細い棒を門型に折り曲げて門型棒を形成し、当該門型棒の両端部を上記方向線に沿って位置させた状態で、当該門型棒を上記基板部上に直立状態で固定したものであることを特徴とする上記第1又は2記載の方位測定装置により構成される。   Third, a thin rod is bent into a gate shape to form a gate rod, and the both ends of the gate rod are positioned along the direction line, and the gate rod is erected on the substrate portion. It is constituted by the azimuth measuring device according to the first or second aspect, which is fixed in a state.

上記門型棒は例えば撮影棒(6)により構成することができる。また上記門型棒の両端部は、上記撮影棒(6)の垂直部(6a,6a)の各端部により構成することができる。このように構成すると、測定対象物の方向に方向線を合わせた状態において、上記門型棒の一対の支柱(垂直部6a、6a)を一致させた状態で背後の景色をカメラ等に撮影することにより、当該測定対象物の位置を背景と共に正確に記録することができる。   The portal bar can be constituted by, for example, a shooting bar (6). Moreover, the both ends of the said gate-shaped stick | rod can be comprised by each edge part of the perpendicular | vertical part (6a, 6a) of the said imaging | photography stick | rod (6). If comprised in this way, in the state which matched the direction line with the direction of the measuring object, a back view is image | photographed with a camera etc. in the state which matched a pair of support | pillar (vertical part 6a, 6a) of the said gate-shaped stick | rod. This makes it possible to accurately record the position of the measurement object together with the background.

第4に、上記分度器の中心孔を上記直立軸の直径より若干大きく形成することにより、該分度器の上記直立軸への軸挿状態において当該分度器が上記基板の水平面に対して角度変位可能に構成し、かつ上記分度器の上記水平面に対する角度変位手段を設けたものであることを特徴とする上記第1〜3の何れかに記載の方位測定装置により構成される。   Fourth, by forming the central hole of the protractor slightly larger than the diameter of the upright shaft, the protractor can be angularly displaced with respect to the horizontal plane of the substrate when the protractor is inserted into the upright shaft. In addition, the azimuth measuring device according to any one of the first to third aspects is provided with an angular displacement means for the protractor with respect to the horizontal plane.

上記分度器の角度変位は、例えばその中心孔(a’)を直立軸の直径より若干大きくすることにより実現し得る。また、上記角度変位手段は、例えば上記分度器上部から上記基板部に向けて調整螺子を螺合して、当該螺子の先端を上記基板の水平面に当接させた状態で、当該調整螺子を回転させる手段により構成することができる。このように構成すると、測定地点の緯度に応じて日影糸の角度を調整することができ、より正確な方位測定を行い得る。   The angular displacement of the protractor can be realized, for example, by making its central hole (a ') slightly larger than the diameter of the upright shaft. Further, the angular displacement means rotates the adjustment screw in a state where, for example, the adjustment screw is screwed from the protractor upper portion toward the substrate portion, and the tip of the screw is in contact with the horizontal surface of the substrate. It can be configured by means. If comprised in this way, the angle of a shade thread can be adjusted according to the latitude of a measurement point, and a more exact azimuth | direction measurement can be performed.

本発明に係る方位測定装置によると、地磁気の影響や反射波の影響を受けることなく、真北を正確に測定し得ると共に、当該真北を基準として当該真北からの測定対象物の向きの角度差を容易に測定することができる。   According to the azimuth measuring apparatus according to the present invention, it is possible to accurately measure true north without being influenced by geomagnetism or reflected waves, and the orientation of the measurement object from the true north with respect to the true north. The angle difference can be easily measured.

また、簡単な構成で持ち運びにも便宜であり、門型棒により測定対象物の方位を背景と共に正確に記録に残すこともできる。   In addition, it is easy to carry with a simple structure, and the orientation of the measurement object can be accurately recorded together with the background by the gate-shaped bar.

以下、本発明に係る方位測定装置の一実施形態を添付図面に基づいて詳細に説明する。尚、本実施形態では上記方位測定装置をアンテナの方位測定に適用する場合を説明する。   Hereinafter, an embodiment of an azimuth measuring apparatus according to the present invention will be described in detail with reference to the accompanying drawings. In the present embodiment, a case will be described in which the azimuth measuring apparatus is applied to antenna azimuth measurement.

図1は本発明に係る方位測定装置1の全体構成を示す斜視図である。同図において、同装置1は、円形の基板2、4つの脚(係合手段)3、円形の全方位板(分度器)4、全方位板4に固定された真北測定器5、撮影棒(門型棒)6、及び安全ワイヤー7(図3)等を具備している。本実施形態におけるアンテナ9は図3に示すように円柱状をなしており、当該アンテナ9の上端部に本発明に係る方位測定装置1を同図に示すように装着して当該アンテナ9の方位を測定する。   FIG. 1 is a perspective view showing an overall configuration of an azimuth measuring apparatus 1 according to the present invention. In the figure, the apparatus 1 includes a circular substrate 2, four legs (engagement means) 3, a circular omnidirectional plate (protractor) 4, a true north measuring instrument 5 fixed to the omnidirectional plate 4, a photographing rod. (Gate-shaped bar) 6, safety wire 7 (FIG. 3), and the like. The antenna 9 in the present embodiment has a cylindrical shape as shown in FIG. 3, and the orientation measuring device 1 according to the present invention is attached to the upper end of the antenna 9 as shown in FIG. Measure.

図2に示すように、上記基板2は透明又は半透明の樹脂製の円板であり、例えばアクリル板により構成され、強度を必要とするため5mm〜10mmの厚さを有している。この基板2の表面には、該基板2の中心Pを通る直線が描かれており、この直線が方向線21を構成している。   As shown in FIG. 2, the substrate 2 is a transparent or translucent resin disk, is made of, for example, an acrylic plate, and has a thickness of 5 mm to 10 mm because it requires strength. A straight line passing through the center P of the substrate 2 is drawn on the surface of the substrate 2, and this straight line constitutes a direction line 21.

上記基板2の周縁部には90度毎の間隔を介して4つの脚3が固定されている。これらの脚3は各々直交する水平部3aと垂直部3bからなる逆L字型をなしており、各々上記水平部3aの端部上面を上記基板2の裏面側に宛い、上記基板2の上面側から平ボルト33により螺子止めすることにより上記基板2に固定されている。上記脚3のうち対向する2つの脚3、3は、方向線21に沿って取り付けられ、残り2つの対向する脚3、3は、方向線21と直交する位置に各々取り付けられている。   Four legs 3 are fixed to the peripheral edge of the substrate 2 at intervals of 90 degrees. Each of these legs 3 has an inverted L-shape composed of a horizontal portion 3a and a vertical portion 3b that are orthogonal to each other, and each upper surface of the end portion of the horizontal portion 3a is directed to the back side of the substrate 2, It is fixed to the substrate 2 by screwing with a flat bolt 33 from the upper surface side. The two opposing legs 3 and 3 among the legs 3 are attached along the direction line 21, and the remaining two opposing legs 3 and 3 are attached at positions orthogonal to the direction line 21.

また上記基板2の中心Pには孔aが貫設されており、当該孔aにボルト(直立軸)22が基板2の下から挿通され、該基板2の上面側から上記ボルト22に座金23が挿通され、さらに該ボルト22にナット24を螺着して締め付けることにより当該ボルト22を基板2に直立状態で固定している(図6参照)。尚、このボルト22は上記全方位板4を回転自在に取り付けるためのものである。   Further, a hole a is formed through the center P of the substrate 2, and a bolt (upright shaft) 22 is inserted into the hole a from below the substrate 2, and a washer 23 is attached to the bolt 22 from the upper surface side of the substrate 2. Is inserted, and the bolt 22 is fixed to the substrate 2 in an upright state by screwing and tightening a nut 24 to the bolt 22 (see FIG. 6). The bolt 22 is for rotatably mounting the omnidirectional plate 4.

基板2の周縁近傍の板面には、互いに120度の角度を介して3つの螺子孔bが開孔され、これら螺子孔bに各々3本の水平調整螺子25が螺合されている(図4参照)。上記水平調整螺子25の内の1つは、上記方向線21上に位置しており、当該螺子25は上記方向線21上に位置する上記脚3の水平部3aに設けられた螺子孔cにさらに螺合され当該水平部3aを下方に貫通している。なお、上記水平調整螺子25は、六角レンチによって水平調整ができるよう六角穴付き螺子を使用することが好ましい。   Three screw holes b are opened on the plate surface in the vicinity of the peripheral edge of the substrate 2 through an angle of 120 degrees, and three horizontal adjustment screws 25 are screwed into the screw holes b, respectively (see FIG. 4). One of the horizontal adjustment screws 25 is located on the direction line 21, and the screw 25 is inserted into a screw hole c provided in the horizontal portion 3 a of the leg 3 located on the direction line 21. Furthermore, it is screwed and penetrates the horizontal part 3a downward. The horizontal adjustment screw 25 is preferably a hexagon socket screw so that the horizontal adjustment can be performed with a hexagon wrench.

上記4つの脚3の内、上記方向線21に沿う一対の脚3、3の垂直部3b、3bには上記方向線21に沿う水平方向の螺子孔d,dが各々開口されており、これら螺子孔d、dに各々固定螺子31,31が上記垂直部3b,3bの外側から水平方向に螺入されている。また、他の対向する脚3、3の垂直部3b,3bにも上記方向線21に直交する直線に沿う水平方向の螺子孔d,dが各々開口されており、これら螺子孔d、dに各々固定螺子31,31が上記垂直部3b,3bの外側から水平方向に螺入されている。よって、上記4つの固定螺子31は上記基板2の中心Pを通る互いに直交する直線に沿って設けられており、これにより方位測定を行う対象物(上記円柱状のアンテナの9)外周を、90度の角度差をもった互いに対向する2箇所から挟持し得るように構成されている(図4参照)。上記各固定螺子31には、手で回して締め付けられるようチョウボルトを使用することが好ましい。   Of the four legs 3, horizontal screw holes d and d along the direction line 21 are respectively opened in the vertical portions 3 b and 3 b of the pair of legs 3 and 3 along the direction line 21. Fixing screws 31, 31 are screwed into the screw holes d, d in the horizontal direction from the outside of the vertical portions 3b, 3b. Further, horizontal screw holes d, d along the straight line perpendicular to the direction line 21 are also opened in the vertical portions 3b, 3b of the other opposing legs 3, 3, respectively. The fixing screws 31, 31 are respectively screwed in the horizontal direction from the outside of the vertical portions 3b, 3b. Therefore, the four fixing screws 31 are provided along straight lines passing through the center P of the substrate 2 and orthogonal to each other, whereby the outer periphery of the object (9 of the cylindrical antenna) for measuring the orientation is 90 It is comprised so that it can clamp from 2 places which mutually have the angle difference of a degree (refer FIG. 4). It is preferable to use a butterfly bolt for each fixing screw 31 so that it can be tightened by hand.

上記方向線21上にある一の上記脚3と、該脚3に隣接する脚3の水平部3a上には各々水準器32が固定されている。   A level 32 is fixed to each of the one leg 3 on the direction line 21 and the horizontal part 3 a of the leg 3 adjacent to the leg 3.

また、アンテナ9の上面9aにはアンテナの向きを示す矢印10が記されている(図5、図7参照)。   An arrow 10 indicating the direction of the antenna is marked on the upper surface 9a of the antenna 9 (see FIGS. 5 and 7).

上記全方位板4は透明又は半透明の円板状のものであり、アクリル板等により構成されている。尚、この全方位板4は装置の軽量化等の観点からして上記基板2より若干薄く形成することが好ましい。この全方位板4の表面側の周縁には、10度毎に全周360度の角度目盛41と該目盛41毎に角度を表す数字が描かれている(図4参照)。ただし、350度〜360度、0度〜10度の20度の間は1度ごとに角度目盛が描かれている。この1度ごとの角度目盛は、0度〜360度の全角度にわたって描いてもよい。また、東西南北を示す0度、90度、180度、270度の所には、数字の代わりに各々東西南北を示す「N」、「E」、「S」、「W」の文字が記されている(図4参照)。また、NS(0度−180度)間およびEW(90度−270度)間には、全方位板4の中心P’を通る互いに直交する直線L1、L2が描かれている。尚、上記文字の表示は少なくとも北(N)の表示でも良い。   The omnidirectional plate 4 is a transparent or semi-transparent disk-shaped member, and is composed of an acrylic plate or the like. The omnidirectional plate 4 is preferably formed slightly thinner than the substrate 2 from the viewpoint of reducing the weight of the apparatus. On the peripheral edge of the omnidirectional plate 4 on the surface side, an angle scale 41 of 360 degrees on the entire circumference is drawn every 10 degrees, and a number representing the angle for each scale 41 is drawn (see FIG. 4). However, an angle scale is drawn every 1 degree between 20 degrees of 350 degrees to 360 degrees and 0 degrees to 10 degrees. This angle scale for every 1 degree may be drawn over all angles from 0 degree to 360 degrees. In addition, “N”, “E”, “S”, and “W” indicating east, west, north, and south are written in place of numbers at 0, 90, 180, and 270 degrees indicating east, west, south, and north, respectively. (See FIG. 4). Further, straight lines L1 and L2 that pass through the center P ′ of the omnidirectional plate 4 are drawn between NS (0 degrees to 180 degrees) and EW (90 degrees to 270 degrees). The character may be displayed at least in the north (N).

この全方位板4の上記中心P’には上記ボルト22の直径より若干大きな直径の孔a’が開口されており、当該孔a’内に上記ボルト22を挿通させることで当該全方位板4を上記基板2上に回転自在に装着する。即ち、上記ボルト22は上記孔a’に多少の遊びを以って挿入しているので、上記全方位板4は上記基板2に対してある程度角度変位可能な状態で取り付けられている(図6二点鎖線参照)。   A hole a ′ having a diameter slightly larger than the diameter of the bolt 22 is opened at the center P ′ of the omnidirectional plate 4, and the omnidirectional plate 4 is inserted into the hole a ′. Is rotatably mounted on the substrate 2. That is, since the bolt 22 is inserted into the hole a ′ with some play, the omnidirectional plate 4 is attached to the substrate 2 in a state where it can be displaced to some extent (FIG. 6). (See the two-dot chain line).

当該全方位板4の上記南北方向の直線L1に沿う上記0度(N)の位置と上記180度(S)の位置には各々螺子孔e,eが開孔されており、これら螺子孔e,eに傾き調整螺子42a、42bが各々螺入されている(図6参照)。この傾き調整螺子42a、42bは、基板2と平行な水平面t(図6)に対して全方位板4の南北方向の傾き(具体的には日影糸53と水平面tとの角度θ2、図10参照)を調整するためのものである。   Screw holes e and e are opened at the 0 degree (N) position and the 180 degree (S) position along the north-south straight line L1 of the omnidirectional plate 4, respectively. , E are respectively fitted with inclination adjusting screws 42a, 42b (see FIG. 6). The inclination adjusting screws 42a and 42b are inclined in the north-south direction of the omnidirectional plate 4 with respect to the horizontal plane t (FIG. 6) parallel to the substrate 2 (specifically, the angle θ2 between the shade thread 53 and the horizontal plane t, 10).

上記全方位板4の上面には真北測定器5が固定されている。当該真北測定器5の本体は、長方形板状の時刻目盛板51と、該目盛板51の一方短辺に沿って直立して設けられた直立板52からなり、本体全体としてL字型をなしている。上記時刻目盛板51と上記直立板52は、アルミ材の平板を加工したものであり、直立板52の下端部を時刻表示板51の一方短辺にネジ止め等することにより構成されている。尚、上記時刻目盛板51にアルミ材を用いたのは、時刻目盛板51上に投影される日影糸53の影がよく見えるからである。   A true north measuring device 5 is fixed to the upper surface of the omnidirectional plate 4. The main body of the true north measuring instrument 5 includes a rectangular plate-like time scale plate 51 and an upright plate 52 provided upright along one short side of the scale plate 51. The entire main body is L-shaped. There is no. The time scale plate 51 and the upright plate 52 are formed by processing a flat plate of aluminum material, and are configured by screwing the lower end portion of the upright plate 52 to one short side of the time display plate 51 or the like. The reason why the aluminum material is used for the time scale plate 51 is that the shadow of the shade thread 53 projected on the time scale plate 51 can be seen well.

また、上記直立板52の上端部中心位置(真北指示部)g’と上記時刻目盛板51の他方短辺の中心位置gとの間には、日影糸53が張設されており、これらの日影糸53の直立板52側の一端は張力維持用のバネ58を介して係止用ピン58’に係止しており、時刻目盛板51側の他端は上記目盛板51の上記短辺に設けられた貫通孔59に挿通後、抜け止めピン59’に係止することで抜け止め処理がなされている(図2参照)。上記バネ58には常時縮小方向の附勢力が作用しており、当該バネ58により上記日影糸53には常時一定の張力が作用する構成となっている。尚、図中57は上記日影糸53を上記中心位置g’に案内するための直線L1に平行な溝である。   Further, a shade thread 53 is stretched between the upper end center position (true north indicating section) g ′ of the upright plate 52 and the center position g of the other short side of the time scale plate 51, One end of the shade thread 53 on the upright plate 52 side is locked to a locking pin 58 ′ via a tension maintaining spring 58, and the other end on the time scale plate 51 side is on the scale plate 51. After being inserted into the through-hole 59 provided on the short side, the retaining member 59 is engaged with the retaining pin 59 ′ to prevent the retaining (see FIG. 2). The spring 58 is always applied with an urging force in a contracting direction, and the spring 58 is configured to always apply a constant tension to the shade thread 53. In the figure, reference numeral 57 denotes a groove parallel to the straight line L1 for guiding the shade thread 53 to the center position g '.

上記時刻目盛板51は、その板面の上記中心位置g寄りの中央位置に長方形の開口部55が形成されており、その開口部55の周囲に上記中心位置gから放射状に時刻目盛56が刻まれている。この時刻目盛56は、午前6時から午後6時まで10分ごとに目盛が刻まれている(図4、図5参照)。上記開口部55は、その開口部55から直線L1を目視できるようにしたものであり、さらに当該開口55からは透明又は半透明の全方位板4を介して基板2の直線21、及び透明又は半透明の基板2を介してアンテナ9上の矢印10を目視することができる。尚、時刻目盛板51に対する日影糸53の傾きθ2は、本実施形態の場合35度に設定されている。   The time scale plate 51 has a rectangular opening 55 formed at a central position near the center position g of the plate surface, and the time scale 56 is radially engraved around the opening 55 from the center position g. It is rare. The time scale 56 is ticked every 10 minutes from 6 am to 6 pm (see FIGS. 4 and 5). The opening 55 is configured such that the straight line L1 can be visually observed from the opening 55, and the straight line 21 of the substrate 2 and the transparent or semi-transparent omnidirectional plate 4 are transparent from the opening 55. An arrow 10 on the antenna 9 can be visually observed through the translucent substrate 2. The inclination θ2 of the shade thread 53 with respect to the time scale plate 51 is set to 35 degrees in the present embodiment.

上記真北測定器5は、その時刻目盛板51の正午目盛と中心位置gとを結ぶ線と、上記全方位板4の上記南北間の直線L1とを正確に一致させ、かつ上記直立板52の真北指示部g’が上記全方位板の北側(N)に向いた状態で接着剤等によって固設されている(図4参照)。このように真北測定器5と全方位板4は一体化されており、当該真北測定器5が固定された全方位板4は、上記孔a’に上記基板2の中心ボルト22を挿通して、上記基板2と同心的に当該基板2上に回転可能状態で載置される。また、上記全方位板4の上面側から上記ボルト22に抜け止め用のチョウナット27が螺合されている。   The true north measuring device 5 accurately matches the line connecting the noon scale of the time scale plate 51 and the center position g with the straight line L1 between the north and south of the omnidirectional plate 4, and the upright plate 52 The true north indicating portion g ′ is fixed with an adhesive or the like in a state facing the north side (N) of the omnidirectional plate (see FIG. 4). Thus, the true north measuring device 5 and the omnidirectional plate 4 are integrated, and the omnidirectional plate 4 to which the true north measuring device 5 is fixed inserts the center bolt 22 of the substrate 2 into the hole a ′. Then, it is placed on the substrate 2 in a rotatable state concentrically with the substrate 2. In addition, a wing nut 27 for retaining is screwed onto the bolt 22 from the upper surface side of the omnidirectional plate 4.

ところで、上記真北測定器5で真北を測定するに際して、上記日影糸53の水平面との角度(θ2)を、当該測定地点の北緯に合わせる必要がある。本実施形態では、予めθ2=35度に設定しているので、測定地点が北緯35度の地点であれば調整は不要であるが、例えば測定地点の北緯が35度より低い値の場合は、例えば調整螺子42bをねじ込んで上記全方位板4を中心点P’を中心として矢印n方向(南北方向)に傾斜させることにより(+θ3方向)、上記角度θ2を35度より小さい当該地点の角度(θ2”)に合わせることができる(図10の真北測定器5”の位置)。また、測定地点の北緯が35度よりも高い値の場合は、例えば調整螺子42aをねじ込んで上記全方位板4を中心点P’を中心として矢印m方向(南北方向)に傾斜させることにより(−θ3方向)、上記角度θ2を35度より大きい角度(θ2’)に調整することができる(図10の真北測定器5’の位置参照)。   By the way, when measuring true north with the true north measuring device 5, it is necessary to match the angle (θ2) of the shade thread 53 with the horizontal plane to the north latitude of the measurement point. In this embodiment, since θ2 = 35 degrees is set in advance, adjustment is not necessary if the measurement point is a point at 35 degrees north latitude. For example, when the north latitude of the measurement point is a value lower than 35 degrees, For example, by screwing the adjusting screw 42b and tilting the omnidirectional plate 4 in the direction of arrow n (north-south direction) around the center point P ′ (+ θ3 direction), the angle θ2 is an angle of the point (less than 35 degrees) ( θ2 ″) (position of true north measuring device 5 ″ in FIG. 10). If the north latitude of the measurement point is higher than 35 degrees, for example, the adjusting screw 42a is screwed and the omnidirectional plate 4 is tilted in the direction of arrow m (north-south direction) around the center point P ′ ( −θ3 direction), the angle θ2 can be adjusted to an angle (θ2 ′) larger than 35 degrees (see the position of the true north measuring device 5 ′ in FIG. 10).

上記方向線21の延長線上に沿う対向する上記脚3、3の各々の水平部3a,3a上には金属棒からなる門型の撮影棒(門型棒)6が立設固定されている(図1参照)。この撮影棒6は、垂直部6a,6aの下端が上記方向線21の延長線上の位置(取付孔f、fの位置)において上記水平部3a,3aに垂直に立設固定されており、これにより、上記垂直部6a,6aを結ぶ水平部6bは上記方向線21に正確に平行に位置するように構成されている。尚、図2、図3では撮影棒6の上半部の一部を省略して描いている。   On a horizontal portion 3a, 3a of each of the legs 3, 3 facing along the extension line of the direction line 21, a gate-shaped photographing rod (gate rod) 6 made of a metal rod is erected and fixed ( (See FIG. 1). The photographing rod 6 is vertically fixed to the horizontal portions 3a and 3a at the positions where the lower ends of the vertical portions 6a and 6a extend on the direction line 21 (positions of the mounting holes f and f). Accordingly, the horizontal portion 6b connecting the vertical portions 6a and 6a is configured to be positioned exactly parallel to the direction line 21. In FIGS. 2 and 3, a part of the upper half of the shooting rod 6 is omitted.

図3に示すように、2つの上記固定螺子31、31には落下防止用の安全ワイヤー7がその両端のフック71を以って係合している。尚、72は落下防止用のフックである。   As shown in FIG. 3, the safety wire 7 for preventing the fall is engaged with the two fixing screws 31, 31 by hooks 71 at both ends thereof. Reference numeral 72 denotes a fall prevention hook.

本発明に係る方位測定装置は、上述のように構成されるものであるから、次に当該測定装置を使用してアンテナの方位測定の方法について説明する。   Since the azimuth measuring apparatus according to the present invention is configured as described above, an antenna azimuth measuring method using the measuring apparatus will be described next.

当該方位測定装置1の使用条件は、天候が晴れまたは薄曇りであって太陽光線によって物体が影を形成することが必要である。また、正確な日本標準時を知ることが必要であるため事前に時報などによって時計の時刻を合わせておく。   The usage conditions of the azimuth measuring device 1 are that the weather is sunny or lightly cloudy and the object needs to form a shadow by sunlight. In addition, since it is necessary to know the exact Japanese standard time, the time of the clock is set in advance by a time signal.

また、上記真北測定器5により真北を測定する場合は、その地点の真太陽時の時刻と真北測定器5における日影糸53による影の時刻を合わせる必要があるので、測定地点の真太陽時を算出しておく必要がある。その土地の真太陽時は、その土地の太陽南中時刻と日本標準時との時差から求めることができるため、当該時差を示す既存の換算時差表(図9参照)から当該時差を読み取る。   Further, when measuring true north with the true north measuring device 5, it is necessary to match the time of true sun at the point with the shadow time of the shade thread 53 in the true north measuring device 5. It is necessary to calculate true solar time. Since the true solar time of the land can be obtained from the time difference between the solar south-central time of the land and Japan standard time, the time difference is read from the existing conversion time difference table (see FIG. 9) showing the time difference.

例えば、12月2日に佐賀市において方位測定を行うとすると、佐賀市の位置はおおよそ北緯33°10’東経130°20’であるから、東経130°20’における換算時差表(図9)から日本標準時との時差を読み取る。この場合、時差は7分51秒であるので、日本標準時間の12時00分00秒(正午)から7分51秒遅れた12時07分51秒に太陽が南中することを示している。ここで時計の時刻を変更しておくと作業上便利であるため、前記日本標準時間に合わせた時計の時刻を7分51秒戻しておく。たとえば現在時刻が10時07分51秒であるとすると、10時00分00秒に時刻を合わせる。これによりこの時計が真太陽時を示す時計(太陽が南中するときに12時を示す時計)となり、12時00分00秒を示したときに太陽が南中することになる。   For example, if the orientation measurement is performed in Saga City on December 2, the position of Saga City is approximately 33 ° 10'N 130 ° 20'E, so the conversion time difference table at 130 ° 20'E (Figure 9) Read the time difference from Japan Standard Time. In this case, since the time difference is 7 minutes and 51 seconds, it indicates that the sun goes south at 12:07:51, which is 7 minutes and 51 seconds later than Japan standard time of 12:00:00 (noon). . Since it is convenient for work to change the time of the clock here, the time of the clock adjusted to the Japan standard time is set back by 7 minutes 51 seconds. For example, if the current time is 10:07:51, the time is set to 10:00:00. As a result, this clock becomes a clock indicating true sun time (a clock indicating 12:00 when the sun goes south), and the sun goes south when it shows 12:00:00.

次に、方位測定装置1を、図3に示すように円柱状のアンテナ9の上部に載せる。このとき、アンテナ上部に予め描かれたアンテナの方位を示す矢印10の方向に基板2の方向線21を一致させる(図5参照)。その後、3つの水平調整螺子25を上記アンテナ9の上面9aに当接させ、当該調整螺子25を以って水準器32を見ながら基板2の位置を水平に調整する。そして、脚3の4本の固定螺子31をねじ込んで、これらの螺子31の先端部をアンテナ9の外周面に当接させてアンテナ9を挟持し、これにより当該方位測定装置1を上記アンテナ9の上部に固定する(図5参照)。尚、鉄塔などの高所作業である場合は、落下防止ワイヤー7をアンテナ9の支柱などに通すか、またはワイヤー7のフック72を自らのベルト等にひっかけて落下防止対策を施す。   Next, the azimuth measuring device 1 is placed on top of a cylindrical antenna 9 as shown in FIG. At this time, the direction line 21 of the substrate 2 is aligned with the direction of the arrow 10 indicating the orientation of the antenna drawn in advance on the antenna (see FIG. 5). Thereafter, the three horizontal adjustment screws 25 are brought into contact with the upper surface 9a of the antenna 9, and the position of the substrate 2 is adjusted horizontally while viewing the level 32 with the adjustment screws 25. Then, the four fixing screws 31 of the legs 3 are screwed in, the tip portions of these screws 31 are brought into contact with the outer peripheral surface of the antenna 9, and the antenna 9 is clamped. (See FIG. 5). In addition, when the work is a high place such as a steel tower, the fall prevention wire 7 is passed through the support of the antenna 9, or the hook 72 of the wire 7 is hooked on its own belt or the like to take a fall prevention measure.

次に、水平面に対する全方位板4の傾きを調整することより、日影糸53の傾きθ2をその土地の緯度に合うように補正する。ここで、測定地点を上記佐賀市とすると、北緯33°10’であるので、全方位板4が水平状態にある状態から調整螺子42bをねじ込むことにより、当該全方位板4を中心点P’を中心として矢印n方向に2度傾斜させ(θ3=2度)、θ2=33度に設定する(図6、図10参照)。尚、仮に北緯26°10′に位置する那覇市で方位測定を行う場合は、同様の調整によりθ2=26度に設定すれば良い。尚、θ2の上記調整は、例えば半円形の分度器を基板2の端部に当て、それを見ながら2本の傾き調整ネジ42a,42bの一方を緩め他方を螺子込む操作等により行う。また、この緯度補正は事前に行うことができるので、方位測定器1をアンテナ9に取り付ける前に行ってもよい。   Next, by adjusting the inclination of the omnidirectional plate 4 with respect to the horizontal plane, the inclination θ2 of the shade thread 53 is corrected to match the latitude of the land. Here, assuming that the measurement point is Saga City, the latitude is 33 ° 10 ′ north. Therefore, by screwing the adjusting screw 42b from the state in which the omnidirectional plate 4 is in a horizontal state, the omnidirectional plate 4 is moved to the center point P ′. Is tilted 2 degrees in the direction of the arrow n (θ3 = 2 degrees) and θ2 = 33 degrees (see FIGS. 6 and 10). If the orientation measurement is performed in Naha City located at 26 ° 10 ′ north latitude, θ2 = 26 degrees may be set by the same adjustment. The above-described adjustment of θ2 is performed by, for example, an operation of placing a semicircular protractor on the end of the substrate 2 and loosening one of the two inclination adjusting screws 42a and 42b while screwing the other. Further, since the latitude correction can be performed in advance, it may be performed before the orientation measuring device 1 is attached to the antenna 9.

次に、上記時計を見て現在の太陽時を調べ、この時刻に対応する時刻目盛板51の時刻目盛56に、太陽光線がつくる日影糸53の影を合わせる(図5参照)。これは全方位板4を基板2に対して回動させて行う。例えば現在時刻が10時00分であったとすると、時刻目盛板51の10時00分の時刻目盛に日影糸53の影Kを合わせる。このとき時刻目盛板51の12時00分方向(全方位板のNの方向、矢印Vの方向)が真北を示しており、全方位板4が正確に東西南北を示していることになる(図5参照)。   Next, the current solar time is examined by looking at the clock, and the shadow of the shade thread 53 created by the sunbeam is aligned with the time scale 56 of the time scale plate 51 corresponding to this time (see FIG. 5). This is done by rotating the omnidirectional plate 4 with respect to the substrate 2. For example, if the current time is 10:00, the shadow K of the shade thread 53 is aligned with the time scale of 10:00 on the time scale plate 51. At this time, the 12:00 direction of the time scale plate 51 (the direction of N of the omnidirectional plate, the direction of the arrow V) indicates true north, and the omnidirectional plate 4 accurately indicates east, west, south, and north. (See FIG. 5).

次に、基板2の方向線21と全方位板4の真北方向(N)との角度θ1を全方位板4の角度目盛41から読み取る。これがアンテナ9の方位角度である。尚、図5では、θ1=280度となっている。   Next, the angle θ1 between the direction line 21 of the substrate 2 and the true north direction (N) of the omnidirectional plate 4 is read from the angle scale 41 of the omnidirectional plate 4. This is the azimuth angle of the antenna 9. In FIG. 5, θ1 = 280 degrees.

ここで、予め当該アンテナ9の真北を基準とする設置角度は定まっており、当該設置角度が280゜であれば、当該アンテナ9は正確に位置しており設置方位にずれは存在しないことになる。一方、予め定められた設置角度が例えばθ1=290度であったとすると、当該アンテナ9は設置角度から10度のずれがあることが確認できる。この場合、例えば、全方位板4を固定した状態で、アンテナ9を回転させて上記矢印10を全方位板の290度の位置まで回転させることができれば、当該アンテナ角度の修正も行うことができる。   Here, the installation angle with respect to the true north of the antenna 9 is determined in advance, and if the installation angle is 280 °, the antenna 9 is accurately positioned and there is no deviation in the installation direction. Become. On the other hand, if the predetermined installation angle is θ1 = 290 degrees, for example, it can be confirmed that the antenna 9 has a deviation of 10 degrees from the installation angle. In this case, for example, if the antenna 9 is rotated with the omnidirectional plate 4 fixed, and the arrow 10 can be rotated to a position of 290 degrees of the omnidirectional plate, the antenna angle can be corrected. .

上記アンテナ9の設置位置が正確である場合は、当該位置における撮影棒6の垂直部6a,6aが1つに重なって見える方向から当該撮影棒6の背後の景色をカメラで撮影する(図8参照)。これによりアンテナ設置位置における正確な方向の景色を記録として残すことができる。尚、図8中Hは景色中の目標物である。   When the installation position of the antenna 9 is accurate, the scene behind the shooting bar 6 is shot with a camera from the direction in which the vertical portions 6a and 6a of the shooting bar 6 appear to overlap each other at the position (FIG. 8). reference). As a result, the scenery in the correct direction at the antenna installation position can be recorded as a record. In FIG. 8, H is a target in the scenery.

上記実施形態では、本発明の方位測定装置をアンテナの方位測定に利用する場合を説明したが、方位を測定したい対象物の方向が分かれば、当該方向に上記方位測定装置1の方向線21をあわせ、その後上記と同様の方法により真北を測定して上記全方位板4を真北に向けることにより、上記測定対象物の方向と真北との角度差を正確に測定することができる。よって、本発明はアンテナに限らず、各種の方位角度を測定することができるものである。   In the above embodiment, the case where the azimuth measuring device of the present invention is used for antenna azimuth measurement has been described. However, if the direction of an object whose azimuth is to be measured is known, the direction line 21 of the azimuth measuring device 1 is set in the direction. At the same time, true north is measured by the same method as described above, and the omnidirectional plate 4 is directed to true north, whereby the angular difference between the direction of the measurement object and true north can be accurately measured. Therefore, the present invention is not limited to an antenna, and can measure various azimuth angles.

本発明に係る方位測定装置は、簡単に持ち運ぶことができ、かつ精度のよい方位測定ができ、かつ高所環境で使用できるため、電気通信、土木・建築などの分野に用いるのに適しており、また一般の用途にも用いることができる。   The azimuth measuring device according to the present invention can be easily carried, can accurately measure azimuth, and can be used in high altitude environments, so it is suitable for use in fields such as telecommunications, civil engineering and architecture. It can also be used for general purposes.

本発明に係る方位測定装置の斜視図である。It is a perspective view of the direction measuring device according to the present invention. 同上装置の分解斜視図である。It is a disassembled perspective view of an apparatus same as the above. 同上装置の側面図である。It is a side view of an apparatus same as the above. 同上装置の平面図である。It is a top view of an apparatus same as the above. 同上装置の真北測定時の平面図である。It is a top view at the time of true north measurement of an apparatus same as the above. 同上装置の真北測定器近傍の側面図である。It is a side view of the true north measuring device vicinity of an apparatus same as the above. 同上装置で方位を測定するアンテナの先端部の斜視図である。It is a perspective view of the front-end | tip part of the antenna which measures an azimuth | direction with an apparatus same as the above. 同上装置にて景色を撮影する状態を示す図である。It is a figure which shows the state which image | photographs scenery with an apparatus same as the above. 真太陽時に時計を合わせるに際して使用する換算時差表の一部を示す図である。It is a figure which shows a part of conversion time difference table used when setting a clock at the time of true sun. 全方位板を角度調整する際の角度θ2と水平面との関係を示す図である。It is a figure which shows the relationship between angle (theta) 2 at the time of angle-adjusting an omnidirectional board, and a horizontal surface.

符号の説明Explanation of symbols

1 方位測定装置
2 基板
3 脚
4 全方位板
5 真北測定器
6 撮影棒
6a 垂直部
7 安全ワイヤー
9 アンテナ
21 方向線
22 ボルト
31 固定螺子
42a,42b 傾き調整螺子
51 時刻目盛板
52 直立板
53 日影糸
a’ 中心孔
DESCRIPTION OF SYMBOLS 1 Direction measuring device 2 Board | substrate 3 Leg 4 Omnidirectional board 5 True north measuring device 6 Shooting stick 6a Vertical part 7 Safety wire 9 Antenna 21 Direction line 22 Bolt 31 Fixing screw 42a, 42b Tilt adjusting screw 51 Time scale plate 52 Upright plate 53 Shadow thread a 'center hole

Claims (4)

基板と該基板を測定対象物に水平に係合するための係合手段とを備えた基板部を設け、
上記基板上に直立軸を設けると共に、上記基板の板面に上記直立軸を通る直線を描いて当該直線により方向線を形成し、
上記直立軸に少なくとも北位置を記した分度器を回転自在に軸挿すると共に、
上記分度器上に真北測定器を上記分度器の北を示す位置にその真北指示部を一致させた状態で固設し、
上記真北測定器を分度器と共に回転させて上記真北指示部を真北方向に向けた状態において、当該真北と上記方向線との角度差を上記分度器により測定可能としたものであることを特徴とする方位測定装置。
A board portion provided with a board and an engagement means for horizontally engaging the board with a measurement object;
Providing an upright axis on the substrate and drawing a straight line passing through the upright axis on the plate surface of the substrate to form a direction line by the straight line;
A protractor with at least the north position on the upright shaft is rotatably inserted,
A true north measuring device is fixed on the protractor in a state where the true north indicating portion is aligned with the position indicating the north of the protractor,
In the state where the true north measuring device is rotated together with the protractor and the true north indicating portion is oriented in the true north direction, the angular difference between the true north and the direction line can be measured by the protractor. A characteristic orientation measuring device.
上記真北測定器は、上記分度器上に載置された平板状の時刻目盛板と、上記真北指示部を有し上記目盛板に対して直交する直立板と、上記直立板と上記時刻目盛板との間に張設された日影糸を具備しており、
当該真北測定器を上記分度器と共に回転させて、日影糸の上記時刻目盛板への投影時刻を真太陽時に一致させたとき、上記真北指示部が真北を指示するものであることを特徴とする請求項1記載の方位測定装置。
The true north measuring device includes a flat time scale plate placed on the protractor, an upright plate having the true north indicating portion and orthogonal to the scale plate, the upright plate, and the time scale. Has a shade thread stretched between the board,
When the true north measuring device is rotated together with the protractor so that the projection time of the shade thread on the time scale plate coincides with true sun time, the true north indicating unit indicates true north. The azimuth measuring apparatus according to claim 1, wherein:
細い棒を門型に折り曲げて門型棒を形成し、当該門型棒の両端部を上記方向線に沿って位置させた状態で、当該門型棒を上記基板部上に直立状態で固定したものであることを特徴とする請求項1又は2記載の方位測定装置。   A thin rod is bent into a gate shape to form a gate rod, and the gate rod is fixed upright on the substrate portion with both ends of the gate rod positioned along the direction line. The azimuth measuring device according to claim 1, wherein the azimuth measuring device is a device. 上記分度器の中心孔を上記直立軸の直径より若干大きく形成することにより、該分度器の上記直立軸への軸挿状態において当該分度器が上記基板の水平面に対して角度変位可能に構成し、
かつ上記分度器の上記水平面に対する角度変位手段を設けたものであることを特徴とする請求項1〜3の何れかに記載の方位測定装置。



By forming the central hole of the protractor slightly larger than the diameter of the upright shaft, the protractor is configured to be angularly displaceable with respect to the horizontal plane of the substrate in the inserted state of the protractor to the upright shaft,
The azimuth measuring apparatus according to claim 1, further comprising an angular displacement means for the protractor with respect to the horizontal plane.



JP2006230803A 2006-08-28 2006-08-28 Direction measuring device Active JP4950597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006230803A JP4950597B2 (en) 2006-08-28 2006-08-28 Direction measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006230803A JP4950597B2 (en) 2006-08-28 2006-08-28 Direction measuring device

Publications (2)

Publication Number Publication Date
JP2008051769A true JP2008051769A (en) 2008-03-06
JP4950597B2 JP4950597B2 (en) 2012-06-13

Family

ID=39235946

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006230803A Active JP4950597B2 (en) 2006-08-28 2006-08-28 Direction measuring device

Country Status (1)

Country Link
JP (1) JP4950597B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008910A (en) * 2014-06-25 2016-01-18 株式会社ミライト Frame for azimuth marking and azimuth marking device
JP2016133368A (en) * 2015-01-19 2016-07-25 旭国際テクネイオン株式会社 Geostationary satellite position detection device, portable terminal device, and program
CN108983150A (en) * 2018-05-21 2018-12-11 上海为彪汽配制造有限公司 A kind of regulating device of millimetre-wave radar
CN112414387A (en) * 2019-08-22 2021-02-26 船庆机械工业股份有限公司 North pointer device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106289204A (en) * 2015-06-29 2017-01-04 李垚奇 North finder quick graticule auxiliary device
CN110722484A (en) * 2019-12-18 2020-01-24 摩比天线技术(深圳)有限公司 Installation clamp for base station antenna parameter measurement module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997206A (en) * 1982-11-26 1984-06-05 General Res Obu Erekutoronitsukusu:Kk Device for determining attaching direction of parabolic antenna
JPS59166117A (en) * 1983-03-10 1984-09-19 三洋電機株式会社 Coffee brewer
JP2000171243A (en) * 1998-12-03 2000-06-23 Sanyo Electric Co Ltd Azimuth detecting device
JP2003315045A (en) * 2002-04-22 2003-11-06 Denso Corp Portable terminal device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997206A (en) * 1982-11-26 1984-06-05 General Res Obu Erekutoronitsukusu:Kk Device for determining attaching direction of parabolic antenna
JPS59166117A (en) * 1983-03-10 1984-09-19 三洋電機株式会社 Coffee brewer
JP2000171243A (en) * 1998-12-03 2000-06-23 Sanyo Electric Co Ltd Azimuth detecting device
JP2003315045A (en) * 2002-04-22 2003-11-06 Denso Corp Portable terminal device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016008910A (en) * 2014-06-25 2016-01-18 株式会社ミライト Frame for azimuth marking and azimuth marking device
JP2016133368A (en) * 2015-01-19 2016-07-25 旭国際テクネイオン株式会社 Geostationary satellite position detection device, portable terminal device, and program
CN108983150A (en) * 2018-05-21 2018-12-11 上海为彪汽配制造有限公司 A kind of regulating device of millimetre-wave radar
CN108983150B (en) * 2018-05-21 2020-11-10 上海为彪汽配制造有限公司 Adjusting device of millimeter wave radar
CN112414387A (en) * 2019-08-22 2021-02-26 船庆机械工业股份有限公司 North pointer device
CN112414387B (en) * 2019-08-22 2022-10-28 船庆机械工业股份有限公司 North pointer device

Also Published As

Publication number Publication date
JP4950597B2 (en) 2012-06-13

Similar Documents

Publication Publication Date Title
JP4950597B2 (en) Direction measuring device
CN103837126B (en) Using position of heavenly body as the three-dimensional space direction angle measuring device of calibration benchmark and method
US10396426B2 (en) Alignment determination for antennas
US6453568B1 (en) Laser protractor
CA2925850C (en) Target direction determination method and system
CN106772915B (en) A kind of installation method of satellite benchmark prism
CN103822629A (en) Positioning system based on multi-directional polarized light navigation sensor and positioning method of positioning system
CN106092106B (en) Eulerian angles scaling method between star sensor and Magnetic Sensor
CN104459728A (en) Magnetic declination calibration method based on GNSS positioning
US7095378B1 (en) Satellite dish sighting apparatus and alignment system
CN108225563B (en) Field environment sky polarization modeling alignment measuring device
US5396709A (en) Method and apparatus for precise calibration of magnetic compass and preparation of deviation tables
US6523270B1 (en) Universal heliodon-sundial
CN110514200A (en) A kind of inertial navigation system and high revolving speed posture of rotator measurement method
CN210664504U (en) Magnetic compass calibrating device
JP2016166743A (en) Fixture of anemometer
CN210294318U (en) North-seeking check gauge
RU112757U1 (en) DEVICE FOR ADJUSTING THE MIRROR OF THE PARABOLIC ANTENNA
US20230408722A1 (en) Apparatus and method for calibrating tilt sensor and compass of sensor device for magnetic orientation
CN217767658U (en) Small-hole sun-shadow cover
JP3527681B2 (en) Azimuth and elevation adjustment jig for satellite broadcast receiving antenna
US2575166A (en) Azimuth measuring device
US4260253A (en) Precision celestial pole locator
CN106772222B (en) Determine the method and device of satellite digital beam antenna arrival bearing
JP2004012258A (en) Remote positioning system, remote positioning method, and computer software

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120309

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150316

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4950597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250