JP2008050337A - Benzofluorene compound and use thereof - Google Patents

Benzofluorene compound and use thereof Download PDF

Info

Publication number
JP2008050337A
JP2008050337A JP2007010813A JP2007010813A JP2008050337A JP 2008050337 A JP2008050337 A JP 2008050337A JP 2007010813 A JP2007010813 A JP 2007010813A JP 2007010813 A JP2007010813 A JP 2007010813A JP 2008050337 A JP2008050337 A JP 2008050337A
Authority
JP
Japan
Prior art keywords
group
substituted
carbon atoms
unsubstituted
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007010813A
Other languages
Japanese (ja)
Other versions
JP5145717B2 (en
Inventor
Shoichi Nishiyama
正一 西山
Naoki Matsumoto
直樹 松本
Takanori Miyazaki
高則 宮崎
Takeshi Kanbara
武志 神原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP2007010813A priority Critical patent/JP5145717B2/en
Publication of JP2008050337A publication Critical patent/JP2008050337A/en
Application granted granted Critical
Publication of JP5145717B2 publication Critical patent/JP5145717B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/008Triarylamine dyes containing no other chromophores
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers

Abstract

<P>PROBLEM TO BE SOLVED: To provide a new material having high hole transporting ability, high glass transition temperature and long-term durability. <P>SOLUTION: The invention relates to the benzofluorene compound represented by general formula (1). In the formula, M represents a (substituted) aryl group having 6-40 carbon atoms or a (substituted) heteroaryl group having 5-40 carbon atoms; Ar<SP>1</SP>-Ar<SP>4</SP>are each independently a (substituted) aryl group having 6-40 carbon atoms or a (substituted) heteroaryl group having 5-40 carbon atoms, provided that at least one of Ar<SP>1</SP>-Ar<SP>4</SP>represents a substituent having a fluorene skeleton. And p is an integer of 0-2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、新規なベンゾフルオレン化合物及びその用途、特に有機エレクトロルミネッセンス素子に関するものである。ベンゾフルオレン化合物は、感光材料、有機光導電材料として使用でき、更に具体的には、平面光源や表示に使用される有機EL素子若しくは電子写真感光体等の正孔輸送、正孔注入材料及び発光ホスト材料として利用できる。   The present invention relates to a novel benzofluorene compound and its use, particularly to an organic electroluminescence device. Benzofluorene compounds can be used as photosensitive materials and organic photoconductive materials, and more specifically, hole transport, hole injection materials, and light emission of planar light sources and organic EL devices or electrophotographic photoreceptors used for display. Can be used as a host material.

感光材料や正孔輸送材料として開発されている有機光導電材料は、低コスト、加工性が多様であり、また無公害性などの多くの利点があり、多くの化合物が提案されている。例えば、オキサジアゾール誘導体(例えば、特許文献1参照)、オキサゾール誘導体(例えば、特許文献2参照)、ヒドラゾン誘導体(例えば、特許文献3参照)、トリアリールピラゾリン誘導体(例えば、特許文献4,5参照)、アリールアミン誘導体(例えば、特許文献6,7参照)、スチルベン誘導体(例えば、特許文献8,9参照)等の材料が開示されている。   Organic photoconductive materials developed as photosensitive materials and hole transport materials have various advantages such as low cost, various processability, and non-polluting properties, and many compounds have been proposed. For example, oxadiazole derivatives (for example, see Patent Document 1), oxazole derivatives (for example, see Patent Document 2), hydrazone derivatives (for example, see Patent Document 3), triarylpyrazoline derivatives (for example, Patent Documents 4 and 5) Materials) such as arylamine derivatives (see, for example, Patent Documents 6 and 7), stilbene derivatives (see, for example, Patent Documents 8 and 9), and the like.

中でも4,4’,4”−トリス[N,N−(1−ナフチル)フェニルアミノ]トリフェニルアミン(1−TNATA)、4,4’,4”−トリス[N,N−(m−トリル)フェニルアミノ]トリフェニルアミン(MTDATA)等のスターバースト系材料、4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル(α−NPD)、4,4’−ビス[N−(m−トリル)−N−フェニルアミノ]ビフェニル(TPD)等のビフェニル系アリールアミン誘導体が、正孔輸送又は正孔注入材料として多く使用されている(例えば、非特許文献1,2参照)。   Among them, 4,4 ′, 4 ″ -tris [N, N- (1-naphthyl) phenylamino] triphenylamine (1-TNATA), 4,4 ′, 4 ″ -tris [N, N- (m-tolyl) ) Phenylamino] triphenylamine (MTDATA) and other starburst materials, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (α-NPD), 4,4′-bis Biphenyl arylamine derivatives such as [N- (m-tolyl) -N-phenylamino] biphenyl (TPD) are often used as hole transport or hole injection materials (for example, Non-Patent Documents 1 and 2). reference).

更に、フルオレン骨格を部分構造として用いたアリールアミン化合物も提案されている(例えば、特許文献10,11参照)。   Furthermore, arylamine compounds using a fluorene skeleton as a partial structure have also been proposed (see, for example, Patent Documents 10 and 11).

また、本特許と同じベンゾフルオレン骨格を有する有機エレクトロルミネセンス材料も提案されているが(例えば、特許文献12参照)、ベンゾフルオレニル基に直接アミノ基が結合した化合物の記載はない。加えて、特許文献12において、特にベンゾフルオレニル基を有するポリマー材料が発光材料として有用であるとの記載はあるが、正孔輸送材料及び正孔注入材料として有用であるとの記載はない。   In addition, an organic electroluminescent material having the same benzofluorene skeleton as in this patent has been proposed (see, for example, Patent Document 12), but there is no description of a compound in which an amino group is directly bonded to a benzofluorenyl group. In addition, in Patent Document 12, there is a description that a polymer material having a benzofluorenyl group is particularly useful as a light emitting material, but there is no description that it is useful as a hole transport material and a hole injection material. .

米国特許第3189447号明細書(クレーム)US Pat. No. 3,189,447 (claims) 米国特許第3257203号明細書(クレーム)US Pat. No. 3,257,203 (claims) 特開昭54−59143号公報(特許請求の範囲)JP-A-54-59143 (Claims) 特開昭51−93224号公報(特許請求の範囲)JP 51-93224 A (Claims) 特開昭55−108667号公報(特許請求の範囲)JP 55-108667 A (Claims) 特開昭55−144250号公報(特許請求の範囲)JP-A-55-144250 (Claims) 特開昭56−119132号公報(特許請求の範囲)JP-A-56-119132 (Claims) 特開昭58−190953号公報(特許請求の範囲)Japanese Patent Laid-Open No. 58-190953 (Claims) 特開昭59−195658号公報(特許請求の範囲)JP 59-195658 (Claims) 特開平11−35532号公報(特許請求の範囲)JP-A-11-35532 (Claims) 特開平10−95972号公報(特許請求の範囲)JP-A-10-95972 (Claims) 国際公開第2004/61048号パンフレット(特許請求の範囲)International Publication No. 2004/61048 Pamphlet (Claims) 「アドバンスド・マテリアルズ(Advanced Materials)」,(ドイツ国),1998年,第10巻,第14号,p1108−1112(図1、表1)“Advanced Materials” (Germany), 1998, Vol. 10, No. 14, p1108-1112 (FIG. 1, Table 1) 「ジャーナル・オブ・ルミネッセンス(Journal of Luminescence)」,(オランダ国),1997年,72−74,p985−991(図1)“Journal of Luminescence” (Netherlands), 1997, 72-74, p985-991 (FIG. 1).

しかしながら、これらの材料は、安定性や耐久性に乏しいなどの難点を有しており、実用上十分満足できる材料であるとは言い難い。例えば、代表的正孔輸送材料であり、現状効率等で優れているNPDは、ガラス転移温度が低いため、素子寿命の観点では有機エレクトロルミネセンス素子の突然死等の問題を包含しており、問題となっている。また、近年アクティブマトリクス駆動の有機エレクトロルミネセンス素子の実用化検討が活発化しているが、その際の要求特性は更なる低電圧駆動である。それについては、NPDでは十分満足できるものに至っていない。従って、更なる低電圧駆動並びに長寿命化を実現するための材料の開発が非常に望まれている。   However, these materials have difficulties such as poor stability and durability, and it is difficult to say that these materials are sufficiently satisfactory for practical use. For example, NPD, which is a representative hole transport material and excellent in current efficiency, has a low glass transition temperature, and thus includes problems such as sudden death of an organic electroluminescence element from the viewpoint of element lifetime, It is a problem. In recent years, studies on the practical application of active matrix driving organic electroluminescence elements have become active, and the required characteristic at that time is further low voltage driving. NPD has not been satisfactory enough. Therefore, development of materials for realizing further low voltage driving and longer life is highly desired.

本発明の目的は、従来材料以上に低電圧駆動と長期耐久性を有する新規材料を提供することにある。更に詳しくは、有機EL素子等の正孔注入材料、正孔輸送材料及び発光材料に適した新規なベンゾフルオレン化合物を提供することにある。   An object of the present invention is to provide a novel material having lower voltage driving and longer-term durability than conventional materials. More specifically, it is to provide a novel benzofluorene compound suitable for a hole injection material such as an organic EL device, a hole transport material and a light emitting material.

本発明者らは鋭意検討した結果、一般式(1)で表されるベンゾフルオレン化合物が、効率及び耐久性の面で非常に優れていることを見出し、本発明を完成するに至った。即ち、本発明は、一般式(1)で表されるベンゾフルオレン化合物及びその用途に関するものである。   As a result of intensive studies, the present inventors have found that the benzofluorene compound represented by the general formula (1) is very excellent in terms of efficiency and durability, and have completed the present invention. That is, this invention relates to the benzofluorene compound represented by General formula (1), and its use.

Figure 2008050337
(式中、Mは炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基であり、Ar〜Arは各々独立して炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基である。但し、Ar〜Arのうち少なくとも一つは、下記一般式(2)又は(3)で表される置換基である。pは0〜2の整数である。)
Figure 2008050337
(In the formula, M is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms, and Ar 1 to Ar 4 are each independently a carbon number. A substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms, provided that at least one of Ar 1 to Ar 4 is represented by the following general formula (2): Or it is a substituent represented by (3) .p is an integer of 0-2.)

Figure 2008050337
(式中、R〜Rは各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基である。なお、RとRは互いに結合して環を形成してもよい。)
以下、本発明に関し詳細に説明する。
Figure 2008050337
(Wherein R 1 to R 4 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, or a carbon number. A substituted or unsubstituted aryl group having 6 to 40 or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, wherein R 1 and R 2 may be bonded to each other to form a ring; )
Hereinafter, the present invention will be described in detail.

一般式(1)で表されるベンゾフルオレン化合物において、Mは炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基である。アリール基の例としては、一置換、二置換若しくは三置換のベンゼン骨格、ビフェニル骨格、ターフェニル骨格、ナフタレン骨格、フルオレン骨格、スピロフルオレン骨格、ピレン骨格等が挙げられる。   In the benzofluorene compound represented by the general formula (1), M is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms. Examples of the aryl group include a mono-substituted, di-substituted, or tri-substituted benzene skeleton, biphenyl skeleton, terphenyl skeleton, naphthalene skeleton, fluorene skeleton, spirofluorene skeleton, pyrene skeleton, and the like.

ヘテロアリール基の例としては一置換、二置換若しくは三置換のカルバゾール骨格、オキサゾール骨格、オキサジアゾール骨格、チアゾール骨格等が挙げられる。また、Mはメチル基、エチル基、プロピル基等のアルキル基、フッ素原子、塩素原子、ヨウ素原子、臭素原子等のハロゲン原子、メトキシ基、エトキシ基等のアルコキシ基、フェニル基、ナフチル基、ビフェニル基等のアリール基、ピリジル基、チエニル基、カルバゾイル基等のヘテロアリール基等の置換基を有していてもよい。   Examples of heteroaryl groups include mono-, di-, or tri-substituted carbazole skeletons, oxazole skeletons, oxadiazole skeletons, thiazole skeletons, and the like. M is an alkyl group such as a methyl group, an ethyl group or a propyl group, a halogen atom such as a fluorine atom, a chlorine atom, an iodine atom or a bromine atom, an alkoxy group such as a methoxy group or an ethoxy group, a phenyl group, a naphthyl group, or biphenyl. It may have a substituent such as an aryl group such as a group, a heteroaryl group such as a pyridyl group, a thienyl group, and a carbazoyl group.

中でも、Mが2置換のベンゼン骨格、ビフェニル骨格、フルオレン骨格、ターフェニル骨格、ナフタレン骨格、又はスピロフルオレン骨格である前記一般式(4)で表されるベンゾフルオレン化合物が、低電圧化を実現するための一つの要因である正孔移動度が高いという点で好ましい。   Among them, the benzofluorene compound represented by the general formula (4), in which M is a disubstituted benzene skeleton, biphenyl skeleton, fluorene skeleton, terphenyl skeleton, naphthalene skeleton, or spirofluorene skeleton, realizes low voltage. This is preferable in that the hole mobility, which is one of the factors, is high.

一般式(1)において、Ar〜Arは各々独立して炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基である。但し、Ar〜Arのうち少なくとも一つは、下記一般式(2)又は(3)で表される置換基である。 In General Formula (1), Ar 1 to Ar 4 are each independently a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms. However, at least one of Ar 1 to Ar 4 is a substituent represented by the following general formula (2) or (3).

Figure 2008050337
(式中、R〜Rは各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基である。なお、RとRは互いに結合して環を形成してもよい。)
Ar〜Arにおける炭素数6〜40の置換若しくは無置換のアリール基としては、具体的に例えば、フェニル基、1−ナフチル基、2−ナフチル基、2−アントリル基、9−アントリル基、2−フルオレニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、4−イソプロピルフェニル基、2−イソプロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−sec−ブチルフェニル基、2−sec−ブチルフェニル基、4−tert−ブチルフェニル基、3−tert−ブチルフェニル基、2−tert−ブチルフェニル基、4−n−ペンチルフェニル基、4−イソペンチルフェニル基、2−ネオペンチルフェニル基、4−tert−ペンチルフェニル基、4−n−ヘキシルフェニル基、4−(2’−エチルブチル)フェニル基、4−n−ヘプチルフェニル基、4−n−オクチルフェニル基、4−(2’−エチルヘキシル)フェニル基、4−tert−オクチルフェニル基、4−n−デシルフェニル基、4−n−ドデシルフェニル基、4−n−テトラデシルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、4−(4’−メチルシクロヘキシル)フェニル基、4−(4’−tert−ブチルシクロヘキシル)フェニル基、3−シクロヘキシルフェニル基、2−シクロヘキシルフェニル基、4−エチル−1−ナフチル基、6−n−ブチル−2−ナフチル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,6−ジメチルフェニル基、2,4−ジエチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、2,6−ジエチルフェニル基、2,5−ジイソプロピルフェニル基、2,6−ジイソブチルフェニル基、2,4−ジ−tert−ブチルフェニル基、2,5−ジ−tert−ブチルフェニル基、4,6−ジ−tert−ブチル−2−メチルフェニル基、5−tert−ブチル−2−メチルフェニル基、4−tert−ブチル−2,6−ジメチルフェニル基、9−メチル−2−フルオレニル基、9−エチル−2−フルオレニル基、9−n−ヘキシル−2−フルオレニル基、9,9−ジメチル−2−フルオレニル基、9,9−ジエチル−2−フルオレニル基、9,9−ジ−n−プロピル−2−フルオレニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−エトキシフェニル基、3−エトキシフェニル基、2−エトキシフェニル基、4−n−プロポキシフェニル基、3−n−プロポキシフェニル基、4−イソプロポキシフェニル基、2−イソプロポキシフェニル基、4−n−ブトキシフェニル基、4−イソブトキシフェニル基、2−sec−ブトキシフェニル基、4−n−ペンチルオキシフェニル基、4−イソペンチルオキシフェニル基、2−イソペンチルオキシフェニル基、4−ネオペンチルオキシフェニル基、2−ネオペンチルオキシフェニル基、4−n−ヘキシルオキシフェニル基、2−(2’−エチルブチル)オキシフェニル基、4−n−オクチルオキシフェニル基、4−n−デシルオキシフェニル基、4−n−ドデシルオキシフェニル基、4−n−テトラデシルオキシフェニル基、4−シクロヘキシルオキシフェニル基、2−シクロヘキシルオキシフェニル基、2−メトキシ−1−ナフチル基、4−メトキシ−1−ナフチル基、4−n−ブトキシ−1−ナフチル基、5−エトキシ−1−ナフチル基、6−メトキシ−2−ナフチル基、6−エトキシ−2−ナフチル基、6−n−ブトキシ−2−ナフチル基、6−n−ヘキシルオキシ−2−ナフチル基、7−メトキシ−2−ナフチル基、7−n−ブトキシ−2−ナフチル基、2−メチル−4−メトキシフェニル基、2−メチル−5−メトキシフェニル基、3−メチル−4−メトキシフェニル基、3−メチル−5−メトキシフェニル基、3−エチル−5−メトキシフェニル基、2−メトキシ−4−メチルフェニル基、3−メトキシ−4−メチルフェニル基、2,4−ジメトキシフェニル基、2,5−ジメトキシフェニル基、2,6−ジメトキシフェニル基、3,4−ジメトキシフェニル基、3,5−ジメトキシフェニル基、3,5−ジエトキシフェニル基、3,5−ジ−n−ブトキシフェニル基、2−メトキシ−4−エトキシフェニル基、2−メトキシ−6−エトキシフェニル基、3,4,5−トリメトキシフェニル基、4−フェニルフェニル基、3−フェニルフェニル基、2−フェニルフェニル基、4−(4’−メチルフェニル)フェニル基、4−(3’−メチルフェニル)フェニル基、4−(4’−メトキシフェニル)フェニル基、4−(4’−n−ブトキシフェニル)フェニル基、2−(2’−メトキシフェニル)フェニル基、4−(4’−クロロフェニル)フェニル基、3−メチル−4−フェニルフェニル基、3−メトキシ−4−フェニルフェニル基、9−フェニル−2−フルオレニル基、4−フルオロフェニル基、3−フルオロフェニル基、2−フルオロフェニル基、4−クロロフェニル基、3−クロロフェニル基、2−クロロフェニル基、4−ブロモフェニル基、2−ブロモフェニル基、4−クロロ−1−ナフチル基、4−クロロ−2−ナフチル基、6−ブロモ−2−ナフチル基、2,3−ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、2,3−ジクロロフェニル基、2,4−ジクロロフェニル基、2,5−ジクロロフェニル基、3,4−ジクロロフェニル基、3,5−ジクロロフェニル基、2,5−ジブロモフェニル基、2,4,6−トリクロロフェニル基、2,4−ジクロロ−1−ナフチル基、1,6−ジクロロ−2−ナフチル基、2−フルオロ−4−メチルフェニル基、2−フルオロ−5−メチルフェニル基、3−フルオロ−2−メチルフェニル基、3−フルオロ−4−メチルフェニル基、2−メチル−4−フルオロフェニル基、2−メチル−5−フルオロフェニル基、3−メチル−4−フルオロフェニル基、2−クロロ−4−メチルフェニル基、2−クロロ−5−メチルフェニル基、2−クロロ−6−メチルフェニル基、2−メチル−3−クロロフェニル基、2−メチル−4−クロロフェニル基、3−クロロ−4−メチルフェニル基、3−メチル−4−クロロフェニル基、2−クロロ−4,6−ジメチルフェニル基、2−メトキシ−4−フルオロフェニル基、2−フルオロ−4−メトキシフェニル基、2−フルオロ−4−エトキシフェニル基、2−フルオロ−6−メトキシフェニル基、3−フルオロ−4−エトキシフェニル基、3−クロロ−4−メトキシフェニル基、2−メトキシ−5−クロロフェニル基、3−メトキシ−6−クロロフェニル基、5−クロロ−2,4−ジメトキシフェニル基などを挙げることができるが、これらに限定されるものではない。
Figure 2008050337
(Wherein R 1 to R 4 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, or a carbon number. A substituted or unsubstituted aryl group having 6 to 40 or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, wherein R 1 and R 2 may be bonded to each other to form a ring; )
Specific examples of the substituted or unsubstituted aryl group having 6 to 40 carbon atoms in Ar 1 to Ar 4 include, for example, a phenyl group, 1-naphthyl group, 2-naphthyl group, 2-anthryl group, 9-anthryl group, 2-fluorenyl group, 4-methylphenyl group, 3-methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group, 2-ethylphenyl group, 4-n-propylphenyl group, 4 -Isopropylphenyl group, 2-isopropylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-sec-butylphenyl group, 2-sec-butylphenyl group, 4-tert-butylphenyl group, 3 -Tert-butylphenyl group, 2-tert-butylphenyl group, 4-n-pentylphenyl group, 4-isopentylph Nyl group, 2-neopentylphenyl group, 4-tert-pentylphenyl group, 4-n-hexylphenyl group, 4- (2′-ethylbutyl) phenyl group, 4-n-heptylphenyl group, 4-n-octyl Phenyl group, 4- (2′-ethylhexyl) phenyl group, 4-tert-octylphenyl group, 4-n-decylphenyl group, 4-n-dodecylphenyl group, 4-n-tetradecylphenyl group, 4-cyclopentyl Phenyl group, 4-cyclohexylphenyl group, 4- (4′-methylcyclohexyl) phenyl group, 4- (4′-tert-butylcyclohexyl) phenyl group, 3-cyclohexylphenyl group, 2-cyclohexylphenyl group, 4-ethyl -1-naphthyl group, 6-n-butyl-2-naphthyl group, 2,4-dimethylphenyl group, 2,5- Methylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,6-dimethylphenyl group, 2,4-diethylphenyl group, 2,3,5-trimethylphenyl group, 2,3, 6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 2,6-diethylphenyl group, 2,5-diisopropylphenyl group, 2,6-diisobutylphenyl group, 2,4-di-tert-butylphenyl Group, 2,5-di-tert-butylphenyl group, 4,6-di-tert-butyl-2-methylphenyl group, 5-tert-butyl-2-methylphenyl group, 4-tert-butyl-2, 6-dimethylphenyl group, 9-methyl-2-fluorenyl group, 9-ethyl-2-fluorenyl group, 9-n-hexyl-2-fluorenyl group, 9,9-di Tyl-2-fluorenyl group, 9,9-diethyl-2-fluorenyl group, 9,9-di-n-propyl-2-fluorenyl group, 4-methoxyphenyl group, 3-methoxyphenyl group, 2-methoxyphenyl group 4-ethoxyphenyl group, 3-ethoxyphenyl group, 2-ethoxyphenyl group, 4-n-propoxyphenyl group, 3-n-propoxyphenyl group, 4-isopropoxyphenyl group, 2-isopropoxyphenyl group, 4 -N-butoxyphenyl group, 4-isobutoxyphenyl group, 2-sec-butoxyphenyl group, 4-n-pentyloxyphenyl group, 4-isopentyloxyphenyl group, 2-isopentyloxyphenyl group, 4-neo Pentyloxyphenyl group, 2-neopentyloxyphenyl group, 4-n-hexyloxyphenyl group, 2- (2′-ethylbutyl) oxyphenyl group, 4-n-octyloxyphenyl group, 4-n-decyloxyphenyl group, 4-n-dodecyloxyphenyl group, 4-n-tetradecyloxyphenyl group, 4 -Cyclohexyloxyphenyl group, 2-cyclohexyloxyphenyl group, 2-methoxy-1-naphthyl group, 4-methoxy-1-naphthyl group, 4-n-butoxy-1-naphthyl group, 5-ethoxy-1-naphthyl group 6-methoxy-2-naphthyl group, 6-ethoxy-2-naphthyl group, 6-n-butoxy-2-naphthyl group, 6-n-hexyloxy-2-naphthyl group, 7-methoxy-2-naphthyl group 7-n-butoxy-2-naphthyl group, 2-methyl-4-methoxyphenyl group, 2-methyl-5-methoxyphenyl group, 3-methyl-4-meth Xiphenyl group, 3-methyl-5-methoxyphenyl group, 3-ethyl-5-methoxyphenyl group, 2-methoxy-4-methylphenyl group, 3-methoxy-4-methylphenyl group, 2,4-dimethoxyphenyl group 2,5-dimethoxyphenyl group, 2,6-dimethoxyphenyl group, 3,4-dimethoxyphenyl group, 3,5-dimethoxyphenyl group, 3,5-diethoxyphenyl group, 3,5-di-n- Butoxyphenyl group, 2-methoxy-4-ethoxyphenyl group, 2-methoxy-6-ethoxyphenyl group, 3,4,5-trimethoxyphenyl group, 4-phenylphenyl group, 3-phenylphenyl group, 2-phenyl Phenyl group, 4- (4′-methylphenyl) phenyl group, 4- (3′-methylphenyl) phenyl group, 4- (4′-methoxyphenyl) An phenyl group, a 4- (4′-n-butoxyphenyl) phenyl group, a 2- (2′-methoxyphenyl) phenyl group, a 4- (4′-chlorophenyl) phenyl group, a 3-methyl-4-phenylphenyl group, 3-methoxy-4-phenylphenyl group, 9-phenyl-2-fluorenyl group, 4-fluorophenyl group, 3-fluorophenyl group, 2-fluorophenyl group, 4-chlorophenyl group, 3-chlorophenyl group, 2-chlorophenyl Group, 4-bromophenyl group, 2-bromophenyl group, 4-chloro-1-naphthyl group, 4-chloro-2-naphthyl group, 6-bromo-2-naphthyl group, 2,3-difluorophenyl group, 2 , 4-difluorophenyl group, 2,5-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl group, 3,5 Difluorophenyl group, 2,3-dichlorophenyl group, 2,4-dichlorophenyl group, 2,5-dichlorophenyl group, 3,4-dichlorophenyl group, 3,5-dichlorophenyl group, 2,5-dibromophenyl group, 2,4 , 6-trichlorophenyl group, 2,4-dichloro-1-naphthyl group, 1,6-dichloro-2-naphthyl group, 2-fluoro-4-methylphenyl group, 2-fluoro-5-methylphenyl group, 3 -Fluoro-2-methylphenyl group, 3-fluoro-4-methylphenyl group, 2-methyl-4-fluorophenyl group, 2-methyl-5-fluorophenyl group, 3-methyl-4-fluorophenyl group, 2 -Chloro-4-methylphenyl group, 2-chloro-5-methylphenyl group, 2-chloro-6-methylphenyl group, 2-methyl-3-chloro Rophenyl group, 2-methyl-4-chlorophenyl group, 3-chloro-4-methylphenyl group, 3-methyl-4-chlorophenyl group, 2-chloro-4,6-dimethylphenyl group, 2-methoxy-4-fluoro Phenyl group, 2-fluoro-4-methoxyphenyl group, 2-fluoro-4-ethoxyphenyl group, 2-fluoro-6-methoxyphenyl group, 3-fluoro-4-ethoxyphenyl group, 3-chloro-4-methoxy A phenyl group, a 2-methoxy-5-chlorophenyl group, a 3-methoxy-6-chlorophenyl group, a 5-chloro-2,4-dimethoxyphenyl group, and the like can be given, but the invention is not limited thereto.

Ar〜Arにおける炭素数5〜40の置換若しくは無置換のヘテロアリール基としては、酸素原子、窒素原子及び硫黄原子から選ばれる少なくとも一つのヘテロ原子を含有する芳香環基であり、例えば、4−キノリル基、4−ピリジル基、3−ピリジル基、2−ピリジル基、3−フリル基、2−フリル基、3−チエニル基、2−チエニル基、2−オキサゾリル基、2−チアゾリル基、2−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、2−ベンゾイミダゾリル基などの複素環基を挙げることができるが、これらに限定されるものではない。 The substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms in Ar 1 to Ar 4 is an aromatic ring group containing at least one hetero atom selected from an oxygen atom, a nitrogen atom and a sulfur atom. 4-quinolyl group, 4-pyridyl group, 3-pyridyl group, 2-pyridyl group, 3-furyl group, 2-furyl group, 3-thienyl group, 2-thienyl group, 2-oxazolyl group, 2-thiazolyl group, Examples of the heterocyclic group include, but are not limited to, a 2-benzoxazolyl group, a 2-benzothiazolyl group, and a 2-benzimidazolyl group.

一般式(2)又は(3)において、R〜Rは各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基である。なお、RとRは互いに結合して環を形成してもよい。 In the general formula (2) or (3), R 1 to R 4 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, a linear, branched or A cyclic alkoxy group, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms. R 1 and R 2 may be bonded to each other to form a ring.

〜Rにおける直鎖,分岐若しくは環状のアルキル基としては、炭素数1〜18の直鎖,分岐若しくは環状のアルキル基が挙げられ、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基、1,3−シクロヘキサジエニル基、2−シクロペンテン−1−イル基等を挙げることができる。 Examples of the linear, branched or cyclic alkyl group in R 1 to R 4 include a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, and specifically include a methyl group, an ethyl group, and a propyl group. , Isopropyl group, butyl group, sec-butyl group, tert-butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, trifluoromethyl group, cyclopropyl group, cyclohexyl group, 1, A 3-cyclohexadienyl group, a 2-cyclopenten-1-yl group, and the like can be given.

〜Rにおける直鎖,分岐若しくは環状のアルコキシ基としては、炭素数1〜18の直鎖,分岐若しくは環状のアルコキシ基が挙げられ、具体的にはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ステアリルオキシ基、トリフルオロメトキシ基等を例示することができる。 Examples of the linear, branched or cyclic alkoxy group in R 1 to R 4 include a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms, specifically, a methoxy group, an ethoxy group, a propoxy group, Illustrative examples include isopropoxy group, n-butoxy group, sec-butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, stearyloxy group, trifluoromethoxy group and the like.

〜Rにおける炭素数6〜40の置換若しくは無置換のアリール基としては、具体的には、フェニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−tert−ブチルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、2,4−ジメチルフェニル基、3,5−ジメチルフェニル基、3,4−ジメチルフェニル基、4−(1−ナフチル)フェニル基、4−(9−アントリル)フェニル基、4−(10−フェニル−9−アントリル)フェニル基、4−ビフェニル基、1−ナフチル基、2−ナフチル基、9−フェナントリル基、9−アントリル基、10−フェニル−9−アントリル基、10−ビフェニル−9−アントリル基、9,9−ジメチル−フルオレン−2−イル基、7−フェニル−9,9−ジメチル−フルオレン−2−イル基等の他、前記Ar〜Arで例示した置換基を挙げることもできる。 Specific examples of the substituted or unsubstituted aryl group having 6 to 40 carbon atoms in R 1 to R 4 include a phenyl group, a 4-methylphenyl group, a 3-methylphenyl group, a 2-methylphenyl group, 4- Ethylphenyl group, 3-ethylphenyl group, 2-ethylphenyl group, 4-n-propylphenyl group, 4-n-butylphenyl group, 4-isobutylphenyl group, 4-tert-butylphenyl group, 4-cyclopentylphenyl Group, 4-cyclohexylphenyl group, 2,4-dimethylphenyl group, 3,5-dimethylphenyl group, 3,4-dimethylphenyl group, 4- (1-naphthyl) phenyl group, 4- (9-anthryl) phenyl Group, 4- (10-phenyl-9-anthryl) phenyl group, 4-biphenyl group, 1-naphthyl group, 2-naphthyl group, 9-phenane Ryl group, 9-anthryl group, 10-phenyl-9-anthryl group, 10-biphenyl-9-anthryl group, 9,9-dimethyl-fluoren-2-yl group, 7-phenyl-9,9-dimethyl-fluorene In addition to the -2-yl group and the like, the substituents exemplified for Ar 1 to Ar 4 can also be exemplified.

また、R〜Rにおける炭素数6〜40の置換若しくは無置換のアリールオキシ基としては、具体的には、フェノキシ基、p−tert−ブチルフェノキシ基、3−フルオロフェノキシ基、4−フルオロフェノキシ基等を挙げることができる。 Specific examples of substituted or unsubstituted aryloxy groups having 6 to 40 carbon atoms in R 1 to R 4 include phenoxy group, p-tert-butylphenoxy group, 3-fluorophenoxy group, 4-fluoro group. Phenoxy group etc. can be mentioned.

〜Rにおけるハロゲン原子としては、フッ素、塩素、臭素又はヨウ素原子が挙げられる。 Examples of the halogen atom for R 1 to R 4 include a fluorine, chlorine, bromine or iodine atom.

〜Rにおける置換若しくは無置換のアミノ基としては、メチルアミノ基、エチルアミノ基、フェニルアミノ基、m−トリルアミノ基、p−トリルアミノ基、1−ナフチルアミノ基、2−ナフチルアミノ基、4−ビフェニルアミノ基等のモノ置換アミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジフェニルアミノ基、ジ(m−トリル)アミノ基、ジ(p−トリル)アミノ基、N−(m−トリル)フェニルアミノ基、N−(p−トリル)フェニルアミノ基、N−(1−ナフチル)フェニルアミノ基、N−(2−ナフチル)フェニルアミノ基、N−(4−ビフェニル)フェニルアミノ基、ジ(4−ビフェニル)アミノ基、ジ(2−ナフチル)アミノ基、ビス(アセトキシメチル)アミノ基、ビス(アセトキシエチル)アミノ基、ビス(アセトキシプロピル)アミノ基、ビス(アセトキシブチル)アミノ基、ジベンジルアミノ基等を例示することができるが、上記置換基に限定されるものではない。 Examples of the substituted or unsubstituted amino group in R 1 to R 4 include a methylamino group, an ethylamino group, a phenylamino group, an m-tolylamino group, a p-tolylamino group, a 1-naphthylamino group, a 2-naphthylamino group, Mono-substituted amino group such as 4-biphenylamino group, dimethylamino group, diethylamino group, dipropylamino group, dibutylamino group, diphenylamino group, di (m-tolyl) amino group, di (p-tolyl) amino group, N- (m-tolyl) phenylamino group, N- (p-tolyl) phenylamino group, N- (1-naphthyl) phenylamino group, N- (2-naphthyl) phenylamino group, N- (4-biphenyl) ) Phenylamino group, di (4-biphenyl) amino group, di (2-naphthyl) amino group, bis (acetoxymethyl) amino group, bis Acetoxyethyl) amino group, bis (acetoxypropyl) amino group, bis (acetoxybutyl) amino group, can be exemplified dibenzylamino group and the like, but is not limited to the above substituents.

本発明の好ましい具体例としては、上記一般式(1)において、pが1であり、Mが2置換のビフェニル骨格又はターフェニル骨格であるベンゾフルオレン化合物である。より好ましくは、Mが2置換のビフェニル骨格である上記一般式(4)で表されるベンゾフルオレン化合物である。   A preferred specific example of the present invention is a benzofluorene compound in which p is 1 and M is a disubstituted biphenyl skeleton or terphenyl skeleton in the general formula (1). More preferably, it is a benzofluorene compound represented by the above general formula (4), wherein M is a disubstituted biphenyl skeleton.

更に好ましい具体例としては、上記一般式(4)において、Ar又はArのいずれかとAr又はArのいずれかが上記一般式(2)又は(3)で表される基であるベンゾフルオレン化合物である。より好ましくは、上記一般式(4)において、Ar=Ar、Ar=Arを満たし、Ar又はArのいずれかが上記一般式(2)又は(3)であるベンゾフルオレン化合物である。 As a more preferable specific example, in the above general formula (4), either Ar 1 or Ar 2 and Ar 3 or Ar 4 are groups represented by the above general formula (2) or (3). It is a fluorene compound. More preferably, in the above general formula (4), Ar 1 = Ar 3 , Ar 2 = Ar 4 is satisfied, and either Ar 1 or Ar 2 is the above general formula (2) or (3) It is.

また、上記一般式(2)又は(3)において、RとRは互いに結合して環を形成してもよい。具体的には、下記一般式(5)又は(6)で表されるベンゾフルオレン化合物が挙げられ、特に、この化合物は素子の効率及び耐久性の面で好ましい。 In the general formula (2) or (3), R 1 and R 2 may be bonded to each other to form a ring. Specific examples include benzofluorene compounds represented by the following general formula (5) or (6). Particularly, this compound is preferable in terms of efficiency and durability of the device.

Figure 2008050337
(式中、R,R,R11,R12は各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基であり、R,R10は炭素数1〜6のアルキレン基、又は炭素数6〜12のアリーレン基を表す。Arは炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基を表す。)
上記一般式(5)又は(6)で表されるベンゾフルオレン化合物において、R,R,R11,R12は、上記一般式(2)又は(3)で表されるR〜Rと同一の置換基が挙げられる。R,R10としては、メチレン基、エチレン基、トリメチレン基、テトラエチレン基等のアルキレン基、フェニレン基、ナフチレン基等のアリーレン基が挙げられる。Arにおける炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基としては、上記一般式(1)で表されるMと同一の置換基が挙げられる。
Figure 2008050337
(In the formula, R 7 , R 8 , R 11 and R 12 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, a linear, branched or cyclic group. An alkoxy group, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, wherein R 9 and R 10 are alkylene groups having 1 to 6 carbon atoms. Or an arylene group having 6 to 12 carbon atoms, Ar 5 represents a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms.
In the benzofluorene compound represented by the general formula (5) or (6), R 7 , R 8 , R 11 and R 12 are R 1 to R represented by the general formula (2) or (3). 4 and the same substituents. Examples of R 9 and R 10 include alkylene groups such as methylene group, ethylene group, trimethylene group and tetraethylene group, and arylene groups such as phenylene group and naphthylene group. The substituted or unsubstituted aryl group having 6 to 40 carbon atoms or the substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms in Ar 5 is the same substitution as M represented by the general formula (1). Groups.

以下に好ましい化合物を例示するが、これらの化合物に限定されるものではない。   Preferred compounds are illustrated below, but are not limited to these compounds.

Figure 2008050337
Figure 2008050337

Figure 2008050337
Figure 2008050337

Figure 2008050337
Figure 2008050337

Figure 2008050337
Figure 2008050337

Figure 2008050337
Figure 2008050337

Figure 2008050337
Figure 2008050337

Figure 2008050337
前記一般式(1)で表されるベンゾフルオレン化合物は、公知の方法(Tetrahedron Letters,39,2367(1998))により合成することができる。例えば、Mがビフェニルである下記一般式(9)で表されるジハロビフェニル化合物と下記一般式(10)又は(11)で表されるアミン化合物を塩基の存在下、銅触媒又はパラジウム触媒を用いて反応させ、合成することができる。
Figure 2008050337
The benzofluorene compound represented by the general formula (1) can be synthesized by a known method (Tetrahedron Letters, 39, 2367 (1998)). For example, a dihalobiphenyl compound represented by the following general formula (9) in which M is biphenyl and an amine compound represented by the following general formula (10) or (11) are treated with a copper catalyst or a palladium catalyst in the presence of a base. Can be used and reacted to synthesize.

Figure 2008050337
(式中、Xはハロゲン原子を表し、R13,R14は上記一般式(5)で表されるR11,R12と同一の置換基を表す。)
Figure 2008050337
(In the formula, X represents a halogen atom, and R 13 and R 14 represent the same substituents as R 11 and R 12 represented by the general formula (5).)

Figure 2008050337
(式中、R15〜R18は、上記一般式(2)で表されるR〜Rと同一の置換基を表す。)
本発明のベンゾフルオレン化合物は、従来の材料以上に駆動電圧の改善と高い電力効率が期待される。更に高いガラス転移温度を有するため素子寿命の改善も期待できる。従って、有機EL素子若しくは電子写真感光体等の正孔注入材料、正孔輸送材料又は発光材料としてのみでなく、光電変換素子、太陽電池、イメージセンサー等の有機光導電材料の分野にも応用できる。
Figure 2008050337
(Wherein, R 15 to R 18 represent the same substituents as R 1 to R 4 represented by the above general formula (2).)
The benzofluorene compound of the present invention is expected to have improved driving voltage and higher power efficiency than conventional materials. Furthermore, since it has a high glass transition temperature, an improvement in device life can be expected. Therefore, it can be applied not only as a hole injection material, a hole transport material or a light emitting material such as an organic EL element or an electrophotographic photosensitive member, but also in a field of an organic photoconductive material such as a photoelectric conversion element, a solar cell or an image sensor. .

本発明による上記一般式(1)で表されるベンゾフルオレン化合物は、従来の材料以上に低電圧駆動と高い電力効率、更に高いガラス転移温度を有するため素子寿命の改善が期待できる。そのため、有機EL素子若しくは電子写真感光体等の正孔輸送材料又は発光材料等として利用できる。   Since the benzofluorene compound represented by the above general formula (1) according to the present invention has lower voltage driving, higher power efficiency and higher glass transition temperature than conventional materials, it can be expected to improve the device life. Therefore, it can be used as a hole transport material such as an organic EL element or an electrophotographic photoreceptor, or a light emitting material.

以下、本発明を実施例に基づき、更に詳細に説明する。   Hereinafter, the present invention will be described in more detail based on examples.

なお、実施例で得られた化合物の同定は、H−NMR測定、13C−NMR測定及びFDMS測定により行った。 In addition, the identification of the compound obtained in the Example was performed by 1 H-NMR measurement, 13 C-NMR measurement, and FDMS measurement.

H−NMR測定、13C−NMR測定及びFDMS測定は、各々バリアン社製 Gemini200、日立製作所製 M−80Bを使用して実施した。 1 H-NMR measurement, 13 C-NMR measurement, and FDMS measurement were performed using Gemini 200 manufactured by Varian and M-80B manufactured by Hitachi, Ltd., respectively.

合成例1 (化合物1aの合成[下記(12)式参照])
300mlナス型フラスコに、ジイソプロピルアミン46.0g(455mmol)、ジクロロメタン150mlを加え、反応液を5℃以下に冷却した。2−ブロモベンゾイルクロリド 25g(114mmol)を反応温度が5℃を超えないように滴下した後、室温下一晩攪拌した。反応液を常圧濃縮し、ジクロロメタン又は過剰のジイソプロピルアミンを留去した後、トルエン及び水を加えて抽出した。有機層は、飽和食塩水で洗浄後、無水硫酸マグネシウムにて乾燥し、濃縮して2−ブロモ−N,N’−ジイソプロピルベンズアミドを無色結晶として単離した。なお、生成物は精製せずに、そのまま次の反応に用いた。
Synthesis Example 1 (Synthesis of Compound 1a [Refer to Formula (12) below))
To a 300 ml eggplant type flask, 46.0 g (455 mmol) of diisopropylamine and 150 ml of dichloromethane were added, and the reaction solution was cooled to 5 ° C. or lower. 25 g (114 mmol) of 2-bromobenzoyl chloride was added dropwise so that the reaction temperature did not exceed 5 ° C., and the mixture was stirred overnight at room temperature. The reaction solution was concentrated at normal pressure, and dichloromethane or excess diisopropylamine was distilled off, followed by extraction with toluene and water. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated to isolate 2-bromo-N, N′-diisopropylbenzamide as colorless crystals. The product was directly used in the next reaction without purification.

次に、200mlナス型フラスコに、得られた2−ブロモ−N,N’−ジイソプロピルベンズアミド 7.5g(26.3mmol)、1−ナフチルボロン酸 5.1g(29.1mmol)、テトラキス(トリフェニルホスフィン)パラジウム150mg(0.13mmol)、20重量%の炭酸ナトリウム水溶液38.5g及びテトラヒドロフラン60mlを加え、還流下一晩過熱攪拌した。室温まで冷却後、水を加え抽出した。得られた有機層は、飽和食塩水による洗浄、無水硫酸マグネシウムによる乾燥処理の後、濃縮し淡褐色の結晶が得られた。更に、シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)を用いて精製し、無色の結晶7.1g(収率82%)を単離した。H−NMR測定により目的物であることを確認した。 Next, in a 200 ml eggplant type flask, 7.5 g (26.3 mmol) of 2-bromo-N, N′-diisopropylbenzamide obtained, 5.1 g (29.1 mmol) of 1-naphthylboronic acid, tetrakis (triphenyl) Phosphine) palladium (150 mg, 0.13 mmol), 20 wt% aqueous sodium carbonate solution (38.5 g) and tetrahydrofuran (60 ml) were added, and the mixture was stirred overnight under reflux. After cooling to room temperature, water was added for extraction. The obtained organic layer was washed with saturated brine, dried with anhydrous magnesium sulfate, and then concentrated to obtain pale brown crystals. Further, purification was performed using silica gel chromatography (solvent: hexane / toluene) to isolate 7.1 g of colorless crystals (yield 82%). It was confirmed to be the target product by 1 H-NMR measurement.

次に、200mlナス型フラスコに、先に得られた2−(1−ナフチル)−N,N’−ジイソプロピルベンズアミド 4.0g(12mmol)、テトラヒドロフラン30mlを加えた。溶解した後、反応液を−78℃まで冷却し、リチウムジイソプロピルアミド(1.5M シクロヘキサン溶液)16mlを滴下した。   Next, 4.0 g (12 mmol) of 2- (1-naphthyl) -N, N′-diisopropylbenzamide obtained earlier and 30 ml of tetrahydrofuran were added to a 200 ml eggplant-shaped flask. After dissolution, the reaction solution was cooled to −78 ° C., and 16 ml of lithium diisopropylamide (1.5 M cyclohexane solution) was added dropwise.

滴下終了後、温度を保持しながら3時間攪拌し、更に室温下で一晩攪拌した。   After completion of dropping, the mixture was stirred for 3 hours while maintaining the temperature, and further stirred overnight at room temperature.

常法処理の後、シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により無色の結晶1.5g(収率54%)を化合物1aとして単離した。融点は158−160℃であり、文献値(J.Org.Chem.,56,5,1683(1991))と一致したことから、ベンゾ[c]フルオレノンと同定した。   After ordinary treatment, 1.5 g (yield 54%) of colorless crystals was isolated as compound 1a by silica gel chromatography (solvent: hexane / toluene). The melting point was 158-160 ° C., which was consistent with literature values (J. Org. Chem., 56, 5, 1683 (1991)), and thus identified as benzo [c] fluorenone.

次に、ベンゾ[c]フルオレノン3.0g(13mmol)、98%ヒドラジン1.6g、水酸化ナトリウム2.35g、ジエチレングリコール40mlを200mlナス型フラスコに加え、160℃で18時間加熱攪拌した。反応液を室温まで冷却後、クロロホルムにて抽出した。硫酸マグネシウムにて乾燥後、濃縮し濃褐色の結晶を得た。更に、シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により精製し、無色の結晶を2.4g単離した(収率85%)。   Next, 3.0 g (13 mmol) of benzo [c] fluorenone, 1.6 g of 98% hydrazine, 2.35 g of sodium hydroxide, and 40 ml of diethylene glycol were added to a 200 ml eggplant type flask, and the mixture was heated and stirred at 160 ° C. for 18 hours. The reaction solution was cooled to room temperature and extracted with chloroform. The extract was dried over magnesium sulfate and concentrated to give dark brown crystals. Further, the product was purified by silica gel chromatography (solvent: hexane / toluene) to isolate 2.4 g of colorless crystals (yield 85%).

H−NMR測定及びFDMS測定によりベンゾ[c]フルオレンであることを確認した。 1 H-NMR measurement and FDMS measurement confirmed that it was benzo [c] fluorene.

得られたベンゾ[c]フルオレン5g(23.1mmol)をクロロホルム30mlに溶解し、少量のヨウ素を加えてから、臭素3.7g(23.1mmol)を攪拌しながら室温下で滴下した。反応終了後、チオ硫酸ナトリウムにて過剰の臭素を中和してから、クロロホルムにて抽出した。飽和食塩水にて洗浄、硫酸マグネシウムによる乾燥の後、抽出液を濃縮し淡黄色の結晶を得た。トルエンにて再結晶し、化合物2aを無色結晶として5.4g単離した(収率79%)。   5 g (23.1 mmol) of the obtained benzo [c] fluorene was dissolved in 30 ml of chloroform, a small amount of iodine was added, and 3.7 g (23.1 mmol) of bromine was added dropwise at room temperature with stirring. After completion of the reaction, excess bromine was neutralized with sodium thiosulfate and extracted with chloroform. After washing with saturated brine and drying over magnesium sulfate, the extract was concentrated to give pale yellow crystals. Recrystallization from toluene isolated 5.4 g of Compound 2a as colorless crystals (yield 79%).

Figure 2008050337
合成例2 (化合物4aの合成[下式(13)参照])
200mlナス型フラスコに、2−ブロモベンズアルデヒド 6.45g(34.9mmol)、1−ナフチルボロン酸 5.0g(29.1mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.15g、テトラヒドロフラン60ml、炭酸カリウム10g(73mmol)、水20mlを加え、一晩加熱還流した。飽和塩化アンモニウム水溶液及び飽和食塩水による洗浄、無水硫酸マグネシウムによる乾燥の後、抽出液を濃縮し黄色の結晶を得た。シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により精製し、2−(1−ナフチル)ベンズアルデヒドを5.4g得た(収率81%)。
Figure 2008050337
Synthesis Example 2 (Synthesis of Compound 4a [Refer to Formula (13) below)]
In a 200 ml eggplant-shaped flask, 6.45 g (34.9 mmol) of 2-bromobenzaldehyde, 5.0 g (29.1 mmol) of 1-naphthylboronic acid, 0.15 g of tetrakis (triphenylphosphine) palladium, 60 ml of tetrahydrofuran, 10 g of potassium carbonate (73 mmol) and 20 ml of water were added and heated to reflux overnight. After washing with a saturated aqueous ammonium chloride solution and saturated brine, and drying with anhydrous magnesium sulfate, the extract was concentrated to obtain yellow crystals. Purification by silica gel chromatography (solvent: hexane / toluene) gave 5.4 g of 2- (1-naphthyl) benzaldehyde (yield 81%).

同定は、H−NMR測定により行った。 Identification was performed by 1 H-NMR measurement.

H−NMR(CDCl);9.63(s,1H)、8.12(d,1H)、7.94(d,2H)、7.40−7.71(m,8H)
次に、200mlナス型フラスコに、2−(1−ナフチル)ベンズアルデヒド 8.0g(34.4mmol)とテトラヒドロフラン50mlを加えた後、反応液の温度を−30℃以下に冷却した、その後、メチルマグネシウムクロリド(1.4mol/lのトルエン/テトラヒドロフラン溶液)38mlを滴下した。更に、−5〜0℃で1時間、室温で一晩攪拌し、1N塩酸水溶液60mlを滴下して反応を終了させた。テトラヒドロフランを加え、抽出して得られた有機層は、水、飽和食塩水により洗浄し、硫酸マグネシウムで乾燥した。溶媒を留去した後、ヘキサンで再結晶し、化合物3aを7.68g(100%純度として収率90%、無色結晶、融点116〜118℃)得た。
1 H-NMR (CDCl 3 ); 9.63 (s, 1H), 8.12 (d, 1H), 7.94 (d, 2H), 7.40-7.71 (m, 8H)
Next, after adding 8.0 g (34.4 mmol) of 2- (1-naphthyl) benzaldehyde and 50 ml of tetrahydrofuran to a 200 ml eggplant type flask, the temperature of the reaction solution was cooled to −30 ° C. or less, and then methyl magnesium 38 ml of chloride (1.4 mol / l toluene / tetrahydrofuran solution) was added dropwise. Further, the mixture was stirred at −5 to 0 ° C. for 1 hour and at room temperature overnight, and 60 ml of 1N hydrochloric acid aqueous solution was added dropwise to complete the reaction. The organic layer obtained by adding tetrahydrofuran and extracting was washed with water and saturated brine, and dried over magnesium sulfate. After the solvent was distilled off, the residue was recrystallized with hexane to obtain 7.68 g of Compound 3a (100% purity, yield 90%, colorless crystals, melting point 116 to 118 ° C.).

なお、H−NMR測定により、化合物3aは異性体の混合物であることが分かった。 In addition, < 1 > H-NMR measurement showed that Compound 3a was a mixture of isomers.

次に、200mlナス型フラスコに、上記で得られた化合物3a 6.0g(24.2mmol)、クロロホルム60mlを加えた後、三フッ化ホウ素エーテル錯体7.4g(52.3mmol)を50℃で滴下した。更に同温度で5時間反応させた。水80mlを加え、有機層を抽出した。有機層は水100mlで3回洗浄し、更に飽和食塩水で洗浄した。硫酸マグネシウムで乾燥後、溶媒を留去し、クルードの7−メチル−ベンゾ[c]フルオレンを得た。更に、シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)で精製し、7−メチル−ベンゾ[c]フルオレンを無色結晶として3.34g得た(収率60%、融点81〜83℃)。   Next, after adding 6.0 g (24.2 mmol) of the compound 3a obtained above and 60 ml of chloroform to a 200 ml eggplant type flask, 7.4 g (52.3 mmol) of boron trifluoride ether complex was added at 50 ° C. It was dripped. Furthermore, it was made to react at the same temperature for 5 hours. 80 ml of water was added and the organic layer was extracted. The organic layer was washed 3 times with 100 ml of water and further washed with saturated brine. After drying with magnesium sulfate, the solvent was distilled off to obtain crude 7-methyl-benzo [c] fluorene. Further, the residue was purified by silica gel chromatography (solvent: hexane / toluene) to obtain 3.34 g of 7-methyl-benzo [c] fluorene as colorless crystals (yield 60%, melting point 81-83 ° C.).

同定は、H−NMR測定により行った。 Identification was performed by 1 H-NMR measurement.

H−NMR(CDCl);8.77(d,1H)、8.37(d,1H)、7.97(d,1H)、7.85(d,1H)、7.26−7.70(m,6H)、4.02(1H,q)、1.59(d,3H)
200mlナス型フラスコに、7−メチル−ベンゾ[c]フルオレン 3.3g(14.5mmol)、ジメチルスルホキシド70ml、45%水酸化ナトリウム水溶液5.5g、ベンジルトリエチルアンモニウムクロリド3.29g(14.4mmol)を加えた。50℃でヨウ化メチル4.20g(29.6mmol)を滴下し、その後、同温度で一晩加熱攪拌した。室温まで冷却後、トルエン100ml、水50mlを加えて抽出した。水、飽和食塩水により洗浄後、硫酸マグネシウムにより乾燥した。得られた有機層を濃縮することで、淡褐色の結晶を得た。更に、シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により精製することで、目的とする化合物4aを収率77%で得た。
1 H-NMR (CDCl 3 ); 8.77 (d, 1H), 8.37 (d, 1H), 7.97 (d, 1H), 7.85 (d, 1H), 7.26-7 .70 (m, 6H), 4.02 (1H, q), 1.59 (d, 3H)
In a 200 ml eggplant-shaped flask, 3.3 g (14.5 mmol) of 7-methyl-benzo [c] fluorene, 70 ml of dimethyl sulfoxide, 5.5 g of 45% aqueous sodium hydroxide, 3.29 g (14.4 mmol) of benzyltriethylammonium chloride Was added. Methyl iodide (4.20 g, 29.6 mmol) was added dropwise at 50 ° C., and then the mixture was heated and stirred overnight at the same temperature. After cooling to room temperature, 100 ml of toluene and 50 ml of water were added for extraction. The extract was washed with water and saturated brine, and dried over magnesium sulfate. By concentrating the obtained organic layer, pale brown crystals were obtained. Further, purification by silica gel chromatography (solvent: hexane / toluene) gave the target compound 4a in a yield of 77%.

同定は、H−NMR測定、FDMS測定により行った。 Identification was performed by 1 H-NMR measurement and FDMS measurement.

H−NMR(CDCl);8.76(d,1H)、8.34(d,1H)、7.95(d,1H)、7.86(d,1H)、7.36−7.67(m,6H)、1.55(s,6H)
FDMS;244
1 H-NMR (CDCl 3 ); 8.76 (d, 1H), 8.34 (d, 1H), 7.95 (d, 1H), 7.86 (d, 1H), 7.36-7 .67 (m, 6H), 1.55 (s, 6H)
FDMS; 244

Figure 2008050337
合成例3 (化合物5aの合成)
100mlナス型フラスコに、合成例2で得られた化合物4a 2.20g(9.02mmol)とジメチルホルムアミド15mlを加え、室温下、N−ブロモスクシンイミド(NBS)1.65g(9.28mmol)のジメチルホルムアミド溶液を滴下し、一晩攪拌した。次に、反応液にトルエン50ml及び水30mlを加え、有機層を抽出した。常法処理の後、反応液を濃縮し、淡褐色の結晶を得た。メタノールで再結晶し、2.55gの無色の結晶を得た(収率88%、融点105〜107℃)。
Figure 2008050337
Synthesis Example 3 (Synthesis of Compound 5a)
To a 100 ml eggplant-shaped flask were added 2.20 g (9.02 mmol) of compound 4a obtained in Synthesis Example 2 and 15 ml of dimethylformamide, and 1.65 g (9.28 mmol) of dimethyl dimethyl succinimide (NBS) at room temperature. Formamide solution was added dropwise and stirred overnight. Next, 50 ml of toluene and 30 ml of water were added to the reaction solution, and the organic layer was extracted. After the usual treatment, the reaction solution was concentrated to obtain light brown crystals. Recrystallization from methanol gave 2.55 g of colorless crystals (yield 88%, melting point 105-107 ° C.).

同定は、H−NMR測定により行った。 Identification was performed by 1 H-NMR measurement.

H−NMR(CDCl);8.76(d,1H)、8.34−8.41(dd,2H)、7.93(s,1H)、7.38−7.70(m,5H)、1.54(s,6H) 1 H-NMR (CDCl 3 ); 8.76 (d, 1H), 8.34-8.41 (dd, 2H), 7.93 (s, 1H), 7.38-7.70 (m, 5H), 1.54 (s, 6H)

Figure 2008050337
合成例4 (化合物6aの合成)
300mlナス型フラスコに、合成例1で得られた化合物2a (5−ブロモ−7H−ベンゾ[c]フルオレン) 10g(33.9mmol)、ジメチルスルホキシド80ml、ベンジルトリエチルアンモニウムクロリド1.15g(6.2mmol)、50%水酸化ナトリウム15g(187mmol)を加えた。室温下で、1,4−ジブロモブタン 7.39g(34.2mmol)とジメチルスルホキシド20mlの混合液を滴下し、同温度で2時間、更に80℃で5時間攪拌した。
Figure 2008050337
Synthesis Example 4 (Synthesis of Compound 6a)
In a 300 ml eggplant type flask, 10 g (33.9 mmol) of compound 2a (5-bromo-7H-benzo [c] fluorene) obtained in Synthesis Example 1, 80 ml of dimethyl sulfoxide, 1.15 g (6.2 mmol) of benzyltriethylammonium chloride. ), 15 g (187 mmol) of 50% sodium hydroxide was added. A mixed solution of 7.39 g (34.2 mmol) of 1,4-dibromobutane and 20 ml of dimethyl sulfoxide was added dropwise at room temperature, followed by stirring at the same temperature for 2 hours and further at 80 ° C. for 5 hours.

水70mlを加えた後、トルエン100mlを加え抽出した。水、飽和食塩水による洗浄の後、有機層は無水硫酸マグネシウムにより乾燥した。トルエンを留去させた後、淡黄色の粘調油状物を10.1g得た(収率85%)。   After adding 70 ml of water, 100 ml of toluene was added for extraction. After washing with water and saturated brine, the organic layer was dried over anhydrous magnesium sulfate. After distilling off the toluene, 10.1 g of a pale yellow viscous oil was obtained (yield 85%).

同定は、H−NMR測定、13C−NMR測定により行った。 Identification was performed by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(CDCl);2.17(br−s,8H)、7.32−7.67(m,5H)、7.91(s,1H)、8.29(d,1H)、8.37(d,1H)、8.74(d,1H)
13C−NMR(CDCl);27.6, 39.2, 57.5, 122.7, 122.8, 124.1, 125.7, 126.2, 126.9, 127.0, 127.3, 130.3, 131.2, 133.5, 139.6, 153.2, 155.6
1 H-NMR (CDCl 3 ); 2.17 (br-s, 8H), 7.32-7.67 (m, 5H), 7.91 (s, 1H), 8.29 (d, 1H) 8.37 (d, 1H), 8.74 (d, 1H)
13 C-NMR (CDCl 3 ); 27.6, 39.2, 57.5, 122.7, 122.8, 124.1, 125.7, 126.2, 126.9, 127.0, 127 .3, 130.3, 131.2, 133.5, 139.6, 153.2, 155.6

Figure 2008050337
合成例5
500mlナス型フラスコに、2−ブロモ安息香酸エチル 9.16g(40.0mmol)、6−メトキシナフタレンボロン酸 8.89g(44.0mmol)、テトラヒドロフラン300ml及び20%炭酸ナトリウム水溶液94gを加えた。窒素気流下、テトラキス(トリフェニルホスフィン)パラジウム0.46gを添加して一晩加熱還流した。飽和塩化アンモニウム水溶液及び飽和食塩水による洗浄、無水硫酸マグネシウムによる乾燥の後、抽出液を濃縮し薄褐色の油状物を得た。シリカゲルクロマトグラフィー(溶媒:ヘキサン/酢酸エチル)により精製し、化合物1b(無色油状物)を10.52g得た(収率86%)。
Figure 2008050337
Synthesis example 5
To a 500 ml eggplant-shaped flask, 9.16 g (40.0 mmol) of ethyl 2-bromobenzoate, 8.89 g (44.0 mmol) of 6-methoxynaphthaleneboronic acid, 300 ml of tetrahydrofuran and 94 g of 20% aqueous sodium carbonate solution were added. Under a nitrogen stream, 0.46 g of tetrakis (triphenylphosphine) palladium was added and heated to reflux overnight. After washing with saturated aqueous ammonium chloride and saturated brine, and drying over anhydrous magnesium sulfate, the extract was concentrated to give a light brown oil. Purification by silica gel chromatography (solvent: hexane / ethyl acetate) gave 10.52 g of Compound 1b (colorless oil) (yield 86%).

同定は、H−NMR測定、13C−NMR測定により行った。 Identification was performed by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(CDCl);0.89(t,3H,J=7.2Hz)、3.93(s,3H)、4.06(q,2H,J=7.2Hz)、7.11−7.20(m,2H)、7.36−7.59(m,4H)、7.69−7.78(m,3H)、7.85(d,1H,J=7.4Hz)
13C−NMR(CDCl);13.8, 55.4, 61.0, 105.6, 119.0, 126.2, 126.7, 127.0, 127.5, 128.7, 129.5, 129.7, 130.9, 131.1, 131.4, 133.6, 136.7, 142.3, 157.7, 168.9
1 H-NMR (CDCl 3 ); 0.89 (t, 3H, J = 7.2 Hz), 3.93 (s, 3H), 4.06 (q, 2H, J = 7.2 Hz), 7. 11-7.20 (m, 2H), 7.36-7.59 (m, 4H), 7.69-7.78 (m, 3H), 7.85 (d, 1H, J = 7.4 Hz) )
13 C-NMR (CDCl 3 ); 13.8, 55.4, 61.0, 105.6, 119.0, 126.2, 126.7, 127.0, 127.5, 128.7, 129 .5, 129.7, 130.9, 131.1, 131.4, 133.6, 136.7, 142.3, 157.7, 168.9

Figure 2008050337
次に、200mlナス型フラスコに、化合物1b 9.19g(30mmol)とシクロペンチルメチルエーテル60mlを加えた後、反応液の温度を50℃に加熱した、その後、メチルマグネシウムクロリド(1.4mol/lのトルエン/テトラヒドロフラン溶液)56mlを滴下し、更に同温で一晩攪拌した。室温に冷却後、水30mlを滴下して反応を終了させた。分層後の有機層は、更に水150mlで洗浄し、溶媒を留去した。シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により精製し、化合物2b(無色固体)を6.3g得た(収率72%)。
Figure 2008050337
Next, 9.19 g (30 mmol) of compound 1b and 60 ml of cyclopentyl methyl ether were added to a 200 ml eggplant-shaped flask, and then the temperature of the reaction solution was heated to 50 ° C., and then methylmagnesium chloride (1.4 mol / l) was added. Toluene / tetrahydrofuran solution) was added dropwise and stirred at the same temperature overnight. After cooling to room temperature, 30 ml of water was added dropwise to terminate the reaction. The separated organic layer was further washed with 150 ml of water, and the solvent was distilled off. Purification by silica gel chromatography (solvent: hexane / toluene) gave 6.3 g of compound 2b (colorless solid) (yield 72%).

次に、100mlナス型フラスコに、上記で得られた化合物2b 3.36g(11.5mmol)、クロロホルム60mlを加えた後、三フッ化ホウ素エーテル錯体2.12g(15.0mmol)を50℃で滴下した。更に同温度で2時間反応させた。室温に冷却後水30mlを加えた。分層後、有機層は水150mlで洗浄し、溶媒を留去した。残渣はシリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)で精製し、化合物3bを無色固体として2.17g(収率68.8%)得た。   Next, after adding 3.36 g (11.5 mmol) of the compound 2b obtained above and 60 ml of chloroform to a 100 ml eggplant-shaped flask, 2.12 g (15.0 mmol) of boron trifluoride ether complex was added at 50 ° C. It was dripped. The reaction was further continued at the same temperature for 2 hours. After cooling to room temperature, 30 ml of water was added. After separation, the organic layer was washed with 150 ml of water and the solvent was distilled off. The residue was purified by silica gel chromatography (solvent: hexane / toluene) to obtain 2.17 g (yield 68.8%) of compound 3b as a colorless solid.

なお、化合物2b、3bの同定は、H−NMR測定、13C−NMR測定により行った。 The compounds 2b and 3b were identified by 1 H-NMR measurement and 13 C-NMR measurement.

<化合物2b>
H−NMR(CDCl);1.47(s,6H)、1.90(br−s,1H)、3.92(s,3H)、7.02−7.48(m,6H)、7.60−7.79(m,4H)
13C−NMR(CDCl);32.7, 55.4, 74.1, 105.7, 119.3, 125.8, 126.0, 126.1, 127.4, 127.7, 128.2, 128.7, 129.4, 132.5, 133.4, 139.0, 139.9, 146.4, 157.8
<化合物3b>
H−NMR(CDCl);1.70(s,6H)、3.89(s,3H)、7.19−7.28(m,2H)、7.28−7.38(m,2H)、7.42−7.51(m,1H)、7.68−7.78(d,2H)、7.84(d,1H,J=8.6Hz)、8.12(d,1H,J=9.8Hz)
13C−NMR(CDCl);26.6, 48.6, 55.4, 107.9, 118.7, 119.4, 122.1, 125.3, 125.6, 126.6, 126.9, 127.3, 134.8, 135.3, 139.5, 147.6, 155.0, 156.7
<Compound 2b>
1 H-NMR (CDCl 3 ); 1.47 (s, 6H), 1.90 (br-s, 1H), 3.92 (s, 3H), 7.02-7.48 (m, 6H) 7.60-7.79 (m, 4H)
13 C-NMR (CDCl 3 ); 32.7, 55.4, 74.1, 105.7, 119.3, 125.8, 126.0, 126.1, 127.4, 127.7, 128 .2, 128.7, 129.4, 132.5, 133.4, 139.0, 139.9, 146.4, 157.8
<Compound 3b>
1 H-NMR (CDCl 3 ); 1.70 (s, 6H), 3.89 (s, 3H), 7.19-7.28 (m, 2H), 7.28-7.38 (m, 2H), 7.42-7.51 (m, 1H), 7.68-7.78 (d, 2H), 7.84 (d, 1H, J = 8.6 Hz), 8.12 (d, 1H, J = 9.8Hz)
13 C-NMR (CDCl 3 ); 26.6, 48.6, 55.4, 107.9, 118.7, 119.4, 122.1, 125.3, 125.6, 126.6, 126 .9, 127.3, 134.8, 135.3, 139.5, 147.6, 155.0, 156.7

Figure 2008050337
次に、100mlナス型フラスコに、化合物3b 2.0g(7.3mmol)、ジクロロメタン20mlを加え、0℃に反応液を冷却した。同温度を保持しながら、三臭化ホウ素を滴下した。滴下終了後、室温で一晩攪拌した。水10mlを冷却しながら滴下し反応を終了させた。ジクロロメタン20mlを加えて分層後、有機層を水100mlで洗浄した。無水硫酸マグネシウム処理後、シリカゲルクロマトグラフィー(溶媒:ジクロロメタン)に付し、化合物4bを1.84g(収率97%)得た。
Figure 2008050337
Next, 2.0 g (7.3 mmol) of compound 3b and 20 ml of dichloromethane were added to a 100 ml eggplant-shaped flask, and the reaction solution was cooled to 0 ° C. While maintaining the same temperature, boron tribromide was added dropwise. After completion of dropping, the mixture was stirred overnight at room temperature. 10 ml of water was added dropwise while cooling to complete the reaction. After 20 ml of dichloromethane was added and the layers were separated, the organic layer was washed with 100 ml of water. After treatment with anhydrous magnesium sulfate, it was subjected to silica gel chromatography (solvent: dichloromethane) to obtain 1.84 g (yield 97%) of compound 4b.

4bは、更に、常法によりピリジン及びトリフルオロメタンスルホン酸無水物と反応させることにより、化合物5bを3.0g得た(収率99%)。   4b was further reacted with pyridine and trifluoromethanesulfonic anhydride by a conventional method to obtain 3.0 g of Compound 5b (yield 99%).

生成物の同定は、H−NMR測定、13C−NMR測定、FDMS測定により行った。 The product was identified by 1 H-NMR measurement, 13 C-NMR measurement, and FDMS measurement.

<化合物4b>
H−NMR(CDCl);1.70(s,6H)、5.50(br−s,1H)、7.12−7.43(m,4H)、7.43−7.60(m,1H)、7.60−7.90(m,3H)、8.12(d,1H,J=8.8Hz)
13C−NMR(CDCl);26.6, 48.5, 111.5, 117.7, 119.3, 119.5, 122.1, 125.2, 125.9, 126.5, 128.8, 126.9, 134.7, 135.3, 139.4, 147.6, 152.5, 154.9
<化合物5b>
H−NMR(CDCl);1.74(s,6H)、7.36−7.59(m,4H)、7.78−7.96(m,3H)、8.02(d,1H,J=8.6Hz)、8.12(d,1H,J=9.2Hz)
FDMS;392
<Compound 4b>
1 H-NMR (CDCl 3 ); 1.70 (s, 6H), 5.50 (br-s, 1H), 7.12-7.43 (m, 4H), 7.43-7.60 ( m, 1H), 7.60-7.90 (m, 3H), 8.12 (d, 1H, J = 8.8 Hz)
13 C-NMR (CDCl 3 ); 26.6, 48.5, 111.5, 117.7, 119.3, 119.5, 122.1, 125.2, 125.9, 126.5, 128 .8, 126.9, 134.7, 135.3, 139.4, 147.6, 152.5, 154.9
<Compound 5b>
1 H-NMR (CDCl 3 ); 1.74 (s, 6H), 7.36-7.59 (m, 4H), 7.78-7.96 (m, 3H), 8.02 (d, 1H, J = 8.6 Hz), 8.12 (d, 1H, J = 9.2 Hz)
FDMS; 392

Figure 2008050337
合成例6
100mlナス型フラスコに、1−(2−(エトキシカルボニル)フェニル)−ナフタレン 1.00g(3.62mmol)、テトラヒドロフラン10mlを窒素雰囲気下加えた。反応液を50℃まで昇温し、フェニルマグネシウムブロミドのテトラヒドロフラン溶液(2mol/l)7.2mlを30分かけて滴下し、同温度で18時間攪拌した。室温まで冷却後、氷水で冷却しながら純水20mlを滴下した後、トルエン30mlで有機層を抽出した。更に、有機層は、純水、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥した。得られた有機層を濃縮することにより、化合物7aを黄色油状物として1.46g単離した。
Figure 2008050337
Synthesis Example 6
To a 100 ml eggplant-shaped flask, 1.00 g (3.62 mmol) of 1- (2- (ethoxycarbonyl) phenyl) -naphthalene and 10 ml of tetrahydrofuran were added under a nitrogen atmosphere. The reaction solution was heated to 50 ° C., 7.2 ml of a phenylmagnesium bromide tetrahydrofuran solution (2 mol / l) was added dropwise over 30 minutes, and the mixture was stirred at the same temperature for 18 hours. After cooling to room temperature, 20 ml of pure water was added dropwise while cooling with ice water, and then the organic layer was extracted with 30 ml of toluene. Furthermore, the organic layer was washed with pure water and saturated brine, and dried over anhydrous magnesium sulfate. By concentrating the obtained organic layer, 1.46 g of compound 7a was isolated as a yellow oil.

引続き、100mlナス型フラスコに、7aを1.45g、酢酸25mlを加えた後、濃硫酸を数滴添加し、室温下18時間攪拌した。その後、反応液を分液ロートに移し、トルエン30ml、純水20mlを加え、有機層を抽出した。更に、有機層は、純水で中性になるまで洗浄した。飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。濃縮後、得られた残渣は、シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により精製することで、化合物8aを淡黄色粉末として0.81g単離した(収率61%)。   Subsequently, 1.45 g of 7a and 25 ml of acetic acid were added to a 100 ml eggplant-shaped flask, and then several drops of concentrated sulfuric acid were added, followed by stirring at room temperature for 18 hours. Thereafter, the reaction solution was transferred to a separatory funnel, 30 ml of toluene and 20 ml of pure water were added, and the organic layer was extracted. Further, the organic layer was washed with pure water until neutral. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate. After concentration, the obtained residue was purified by silica gel chromatography (solvent: hexane / toluene) to isolate 0.81 g of compound 8a as a pale yellow powder (yield 61%).

同定は、H−NMR測定、FDMS測定により行った。 Identification was performed by 1 H-NMR measurement and FDMS measurement.

H−NMR(CDCl);7.21−7.33(m,11H)、7.46−7.89(m,7H)、8.36−8.40(d,1H)、8.77−8.81(d,1H)
FDMS;368
次に、化合物8aを合成例3に従い臭素化することにより、化合物9aを単離した。
1 H-NMR (CDCl 3 ); 7.21-7.33 (m, 11H), 7.46-7.89 (m, 7H), 8.36-8.40 (d, 1H), 8. 77-8.81 (d, 1H)
FDMS; 368
Next, compound 9a was isolated by brominating compound 8a according to Synthesis Example 3.

同定は、FDMS測定により行った。   Identification was performed by FDMS measurement.

FDMS;446   FDMS; 446

Figure 2008050337
合成例7
300mlナス型フラスコに、2−ブロモ−6−(2−(エトキシカルボニル)フェニル)ナフタレン (6b)12g(33.8mmol)、脱水テトラヒドロフラン120mlを仕込み、室温下、フェニルマグネシウムブロミドのテトラヒドロフラン溶液(2mol/l)を60ml滴下した。滴下終了後、更に50℃で一晩加熱攪拌した。反応液を室温まで冷却し、10%塩化アンモニウム水溶液100gを加えて反応を終了した。有機層は純水50gで3回洗浄し、更に硫酸マグネシウムで乾燥した。有機層を濾過・濃縮することで、化合物7bをオレンジ色油状物として17.3g得た。7bはそのまま次の工程に用いた。
Figure 2008050337
Synthesis example 7
A 300 ml eggplant-shaped flask was charged with 12 g (33.8 mmol) of 2-bromo-6- (2- (ethoxycarbonyl) phenyl) naphthalene (6b) and 120 ml of dehydrated tetrahydrofuran, and a tetrahydrofuran solution of phenylmagnesium bromide (2 mol / mol) at room temperature. 60 ml of 1) was added dropwise. After completion of the dropwise addition, the mixture was further heated and stirred overnight at 50 ° C. The reaction solution was cooled to room temperature, and 100 g of 10% aqueous ammonium chloride solution was added to complete the reaction. The organic layer was washed 3 times with 50 g of pure water and further dried over magnesium sulfate. The organic layer was filtered and concentrated to obtain 17.3 g of Compound 7b as an orange oil. 7b was directly used in the next step.

100mlナス型フラスコに、上記で得られた7b 3.46g(6.76mmol)と酢酸14mlを仕込んだ後、室温下一晩攪拌した。その後、反応液を分液ロートに移し、トルエン50ml、純水50mlを加え、有機層を抽出した。更に、有機層は純水で中性になるまで洗浄した。飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥した。濃縮後、得られた残渣は、シリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により精製することで、化合物8bを白色粉末として1.3g単離した(収率42%)。   A 100 ml eggplant-shaped flask was charged with 3.46 g (6.76 mmol) of 7b obtained above and 14 ml of acetic acid, and stirred overnight at room temperature. Thereafter, the reaction solution was transferred to a separating funnel, and 50 ml of toluene and 50 ml of pure water were added to extract the organic layer. Further, the organic layer was washed with pure water until neutral. The extract was washed with saturated brine and dried over anhydrous magnesium sulfate. After concentration, the obtained residue was purified by silica gel chromatography (solvent: hexane / toluene) to isolate 1.3 g of compound 8b as a white powder (yield 42%).

同定は、H−NMR測定、FDMS測定により行った。 Identification was performed by 1 H-NMR measurement and FDMS measurement.

H−NMR(CDCl);8.02(d,2H)、7.81−7.88(m,2H)、7.60(d,1H)、7.18−7.46(m,14H)
FDMS;446
1 H-NMR (CDCl 3 ); 8.02 (d, 2H), 7.81-7.88 (m, 2H), 7.60 (d, 1H), 7.18-7.46 (m, 14H)
FDMS; 446

Figure 2008050337
実施例1 (化合物(A1)の合成)
100mlナス型フラスコを用い、合成例3で得られた化合物5a 2g(6.2mmol)、アニリン0.58g(6.2mmol)、ナトリウム−tert−ブトキシド 0.83gをキシレン40mlに懸濁させ、窒素で系内を置換した。更に、窒素雰囲気下、酢酸パラジム3mg及びトリ−tert−ブチルホスフィン 8mgを添加し、125℃に加熱した。所定温度で20時間熟成した後、反応液を室温まで冷却した。水20mlを添加後、抽出を行い、有機相を濃縮した。得られた濃縮物は、精製せずにそのまま次工程に使用した。
Figure 2008050337
Example 1 (Synthesis of Compound (A1))
Using a 100 ml eggplant type flask, 2 g (6.2 mmol) of the compound 5a obtained in Synthesis Example 3, 0.58 g (6.2 mmol) of aniline, 0.83 g of sodium tert-butoxide were suspended in 40 ml of xylene, and nitrogen was added. The inside of the system was replaced with. Furthermore, under a nitrogen atmosphere, 3 mg of paradymium acetate and 8 mg of tri-tert-butylphosphine were added and heated to 125 ° C. After aging at a predetermined temperature for 20 hours, the reaction solution was cooled to room temperature. Extraction was performed after adding 20 ml of water, and the organic phase was concentrated. The obtained concentrate was directly used in the next step without purification.

次に、200mlナス型フラスコを用い、4,4’−ジヨードビフェニル 3.0g(7.4mmol)、先に得られた5−フェニルアミノ−7,7−ジメチル−7H−ベンゾ[c]フルオレン 5.1g(15.2mmol)、ナトリウム−tert−ブトキシド 1.7g(17.7mmol)をキシレン50mlに懸濁させ、窒素で系内を置換した。更に、窒素雰囲気下、酢酸パラジム3mg及びトリ−tert−ブチルホスフィン 8mgを添加し、125℃に加熱した。所定温度で20時間熟成した後、反応液を室温まで冷却した。水20mlを添加後、抽出を行い、有機相を濃縮した。トルエンにて再結晶し、化合物(A1)を4.98g得た(収率82%)。   Next, using a 200 ml eggplant type flask, 3.0 g (7.4 mmol) of 4,4′-diiodobiphenyl and 5-phenylamino-7,7-dimethyl-7H-benzo [c] fluorene obtained earlier 5.1 g (15.2 mmol) and sodium tert-butoxide 1.7 g (17.7 mmol) were suspended in 50 ml of xylene, and the system was replaced with nitrogen. Furthermore, under a nitrogen atmosphere, 3 mg of paradymium acetate and 8 mg of tri-tert-butylphosphine were added and heated to 125 ° C. After aging at a predetermined temperature for 20 hours, the reaction solution was cooled to room temperature. Extraction was performed after adding 20 ml of water, and the organic phase was concentrated. Recrystallization from toluene gave 4.98 g of compound (A1) (yield 82%).

化合物(A1)のガラス転移温度は162℃であり、従来材料である4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル、2,7−ビス[N−(1−ナフチル)−N−フェニルアミノ]−9,9’−ジメチルフルオレン、N,N’−ジ[2−(9,9−ジメチルフルオレニル)]−N,N’−ジ(4−ビフェニル)ベンジジン等のガラス転移温度(各々、96℃、110℃、120℃)より約40℃以上高かった。   Compound (A1) has a glass transition temperature of 162 ° C. and is a conventional material of 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, 2,7-bis [N- (1 -Naphthyl) -N-phenylamino] -9,9'-dimethylfluorene, N, N'-di [2- (9,9-dimethylfluorenyl)]-N, N'-di (4-biphenyl) About 40 ° C. or higher than the glass transition temperatures of benzidine and the like (96 ° C., 110 ° C., and 120 ° C., respectively).

実施例2 (化合物(B3)の合成)
化合物5aの代わりに、合成例4で合成した化合物6aを用いて、実施例1と同様な操作を行い、化合物(B3)を5.0g単離した(収率78%)。
Example 2 (Synthesis of Compound (B3))
Using Compound 6a synthesized in Synthesis Example 4 instead of Compound 5a, the same operation as in Example 1 was performed to isolate 5.0 g of Compound (B3) (yield 78%).

実施例3 (化合物(F1)の合成)
300mlナス型フラスコに、アニリン894mg(9.6mmol)、ナトリウム−tert−ブトキシド 923mg(9.6mmol)、トリス(ジベンジリデンアセトン)ジパラジウム44mg(0.048mmol)、ビス(ジフェニルホスフィノ)フェロセン160mg(0.288mmol)、トルエン130mlを窒素雰囲気下加えた。反応液を80℃に加熱した後、合成例5で合成した化合物5b 2.51g(6.4mmol)のトルエン(30ml)溶液を30分かけて滴下し、同温で一晩攪拌した。室温に冷却後、水200mlを加え反応を終了させた。分層後の有機層は、更に水600mlで洗浄し、無水硫酸マグネシウム処理後、溶媒を留去した。残渣をシリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により精製し、目的とする二級アミンを微紫色固体として1.76g得た(収率81%)。
Example 3 (Synthesis of Compound (F1))
In a 300 ml eggplant-shaped flask, 894 mg (9.6 mmol) of aniline, 923 mg (9.6 mmol) of sodium-tert-butoxide, 44 mg (0.048 mmol) of tris (dibenzylideneacetone) dipalladium, 160 mg of bis (diphenylphosphino) ferrocene 0.288 mmol) and 130 ml of toluene were added under a nitrogen atmosphere. After heating the reaction solution to 80 ° C., a toluene (30 ml) solution of 2.51 g (6.4 mmol) of compound 5b synthesized in Synthesis Example 5 was added dropwise over 30 minutes, and the mixture was stirred overnight at the same temperature. After cooling to room temperature, 200 ml of water was added to terminate the reaction. The separated organic layer was further washed with 600 ml of water, treated with anhydrous magnesium sulfate, and then the solvent was distilled off. The residue was purified by silica gel chromatography (solvent: hexane / toluene) to obtain 1.76 g of the desired secondary amine as a slightly purple solid (yield 81%).

化合物の同定は、H−NMR測定、FDMS測定により行った。 The compound was identified by 1 H-NMR measurement and FDMS measurement.

H−NMR(CDCl);1.74(s,6H)、5.88(br−s,1H)、6.94−7.04(m,1H)、7.12−7.40(m,7H)、7.42−7.58(m,2H)、7.62−7.86(m,3H)、8.12(d,1H,J=9.2Hz)
FDMS;335
次に、100mlナス型フラスコに、上記二級アミン1.76g(5.25mmol)、4,4’−ジヨードビフェニル 1.02g(2.5mmol)、ナトリウム−tert−ブトキシド 505mg(5.25mmol)、酢酸パラジウム11.8mg(0.053mmol)、オルトキシレン60mlを窒素雰囲気下加えた。この反応液に、トリ(tert−ブチル)ホスフィン(0.21mmol)トルエン溶液0.21mlを滴下後、反応液を120℃に加熱した。2時間後、室温まで冷却し、水200mlを加え反応を終了させた。分層後の有機層は、更に水600mlで洗浄し、無水硫酸マグネシウム処理後、溶媒を留去した。残渣をシリカゲルクロマトグラフィー(溶媒:ヘキサン/トルエン)により精製し、化合物(F1)を微黄色固体として1.89g得た(収率92%、融点=292℃)。
1 H-NMR (CDCl 3 ); 1.74 (s, 6H), 5.88 (br-s, 1H), 6.94-7.04 (m, 1H), 7.12-7.40 ( m, 7H), 7.42-7.58 (m, 2H), 7.62-7.86 (m, 3H), 8.12 (d, 1H, J = 9.2 Hz)
FDMS; 335
Next, in a 100 ml eggplant-shaped flask, 1.76 g (5.25 mmol) of the secondary amine, 1.02 g (2.5 mmol) of 4,4′-diiodobiphenyl, and 505 mg (5.25 mmol) of sodium tert-butoxide. Then, 11.8 mg (0.053 mmol) of palladium acetate and 60 ml of orthoxylene were added under a nitrogen atmosphere. To this reaction solution, 0.21 ml of a tri (tert-butyl) phosphine (0.21 mmol) toluene solution was added dropwise, and then the reaction solution was heated to 120 ° C. After 2 hours, the mixture was cooled to room temperature, and 200 ml of water was added to complete the reaction. The separated organic layer was further washed with 600 ml of water, treated with anhydrous magnesium sulfate, and then the solvent was distilled off. The residue was purified by silica gel chromatography (solvent: hexane / toluene) to obtain 1.89 g of compound (F1) as a slightly yellow solid (yield 92%, melting point = 292 ° C.).

化合物の同定は、H−NMR測定、FDMS測定により行った。 The compound was identified by 1 H-NMR measurement and FDMS measurement.

H−NMR(CDCl);1.72(s,12H)、7.00−7.12(br−t,2H)、7.12−7.68(m,28H)、7.70−7.86(m,4H)、8.10(d,2H,J=9.2Hz)
FDMS;820
なお、化合物(F1)のガラス転移温度は172℃であり、従来材料である4,4’−ビス[N−(1−ナフチル)−N−フェニルアミノ]ビフェニル、2,7−ビス[N−(1−ナフチル)−N−フェニルアミノ]−9,9’−ジメチルフルオレン、N,N’−ジ[2−(9,9−ジメチルフルオレニル)]−N,N’−ジ(4−ビフェニル)ベンジジン等のガラス転移温度(各々、96℃、110℃、120℃)より約50℃以上高かった。
1 H-NMR (CDCl 3 ); 1.72 (s, 12H), 7.00-7.12 (br-t, 2H), 7.12-7.68 (m, 28H), 7.70- 7.86 (m, 4H), 8.10 (d, 2H, J = 9.2 Hz)
FDMS; 820
Compound (F1) has a glass transition temperature of 172 ° C., and is a conventional material of 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl, 2,7-bis [N— (1-naphthyl) -N-phenylamino] -9,9′-dimethylfluorene, N, N′-di [2- (9,9-dimethylfluorenyl)]-N, N′-di (4- About 50 ° C. higher than the glass transition temperatures of biphenyl) benzidine and the like (96 ° C., 110 ° C., 120 ° C., respectively).

実施例4 (化合物(B2)の合成)
合成例6で得られた化合物9a 3.31g(7.43mmol)、4,4’−ジフェニルベンジジン 1.22g(3.63mmol)、ナトリウム−tert−ブトキシド 0.84gをキシレン25mlに懸濁させ、窒素で系内を置換した。更に、窒素雰囲気下、酢酸パラジウム8mg及びトリ−tert−ブチルホスフィン 32mgを添加し、125℃に加熱した。所定温度で20時間熟成した後、反応液を室温まで冷却した。水20mlを添加後、抽出を行い、有機相を濃縮した。トルエンにて再結晶し、化合物(B2)を黄色粉末として2.36g得た(収率61%)。
Example 4 (Synthesis of Compound (B2))
Compound 31a obtained in Synthesis Example 6 3.31 g (7.43 mmol), 4,4′-diphenylbenzidine 1.22 g (3.63 mmol), sodium tert-butoxide 0.84 g were suspended in xylene 25 ml, The system was replaced with nitrogen. Furthermore, 8 mg of palladium acetate and 32 mg of tri-tert-butylphosphine were added under a nitrogen atmosphere and heated to 125 ° C. After aging at a predetermined temperature for 20 hours, the reaction solution was cooled to room temperature. Extraction was performed after adding 20 ml of water, and the organic phase was concentrated. Recrystallization from toluene gave 2.36 g of compound (B2) as a yellow powder (yield 61%).

同定は、FDMS測定により行った。   Identification was performed by FDMS measurement.

FDMS;1068
実施例5 (化合物(F6)の合成)
化合物9aの代わりに、合成例7で得られた化合物8bを用いて実施例4と同様の反応を行い、化合物(F6)を合成した。
FDMS; 1068
Example 5 (Synthesis of Compound (F6))
The compound (F6) was synthesized by performing the same reaction as in Example 4 using the compound 8b obtained in Synthesis Example 7 instead of the compound 9a.

同定は、FDMS測定により行った。   Identification was performed by FDMS measurement.

FDMS;1068
実施例6 (素子作製)
厚さ130nmのITO透明電極を有するガラス基板をアセトン、イソプロピルアルコールで順次超音波洗浄し、次いで、イソプロピルアルコールで煮沸洗浄した後、乾燥した。更に、UV/オゾン処理したものを透明導電性支持基板として使用した。ITO透明電極上に、銅フタロシアニンを真空蒸着法により25nmの膜厚で成膜した。次に、化合物(A1)を真空蒸着法により45nmの膜厚で成膜し、正孔輸送層を形成した。次に、アルミニウムトリスキノリノール錯体を真空蒸着法により60nmの膜厚で成膜し、電子輸送層を形成した。なお、上記有機化合物の蒸着条件は、真空度1.0×10−4Pa、成膜速度0.3nm/秒の同一条件で成膜した。
FDMS; 1068
Example 6 (Element fabrication)
A glass substrate having an ITO transparent electrode having a thickness of 130 nm was ultrasonically washed successively with acetone and isopropyl alcohol, then boiled and washed with isopropyl alcohol, and then dried. Furthermore, what was UV / ozone treated was used as a transparent conductive support substrate. On the ITO transparent electrode, copper phthalocyanine was formed into a film with a thickness of 25 nm by vacuum deposition. Next, the compound (A1) was formed into a film with a thickness of 45 nm by a vacuum vapor deposition method to form a hole transport layer. Next, an aluminum triskinolinol complex was formed into a film with a thickness of 60 nm by a vacuum vapor deposition method to form an electron transport layer. The organic compound was deposited under the same conditions of a vacuum degree of 1.0 × 10 −4 Pa and a deposition rate of 0.3 nm / second.

次に、陰極としてLiFを0.5nm、Alを100nm蒸着し、金属電極を形成した。   Next, LiF was deposited to 0.5 nm and Al was deposited to 100 nm as a cathode to form a metal electrode.

更に、窒素雰囲気下、保護用ガラス基板を重ね、UV硬化樹脂で封止した。このようにして得られた素子に、ITO電極を正極、LiF−Al電極を負極にして、4.5Vの直流電圧を印加すると7.5mA/cmの電流密度が得られ、401cd/mの輝度で緑色の発光が観測された。 Further, a protective glass substrate was stacked in a nitrogen atmosphere and sealed with a UV curable resin. When a direct current voltage of 4.5 V was applied to the device obtained in this manner with the ITO electrode as the positive electrode and the LiF-Al electrode as the negative electrode, a current density of 7.5 mA / cm 2 was obtained, and 401 cd / m 2 Green light emission was observed at a brightness of.

比較例1〜2
化合物(A1)の代わりに、NPD、又は2,7−ビス(ナフチルフェニルアミノ)−9,9−ジメチルフルオレンを用い、実施例6に準じて素子を作成した。
Comparative Examples 1-2
A device was prepared according to Example 6 using NPD or 2,7-bis (naphthylphenylamino) -9,9-dimethylfluorene instead of the compound (A1).

電流密度7.5mA/cm時の効率及び寿命に関する評価結果を表1に示す。 Table 1 shows the evaluation results regarding the efficiency and lifetime at a current density of 7.5 mA / cm 2 .

Figure 2008050337
実施例7
化合物(A1)の代わりに、化合物(F1)を正孔輸送層に用い、実施例6と同様な操作を行い、有機EL素子を作製した。定電流密度=20mA/cmの条件下測定すると、駆動電圧=5.67V、電流効率=4.5cd/A、電力効率=2.5lm/Wの値を示した。評価結果を表2に示す。
Figure 2008050337
Example 7
Instead of the compound (A1), the compound (F1) was used for the hole transport layer, and the same operation as in Example 6 was performed to produce an organic EL device. When measured under the condition of constant current density = 20 mA / cm 2 , values of driving voltage = 5.67 V, current efficiency = 4.5 cd / A, and power efficiency = 2.5 lm / W were shown. The evaluation results are shown in Table 2.

実施例8
化合物(F1)を化合物(A1)に変更した以外は、実施例7と同様な素子を作成した。20mA/cmの定電流密度条件下で駆動させた際の値を表2に示す。
Example 8
A device was prepared in the same manner as in Example 7 except that the compound (F1) was changed to the compound (A1). Table 2 shows values when driven under a constant current density condition of 20 mA / cm 2 .

比較例3
化合物(F1)をNPDに変更した以外は、実施例7と同様な素子を作成した。20mA/cmの定電流密度条件下で駆動させた際の値を表2に示す。
Comparative Example 3
A device was prepared in the same manner as in Example 7 except that the compound (F1) was changed to NPD. Table 2 shows values when driven under a constant current density condition of 20 mA / cm 2 .

Figure 2008050337
実施例9
厚さ130nmのITO透明電極を有するガラス基板をアセトン、イソプロピルアルコールで順次超音波洗浄し、次いで、イソプロピルアルコールで煮沸洗浄した後、乾燥した。更に、UV/オゾン処理したものを透明導電性支持基板として使用した。ITO透明電極上に、銅フタロシアニンを真空蒸着法により25nmの膜厚で成膜した。次に、化合物(A1)を真空蒸着法により45nmの膜厚で成膜し、正孔輸送層を形成した。次に、TBADNをホスト材、TBPeをドーパント材として、重量比=99:1で共蒸着し、40nmの膜厚を形成した。次に、アルミニウムトリスキノリノール錯体を真空蒸着法により20nmの膜厚で成膜し、電子輸送層を形成した。なお、上記有機化合物の蒸着条件は、真空度1.0×10−4Pa、成膜速度0.3nm/秒の同一条件で成膜した。
Figure 2008050337
Example 9
A glass substrate having an ITO transparent electrode having a thickness of 130 nm was ultrasonically washed successively with acetone and isopropyl alcohol, then boiled and washed with isopropyl alcohol, and then dried. Furthermore, what was UV / ozone treated was used as a transparent conductive support substrate. On the ITO transparent electrode, copper phthalocyanine was formed into a film with a thickness of 25 nm by vacuum deposition. Next, the compound (A1) was formed into a film with a thickness of 45 nm by a vacuum vapor deposition method to form a hole transport layer. Next, TBADN was used as a host material and TBPe was used as a dopant material to perform co-evaporation at a weight ratio of 99: 1 to form a film thickness of 40 nm. Next, an aluminum triskinolinol complex was formed into a film with a thickness of 20 nm by a vacuum deposition method to form an electron transport layer. The organic compound was deposited under the same conditions of a vacuum degree of 1.0 × 10 −4 Pa and a deposition rate of 0.3 nm / second.

次に、陰極としてLiFを0.5nm、Alを100nm蒸着し、金属電極を形成した。   Next, LiF was deposited to 0.5 nm and Al was deposited to 100 nm as a cathode to form a metal electrode.

更に、窒素雰囲気下、保護用ガラス基板を重ね、UV硬化樹脂で封止した。このようにして得られた素子に、ITO電極を正極、LiF−Al電極を負極にして、20mA/cmの定電流密度条件下で駆動させた際の輝度、駆動電圧、電流効率、電力効率及び輝度半減寿命は、各々940cd/m、5.51V、4.7cd/A、2.7lm/W、450hrであった。結果を表3に示す。 Further, a protective glass substrate was stacked in a nitrogen atmosphere and sealed with a UV curable resin. Luminance, drive voltage, current efficiency, and power efficiency when the device thus obtained was driven under a constant current density condition of 20 mA / cm 2 with the ITO electrode as the positive electrode and the LiF-Al electrode as the negative electrode. The luminance half-life was 940 cd / m 2 , 5.51 V, 4.7 cd / A, 2.7 lm / W, and 450 hr, respectively. The results are shown in Table 3.

Figure 2008050337
実施例10
化合物(A1)を化合物(F1)に変更した以外は、実施例9と同様な素子を作成した。20mA/cmの定電流密度条件下で駆動させた際の値を表3に示す。
Figure 2008050337
Example 10
A device was prepared in the same manner as in Example 9 except that the compound (A1) was changed to the compound (F1). Table 3 shows values when driven under a constant current density condition of 20 mA / cm 2 .

実施例11
化合物(A1)を化合物(F6)に変更した以外は、実施例9と同様な素子を作成した。20mA/cmの定電流密度条件下で駆動させた際の値を表3に示す。
Example 11
A device was prepared in the same manner as in Example 9 except that the compound (A1) was changed to the compound (F6). Table 3 shows values when driven under a constant current density condition of 20 mA / cm 2 .

比較例4
化合物(A1)をNPDに変更した以外は、実施例9と同様な素子を作成した。20mA/cmの定電流密度条件下で駆動させた際の値を表3に示す。
Comparative Example 4
A device was prepared in the same manner as in Example 9 except that the compound (A1) was changed to NPD. Table 3 shows values when driven under a constant current density condition of 20 mA / cm 2 .

Figure 2008050337
Figure 2008050337

Claims (7)

一般式(1)で表されるベンゾフルオレン化合物。
Figure 2008050337
(式中、Mは炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基であり、Ar〜Arは各々独立して炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基である。但し、Ar〜Arのうち少なくとも一つは、下記一般式(2)又は(3)で表される置換基である。pは0〜2の整数である。)
Figure 2008050337
(式中、R〜Rは各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基である。なお、RとRは互いに結合して環を形成してもよい。)
A benzofluorene compound represented by the general formula (1).
Figure 2008050337
(In the formula, M is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms, and Ar 1 to Ar 4 are each independently a carbon number. A substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms, provided that at least one of Ar 1 to Ar 4 is represented by the following general formula (2): Or it is a substituent represented by (3) .p is an integer of 0-2.)
Figure 2008050337
(Wherein R 1 to R 4 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, or a carbon number. A substituted or unsubstituted aryl group having 6 to 40 or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, wherein R 1 and R 2 may be bonded to each other to form a ring; )
一般式(1)で表されるベンゾ[c]フルオレン化合物。
Figure 2008050337
(式中、Mは炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基であり、Ar〜Arは各々独立して炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基である。但し、Ar〜Arのうち少なくとも一つは、下記一般式(2)で表される置換基である。pは0〜2の整数である。)
Figure 2008050337
(式中、R〜Rは各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基である。なお、RとRは互いに結合して環を形成してもよい。)
A benzo [c] fluorene compound represented by the general formula (1).
Figure 2008050337
(In the formula, M is a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms, and Ar 1 to Ar 4 are each independently a carbon number. A substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms, provided that at least one of Ar 1 to Ar 4 is represented by the following general formula (2): (P is an integer of 0 to 2).
Figure 2008050337
(Wherein R 1 to R 4 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, or a carbon number. A substituted or unsubstituted aryl group having 6 to 40 or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, wherein R 1 and R 2 may be bonded to each other to form a ring; )
前記一般式(1)において、Mが一置換、二置換若しくは三置換のベンゼン骨格、ビフェニル骨格、フルオレン骨格、ターフェニル骨格、ナフタレン骨格、又はスピロフルオレン骨格から選ばれる一種であることを特徴とする請求項1に記載のベンゾフルオレン化合物。 In the general formula (1), M is a kind selected from a mono-, di-, or tri-substituted benzene skeleton, biphenyl skeleton, fluorene skeleton, terphenyl skeleton, naphthalene skeleton, or spirofluorene skeleton. The benzofluorene compound according to claim 1. 前記一般式(1)において、pが1であり、かつMが2置換のビフェニル骨格であることを特徴とする下記一般式(4)で表されるベンゾフルオレン化合物。
Figure 2008050337
(式中、R,Rは各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基であり、Ar〜Arは前記一般式(1)で示した定義と同じである。)
A benzofluorene compound represented by the following general formula (4), wherein in the general formula (1), p is 1 and M is a disubstituted biphenyl skeleton.
Figure 2008050337
(Wherein R 5 and R 6 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, a linear, branched or cyclic alkoxy group, or a carbon number. A substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, and Ar 1 to Ar 4 are the same as defined in the general formula (1). .)
一般式(5)又は(6)で表されるベンゾフルオレン化合物。
Figure 2008050337
(式中、R,R,R11,R12は各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基であり、R,R10は炭素数1〜6のアルキレン基、又は炭素数6〜12のアリーレン基を表す。Arは炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数5〜40の置換若しくは無置換のヘテロアリール基を表す。)
A benzofluorene compound represented by the general formula (5) or (6).
Figure 2008050337
(In the formula, R 7 , R 8 , R 11 and R 12 are each independently a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, a linear, branched or cyclic group. An alkoxy group, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, wherein R 9 and R 10 are alkylene groups having 1 to 6 carbon atoms. Or an arylene group having 6 to 12 carbon atoms, Ar 5 represents a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted heteroaryl group having 5 to 40 carbon atoms.
一般式(7)又は(8)で表されるハロベンゾフルオレン化合物。
Figure 2008050337
(式中、Xは、ヨウ素、臭素、塩素原子を表す。R〜Rは各々独立して水素原子、ハロゲン原子、置換若しくは無置換のアミノ基、直鎖,分岐若しくは環状のアルキル基、直鎖,分岐若しくは環状のアルコキシ基、炭素数6〜40の置換若しくは無置換のアリール基、又は炭素数6〜40の置換若しくは無置換のアリールオキシ基である。なお、RとRは互いに結合して環を形成してもよい。)
A halobenzofluorene compound represented by the general formula (7) or (8).
Figure 2008050337
(In the formula, X represents an iodine, bromine or chlorine atom. R 1 to R 4 each independently represents a hydrogen atom, a halogen atom, a substituted or unsubstituted amino group, a linear, branched or cyclic alkyl group, A linear, branched or cyclic alkoxy group, a substituted or unsubstituted aryl group having 6 to 40 carbon atoms, or a substituted or unsubstituted aryloxy group having 6 to 40 carbon atoms, wherein R 1 and R 2 are They may combine with each other to form a ring.)
請求項1又は請求項3〜5に記載のベンゾフルオレン化合物を発光層、正孔輸送層又は正孔注入層のいずれかに用いることを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the benzofluorene compound according to claim 1 or 3 to 5 in any one of a light emitting layer, a hole transport layer, and a hole injection layer.
JP2007010813A 2006-04-13 2007-01-19 Benzofluorene compounds and uses thereof Active JP5145717B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007010813A JP5145717B2 (en) 2006-04-13 2007-01-19 Benzofluorene compounds and uses thereof

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2006110765 2006-04-13
JP2006110765 2006-04-13
JP2006201097 2006-07-24
JP2006201097 2006-07-24
JP2007010813A JP5145717B2 (en) 2006-04-13 2007-01-19 Benzofluorene compounds and uses thereof

Publications (2)

Publication Number Publication Date
JP2008050337A true JP2008050337A (en) 2008-03-06
JP5145717B2 JP5145717B2 (en) 2013-02-20

Family

ID=39234709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007010813A Active JP5145717B2 (en) 2006-04-13 2007-01-19 Benzofluorene compounds and uses thereof

Country Status (1)

Country Link
JP (1) JP5145717B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140617A1 (en) 2009-06-05 2010-12-09 東ソー株式会社 Amine derivative and organic electroluminescent elements
JP2013018717A (en) * 2011-07-08 2013-01-31 Jnc Corp Benzofluorene compound, material for light-emitting layer using the compound, and organic electroluminescent element
JP2014506881A (en) * 2011-02-16 2014-03-20 ドクサン ハイ メタル カンパニー リミテッド COMPOUND AND ORGANIC ELECTRIC ELEMENT USING THE SAME, ELECTRONIC DEVICE, AND HEAT RESISTANCE MEASUREMENT METHOD
JPWO2015041352A1 (en) * 2013-09-20 2017-03-02 出光興産株式会社 Amine compound and organic electroluminescence device
US10875825B2 (en) 2017-08-18 2020-12-29 Samsung Display Co., Lid. Amine-based compound and organic light-emitting device including the same
JP2021511656A (en) * 2018-01-25 2021-05-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent compounds and organic electroluminescent devices containing them
US11744146B2 (en) 2017-02-03 2023-08-29 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5439711B2 (en) * 2007-01-26 2014-03-12 東ソー株式会社 Benzofluorene compounds and uses thereof
US9748492B2 (en) 2012-11-02 2017-08-29 Idemitsu Kosan Co., Ltd. Organic electroluminescent device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039933A (en) * 1999-07-30 2001-02-13 Mitsui Chemicals Inc Amine compound
JP2003073343A (en) * 2001-09-03 2003-03-12 Mitsui Chemicals Inc Amine compound and organic electroluminescent element having the compound
WO2004061048A1 (en) * 2002-12-31 2004-07-22 Eastman Kodak Company Complex fluorene-containing compounds and electroluminescent devices
JP2004315495A (en) * 2002-09-20 2004-11-11 Tosoh Corp New arylamine derivative having fluorene skeleton, synthetic intermediate of the same, method for producing them and organic el element
JP2005513713A (en) * 2001-12-12 2005-05-12 キヤノン株式会社 [5] -Helicene and dibenzofluorene materials for use in organic light emitting devices
WO2005056633A1 (en) * 2003-12-12 2005-06-23 Sumitomo Chemical Company, Limited Polymer compound and polymer light-emitting device using same
WO2006025273A1 (en) * 2004-08-31 2006-03-09 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001039933A (en) * 1999-07-30 2001-02-13 Mitsui Chemicals Inc Amine compound
JP2003073343A (en) * 2001-09-03 2003-03-12 Mitsui Chemicals Inc Amine compound and organic electroluminescent element having the compound
JP2005513713A (en) * 2001-12-12 2005-05-12 キヤノン株式会社 [5] -Helicene and dibenzofluorene materials for use in organic light emitting devices
JP2004315495A (en) * 2002-09-20 2004-11-11 Tosoh Corp New arylamine derivative having fluorene skeleton, synthetic intermediate of the same, method for producing them and organic el element
WO2004061048A1 (en) * 2002-12-31 2004-07-22 Eastman Kodak Company Complex fluorene-containing compounds and electroluminescent devices
WO2005056633A1 (en) * 2003-12-12 2005-06-23 Sumitomo Chemical Company, Limited Polymer compound and polymer light-emitting device using same
WO2006025273A1 (en) * 2004-08-31 2006-03-09 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6012021648; Journal of Chemical Research, Synopses (6), 1977, p.149 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010140617A1 (en) 2009-06-05 2010-12-09 東ソー株式会社 Amine derivative and organic electroluminescent elements
JP2011012047A (en) * 2009-06-05 2011-01-20 Tosoh Corp Amine derivative and organic electroluminescent element
KR20120029446A (en) 2009-06-05 2012-03-26 토소가부시키가이샤 Amine derivative and organic electroluminescent elements
US8846214B2 (en) 2009-06-05 2014-09-30 Tosoh Corporation Amine derivative and organic electroluminescent element
JP2014506881A (en) * 2011-02-16 2014-03-20 ドクサン ハイ メタル カンパニー リミテッド COMPOUND AND ORGANIC ELECTRIC ELEMENT USING THE SAME, ELECTRONIC DEVICE, AND HEAT RESISTANCE MEASUREMENT METHOD
JP2013018717A (en) * 2011-07-08 2013-01-31 Jnc Corp Benzofluorene compound, material for light-emitting layer using the compound, and organic electroluminescent element
JPWO2015041352A1 (en) * 2013-09-20 2017-03-02 出光興産株式会社 Amine compound and organic electroluminescence device
US11744146B2 (en) 2017-02-03 2023-08-29 Samsung Display Co., Ltd. Amine-based compound and organic light-emitting device including the same
US10875825B2 (en) 2017-08-18 2020-12-29 Samsung Display Co., Lid. Amine-based compound and organic light-emitting device including the same
JP2021511656A (en) * 2018-01-25 2021-05-06 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent compounds and organic electroluminescent devices containing them
JP7252961B2 (en) 2018-01-25 2023-04-05 ローム・アンド・ハース・エレクトロニック・マテリアルズ・コリア・リミテッド Organic electroluminescent compound and organic electroluminescent device containing the same

Also Published As

Publication number Publication date
JP5145717B2 (en) 2013-02-20

Similar Documents

Publication Publication Date Title
KR101142293B1 (en) Benzofluorene compound and use thereof
JP5439711B2 (en) Benzofluorene compounds and uses thereof
JP4506113B2 (en) Novel arylamine derivatives having a fluorene skeleton, synthetic intermediates thereof, production methods thereof, and organic EL devices
JP5145717B2 (en) Benzofluorene compounds and uses thereof
KR101293320B1 (en) Aromatic amine derivative and organic electroluminescent element using same
JP5066945B2 (en) Novel benzo [c] fluorene derivatives and uses thereof
JPH10302960A (en) Luminescent material for organic electroluminescent element and organic electroluminescent element using it
JP2000068059A (en) Organic electroluminescent element material and organic electroluminescent element using the same
JP5428263B2 (en) Amine derivatives and uses thereof
JP4810830B2 (en) Amine compound having fluorene group as mother nucleus and production method and use thereof
JP2011088836A (en) Carbazole compound, and use therefor
JP5205858B2 (en) Novel benzo [c] fluorene derivatives and uses thereof
JPH1072579A (en) Luminescent material for organic electroluminescent element
JP2010150167A (en) Amine derivative and application of the same
JP5205859B2 (en) Novel benzo [c] fluorene derivatives and uses thereof
JP2021109878A (en) Indenoacridine compound and applications thereof
JP2008231047A (en) Organic compound and its use
JP5428253B2 (en) Amine derivatives and uses thereof
JP2010150169A (en) Amine derivative and application of the same
JP2010150168A (en) Amine derivative and application of the same
JP2009040723A (en) Fluoranthene compound, and organic light emitting device using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120508

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121112

R151 Written notification of patent or utility model registration

Ref document number: 5145717

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3