JP2008051210A - Gas barrier structure and forming method - Google Patents

Gas barrier structure and forming method Download PDF

Info

Publication number
JP2008051210A
JP2008051210A JP2006227941A JP2006227941A JP2008051210A JP 2008051210 A JP2008051210 A JP 2008051210A JP 2006227941 A JP2006227941 A JP 2006227941A JP 2006227941 A JP2006227941 A JP 2006227941A JP 2008051210 A JP2008051210 A JP 2008051210A
Authority
JP
Japan
Prior art keywords
film
gas barrier
thin film
aluminum thin
barrier structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006227941A
Other languages
Japanese (ja)
Other versions
JP4901367B2 (en
Inventor
Masaji Katsumata
正司 勝間田
Kazuhiko Shiratani
和彦 白谷
Takahiro Nakahigashi
孝浩 中東
Toshinobu Yamashita
敏信 山下
Sachikazu Tanaka
祥和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon ITF Inc
Toyota Motor Corp
Original Assignee
Nippon ITF Inc
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon ITF Inc, Toyota Motor Corp filed Critical Nippon ITF Inc
Priority to JP2006227941A priority Critical patent/JP4901367B2/en
Publication of JP2008051210A publication Critical patent/JP2008051210A/en
Application granted granted Critical
Publication of JP4901367B2 publication Critical patent/JP4901367B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas barrier structure capable of improving a heat radiating property of a diaphragm rubber film of a sealed hydraulic damper, and a forming method thereof. <P>SOLUTION: The gas barrier structure for a rubber film 10 constituting a diaphragm for a sealed hydraulic damper comprises an aluminum thin film 14 formed on the surface of the rubber film 10 and a flexible DLC film 18 formed on the aluminum thin film 14. The aluminum thin film 14 and the flexible DLC film 18 are bonded to each other by an aluminum-silicon eutectic layer 14 interposed between the films. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、密封式油圧ダンパのダイヤフラムゴム膜のガスバリヤ構造およびその作製方法に関する。   The present invention relates to a gas barrier structure of a diaphragm rubber film of a hermetic hydraulic damper and a manufacturing method thereof.

エンジン動弁機構の熱膨張、摩耗による各部寸法変化を吸収し、バルブ突き上げを防止するためにタペットクリアランスが設けられている。図1に示す密封式油圧ダンパ(ラッシュアジャスタ)1は、このタペットクリアランスを常に規定範囲内に維持調整する。図中、上方に開放し下端が閉塞している筒形本体(ボディ)2内に、往復摺動可能にプランジャ3が挿入されている。プランジャ3の中央部にはステム部4が突設され、ステム部4の上端と筒形本体2の間には、両者を互いに接続して開放端を覆うダイヤフラム5が装着されている。   A tappet clearance is provided to absorb dimensional changes due to thermal expansion and wear of the engine valve mechanism and to prevent the valve from being pushed up. A sealed hydraulic damper (lash adjuster) 1 shown in FIG. 1 always maintains and adjusts this tappet clearance within a specified range. In the figure, a plunger 3 is inserted into a cylindrical body (body) 2 opened upward and closed at the lower end so as to be slidable back and forth. A stem portion 4 projects from the central portion of the plunger 3, and a diaphragm 5 is attached between the upper end of the stem portion 4 and the cylindrical main body 2 so as to connect the two to each other and cover the open end.

ダイヤフラム5は、フロロシリコーンゴム、フッ素ゴム等の耐油性、耐熱性の優れたゴム膜から成る。ダイヤフラム5に覆われたリザーバ室6内の封入油が、外気と接触して劣化しないように、ゴム膜5のガスバリヤ性を高めるために、これまでに種々の対策がなされている。   The diaphragm 5 is made of a rubber film having excellent oil resistance and heat resistance, such as fluorosilicone rubber and fluororubber. Various measures have been taken so far to improve the gas barrier property of the rubber film 5 so that the sealed oil in the reservoir chamber 6 covered with the diaphragm 5 does not deteriorate due to contact with outside air.

特許文献1には、ダイヤフラムゴム膜上に接着した樹脂、金属等のガス不透過膜の割れ、剥離等の破損防止のために、ゴム膜上に保護膜を介してガス不透過膜を設け、さらに保護膜で覆った構造が開示されている。   In Patent Document 1, a gas-impermeable film is provided on the rubber film via a protective film in order to prevent damage such as cracking and peeling of the gas-impermeable film such as resin and metal adhered on the diaphragm rubber film. Furthermore, a structure covered with a protective film is disclosed.

さらに、ガス不透過膜としてアルミニウムをゴムに蒸着させる(非特許文献1)、軟質基材の表面に炭素膜(DLC)を形成する(特許文献2)、密着性良好な炭素膜を形成する(特許文献3)、油圧ラッシュアジャスタのダイヤフラム構造(非特許文献2)などが開示されている。   Furthermore, aluminum is vapor-deposited on rubber as a gas impermeable film (Non-Patent Document 1), a carbon film (DLC) is formed on the surface of a soft substrate (Patent Document 2), and a carbon film with good adhesion is formed ( Patent Document 3), a diaphragm structure of a hydraulic lash adjuster (Non-Patent Document 2) and the like are disclosed.

しかし、密封油圧式ダンパのダイヤフラムゴム膜として、ガスバリヤ性を更に高める必要があった。   However, it has been necessary to further improve the gas barrier properties as a diaphragm rubber film of a hermetic hydraulic damper.

そこで、ゴムやプラスチックなどの軟質基材のガスバリヤ性を狙って、内面にDLC膜を施工した飲料用PETボトルなどが製品化されていることに着目した。   Therefore, we focused on the commercialization of PET bottles for beverages with a DLC film on the inner surface for the purpose of gas barrier properties of soft base materials such as rubber and plastic.

しかし、密封式油圧ダンパのダイヤフラムに上記飲料ボトルにおけるDLC膜をそのまま適用しても十分なガスバリヤ性を得ることはできない。   However, even if the DLC film in the beverage bottle is directly applied to the diaphragm of the sealed hydraulic damper, sufficient gas barrier properties cannot be obtained.

すなわち、再び図1を参照すると、密封式油圧ダンパ1の場合は、プランジャ3が筒形本体2と摺動する際に摩擦熱が発生する。この場合、ガスバリヤ対策としてダイヤフラムゴム膜5に従来のDLC膜をコーティングしてあると、放熱性が不十分なため、リザーバ室6内の封入油の温度が上昇し、ゲル化等により油劣化が起きる。   That is, referring again to FIG. 1, in the case of the sealed hydraulic damper 1, frictional heat is generated when the plunger 3 slides with the cylindrical body 2. In this case, if the conventional DLC film is coated on the diaphragm rubber film 5 as a gas barrier measure, since the heat dissipation is insufficient, the temperature of the sealed oil in the reservoir chamber 6 rises, and oil deterioration due to gelation or the like occurs. Get up.

実公平5−33328号公報Japanese Utility Model Publication 5-33328 特開2002−121669号公報JP 2002-121669 A 特開2000−96233号公報JP 2000-96233 A 発明協会公開技法2004−505039Japan Society of Invention Disclosure Techniques 2004-505039 発明協会公開技法2003−503805Invention Association Open Technique 2003-503805

本発明は、密封式油圧ダンパのダイヤフラムゴム膜の放熱性を改良したガスバリヤ構造およびその作製方法を提供することを目的とする。   An object of the present invention is to provide a gas barrier structure in which the heat dissipation of a diaphragm rubber film of a hermetic hydraulic damper is improved and a manufacturing method thereof.

上記の目的を達成するために、本発明によれば、密封式油圧ダンパのダイヤフラムを構成するゴム膜のガスバリヤ構造であって、
上記ゴム膜の表面に形成されたアルミニウム薄膜と、該アルミニウム薄膜上に形成されたフレキシブルDLC膜とを備え、上記アルミニウム薄膜と上記フレキシブルDLC膜とが両者間に介在するアルミニウム・シリコン共晶層により相互に接合されていることを特徴とするガスバリヤ構造が提供される。
In order to achieve the above object, according to the present invention, a gas barrier structure of a rubber film constituting a diaphragm of a sealed hydraulic damper,
An aluminum thin film formed on the surface of the rubber film and a flexible DLC film formed on the aluminum thin film, and an aluminum / silicon eutectic layer in which the aluminum thin film and the flexible DLC film are interposed therebetween A gas barrier structure is provided which is characterized by being joined together.

更に、本発明によれば、上記本発明のガスバリヤ構造の作製方法であって、下記工程:
前記ゴム膜上に、水素ガス雰囲気中にて温度120℃以下で、上記アルミニウム薄膜を形成する工程、および
上記アルミニウム薄膜上に、60℃以下の低温プラズマCVDによりDLC膜を形成する工程
を含んで成ることを特徴とするガスバリヤ構造の作製方法が提供される。
Furthermore, according to the present invention, there is provided a method for producing the gas barrier structure of the present invention, comprising the following steps:
Forming the aluminum thin film on the rubber film in a hydrogen gas atmosphere at a temperature of 120 ° C. or lower; and forming the DLC film on the aluminum thin film by low temperature plasma CVD at 60 ° C. or lower. A method for producing a gas barrier structure is provided.

本発明のガスバリヤ構造においては、フレキシブルDLC膜によりガスバリヤ性を確保した上で、ゴム膜に直接接したアルミニウム薄膜のヒートシンク作用により放熱性を高めることができる。   In the gas barrier structure of the present invention, the gas barrier property is ensured by the flexible DLC film, and the heat dissipation can be enhanced by the heat sink action of the aluminum thin film directly in contact with the rubber film.

更に、フレキシブルDLC膜とアルミニウム薄膜とは両者間に介在するアルミニウム・シリコン共晶層により強固に接合されているので、ダイヤフラムの伸縮動作によって剥離することがなく、優れたガスバリヤ性と放熱性とを常に兼備できる。   Furthermore, since the flexible DLC film and the aluminum thin film are firmly joined by the aluminum / silicon eutectic layer interposed between them, the gas does not peel off due to the expansion / contraction operation of the diaphragm, and has excellent gas barrier properties and heat dissipation. You can always combine.

本発明のガスバリヤ構造の作製方法においては、ゴム膜上へのアルミニウム薄膜の形成を、水素ガス雰囲気中で120℃以下の低温で行なうことにより、アルミニウム薄膜の酸化を防止できる。また、アルミニウム薄膜上へのDLC膜の形成を、60℃以下の低温プラズマCVDで行なうことにより、下地のアルミニウム薄膜の劣化を起こすことが無い上、DLC膜に水素が含有されていても、後の100℃程度の低温加熱により容易に脱水素することができる。   In the method for producing the gas barrier structure of the present invention, the aluminum thin film is formed on the rubber film at a low temperature of 120 ° C. or less in a hydrogen gas atmosphere, whereby the aluminum thin film can be prevented from being oxidized. Further, the formation of the DLC film on the aluminum thin film is performed by low temperature plasma CVD at 60 ° C. or lower, so that the underlying aluminum thin film is not deteriorated, and even if the DLC film contains hydrogen, It can be easily dehydrogenated by heating at a low temperature of about 100 ° C.

図2に、本発明の望ましい実施形態によるゴム膜のガスバリヤ構造を模式的に示す。   FIG. 2 schematically shows a gas barrier structure of a rubber film according to a preferred embodiment of the present invention.

図示したガスバリヤ構造は、ダイヤフラム5(図1)を構成するゴム膜10上に、アルミニウム薄膜14、アルミニウム・シリコン共晶層16、フレキシブルDLC膜18がこの順で積層されて構成されている。ゴム膜10の表面12は予めイオンボンバード処理により粗面化されており、機械的なアンカー効果によりアルミニウム薄膜14がゴム膜10の表面に強固に接合されている。   The illustrated gas barrier structure is configured by laminating an aluminum thin film 14, an aluminum-silicon eutectic layer 16, and a flexible DLC film 18 in this order on a rubber film 10 constituting the diaphragm 5 (FIG. 1). The surface 12 of the rubber film 10 is previously roughened by ion bombardment, and the aluminum thin film 14 is firmly bonded to the surface of the rubber film 10 by a mechanical anchor effect.

アルミニウム薄膜14とフレキシブルDLC膜18とは、両者間に生成しているアルミニウム・シリコン共晶層16により相互に強固に接合されている。アルミニウム・シリコン共晶層16は、フレキシブルDLC膜18の形成過程に付随して生成する。これは下記の理由による。   The aluminum thin film 14 and the flexible DLC film 18 are firmly bonded to each other by an aluminum / silicon eutectic layer 16 formed therebetween. The aluminum-silicon eutectic layer 16 is generated in association with the formation process of the flexible DLC film 18. This is due to the following reasons.

フレキシブルDLC膜18は、図3に示すように、アモルファスカーボン中に不純物としてSi、Hを含んでいる。このうちのSiはCと共有結合しているが、同時に、下地のAlと極めて微細な共晶層を形成する。これにより、この共晶層が上層のCと下層のAlとを強固に結合する。   As shown in FIG. 3, the flexible DLC film 18 contains Si and H as impurities in amorphous carbon. Of these, Si is covalently bonded to C, but at the same time forms an extremely fine eutectic layer with the underlying Al. As a result, the eutectic layer firmly bonds the upper C and the lower Al.

このようにして、本発明のガスバリヤ構造は、基材であるゴム膜10が粗化面12によりアルミニウム薄膜14と強固に接合され、同時に、アルミニウム薄膜14がAl-Si共晶層によりフレキシブルDLC膜18と強固に接合されているので、ゴム膜10の伸縮に良く追従して変形可能であり、フレキシブルDLC膜によるガスバリヤ性とアルミニウム薄膜による放熱性とを安定して発揮することができる。   Thus, the gas barrier structure of the present invention is such that the base rubber film 10 is firmly bonded to the aluminum thin film 14 by the roughened surface 12, and at the same time, the aluminum thin film 14 is a flexible DLC film by the Al—Si eutectic layer. 18, the rubber film 10 can be deformed by following the expansion and contraction of the rubber film 10, and the gas barrier property by the flexible DLC film and the heat dissipation property by the aluminum thin film can be stably exhibited.

本発明の望ましい実施形態によるガスバリヤ構造の作製方法は下記のように行なうことができる。   A method of manufacturing a gas barrier structure according to a preferred embodiment of the present invention can be performed as follows.

まず、基材となるゴム膜10としては、フロロシリコーンゴム、フッ素ゴムとの耐油性、耐熱性の良いゴム膜を選定する。   First, as the rubber film 10 serving as the base material, a rubber film having good oil resistance and heat resistance with fluorosilicone rubber and fluororubber is selected.

次に、上記ゴム膜の表面12をArイオン等によるイオンボンバード処理により粗化する。これにより同時にゴム膜表面が清浄化される。いずれも、その上に形成するアルミニウム薄膜の密着性を高める効果がある。   Next, the surface 12 of the rubber film is roughened by ion bombardment with Ar ions or the like. This simultaneously cleans the rubber film surface. Both have the effect of increasing the adhesion of the aluminum thin film formed thereon.

次に、上記イオンボンバード処理済のゴム膜表面に、水素雰囲気中にて温度120℃以下で、スパッタリング等の低温製膜法により、アルミニウム薄膜14を形成する。膜厚は15nm程度あるいはそれ以下とし、十分な熱伝導性を確保しつつ、ゴム膜の伸縮変形に対して追従できる延性をも兼備させる。   Next, an aluminum thin film 14 is formed on the surface of the rubber film that has been subjected to the ion bombardment treatment at a temperature of 120 ° C. or less in a hydrogen atmosphere by a low temperature film forming method such as sputtering. The film thickness is about 15 nm or less, and it also has ductility that can follow the expansion and contraction of the rubber film while ensuring sufficient thermal conductivity.

次に、アルミニウム薄膜14上に、フレキシブルDLC膜18を形成する。これは下記の手順1)〜2)で行なう。   Next, a flexible DLC film 18 is formed on the aluminum thin film 14. This is performed by the following procedures 1) to 2).

1)前処理:アルミニウム薄膜表面の清浄化
真空中にて、水素プラズマクリーニングにより、アルミニウム薄膜14の表面の自然酸化膜その他の汚染物質を除去し、新鮮なアルミニウム表面を露出させる。これによりフレキシブルDLC膜の密着性を高める。この方法の詳細は、特許第3355892号に開示されている。
1) Pretreatment: Cleaning of the surface of the aluminum thin film In a vacuum, a natural oxide film and other contaminants on the surface of the aluminum thin film 14 are removed by hydrogen plasma cleaning to expose a fresh aluminum surface. This enhances the adhesion of the flexible DLC film. Details of this method are disclosed in Japanese Patent No. 33555892.

2)本処理:フレキシブルDLC膜の形成
上記浄化処理後のアルミニウム薄膜上に、温度60℃以下の低温プラズマCVDによりフレキシブルDLC膜を形成する。具体的には、例えば特許文献2に開示された方法により、原料としてメタン(CH)とテトラエトキシシラン(TEOS)を用いる。このDLC形成過程において、原料由来の不純物として数%含まれるSiが前述のようにアルミニウム薄膜のAlと共晶層を形成し、Al薄膜とDLC膜との接合層として作用する。また、同じく原料由来の不純物としてHも存在しているが、これはAl薄膜とDLC膜との密着性には実質的に影響を及ぼさない。
2) Main treatment: Formation of flexible DLC film A flexible DLC film is formed on the aluminum thin film after the purification treatment by low-temperature plasma CVD at a temperature of 60 ° C or lower. Specifically, for example, methane (CH 4 ) and tetraethoxysilane (TEOS) are used as raw materials by the method disclosed in Patent Document 2. In this DLC formation process, Si contained by several percent as an impurity derived from the raw material forms an eutectic layer with Al of the aluminum thin film as described above, and acts as a bonding layer between the Al thin film and the DLC film. Similarly, H is also present as an impurity derived from the raw material, but this does not substantially affect the adhesion between the Al thin film and the DLC film.

上記の処理により本発明の望ましい実施形態によるガスバリヤ構造が得られる。   The above treatment provides a gas barrier structure according to a preferred embodiment of the present invention.

更に望ましい実施形態においては、DLC膜の形成後に、窒素等の不活性ガス中にて100℃以上に30分程度保持する後処理を行ない、上記の残留水素を除去することができる。これにより、従来公知のように、DLC膜の熱伝導率は水素の除去により向上する。   In a more desirable embodiment, after the DLC film is formed, a post-treatment is performed in an inert gas such as nitrogen at 100 ° C. or higher for about 30 minutes to remove the residual hydrogen. Thereby, as conventionally known, the thermal conductivity of the DLC film is improved by removing hydrogen.

このように脱水素したDLC膜は300W/mk程度の高熱伝導率が得られるものと推定される。これはSiを含有しないDLC膜で得られる熱伝導率が数十W/mkであるのに対して極めて高い熱伝導率である。また一般にアルミニウム蒸着膜で得られる熱伝導率が170〜200W/mkであるのと比較してもむしろ高い値であり、ゴム膜に対するヒートシンクとしてのアルミニウム薄膜の作用が有効に活用でき、外部への高い放熱性が実現できる。   The dehydrogenated DLC film is estimated to have a high thermal conductivity of about 300 W / mk. This is an extremely high thermal conductivity, whereas the thermal conductivity obtained with a DLC film not containing Si is several tens of W / mk. In general, the thermal conductivity obtained with an aluminum vapor deposition film is rather high as compared with 170 to 200 W / mk, and the action of the aluminum thin film as a heat sink on the rubber film can be effectively utilized. High heat dissipation can be realized.

さらに、アルミニウム薄膜形成時に、ゴムを引張った状態で施工することにより、ゴムが元の状態に戻った時にアルミニウム薄膜はしわしわになるが、その状態でDLC膜を成膜する方法がある。本方法によれば、製品状態で伸び縮みしてもアルミニウム膜やDLC膜に亀裂を発生させることがない。   Further, when the aluminum thin film is formed, the aluminum thin film is wrinkled when the rubber is returned to the original state by applying the rubber in a tensioned state, and there is a method of forming a DLC film in that state. According to this method, cracks do not occur in the aluminum film or the DLC film even if the film is expanded or contracted in the product state.

以上のように本発明のガスバリヤ構造は、ダイヤフラムのガスバリヤ性と放熱性とを兼備したことにより、プランジャと本体との摺動時により摩擦熱が発生しても、封入油の昇温を抑制することができ、封入油とダイヤフラムの熱劣化を抑制して作動寿命を向上できる。   As described above, the gas barrier structure of the present invention combines the gas barrier property and heat dissipation of the diaphragm, so that even if frictional heat is generated by sliding between the plunger and the main body, the temperature rise of the sealed oil is suppressed. It is possible to improve the operating life by suppressing thermal deterioration of the encapsulated oil and the diaphragm.

このように本発明によれば、密封式油圧ダンパのダイヤフラムゴム膜の放熱性を改良したガスバリヤ構造およびその作製方法が提供される。   As described above, according to the present invention, there are provided a gas barrier structure in which the heat radiation property of the diaphragm rubber film of the hermetic hydraulic damper is improved and a manufacturing method thereof.

本発明のガスバリヤ構造を適用するダイヤフラムを備えた密封式油圧ダンパ(ラッシュアジャスタ)の縦断面図である。It is a longitudinal cross-sectional view of the sealing type hydraulic damper (lash adjuster) provided with the diaphragm which applies the gas barrier structure of this invention. 本発明のガスバリヤ構造の断面図である。It is sectional drawing of the gas barrier structure of this invention. フレキシブルDLC膜の分子構造を示す模式図である。It is a schematic diagram which shows the molecular structure of a flexible DLC film.

符号の説明Explanation of symbols

10 ゴム膜
12 ゴム膜10の粗化面
14 アルミニウム薄膜
16 Al-Si共晶層
18 フレキシブルDLC膜
DESCRIPTION OF SYMBOLS 10 Rubber film 12 Roughened surface of rubber film 10 Aluminum thin film 16 Al-Si eutectic layer 18 Flexible DLC film

Claims (4)

密封式油圧ダンパのダイヤフラムを構成するゴム膜のガスバリヤ構造であって、
上記ゴム膜の表面に形成されたアルミニウム薄膜と、該アルミニウム薄膜上に形成されたフレキシブルDLC膜とを備え、上記アルミニウム薄膜と上記フレキシブルDLC膜とが両者間に介在するアルミニウム・シリコン共晶層により相互に接合されていることを特徴とするガスバリヤ構造。
A gas barrier structure of a rubber film constituting a diaphragm of a sealed hydraulic damper,
An aluminum thin film formed on the surface of the rubber film and a flexible DLC film formed on the aluminum thin film, and an aluminum / silicon eutectic layer in which the aluminum thin film and the flexible DLC film are interposed therebetween A gas barrier structure characterized by being bonded to each other.
請求項1において、上記ゴム膜のイオンボンバード粗化面に上記アルミニウム薄膜が形成されていることを特徴とするガスバリヤ構造。   2. The gas barrier structure according to claim 1, wherein the aluminum thin film is formed on an ion bombarded roughened surface of the rubber film. 請求項1記載のガスバリヤ構造の作製方法であって、下記工程:
前記ゴム膜上に、水素ガス雰囲気中にて温度120℃以下で、上記アルミニウム薄膜を形成する工程、および
上記アルミニウム薄膜上に、60℃以下の低温プラズマCVDによりDLC膜を形成する工程
を含んで成ることを特徴とするガスバリヤ構造の作製方法。
A method for producing a gas barrier structure according to claim 1, wherein:
Forming the aluminum thin film on the rubber film in a hydrogen gas atmosphere at a temperature of 120 ° C. or lower; and forming the DLC film on the aluminum thin film by low temperature plasma CVD at 60 ° C. or lower. A method for producing a gas barrier structure characterized by comprising:
請求項2記載のガスバリヤ構造の作製方法であって、前記アルミニウム薄膜を形成する工程の前に、前記ゴム膜の表面をイオンボンバード処理により粗化する工程を更に含むことを特徴とするガスバリヤ構造の作製方法。   3. The method for producing a gas barrier structure according to claim 2, further comprising a step of roughening a surface of the rubber film by ion bombarding before the step of forming the aluminum thin film. Manufacturing method.
JP2006227941A 2006-08-24 2006-08-24 Gas barrier structure and manufacturing method thereof Expired - Fee Related JP4901367B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006227941A JP4901367B2 (en) 2006-08-24 2006-08-24 Gas barrier structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006227941A JP4901367B2 (en) 2006-08-24 2006-08-24 Gas barrier structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008051210A true JP2008051210A (en) 2008-03-06
JP4901367B2 JP4901367B2 (en) 2012-03-21

Family

ID=39235466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006227941A Expired - Fee Related JP4901367B2 (en) 2006-08-24 2006-08-24 Gas barrier structure and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4901367B2 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292965A (en) * 1986-06-13 1987-12-19 Nhk Spring Co Ltd Partitioning film for separating gas chamber and liquid chamber in pressure container
JPS6465259A (en) * 1987-09-04 1989-03-10 Nippon Steel Corp Continuous composite coating equipment for band plate
JPH0953722A (en) * 1995-08-11 1997-02-25 Showa:Kk Sliding member for hydraulic buffer for vehicle
JP2002121669A (en) * 2000-10-17 2002-04-26 Nissin Electric Co Ltd Carbon film deposited on surface of soft base material, and method of its deposition
JP2004230625A (en) * 2003-01-29 2004-08-19 Toppan Printing Co Ltd Ceramic vapor deposition film and its production method
JP2005157040A (en) * 2003-11-27 2005-06-16 Bridgestone Corp Toner carrier and image forming apparatus
JP2005313939A (en) * 2004-04-28 2005-11-10 Kirin Brewery Co Ltd Atmospheric pressure plasma type bottle film forming apparatus and method for manufacturing plastic bottle coated with gas barrier thin film
JP2007261077A (en) * 2006-03-28 2007-10-11 Kirin Holdings Co Ltd Dlc-film-coated biodegradable plastic container or film and its manufacturing method
WO2007135900A1 (en) * 2006-05-23 2007-11-29 Think Laboratory Co., Ltd. Gravure engraving roll and method for manufacturing the same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62292965A (en) * 1986-06-13 1987-12-19 Nhk Spring Co Ltd Partitioning film for separating gas chamber and liquid chamber in pressure container
JPS6465259A (en) * 1987-09-04 1989-03-10 Nippon Steel Corp Continuous composite coating equipment for band plate
JPH0953722A (en) * 1995-08-11 1997-02-25 Showa:Kk Sliding member for hydraulic buffer for vehicle
JP2002121669A (en) * 2000-10-17 2002-04-26 Nissin Electric Co Ltd Carbon film deposited on surface of soft base material, and method of its deposition
JP2004230625A (en) * 2003-01-29 2004-08-19 Toppan Printing Co Ltd Ceramic vapor deposition film and its production method
JP2005157040A (en) * 2003-11-27 2005-06-16 Bridgestone Corp Toner carrier and image forming apparatus
JP2005313939A (en) * 2004-04-28 2005-11-10 Kirin Brewery Co Ltd Atmospheric pressure plasma type bottle film forming apparatus and method for manufacturing plastic bottle coated with gas barrier thin film
JP2007261077A (en) * 2006-03-28 2007-10-11 Kirin Holdings Co Ltd Dlc-film-coated biodegradable plastic container or film and its manufacturing method
WO2007135900A1 (en) * 2006-05-23 2007-11-29 Think Laboratory Co., Ltd. Gravure engraving roll and method for manufacturing the same

Also Published As

Publication number Publication date
JP4901367B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
JP2016119489A (en) Method for manufacturing composite substrate
JP2008504715A5 (en)
WO2016088466A1 (en) Composite substrate manufacturing method and composite substrate
CN105336579A (en) Semiconductor element and preparation method thereof
US20180019322A1 (en) Semiconductor device manufacturing method
TW201225256A (en) Electronic device for radiofrequency or power applications and process for manufacturing such a device
CN104040675A (en) Inorganic materials, methods and apparatus for making same, and uses thereof
CN113690298A (en) Semiconductor composite substrate, semiconductor device and preparation method
TWI440213B (en) Laminate substrate for semiconductor chip
WO2016104291A1 (en) Composite substrate, method for forming nanocarbon film, and nanocarbon film
JP2006196713A (en) Semiconductor device, fabricating method thereof, and deuterium processor
JP4901367B2 (en) Gas barrier structure and manufacturing method thereof
TW200919540A (en) SOI substrate and semiconductor device using the SOI substrate
TW508717B (en) Electrostatic chucks and process for producing the same
JP2005203321A (en) Protective film and organic el device
JP7360821B2 (en) Insulated container and its manufacturing method
JP2007059094A (en) Organic el display and manufacturing method of organic el display
JP6009243B2 (en) Carbonated beverage bottle and method for producing the same
JP5983834B2 (en) Method for manufacturing acoustic wave device
JP6912716B2 (en) Semiconductor devices and their manufacturing methods
JP2001274188A (en) Semiconductor device and its manufacturing method
KR101942749B1 (en) multi-layer inorganic thin film for encapsulation and method for manufacturing the same
WO2005093823A1 (en) Semiconductor-on-insulator substrate comprising a buried diamond-like carbon layer and method for making same
JP2013038316A (en) Method for manufacturing group iii nitride layer composite substrate
JP6131701B2 (en) Manufacturing method of semiconductor substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111227

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150113

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees