JP2011088836A - Carbazole compound, and use therefor - Google Patents

Carbazole compound, and use therefor Download PDF

Info

Publication number
JP2011088836A
JP2011088836A JP2009241666A JP2009241666A JP2011088836A JP 2011088836 A JP2011088836 A JP 2011088836A JP 2009241666 A JP2009241666 A JP 2009241666A JP 2009241666 A JP2009241666 A JP 2009241666A JP 2011088836 A JP2011088836 A JP 2011088836A
Authority
JP
Japan
Prior art keywords
group
carbon atoms
substituted
unsubstituted
branched
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009241666A
Other languages
Japanese (ja)
Other versions
JP5585044B2 (en
Inventor
Naoki Matsumoto
直樹 松本
Takanori Miyazaki
高則 宮崎
Shinichi Ishikawa
真一 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2009241666A priority Critical patent/JP5585044B2/en
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to KR1020127012994A priority patent/KR101801412B1/en
Priority to PCT/JP2010/068469 priority patent/WO2011049123A1/en
Priority to EP10824972.3A priority patent/EP2492260B1/en
Priority to CN201410525675.8A priority patent/CN104326968B/en
Priority to CN201080057970.5A priority patent/CN102666487B/en
Priority to CN201410525660.1A priority patent/CN104370801B/en
Priority to KR1020177032801A priority patent/KR101929151B1/en
Priority to TW099135767A priority patent/TWI527796B/en
Priority to US13/502,834 priority patent/US9650565B2/en
Priority to KR1020177032800A priority patent/KR101935710B1/en
Publication of JP2011088836A publication Critical patent/JP2011088836A/en
Application granted granted Critical
Publication of JP5585044B2 publication Critical patent/JP5585044B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Electroluminescent Light Sources (AREA)
  • Indole Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbazole compound suitable as a hole transporting material for use in an organic EL element, and an organic EL element of high luminous efficiency and excellent durability employing the same. <P>SOLUTION: The carbazole compound is represented by formula (1), which has excellent hole-transporting characteristics. An organic EL element employing the same in its hole transporting layer can be driven by a low driving voltage and further has excellent luminous efficiency and durability. In formula (1), Ar<SP>1</SP>, Ar<SP>2</SP>, and Ar<SP>3</SP>each independently represent a substituted or unsubstituted 6-50C aryl group or a substituted or unsubstituted 4-50C heteroaryl group, provided that Ar<SP>2</SP>and Ar<SP>3</SP>may bind to each other to form a ring; R<SP>1</SP>represents a 1-18C straight chain, branched, or cyclic alkyl group, a substituted or unsubstituted 6-50C aryl group, or a substituted or unsubstituted 4-50C heteroaryl group; R<SP>2</SP>and R<SP>3</SP>each independently represent a hydrogen atom, a halogen atom or the like; and n represents an integer of 1 to 3; provided that, if R<SP>1</SP>is an aryl group comprising a substituent, the substituent excludes an amino group. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、新規なカルバゾール化合物及びそれを用いた有機EL素子に関するものである。   The present invention relates to a novel carbazole compound and an organic EL device using the same.

有機EL素子は、有機薄膜を1対の電極で狭持した面発光型素子であり、薄型軽量、高視野角、高速応答性といった特徴を有し、各種表示素子への応用が期待されている。また、最近では、携帯電話のディスプレイ等、一部実用化も始まっている。有機EL素子とは、陽極から注入された正孔と、陰極から注入された電子とが発光層で再結合する際に発する光を利用した素子であり、その構造は正孔輸送層、発光層、電子輸送層等を積層した多層積層型が主流である。ここで、正孔輸送層や電子輸送層といった電荷輸送層は、それ自体は発光するわけではないが、発光層への電荷注入を容易にし、また、発光層に注入された電荷や発光層で生成した励起子のエネルギーを閉じ込めるといった役割を果たしている。従って、電荷輸送層は有機EL素子の低駆動電圧化及び発光効率を向上させる上で非常に重要である。   An organic EL element is a surface-emitting element in which an organic thin film is held between a pair of electrodes, and has features such as a thin and light weight, a high viewing angle, and a high-speed response, and is expected to be applied to various display elements. . Recently, some practical applications such as mobile phone displays have begun. An organic EL element is an element that utilizes light emitted when holes injected from an anode and electrons injected from a cathode are recombined in a light emitting layer, and has a structure of a hole transport layer, a light emitting layer A multi-layer laminate type in which an electron transport layer and the like are laminated is the mainstream. Here, the charge transport layer such as the hole transport layer and the electron transport layer does not emit light by itself, but facilitates the injection of charges into the light emitting layer, and the charge injected into the light emitting layer or the light emitting layer. It plays the role of confining the energy of the generated excitons. Therefore, the charge transport layer is very important for lowering the driving voltage and improving the light emission efficiency of the organic EL element.

正孔輸送材料には、適当なイオン化ポテンシャルと正孔輸送能を有するアミン化合物が用いられ、例えば、4,4’−ビス[N−(1−ナフチル)−N−フェニル]ビフェニル(以下、NPDと略す)がよく知られている。しかしながら、NPDはガラス転移温度が低く、高温条件下で容易に結晶化してしまうため、素子の耐久性に課題がある。また、NPDを正孔輸送層に用いた素子の駆動電圧、発光効率は十分ではなく、新しい材料の開発が求められている。   As the hole transport material, an amine compound having an appropriate ionization potential and hole transport ability is used. For example, 4,4′-bis [N- (1-naphthyl) -N-phenyl] biphenyl (hereinafter referred to as NPD). Is abbreviated). However, since NPD has a low glass transition temperature and easily crystallizes under high temperature conditions, there is a problem in durability of the element. In addition, the driving voltage and light emission efficiency of an element using NPD for the hole transport layer are not sufficient, and development of new materials is required.

このような背景から、最近では分子内にカルバゾール環を導入したアミン化合物が報告されている。カルバゾール環は平面性が高く、剛直な骨格であることから、カルバゾール環を導入したアミン化合物は、ガラス転移温度と正孔輸送性の向上が期待できる。しかしながら、これまでに報告されているカルバゾール環を導入したアミン化合物は、カルバゾール環の3位に窒素原子が結合した分子構造である(例えば、特許文献1〜3参照)。カルバゾール環の3位は、電子ドナー性である窒素原子のパラ位となるため、3位に置換されたアミノ基はカルバゾール環の窒素原子によって活性化されることになる。即ち、カルバゾール環の3位にアミノ基を導入した化合物は、イオン化ポテンシャルが通常のアミン化合物と比較して低くなってしまう。従って、これまでに報告されているカルバゾール環を有するアミン化合物を正孔輸送層に用いた場合、発光層への正孔の注入障壁が大きくなり、EL素子の駆動電圧が高くなるという問題があった。   Against this background, recently, amine compounds having a carbazole ring introduced in the molecule have been reported. Since the carbazole ring has a high planarity and a rigid skeleton, the amine compound into which the carbazole ring is introduced can be expected to improve the glass transition temperature and the hole transport property. However, the amine compounds into which a carbazole ring has been reported so far have a molecular structure in which a nitrogen atom is bonded to the 3-position of the carbazole ring (see, for example, Patent Documents 1 to 3). Since the 3-position of the carbazole ring is the para-position of the nitrogen atom that is an electron donor property, the amino group substituted at the 3-position is activated by the nitrogen atom of the carbazole ring. That is, a compound in which an amino group is introduced at the 3-position of the carbazole ring has a lower ionization potential than a normal amine compound. Therefore, when an amine compound having a carbazole ring, which has been reported so far, is used for the hole transport layer, there is a problem that the hole injection barrier into the light emitting layer is increased and the driving voltage of the EL element is increased. It was.

特開2006−151979公報JP 2006-151979 A 特開2006−298895公報JP 2006-298895 A 特開2008−044923公報JP 2008-044923 A

本発明の目的は、有機EL素子の正孔輸送材料に適したカルバゾール化合物、更には発光効率が高く、耐久性に優れた有機EL素子を提供することである。   An object of the present invention is to provide a carbazole compound suitable for a hole transport material of an organic EL device, and further an organic EL device having high luminous efficiency and excellent durability.

本発明者らは鋭意検討した結果、下記一般式(1)で示されるカルバゾール化合物が正孔輸送特性に優れ、該化合物を正孔輸送層に用いた有機EL素子は駆動電圧が低く、更に発光効率及び耐久性に優れることを見出し、本発明を完成するに至った。即ち、本発明は、一般式(1)   As a result of intensive studies, the present inventors have found that the carbazole compound represented by the following general formula (1) has excellent hole transport properties, and the organic EL device using the compound for the hole transport layer has a low driving voltage and further emits light. The inventors have found that it is excellent in efficiency and durability, and have completed the present invention. That is, the present invention relates to the general formula (1)

Figure 2011088836
(式中、Ar、Ar及びArは各々独立して置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。なお、ArとArは互いに結合して環を形成してもよい。Rは炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表し、R及びRは各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表し、Xは置換若しくは無置換の炭素数6〜50のアリーレン基を表し、nは1〜3の整数を表す。ただし、Rが置換基を有するアリール基である場合、置換基としてアミノ基は除く。)
で表されるカルバゾール化合物及びその用途に関するものである。
Figure 2011088836
(In the formula, Ar 1 , Ar 2 and Ar 3 each independently represent a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms. , Ar 2 and Ar 3 may be bonded to each other to form a ring, R 1 is a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, substituted or unsubstituted aryl having 6 to 50 carbon atoms Or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms, wherein R 2 and R 3 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms. Group, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms, X is substitution Properly represents the unsubstituted arylene group having a carbon number of 6 to 50, n is an integer of 1-3. However, if R 1 is an aryl group having a substituent, an amino group is excluded as a substituent.)
And the use thereof.

以下、本発明に関し詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明の一般式(1)で表されるカルバゾール化合物において、Ar、Ar及びArは各々独立して置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。 In the carbazole compound represented by the general formula (1) of the present invention, Ar 1 , Ar 2 and Ar 3 are each independently a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted carbon. Represents a heteroaryl group of formula 4-50.

Ar、Ar及びArで示される置換若しくは無置換の炭素数6〜50のアリール基としては、置換若しくは無置換のフェニル基、ビフェニリル基、ターフェニル基、ナフチル基、フェナントリル基、アントリル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ペリレニル基、ピレニル基、ピセニル基、クリセニル基が好ましく、具体的にはフェニル基、4−メチルフェニル基、3−メチルフェニル基、2−メチルフェニル基、4−エチルフェニル基、3−エチルフェニル基、2−エチルフェニル基、4−n−プロピルフェニル基、4−イソプロピルフェニル基、2−イソプロピルフェニル基、4−n−ブチルフェニル基、4−イソブチルフェニル基、4−sec−ブチルフェニル基、4−tert−ブチルフェニル基、4−n−ペンチルフェニル基、4−イソペンチルフェニル基、4−ネオペンチルフェニル基、4−n−ヘキシルフェニル基、4−n−オクチルフェニル基、4−n−デシルフェニル基、4−n−ドデシルフェニル基、4−シクロペンチルフェニル基、4−シクロヘキシルフェニル基、4−トリチルフェニル基、3−トリチルフェニル基、4−トリフェニルシリルフェニル基、3−トリフェニルシリルフェニル基、2,4−ジメチルフェニル基、2,5−ジメチルフェニル基、3,4−ジメチルフェニル基、3,5−ジメチルフェニル基、2,6−ジメチルフェニル基、2,3,5−トリメチルフェニル基、2,3,6−トリメチルフェニル基、3,4,5−トリメチルフェニル基、4−メトキシフェニル基、3−メトキシフェニル基、2−メトキシフェニル基、4−エトキシフェニル基、3−エトキシフェニル基、2−エトキシフェニル基、4−n−プロポキシフェニル基、3−n−プロポキシフェニル基、4−イソプロポキシフェニル基、2−イソプロポキシフェニル基、4−n−ブトキシフェニル基、4−イソブトキシフェニル基、2−sec−ブトキシフェニル基、4−n−ペンチルオキシフェニル基、4−イソペンチルオキシフェニル基、2−イソペンチルオキシフェニル基、4−ネオペンチルオキシフェニル基、2−ネオペンチルオキシフェニル基、4−n−ヘキシルオキシフェニル基、2−(2−エチルブチル)オキシフェニル基、4−n−オクチルオキシフェニル基、4−n−デシルオキシフェニル基、4−n−ドデシルオキシフェニル基、4−n−テトラデシルオキシフェニル基、4−シクロヘキシルオキシフェニル基、2−シクロヘキシルオキシフェニル基、4−フェノキシフェニル基、2−メチル−4−メトキシフェニル基、2−メチル−5−メトキシフェニル基、3−メチル−4−メトキシフェニル基、3−メチル−5−メトキシフェニル基、3−エチル−5−メトキシフェニル基、2−メトキシ−4−メチルフェニル基、3−メトキシ−4−メチルフェニル基、2,4−ジメトキシフェニル基、2,5−ジメトキシフェニル基、2,6−ジメトキシフェニル基、3,4−ジメトキシフェニル基、3,5−ジメトキシフェニル基、3,5−ジエトキシフェニル基、3,5−ジ−n−ブトキシフェニル基、2−メトキシ−4−エトキシフェニル基、2−メトキシ−6−エトキシフェニル基、3,4,5−トリメトキシフェニル基、4−フルオロフェニル基、3−フルオロフェニル基、2−フルオロフェニル基、2,3−ジフルオロフェニル基、2,4−ジフルオロフェニル基、2,5−ジフルオロフェニル基、2,6−ジフルオロフェニル基、3,4−ジフルオロフェニル基、3,5−ジフルオロフェニル基、4−(1−ナフチル)フェニル基、4−(2−ナフチル)フェニル基、3−(1−ナフチル)フェニル基、3−(2−ナフチル)フェニル基、1−ナフチル基、2−ナフチル基、4−メチル−1−ナフチル基、6−メチル−2−ナフチル基、4−フェニル−1−ナフチル基、6−フェニル−2−ナフチル基、2−アントリル基、9−アントリル基、10−フェニル−9−アントリル基、2−フルオレニル基、9,9−ジメチル−2−フルオレニル基、9,9−ジエチル−2−フルオレニル基、9,9−ジ−n−プロピル−2−フルオレニル基、9,9−ジ−n−オクチル−2−フルオレニル基、9,9−ジフェニル−2−フルオレニル基、9,9’−スピロビフルオレニル基、9−フェナントリル基、2−フェナントリル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ピレニル基、クリセニル基、ペリレニル基、ピセニル基、4−ビフェニリル基、3−ビフェニリル基、2−ビフェニリル基、p−ターフェニル基、m−ターフェニル基、o−ターフェニル基等を例示することができるが、これらに限定されるものではない。 Examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms represented by Ar 1 , Ar 2 and Ar 3 include a substituted or unsubstituted phenyl group, biphenylyl group, terphenyl group, naphthyl group, phenanthryl group and anthryl group. , A fluorenyl group, a benzofluorenyl group, a dibenzofluorenyl group, a fluoranthenyl group, a perylenyl group, a pyrenyl group, a picenyl group, and a chrysenyl group, and specifically, a phenyl group, a 4-methylphenyl group, a 3- Methylphenyl group, 2-methylphenyl group, 4-ethylphenyl group, 3-ethylphenyl group, 2-ethylphenyl group, 4-n-propylphenyl group, 4-isopropylphenyl group, 2-isopropylphenyl group, 4- n-butylphenyl group, 4-isobutylphenyl group, 4-sec-butylphenyl group, 4 -Tert-butylphenyl group, 4-n-pentylphenyl group, 4-isopentylphenyl group, 4-neopentylphenyl group, 4-n-hexylphenyl group, 4-n-octylphenyl group, 4-n-decyl Phenyl group, 4-n-dodecylphenyl group, 4-cyclopentylphenyl group, 4-cyclohexylphenyl group, 4-tritylphenyl group, 3-tritylphenyl group, 4-triphenylsilylphenyl group, 3-triphenylsilylphenyl group 2,4-dimethylphenyl group, 2,5-dimethylphenyl group, 3,4-dimethylphenyl group, 3,5-dimethylphenyl group, 2,6-dimethylphenyl group, 2,3,5-trimethylphenyl group 2,3,6-trimethylphenyl group, 3,4,5-trimethylphenyl group, 4-methoxyphenyl group, -Methoxyphenyl group, 2-methoxyphenyl group, 4-ethoxyphenyl group, 3-ethoxyphenyl group, 2-ethoxyphenyl group, 4-n-propoxyphenyl group, 3-n-propoxyphenyl group, 4-isopropoxyphenyl Group, 2-isopropoxyphenyl group, 4-n-butoxyphenyl group, 4-isobutoxyphenyl group, 2-sec-butoxyphenyl group, 4-n-pentyloxyphenyl group, 4-isopentyloxyphenyl group, 2 -Isopentyloxyphenyl group, 4-neopentyloxyphenyl group, 2-neopentyloxyphenyl group, 4-n-hexyloxyphenyl group, 2- (2-ethylbutyl) oxyphenyl group, 4-n-octyloxyphenyl Group, 4-n-decyloxyphenyl group, 4-n-dodecyloxyphene Group, 4-n-tetradecyloxyphenyl group, 4-cyclohexyloxyphenyl group, 2-cyclohexyloxyphenyl group, 4-phenoxyphenyl group, 2-methyl-4-methoxyphenyl group, 2-methyl-5-methoxy Phenyl group, 3-methyl-4-methoxyphenyl group, 3-methyl-5-methoxyphenyl group, 3-ethyl-5-methoxyphenyl group, 2-methoxy-4-methylphenyl group, 3-methoxy-4-methyl Phenyl group, 2,4-dimethoxyphenyl group, 2,5-dimethoxyphenyl group, 2,6-dimethoxyphenyl group, 3,4-dimethoxyphenyl group, 3,5-dimethoxyphenyl group, 3,5-diethoxyphenyl Group, 3,5-di-n-butoxyphenyl group, 2-methoxy-4-ethoxyphenyl group, 2-methoxy-6- Ethoxyphenyl group, 3,4,5-trimethoxyphenyl group, 4-fluorophenyl group, 3-fluorophenyl group, 2-fluorophenyl group, 2,3-difluorophenyl group, 2,4-difluorophenyl group, 2 , 5-difluorophenyl group, 2,6-difluorophenyl group, 3,4-difluorophenyl group, 3,5-difluorophenyl group, 4- (1-naphthyl) phenyl group, 4- (2-naphthyl) phenyl group 3- (1-naphthyl) phenyl group, 3- (2-naphthyl) phenyl group, 1-naphthyl group, 2-naphthyl group, 4-methyl-1-naphthyl group, 6-methyl-2-naphthyl group, 4 -Phenyl-1-naphthyl group, 6-phenyl-2-naphthyl group, 2-anthryl group, 9-anthryl group, 10-phenyl-9-anthryl group, 2-fluorene Group, 9,9-dimethyl-2-fluorenyl group, 9,9-diethyl-2-fluorenyl group, 9,9-di-n-propyl-2-fluorenyl group, 9,9-di-n-octyl- 2-fluorenyl group, 9,9-diphenyl-2-fluorenyl group, 9,9′-spirobifluorenyl group, 9-phenanthryl group, 2-phenanthryl group, benzofluorenyl group, dibenzofluorenyl group, Fluoranthenyl group, pyrenyl group, chrysenyl group, perylenyl group, picenyl group, 4-biphenylyl group, 3-biphenylyl group, 2-biphenylyl group, p-terphenyl group, m-terphenyl group, o-terphenyl group, etc. However, the present invention is not limited to these examples.

また、Ar、Ar及びArで示される置換若しくは無置換の炭素数4〜50のヘテロアリール基としては、酸素原子、窒素原子及び硫黄原子のうち少なくとも一つのヘテロ原子を含有する芳香族基であり、例えば、4−キノリル基、4−ピリジル基、3−ピリジル基、2−ピリジル基、3−フリル基、2−フリル基、3−チエニル基、2−チエニル基、2−オキサゾリル基、2−チアゾリル基、2−ベンゾオキサゾリル基、2−ベンゾチアゾリル基、2−カルバゾリル基、ベンゾチオフェニル基、ベンゾイミダゾリル基、ジベンゾチオフェニル基等を例示することができるが、これらに限定されるものではない。 Further, Ar 1, The heteroaryl groups of Ar 2 and Ar 3 substituted or unsubstituted C 4-50 illustrated, aromatics containing at least one hetero atom of oxygen atom, nitrogen atom and sulfur atom For example, 4-quinolyl group, 4-pyridyl group, 3-pyridyl group, 2-pyridyl group, 3-furyl group, 2-furyl group, 3-thienyl group, 2-thienyl group, 2-oxazolyl group , 2-thiazolyl group, 2-benzoxazolyl group, 2-benzothiazolyl group, 2-carbazolyl group, benzothiophenyl group, benzoimidazolyl group, dibenzothiophenyl group, etc., but are not limited thereto. It is not a thing.

なお、Ar及びArは互いに結合して環を形成してもよい。Ar及びArが互いに結合して形成される環としては、カルバゾール環、フェノキサジン環、フェノチアジン環等を例示することができるが、これらに限定されるものではない。 Ar 2 and Ar 3 may be bonded to each other to form a ring. Examples of the ring formed by combining Ar 2 and Ar 3 with each other include, but are not limited to, a carbazole ring, a phenoxazine ring, and a phenothiazine ring.

一般式(1)で表されるカルバゾール化合物において、Rは炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。ただし、Rが置換基を有するアリール基である場合、置換基としてアミノ基は除く。 In the carbazole compound represented by the general formula (1), R 1 is a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted group. A substituted heteroaryl group having 4 to 50 carbon atoms is represented. However, when R 1 is an aryl group having a substituent, an amino group is excluded as a substituent.

で示される炭素数1〜18の直鎖、分岐若しくは環状のアルキル基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、sec−ブチル基、tert−ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ステアリル基、トリクロロメチル基、トリフルオロメチル基、シクロプロピル基、シクロヘキシル基等を例示することができるが、これらに限定されるものではない。 Specific examples of the linear, branched or cyclic alkyl group having 1 to 18 carbon atoms represented by R 1 include a methyl group, ethyl group, propyl group, isopropyl group, butyl group, sec-butyl group, tert- Examples thereof include, but are not limited to, butyl group, pentyl group, hexyl group, heptyl group, octyl group, stearyl group, trichloromethyl group, trifluoromethyl group, cyclopropyl group, cyclohexyl group and the like. .

また、Rで示される置換若しくは無置換の炭素数6〜50のアリール基、及び置換若しくは無置換の炭素数4〜50のヘテロアリール基としては、前記Ar、Ar及びArで例示した置換基が挙げられる。 Moreover, examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms and the substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms represented by R 1 include the examples of Ar 1 , Ar 2 and Ar 3 . The substituent which was made is mentioned.

一般式(1)で表されるカルバゾール化合物において、R及びRは各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。 In the carbazole compound represented by the general formula (1), R 2 and R 3 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, or 1 to 18 carbon atoms. A linear, branched or cyclic alkoxy group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms.

及びRで示されるハロゲン原子としては、フッ素、塩素、臭素又はヨウ素原子が挙げられる。 Examples of the halogen atom represented by R 2 and R 3 include a fluorine, chlorine, bromine or iodine atom.

及びRで示される炭素数1〜18の直鎖、分岐若しくは環状のアルキル基としては、前記Rで例示した置換基が挙げられる。 Examples of the linear, branched or cyclic alkyl group having 1 to 18 carbon atoms represented by R 2 and R 3 include the substituents exemplified for R 1 .

及びRで示される炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基としては、具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ステアリルオキシ基等を例示することができるが、これらに限定されるものではない。 Specific examples of the linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms represented by R 2 and R 3 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, sec -Butoxy group, tert-butoxy group, pentyloxy group, hexyloxy group, stearyloxy group and the like can be exemplified, but are not limited thereto.

及びRで示される置換若しくは無置換の炭素数6〜50のアリール基、及び置換若しくは無置換の炭素数4〜50のヘテロアリール基としては、前記Ar、Ar及びArで例示した置換基が挙げられる。 Examples of the substituted or unsubstituted aryl group having 6 to 50 carbon atoms and the substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms represented by R 2 and R 3 include Ar 1 , Ar 2 and Ar 3 . The exemplified substituents can be mentioned.

一般式(1)で表されるカルバゾール化合物において、Xは置換若しくは無置換の炭素数6〜50のアリーレン基を表し、置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニレン基、置換若しくは無置換のターフェニレン基、置換若しくは無置換のナフタレン基、置換若しくは無置換のフルオレニレン基、置換若しくは無置換のピレンジイル基、置換若しくは無置換のアントラセンジイル基、又は置換若しくは無置換のフェナントレンジイル基等を例示することができるが、これらに限定されるものではない。   In the carbazole compound represented by the general formula (1), X represents a substituted or unsubstituted arylene group having 6 to 50 carbon atoms, a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, a substituted or unsubstituted group. Substituted terphenylene group, substituted or unsubstituted naphthalene group, substituted or unsubstituted fluorenylene group, substituted or unsubstituted pyrenediyl group, substituted or unsubstituted anthracenediyl group, substituted or unsubstituted phenanthrene diyl group, etc. Although it can illustrate, it is not limited to these.

上記で例示したアリーレン基の中でも、正孔輸送特性に優れることから、Xは置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニレン基、及び置換若しくは無置換のターフェニレン基から選ばれる一種であることが好ましい。   Among the arylene groups exemplified above, X is a kind selected from a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, and a substituted or unsubstituted terphenylene group because of excellent hole transport properties. Preferably there is.

本発明の好ましい具体例としては、前記一般式(1)において、nが1であり、Xが下記一般式(2)〜(6)   As a preferable specific example of this invention, in the said General formula (1), n is 1, X is following General formula (2)-(6).

Figure 2011088836
(式中、R〜R12は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。)
のいずれか一つで表されるカルバゾール化合物である。
Figure 2011088836
(In the formula, R 4 to R 12 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms. Represents a group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms.)
It is a carbazole compound represented by any one of these.

前記一般式(1)で表されるアリーレン基において、R〜R12で表されるハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基としては、前記一般式(1)のR及びRで例示した置換基を挙げることができる。 In the arylene group represented by the general formula (1), a halogen atom represented by R 4 to R 12 , a straight chain having 1 to 18 carbon atoms, a branched or cyclic alkyl group, and a straight chain having 1 to 18 carbon atoms. A branched or cyclic alkoxy group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms, R 2 in the general formula (1) and The substituents exemplified for R 3 can be mentioned.

更に、高いガラス転移温度を確保することができ、正孔輸送特性に優れることから、前記一般式(1)で表されるカルバゾール化合物は、ArとArが互いに結合し、下記一般式(7) Furthermore, since a high glass transition temperature can be ensured and the hole transport property is excellent, the carbazole compound represented by the general formula (1) has a combination of Ar 2 and Ar 3 and the following general formula ( 7)

Figure 2011088836
(式中、R13及びR14は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。)
で表されるカルバゾール環を形成する構造、若しくはArが下記一般式(8)
Figure 2011088836
Wherein R 13 and R 14 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms. Represents a group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms.)
In structure to form a carbazole ring represented, or Ar 2 is represented by the following general formula (8)

Figure 2011088836
(式中、R15は炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表し、R16及びR17は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。)
で表される構造であることが好ましい。
Figure 2011088836
(In the formula, R 15 is a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted hetero group having 4 to 50 carbon atoms. R 16 and R 17 each independently represent a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic group having 1 to 18 carbon atoms. Represents an alkoxy group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms.)
It is preferable that it is a structure represented by these.

前記一般式(7)において、R13及びR14で表されるハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基としては、前記一般式(1)のR及びRで例示した置換基を挙げることができる。 In the general formula (7), a halogen atom represented by R 13 and R 14 , a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms Examples of the group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms include the substituents exemplified for R 2 and R 3 in the general formula (1) The group can be mentioned.

前記一般式(8)において、R15で表される炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基としては、前記一般式(1)のR及びRで例示した置換基を挙げることができる。 In the general formula (8), a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms represented by R 15 , a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted group. Examples of the heteroaryl group having 4 to 50 carbon atoms include the substituents exemplified for R 2 and R 3 in the general formula (1).

前記一般式(8)において、R16及びR17で表されるハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基としては、前記一般式(1)のR及びRで例示した置換基を挙げることができる。 In the general formula (8), a halogen atom represented by R 16 and R 17 , a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms. Examples of the group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms include the substituents exemplified for R 2 and R 3 in the general formula (1) The group can be mentioned.

以下に好ましい化合物を例示するが、これらの化合物に限定されるものではない。   Preferred compounds are illustrated below, but are not limited to these compounds.

Figure 2011088836
Figure 2011088836

Figure 2011088836
Figure 2011088836

Figure 2011088836
Figure 2011088836

Figure 2011088836
前記一般式(1)で表されるカルバゾール化合物は、例えば、公知の方法(Tetrahedron Letters,1998年,第39巻,2367頁)によって合成することができる。具体的には、2位がハロゲン化されたカルバゾール化合物と2級アミン化合物とを塩基の存在下、銅触媒又はパラジウム触媒を用いて反応させ、合成することができる。また、塩基の存在下、銅触媒又はパラジウム触媒を用いて2位がハロゲン化されたカルバゾール化合物と1級アミン化合物を反応させ、2級アミンを得た後に、ハロゲン化アリールと反応することでも合成することが可能である。
Figure 2011088836
The carbazole compound represented by the general formula (1) can be synthesized, for example, by a known method (Tetrahedron Letters, 1998, Vol. 39, page 2367). Specifically, it can be synthesized by reacting a carbazole compound halogenated at the 2-position with a secondary amine compound using a copper catalyst or a palladium catalyst in the presence of a base. Alternatively, in the presence of a base, a carbazole compound halogenated at the 2-position with a copper catalyst or a palladium catalyst is reacted with a primary amine compound to obtain a secondary amine, and then reacted with an aryl halide. Is possible.

本発明の前記一般式(1)で表されるカルバゾール化合物は、有機EL素子の発光層、正孔輸送層又は正孔注入層として使用することができる。   The carbazole compound represented by the general formula (1) of the present invention can be used as a light emitting layer, a hole transport layer or a hole injection layer of an organic EL device.

特に、前記一般式(1)で示されるカルバゾール化合物は正孔輸送能に優れることから、正孔輸送層及び/又は正孔注入層として使用した際に、有機EL素子の低駆動電圧化、高発光効率化及び耐久性の向上を実現することができる。   In particular, since the carbazole compound represented by the general formula (1) is excellent in hole transport ability, when used as a hole transport layer and / or a hole injection layer, the organic EL device has a low driving voltage, a high Improvement in luminous efficiency and improvement in durability can be realized.

前記一般式(1)で表されるカルバゾール化合物を有機EL素子の正孔注入層及び/又は正孔輸送層として使用する際の発光層には、従来から使用されている公知の発光材料を使用することができる。発光層は1種類の発光材料のみで形成されていてもよく、ホスト材料中に1種類以上の発光材料がドープされていてもよい。   For the light emitting layer when the carbazole compound represented by the general formula (1) is used as the hole injection layer and / or the hole transport layer of the organic EL device, a conventionally known light emitting material is used. can do. The light emitting layer may be formed of only one kind of light emitting material, or one or more kinds of light emitting materials may be doped in the host material.

近年、高い発光効率を実現できることから、発光材料として燐光材料を使用した有機EL素子が注目されているが、前記一般式(1)で表されるカルバゾール化合物は燐光材料とも組み合わせて使用することができる。   In recent years, an organic EL element using a phosphorescent material as a light emitting material has attracted attention because it can realize high luminous efficiency. However, the carbazole compound represented by the general formula (1) may be used in combination with a phosphorescent material. it can.

前記一般式(1)で表されるカルバゾール化合物からなる正孔注入層及び/又は正孔輸送層を形成する際には、必要に応じて2種類以上の材料を含有若しくは積層させてもよく、例えば、酸化モリブデン等の酸化物、7,7,8,8−テトラシアノキノジメタン、2,3,5,6−テトラフルオロ−7,7,8,8−テトラシアノキノジメタン、ヘキサシアノヘキサアザトリフェニレン等の公知の電子受容性材料を含有若しくは積層させてもよい。   When forming the hole injection layer and / or hole transport layer made of the carbazole compound represented by the general formula (1), two or more kinds of materials may be contained or laminated as necessary. For example, oxides such as molybdenum oxide, 7,7,8,8-tetracyanoquinodimethane, 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane, hexacyanohexahexa A known electron-accepting material such as azatriphenylene may be contained or laminated.

前記一般式(1)で表されるカルバゾール化合物を有機EL素子の発光層として使用する場合には、カルバゾール化合物を単独で使用、公知の発光ホスト材料にドープして使用、又は公知の発光ドーパントをドープして使用することができる。   When the carbazole compound represented by the general formula (1) is used as the light emitting layer of the organic EL device, the carbazole compound is used alone, doped into a known light emitting host material, or a known light emitting dopant is used. Can be used by doping.

前記一般式(1)で表されるカルバゾール化合物を含有する正孔注入層、正孔輸送層又は発光層を形成する方法としては、例えば真空蒸着法、スピンコート法、キャスト法等の公知の方法を適用することができる。   Examples of a method for forming a hole injection layer, a hole transport layer, or a light emitting layer containing the carbazole compound represented by the general formula (1) include known methods such as vacuum deposition, spin coating, and casting. Can be applied.

本発明による一般式(1)で表されるカルバゾール化合物は、従来材料以上の高い正孔輸送特性と高いガラス転移温度を有するため、有機EL素子の低駆動電圧化、高発光効率化、耐久性の向上を実現することができる。   The carbazole compound represented by the general formula (1) according to the present invention has a higher hole transport property and a higher glass transition temperature than those of the conventional materials, and therefore lowers the driving voltage, increases the luminous efficiency, and durability of the organic EL element. Improvement can be realized.

以下、本発明を実施例に基づき更に詳細に説明するが、本発明はこれら実施例により限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by these Examples.

H−NMR及び13C−NMR測定は、バリアン社製 Gemini200を用いて行った。 1 H-NMR and 13 C-NMR measurements were performed using Gemini 200 manufactured by Varian.

FDMS測定は、日立製作所製 M−80Bを用いて行った。   The FDMS measurement was performed using Hitachi M-80B.

ガラス転移温度の測定は、マックサイエンス製 DSC−3100を用い、10℃/分の昇温条件下にて行った。   The glass transition temperature was measured using DSC-3100 manufactured by Mac Science under a temperature rising condition of 10 ° C./min.

イオン化ポテンシャルは、北斗電工製のHA−501及びHB−104を使用したサイクリックボルタンメトリーで評価した。   The ionization potential was evaluated by cyclic voltammetry using HA-501 and HB-104 manufactured by Hokuto Denko.

有機EL素子の発光特性は、作製した素子に直流電流を印加し、TOPCON社製のLUMINANCEMETER(BM−9)の輝度計を用いて評価した。   The light emission characteristics of the organic EL element were evaluated by applying a direct current to the produced element and using a luminance meter of LUMINANCEMETER (BM-9) manufactured by TOPCON.

合成例1 (2−(4−クロロフェニル)ニトロベンゼンの合成[下記(9)式参照])
窒素気流下、500mlの三口フラスコに、o−ブロモニトロベンゼン 25.0g(123.0mmol)、p−クロロフェニルボロン酸 21.1g(135.3mmol)、テトラキス(トリフェニルホスフィン)パラジウム 0.71g(0.61mmol)、テトラヒドロフラン 100g、20wt%の炭酸カリウム水溶液 162g(307.5mmol)を加え、8時間加熱還流した。室温まで冷却した後、水層と有機層を分液し、有機層を飽和塩化アンモニウム水溶液と飽和塩化ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで乾燥後、減圧下に濃縮し、残渣をシリカゲルカラムクロマトグラフィー(トルエン)で精製し、2−(4−クロロフェニル)ニトロベンゼンを27.2g単離した(収率94%)。
Synthesis Example 1 (Synthesis of 2- (4-chlorophenyl) nitrobenzene [see the following formula (9)])
Under a nitrogen stream, in a 500 ml three-necked flask, 25.0 g (123.0 mmol) of o-bromonitrobenzene, 21.1 g (135.3 mmol) of p-chlorophenylboronic acid, 0.71 g of tetrakis (triphenylphosphine) palladium (0. 61 mmol), 100 g of tetrahydrofuran and 162 g (307.5 mmol) of a 20 wt% aqueous potassium carbonate solution were added, and the mixture was heated to reflux for 8 hours. After cooling to room temperature, the aqueous layer and the organic layer were separated, and the organic layer was washed with a saturated aqueous ammonium chloride solution and a saturated aqueous sodium chloride solution. The extract was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (toluene), and 27.2 g of 2- (4-chlorophenyl) nitrobenzene was isolated (94% yield).

化合物の同定は、H−NMR測定、13C−NMR測定により行った。 The compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(CDCl);7.87(d,1H),7.36−7.66(m,5H),7.21−7.27(m,2H)
13C−NMR(CDCl);148.98,135.85,135.12,134.37,132.45,131.79,129.23,128.84,128.53,124.21
合成例2 (2−クロロカルバゾールの合成[下記(9)式参照])
窒素気流下、200mlのナス型フラスコに、合成例1で得られた2−(4−クロロフェニル)ニトロベンゼン 10.0g(42.7mmol)を仕込み、亜リン酸トリエチルを50ml加えた後、150℃で24時間攪拌した。減圧下に亜リン酸トリエチルを留去し、残渣にo−キシレンを加えて再結晶することにより、2−クロロカルバゾールの白色粉末を5.1g(25.6mmol)単離した(収率60%)。
1 H-NMR (CDCl 3 ); 7.87 (d, 1H), 7.36-7.66 (m, 5H), 7.21-7.27 (m, 2H)
13 C-NMR (CDCl 3 ); 148.98, 135.85, 135.12, 134.37, 132.45, 131.79, 129.23, 128.84, 128.53, 124.21
Synthesis Example 2 (Synthesis of 2-chlorocarbazole [see the following formula (9)])
Under a nitrogen stream, a 200 ml eggplant-shaped flask was charged with 10.0 g (42.7 mmol) of 2- (4-chlorophenyl) nitrobenzene obtained in Synthesis Example 1, 50 ml of triethyl phosphite was added, and then 150 ° C. Stir for 24 hours. Triethyl phosphite was distilled off under reduced pressure, and 5.1 g (25.6 mmol) of 2-chlorocarbazole white powder was isolated by adding o-xylene to the residue and recrystallizing (yield 60%). ).

化合物の同定は、H−NMR測定、13C−NMR測定により行った。 The compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(Acetone−d);10.46(br−s,1H),8.10(d,2H),7.37−7.55(m,3H),7.15−7.24(m,2H)
13C−NMR(Acetone−d);141.35,141.15,131.33,126.70,123.17,122.64,121.92,120.84,120.09,119.78,111.81,111.43
1 H-NMR (Acetone-d 6 ); 10.46 (br-s, 1H), 8.10 (d, 2H), 7.37-7.55 (m, 3H), 7.15-7. 24 (m, 2H)
13 C-NMR (Acetone-d 6 ); 141.35, 141.15, 131.33, 126.70, 123.17, 122.64, 121.92, 120.84, 120.09, 119.78 , 111.81, 111.43

Figure 2011088836
合成例3 (2−クロロ−9−フェニルカルバゾールの合成)
窒素気流下、50mlの三口フラスコに、合成例2で得られた2−クロロカルバゾール 4.0g(19.8mmol)、ブロモベンゼン 15.4g(99.4mmol)、炭酸カリウム 3.8g(27.7mmol)、o−キシレン 10mlを加え、スラリー状の反応液に酢酸パラジウム 44mg(0.19mmol)、トリ(tert−ブチル)ホスフィン 0.14g(0.69mmol)を添加して130℃で24時間攪拌した。室温まで冷却後、純水 10gを加え、有機層を分離した。有機層を水、飽和食塩水で洗浄した後、無水硫酸マグネシウムで乾燥し、減圧下に濃縮した。残渣をシリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、無色オイル状の2−クロロ−9−フェニルカルバゾールを4.5g(16.2mmol)単離した(収率81%)。
Figure 2011088836
Synthesis Example 3 (Synthesis of 2-chloro-9-phenylcarbazole)
In a 50 ml three-necked flask under nitrogen flow, 4.0 g (19.8 mmol) of 2-chlorocarbazole obtained in Synthesis Example 2, 15.4 g (99.4 mmol) of bromobenzene, 3.8 g (27.7 mmol) of potassium carbonate. ), 10 ml of o-xylene was added, and 44 mg (0.19 mmol) of palladium acetate and 0.14 g (0.69 mmol) of tri (tert-butyl) phosphine were added to the slurry-like reaction solution, followed by stirring at 130 ° C. for 24 hours. . After cooling to room temperature, 10 g of pure water was added, and the organic layer was separated. The organic layer was washed with water and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (mixed solvent of toluene and hexane), and 4.5 g (16.2 mmol) of colorless oily 2-chloro-9-phenylcarbazole was isolated (yield 81%).

化合物の同定は、H−NMR測定、13C−NMR測定により行った。 The compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(CDCl);8.08(d,1H),8.01(d,1H),7.16−7.64(m,10H)
13C−NMR(CDCl);141.40,141.20,137.04,131.66,130.01,127.85,127.06,126.19,122.72,121.88,121.11,120.36,120.23,109.94,109.87
合成例4 (2−クロロ−9−ビフェニリルカルバゾールの合成)
窒素気流下、50mlの三口フラスコに、合成例2で得られた2−クロロカルバゾール 4.0g(19.8mmol)、4−ブロモビフェニル 5.5g(23.7mmol)、炭酸カリウム 3.83g(27.7mmol)、o−キシレン 20mlを加え、スラリー状の反応液に酢酸パラジウム 44mg(0.19mmol)、トリ(tert−ブチル)ホスフィン 0.14g(0.69mmol)を添加して130℃で24時間攪拌した。室温まで冷却後、析出した沈殿を濾取し、得られた固体を純水及びメタノールで洗浄した。減圧乾燥した後、n−ブタノールで再結晶し、2−クロロ−9−ビフェニリルカルバゾールの白色粉末を4.9g(13.8mmol)単離した(収率69%)。
1 H-NMR (CDCl 3 ); 8.08 (d, 1H), 8.01 (d, 1H), 7.16-7.64 (m, 10H)
13 C-NMR (CDCl 3 ); 141.40, 141.20, 137.04, 131.66, 130.01, 127.85, 127.06, 126.19, 122.72, 121.88, 121 .11, 120.36, 120.23, 109.94, 109.87
Synthesis Example 4 (Synthesis of 2-chloro-9-biphenylylcarbazole)
In a 50 ml three-necked flask under a nitrogen stream, 4.0 g (19.8 mmol) of 2-chlorocarbazole obtained in Synthesis Example 2, 5.5 g (23.7 mmol) of 4-bromobiphenyl, 3.83 g of potassium carbonate (27 0.7 mmol) and 20 ml of o-xylene were added, and 44 mg (0.19 mmol) of palladium acetate and 0.14 g (0.69 mmol) of tri (tert-butyl) phosphine were added to the slurry-like reaction solution at 130 ° C. for 24 hours. Stir. After cooling to room temperature, the deposited precipitate was collected by filtration, and the resulting solid was washed with pure water and methanol. After drying under reduced pressure, recrystallization with n-butanol isolated 4.9 g (13.8 mmol) of 2-chloro-9-biphenylylcarbazole white powder (yield 69%).

化合物の同定は、H−NMR測定、13C−NMR測定により行った。 The compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(CDCl);8.07(d,1H),8.00(d,1H),7.77(d,2H),7.65(d,2H),7.54(d,2H),7.21−7.41(m,8H)
13C−NMR(CDCl);141.38,141.18,140.72,140.08,136.17,131.75,128.99,128.66,127.74,127.27,127.16,126.23,122.82,121.99,121.19,120.47,120.29,110.05,109.98
合成例5 (2−クロロ−9−メチルカルバゾールの合成)
窒素気流下、200mlの三口フラスコに、合成例2で得られた2−クロロカルバゾール 10.0g(49.5mmol)、ヨードメタン 8.4g(59.4mmol)、ベンジルトリエチルアンモニウムクロリド 11.2g(49.5mmol)、ジメチルスルホキシド 100mlを加え、攪拌下、48%水酸化ナトリウム水溶液を6.1g添加した。70℃で2時間反応後、室温まで冷却し、100gの純水に反応液を加えた。析出した沈殿を濾取し、得られた白色固体を純水で洗浄した。減圧乾燥した後、エタノールで再結晶し、2−クロロ−9−メチルカルバゾールの白色粉末を6.5g(30.2mmol)単離した(収率61%)。
1 H-NMR (CDCl 3 ); 8.07 (d, 1H), 8.00 (d, 1H), 7.77 (d, 2H), 7.65 (d, 2H), 7.54 (d , 2H), 7.21-7.41 (m, 8H)
13 C-NMR (CDCl 3 ); 141.38, 141.18, 140.72, 140.08, 136.17, 131.75, 128.99, 128.66, 127.74, 127.27, 127 .16, 126.23, 122.82, 121.99, 121.19, 120.47, 120.29, 110.05, 109.98
Synthesis Example 5 (Synthesis of 2-chloro-9-methylcarbazole)
Under a nitrogen stream, in a 200 ml three-necked flask, 10.0 g (49.5 mmol) of 2-chlorocarbazole obtained in Synthesis Example 2, 8.4 g (59.4 mmol) of iodomethane, and 11.2 g (49. 49 mmol) of benzyltriethylammonium chloride. 5 mmol), 100 ml of dimethyl sulfoxide was added, and 6.1 g of a 48% aqueous sodium hydroxide solution was added with stirring. After reacting at 70 ° C. for 2 hours, the mixture was cooled to room temperature, and the reaction solution was added to 100 g of pure water. The deposited precipitate was collected by filtration, and the resulting white solid was washed with pure water. After drying under reduced pressure, recrystallization with ethanol isolated 6.5 g (30.2 mmol) of 2-chloro-9-methylcarbazole white powder (yield 61%).

化合物の同定は、H−NMR測定、13C−NMR測定により行った。 The compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(CDCl);7.99(d,1H),7.90(d,1H),7.12−7.49(m,5H),3.70(s,3H)
13C−NMR(CDCl);141.44,141.18,131.39,125.93,122.21,121.31,121.02,120.22,119.36,119.26,108.61,29.17
合成例6 (N−フェニル−N−(2−(9−ビフェニリル)カルバゾリル)アミンの合成)
窒素気流下、200mlの三口フラスコに、合成例4で得られた2−クロロ−9−ビフェニリルカルバゾール 19.0g(53.6mmol)、アニリン 7.4g(80.4mmol)、ナトリウム−tert−ブトキシド 7.21g(75.0mmol)、o−キシレン 120mlを加え、スラリー状の反応液に酢酸パラジウム 120mg(0.53mmol)、トリ(tert−ブチル)ホスフィン 378mg(1.87mmol)を添加して130℃で12時間攪拌した。室温まで冷却後、純水を70g添加し攪拌した。水層と有機層を分液し、更に有機層を純水と飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮し茶色の固体を得た。o−キシレンで再結晶し、N−フェニル−N−(2−(9−ビフェニリル)カルバゾリル)アミンの白色粉末を16.8g(3.0mmol)単離した(収率76%)。
1 H-NMR (CDCl 3 ); 7.99 (d, 1H), 7.90 (d, 1H), 7.12-7.49 (m, 5H), 3.70 (s, 3H)
13 C-NMR (CDCl 3 ); 141.44, 141.18, 131.39, 125.93, 122.21, 121.31, 121.02, 120.22, 119.36, 119.26, 108 61, 29.17
Synthesis Example 6 (Synthesis of N-phenyl-N- (2- (9-biphenylyl) carbazolyl) amine)
In a 200 ml three-necked flask under a nitrogen stream, 19.0 g (53.6 mmol) of 2-chloro-9-biphenylylcarbazole obtained in Synthesis Example 4, 7.4 g (80.4 mmol) of aniline, sodium-tert-butoxide 7.21 g (75.0 mmol) and 120 ml of o-xylene were added, and 120 mg (0.53 mmol) of palladium acetate and 378 mg (1.87 mmol) of tri (tert-butyl) phosphine were added to the slurry reaction solution. For 12 hours. After cooling to room temperature, 70 g of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the organic layer was washed with pure water and a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain a brown solid. Recrystallization from o-xylene isolated 16.8 g (3.0 mmol) of white powder of N-phenyl-N- (2- (9-biphenylyl) carbazolyl) amine (yield 76%).

化合物の同定は、H−NMR測定、13C−NMR測定により行った。 The compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(CDCl);7.95−8.04(m,2H),7.74(d,2H),7.18−7.66(m,12H),6.99−7.12(m,4H),5.77(br,1H)
13C−NMR(CDCl);143.62,142.19,141.73,141.02,140.21,136.79,129.37,128.95,128.49,127.63,127.23,127.14,124.79,123.77,121.11,120.71,120.12,119.45,118.00,117.27,112.38,109.63,99.03
合成例7 (N−フェニル−N−(2−(9−メチル)カルバゾリル)アミンの合成)
窒素気流下、100mlの三口フラスコに、合成例5で得られた2−クロロ−9−メチルカルバゾール 4.0g(18.6mmol)、アニリン 3.4g(37.2mmol)、ナトリウム−tert−ブトキシド 2.5g(26.0mmol)、o−キシレン 40mlを加え、スラリー状の反応液に酢酸パラジウム 41mg(0.18mmol)、トリ(tert−ブチル)ホスフィン 131mg(0.65mmol)を添加して130℃で8時間攪拌した。室温まで冷却後、純水を30g添加し攪拌した。水層と有機層を分液し、更に有機層を純水と飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮し茶色の固体を得た。シリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、N−フェニル−N−(2−(9−メチル)カルバゾリル)アミンの白色粉末を4.8g(17.6mmol)単離した(収率94%)。
1 H-NMR (CDCl 3 ); 7.95-8.04 (m, 2H), 7.74 (d, 2H), 7.18-7.66 (m, 12H), 6.99-7. 12 (m, 4H), 5.77 (br, 1H)
13 C-NMR (CDCl 3 ); 143.62, 142.19, 141.73, 141.02, 140.21, 136.79, 129.37, 128.95, 128.49, 127.63, 127 .23, 127.14, 124.79, 123.77, 121.11, 120.71, 120.12, 119.45, 118.00, 117.27, 112.38, 109.63, 99.03
Synthesis Example 7 (Synthesis of N-phenyl-N- (2- (9-methyl) carbazolyl) amine)
In a 100 ml three-necked flask under a nitrogen stream, 4.0 g (18.6 mmol) of 2-chloro-9-methylcarbazole obtained in Synthesis Example 5, 3.4 g (37.2 mmol) of aniline, sodium-tert-butoxide 2 0.5 g (26.0 mmol) and 40 ml of o-xylene were added, and 41 mg (0.18 mmol) of palladium acetate and 131 mg (0.65 mmol) of tri (tert-butyl) phosphine were added to the slurry reaction solution at 130 ° C. Stir for 8 hours. After cooling to room temperature, 30 g of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the organic layer was washed with pure water and a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain a brown solid. Purification by silica gel column chromatography (a mixed solvent of toluene and hexane) isolated 4.8 g (17.6 mmol) of white powder of N-phenyl-N- (2- (9-methyl) carbazolyl) amine. 94%).

化合物の同定は、H−NMR測定、13C−NMR測定により行った。 The compound was identified by 1 H-NMR measurement and 13 C-NMR measurement.

H−NMR(CDCl);7.90−8.00(m,2H),6.89−7.43(m,10H)
13C−NMR(CDCl);143.76,142.30,141.66,141.15,129.43,124.50,123.09,121.11,120.78,119.39,118.99,117.60,117.43,111.54,108.20,97.47,29.10
実施例1 (化合物(A3)の合成と薄膜安定性の評価)
窒素気流下、50mlの三口フラスコに、合成例6で得られたN−フェニル−N−(2−(9−ビフェニリル)カルバゾリル)アミン 1.0g(2.4mmol)、m−ジブロモベンゼン 0.27g(1.1mmol)、ナトリウム−tert−ブトキシド 309mg(3.2mmol)、o−キシレン 8mlを加え、スラリー状の反応液に酢酸パラジウム 5mg(0.02mmol)、トリ(tert−ブチル)ホスフィン 16mg(0.08mmol)を添加して130℃で7時間攪拌した。室温まで冷却後、純水を10g添加し攪拌した。水層と有機層を分液し、更に有機層を純水と飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮し茶色の固体を得た。シリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、化合物(A3)のガラス状固体を0.7g(0.78mmol)単離した(収率67%)。
1 H-NMR (CDCl 3 ); 7.90-8.00 (m, 2H), 6.89-7.43 (m, 10H)
13 C-NMR (CDCl 3 ); 143.76, 142.30, 141.66, 141.15, 129.43, 124.50, 123.09, 121.11, 120.78, 119.39, 118 .99, 117.60, 117.43, 111.54, 108.20, 97.47, 29.10
Example 1 (Synthesis of Compound (A3) and Evaluation of Thin Film Stability)
In a 50 ml three-necked flask under a nitrogen stream, 1.0 g (2.4 mmol) of N-phenyl-N- (2- (9-biphenylyl) carbazolyl) amine obtained in Synthesis Example 6 and 0.27 g of m-dibromobenzene. (1.1 mmol), 309 mg (3.2 mmol) of sodium-tert-butoxide and 8 ml of o-xylene were added, and 5 mg (0.02 mmol) of palladium acetate and 16 mg (0) of tri (tert-butyl) phosphine were added to the slurry reaction solution. 0.08 mmol) was added and the mixture was stirred at 130 ° C. for 7 hours. After cooling to room temperature, 10 g of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the organic layer was washed with pure water and a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain a brown solid. The product was purified by silica gel column chromatography (a mixed solvent of toluene and hexane), and 0.7 g (0.78 mmol) of a glassy solid of compound (A3) was isolated (yield 67%).

化合物の同定は、FDMS測定により行った。   The compound was identified by FDMS measurement.

FDMS:895
真空蒸着法によってガラス板上に形成した薄膜は、室温下1ヶ月間放置しても白濁(凝集及び結晶化)は見られなかった。また、ガラス転移温度は150℃であり、従来材料であるNPDのガラス転移温度(96℃)と比較して高い結果であった。
FDMS: 895
The thin film formed on the glass plate by the vacuum deposition method did not show white turbidity (aggregation and crystallization) even when allowed to stand at room temperature for 1 month. The glass transition temperature was 150 ° C., which was higher than the glass transition temperature (96 ° C.) of NPD which is a conventional material.

実施例2 (化合物(A6)の合成と薄膜安定性の評価)
窒素気流下、50mlの三口フラスコに、合成例3で得られた2−クロロ−9−フェニルカルバゾール 2.0g(3.6mmol)、N−フェニル−N−(4−(9−カルバゾリル)フェニル)アミン 2.5g(7.4mmol)、ナトリウム−tert−ブトキシド 1.0g(10.4mmol)、o−キシレン 10mlを加え、スラリー状の反応液に酢酸パラジウム 16mg(0.07mmol)、トリ(tert−ブチル)ホスフィン 52mg(0.26mmol)を添加して130℃で20時間攪拌した。室温まで冷却後、純水を10g添加し攪拌した。水層と有機層を分液し、更に有機層を純水と飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮し茶色の固体を得た。シリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、化合物(A6)のガラス状固体を1.5g(2.6mmol)単離した(収率34%)。
Example 2 (Synthesis of Compound (A6) and Evaluation of Thin Film Stability)
In a 50 ml three-necked flask under a nitrogen stream, 2.0 g (3.6 mmol) of 2-chloro-9-phenylcarbazole obtained in Synthesis Example 3 and N-phenyl-N- (4- (9-carbazolyl) phenyl) 2.5 g (7.4 mmol) of amine, 1.0 g (10.4 mmol) of sodium-tert-butoxide and 10 ml of o-xylene were added, and 16 mg (0.07 mmol) of palladium acetate, tri (tert- Butyl) phosphine 52 mg (0.26 mmol) was added and stirred at 130 ° C. for 20 hours. After cooling to room temperature, 10 g of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the organic layer was washed with pure water and a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain a brown solid. The product was purified by silica gel column chromatography (a mixed solvent of toluene and hexane), and 1.5 g (2.6 mmol) of a glassy solid of compound (A6) was isolated (yield 34%).

化合物の同定は、FDMS測定により行った。   The compound was identified by FDMS measurement.

FDMS:575
実施例1と同様の方法でガラス板上に薄膜を形成したところ、室温下1ヶ月間放置しても白濁(凝集及び結晶化)は見られなかった。また、ガラス転移温度は100℃であり、従来材料であるNPDのガラス転移温度(96℃)と比較して高い結果であった。
FDMS: 575
When a thin film was formed on a glass plate by the same method as in Example 1, no cloudiness (aggregation and crystallization) was observed even when allowed to stand at room temperature for 1 month. The glass transition temperature was 100 ° C., which was higher than the glass transition temperature (96 ° C.) of NPD which is a conventional material.

実施例3 (化合物(B3)の合成と薄膜安定性の評価)
窒素気流下、50mlの三口フラスコに、合成例6で得られたN−フェニル−N−(2−(9−ビフェニリル)カルバゾリル)アミン 1.5g(3.6mmol)、4,4’−ジヨードビフェニル 690mg(1.7mmol)、ナトリウム−tert−ブトキシド 457mg(4.7mmol)、o−キシレン 10mlを加え、スラリー状の反応液に酢酸パラジウム 7mg(0.03mmol)、トリ(tert−ブチル)ホスフィン 21mg(0.10mmol)を添加して120℃で6時間攪拌した。室温まで冷却後、純水 10gを加え攪拌した。析出した沈殿を濾取し、得られた黄色固体を水及びエタノールで洗浄した。減圧乾燥した後、o−キシレンで再結晶し、化合物(B3)の黄色粉末を1.3g(1.3mmol)単離した(収率81%)。
Example 3 (Synthesis of Compound (B3) and Evaluation of Thin Film Stability)
In a 50 ml three-necked flask under a nitrogen stream, 1.5 g (3.6 mmol) of N-phenyl-N- (2- (9-biphenylyl) carbazolyl) amine obtained in Synthesis Example 6 and 4,4′-diiodo Biphenyl 690 mg (1.7 mmol), sodium tert-butoxide 457 mg (4.7 mmol), o-xylene 10 ml were added, and palladium acetate 7 mg (0.03 mmol), tri (tert-butyl) phosphine 21 mg was added to the slurry reaction solution. (0.10 mmol) was added and stirred at 120 ° C. for 6 hours. After cooling to room temperature, 10 g of pure water was added and stirred. The deposited precipitate was collected by filtration, and the resulting yellow solid was washed with water and ethanol. After drying under reduced pressure, it was recrystallized from o-xylene to isolate 1.3 g (1.3 mmol) of yellow powder of compound (B3) (yield 81%).

化合物の同定は、FDMS測定により行った。   The compound was identified by FDMS measurement.

FDMS:971
実施例1と同様の方法でガラス板上に薄膜を形成したところ、室温下1ヶ月間放置しても白濁(凝集及び結晶化)は見られなかった。また、ガラス転移温度は145℃であり、従来材料であるNPDのガラス転移温度(96℃)と比較して高い結果であった。
FDMS: 971
When a thin film was formed on a glass plate by the same method as in Example 1, no cloudiness (aggregation and crystallization) was observed even when allowed to stand at room temperature for 1 month. The glass transition temperature was 145 ° C., which was higher than the glass transition temperature (96 ° C.) of NPD which is a conventional material.

実施例4 (化合物(B10)の合成と薄膜安定性の評価)
窒素気流下、50mlの三口フラスコに、合成例6で得られたN−フェニル−N−(2−(9−ビフェニリル)カルバゾリル)アミン 1.5g(3.6mmol)、3,3’−ジクロロビフェニル 385mg(1.7mmol)、ナトリウム−tert−ブトキシド 457mg(4.7mmol)、o−キシレン 10mlを加え、スラリー状の反応液に酢酸パラジウム 7mg(0.03mmol)、トリ(tert−ブチル)ホスフィン 21mg(0.10mmol)を添加して130℃で24時間攪拌した。室温まで冷却後、純水 10gを加え攪拌した。析出した沈殿を濾取し、得られた白色固体を水及びエタノールで洗浄した。減圧乾燥した後、o−キシレンで再結晶し、化合物(B10)の白色粉末を1.1g(1.1mmol)単離した(収率63%)。
Example 4 (Synthesis of Compound (B10) and Evaluation of Thin Film Stability)
In a 50 ml three-necked flask under a nitrogen stream, 1.5 g (3.6 mmol) of N-phenyl-N- (2- (9-biphenylyl) carbazolyl) amine obtained in Synthesis Example 6 and 3,3′-dichlorobiphenyl were obtained. 385 mg (1.7 mmol), sodium-tert-butoxide 457 mg (4.7 mmol), and o-xylene 10 ml were added, and 7 mg (0.03 mmol) of palladium acetate and 21 mg of tri (tert-butyl) phosphine were added to the slurry reaction solution. 0.10 mmol) was added and stirred at 130 ° C. for 24 hours. After cooling to room temperature, 10 g of pure water was added and stirred. The deposited precipitate was collected by filtration, and the resulting white solid was washed with water and ethanol. After drying under reduced pressure, it was recrystallized from o-xylene to isolate 1.1 g (1.1 mmol) of white powder of compound (B10) (yield 63%).

化合物の同定は、FDMS測定により行った。   The compound was identified by FDMS measurement.

FDMS:971
実施例1と同様の方法でガラス板上に薄膜を形成したところ、室温下1ヶ月間放置しても白濁(凝集及び結晶化)は見られなかった。また、ガラス転移温度は134℃であり、従来材料であるNPDのガラス転移温度(96℃)と比較して高い結果であった。
FDMS: 971
When a thin film was formed on a glass plate by the same method as in Example 1, no cloudiness (aggregation and crystallization) was observed even when allowed to stand at room temperature for 1 month. The glass transition temperature was 134 ° C., which was higher than the glass transition temperature (96 ° C.) of NPD which is a conventional material.

実施例5 (化合物(B14)の合成と薄膜安定性の評価)
窒素気流下、50mlの三口フラスコに、合成例6で得られたN−フェニル−N−(2−(9−ビフェニリル)カルバゾリル)アミン 2.0g(4.8mmol)、3,4’−ジクロロビフェニル 491mg(2.2mmol)、ナトリウム−tert−ブトキシド 594mg(6.1mmol)、o−キシレン 10mlを加え、スラリー状の反応液に酢酸パラジウム 10mg(0.04mmol)、トリ(tert−ブチル)ホスフィン 31mg(0.15mmol)を添加して130℃で24時間攪拌した。室温まで冷却後、純水を10g添加し攪拌した。水層と有機層を分液し、更に有機層を純水と飽和塩化ナトリウム水溶液で洗浄した。有機層を無水硫酸マグネシウムで乾燥後、減圧下に濃縮し茶色の固体を得た。シリカゲルカラムクロマトグラフィー(トルエンとヘキサンの混合溶媒)で精製し、化合物(B14)のガラス状固体を1.7g(1.7mmol)単離した(収率79%)。
Example 5 (Synthesis of Compound (B14) and Evaluation of Thin Film Stability)
In a 50 ml three-necked flask under a nitrogen stream, 2.0 g (4.8 mmol) of N-phenyl-N- (2- (9-biphenylyl) carbazolyl) amine obtained in Synthesis Example 6 and 3,4′-dichlorobiphenyl were obtained. 491 mg (2.2 mmol), sodium-tert-butoxide 594 mg (6.1 mmol), and 10 ml of o-xylene were added, and 10 mg (0.04 mmol) of palladium acetate and 31 mg of tri (tert-butyl) phosphine were added to the slurry reaction solution. 0.15 mmol) was added and the mixture was stirred at 130 ° C. for 24 hours. After cooling to room temperature, 10 g of pure water was added and stirred. The aqueous layer and the organic layer were separated, and the organic layer was washed with pure water and a saturated aqueous sodium chloride solution. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure to obtain a brown solid. Purification by silica gel column chromatography (mixed solvent of toluene and hexane) isolated 1.7 g (1.7 mmol) of a glassy solid of compound (B14) (yield 79%).

化合物の同定は、FDMS測定により行った。   The compound was identified by FDMS measurement.

FDMS:971
実施例1と同様の方法でガラス板上に薄膜を形成したところ、室温下1ヶ月間放置しても白濁(凝集及び結晶化)は見られなかった。また、ガラス転移温度は138℃であり、従来材料であるNPDのガラス転移温度(96℃)と比較して高い結果であった。
FDMS: 971
When a thin film was formed on a glass plate by the same method as in Example 1, no cloudiness (aggregation and crystallization) was observed even when allowed to stand at room temperature for 1 month. The glass transition temperature was 138 ° C., which was higher than the glass transition temperature (96 ° C.) of NPD which is a conventional material.

実施例6 (化合物(C7)の合成と薄膜安定性の評価)
窒素気流下、50mlの三口フラスコに、合成例7で得られたN−フェニル−N−(2−(9−メチル)カルバゾリル)アミン 4.0g(14.6mmol)、4,4’’−ジクロロ−m−ターフェニル 1.99g(6.6mmol)、ナトリウム−tert−ブトキシド 1.7g(18.6mmol)、o−キシレン 20mlを加え、スラリー状の反応液に酢酸パラジウム 29mg(0.13mmol)、トリ(tert−ブチル)ホスフィン 94mg(0.46mmol)を添加して130℃で24時間攪拌した。室温まで冷却後、純水 20gを加え攪拌した。析出した沈殿を濾取し、得られた白色固体を純水及びエタノールで洗浄した。減圧乾燥した後、o−キシレンで再結晶し、化合物(C7)の白色粉末を3.8g(4.9mmol)単離した(収率74%)。
Example 6 (Synthesis of Compound (C7) and Evaluation of Thin Film Stability)
In a 50 ml three-necked flask under a nitrogen stream, 4.0 g (14.6 mmol) of N-phenyl-N- (2- (9-methyl) carbazolyl) amine obtained in Synthesis Example 7 and 4,4 ″ -dichloro -M-terphenyl 1.99 g (6.6 mmol), sodium-tert-butoxide 1.7 g (18.6 mmol), o-xylene 20 ml were added, and 29 mg (0.13 mmol) of palladium acetate was added to the slurry reaction solution. 94 mg (0.46 mmol) of tri (tert-butyl) phosphine was added and stirred at 130 ° C. for 24 hours. After cooling to room temperature, 20 g of pure water was added and stirred. The deposited precipitate was collected by filtration, and the obtained white solid was washed with pure water and ethanol. After drying under reduced pressure, it was recrystallized with o-xylene to isolate 3.8 g (4.9 mmol) of white powder of compound (C7) (yield 74%).

化合物の同定は、FDMS測定により行った。   The compound was identified by FDMS measurement.

FDMS:770
実施例1と同様の方法でガラス板上に薄膜を形成したところ、室温下1ヶ月間放置しても白濁(凝集及び結晶化)は見られなかった。また、ガラス転移温度は138℃であり、従来材料であるNPDのガラス転移温度(96℃)と比較して高い結果であった。
FDMS: 770
When a thin film was formed on a glass plate by the same method as in Example 1, no cloudiness (aggregation and crystallization) was observed even when allowed to stand at room temperature for 1 month. The glass transition temperature was 138 ° C., which was higher than the glass transition temperature (96 ° C.) of NPD which is a conventional material.

実施例7 (化合物(A3)のイオン化ポテンシャルの評価)
過塩素酸テトラブチルアンモニウムの濃度が0.1mol/lである無水ジクロロメタン溶液に、化合物(A3)を0.001mol/lの濃度で溶解させ、サイクリックボルタンメトリーでイオン化ポテンシャルを測定した。作用電極にはグラッシーカーボン、対極に白金線、参照電極にAgNOのアセトニトリル溶液に浸した銀線を用いた。標準物質としてフェロセンを用い、フェロセンの酸化還元電位を基準とした際の化合物(A3)のイオン化ポテンシャルは0.39V vs.Fc/Fcであった。この値は、従来から正孔輸送材料として知られているNPDのイオン化ポテンシャル(0.31V vs.Fc/Fc)と同等であった。
Example 7 (Evaluation of ionization potential of compound (A3))
Compound (A3) was dissolved at a concentration of 0.001 mol / l in anhydrous dichloromethane solution having a tetrabutylammonium perchlorate concentration of 0.1 mol / l, and the ionization potential was measured by cyclic voltammetry. Glassy carbon was used for the working electrode, platinum wire was used for the counter electrode, and silver wire immersed in an acetonitrile solution of AgNO 3 was used for the reference electrode. Ferrocene is used as the standard substance, and the ionization potential of the compound (A3) based on the oxidation-reduction potential of ferrocene is 0.39 V vs. Fc / Fc + . This value was equivalent to the ionization potential (0.31 V vs. Fc / Fc + ) of NPD which has been conventionally known as a hole transport material.

実施例8 (化合物(A6)のイオン化ポテンシャルの評価)
実施例7と同様の方法で化合物(A6)のイオン化ポテンシャルを評価したところ、0.38V vs.Fc/Fcであり、従来から正孔輸送材料として知られているNPDのイオン化ポテンシャル(0.31V vs.Fc/Fc)と同等であった。
Example 8 (Evaluation of ionization potential of compound (A6))
When the ionization potential of the compound (A6) was evaluated in the same manner as in Example 7, it was 0.38 V vs. Fc / Fc + , which was equivalent to the ionization potential (0.31 V vs. Fc / Fc + ) of NPD, which has been conventionally known as a hole transport material.

実施例9 (化合物(B3)のイオン化ポテンシャルの評価)
実施例7と同様の方法で化合物(B3)のイオン化ポテンシャルを評価したところ、0.28V vs.Fc/Fcであり、従来から正孔輸送材料として知られているNPDのイオン化ポテンシャル(0.31V vs.Fc/Fc)と同等であった。
Example 9 (Evaluation of ionization potential of compound (B3))
When the ionization potential of the compound (B3) was evaluated in the same manner as in Example 7, it was 0.28 V vs. Fc / Fc + , which was equivalent to the ionization potential (0.31 V vs. Fc / Fc + ) of NPD, which has been conventionally known as a hole transport material.

実施例10 (化合物(B10)のイオン化ポテンシャルの評価)
実施例7と同様の方法で化合物(B10)のイオン化ポテンシャルを評価したところ、0.37V vs.Fc/Fcであり、従来から正孔輸送材料として知られているNPDのイオン化ポテンシャル(0.31V vs.Fc/Fc)と同等であった。
Example 10 (Evaluation of ionization potential of compound (B10))
When the ionization potential of the compound (B10) was evaluated in the same manner as in Example 7, it was 0.37 V vs. Fc / Fc + , which was equivalent to the ionization potential (0.31 V vs. Fc / Fc + ) of NPD, which has been conventionally known as a hole transport material.

実施例11 (化合物(B14)のイオン化ポテンシャルの評価)
実施例7と同様の方法で化合物(B14)のイオン化ポテンシャルを評価したところ、0.37V vs.Fc/Fcであり、従来から正孔輸送材料として知られているNPDのイオン化ポテンシャル(0.31V vs.Fc/Fc)と同等であった。
Example 11 (Evaluation of ionization potential of compound (B14))
When the ionization potential of the compound (B14) was evaluated in the same manner as in Example 7, it was 0.37 V vs. Fc / Fc + , which was equivalent to the ionization potential (0.31 V vs. Fc / Fc + ) of NPD, which has been conventionally known as a hole transport material.

実施例12 (化合物(C7)のイオン化ポテンシャルの評価)
実施例7と同様の方法で化合物(C7)のイオン化ポテンシャルを評価したところ、0.35V vs.Fc/Fcであり、従来から正孔輸送材料として知られているNPDのイオン化ポテンシャル(0.31V vs.Fc/Fc)と同等であった。
Example 12 (Evaluation of ionization potential of compound (C7))
When the ionization potential of the compound (C7) was evaluated in the same manner as in Example 7, it was 0.35 V vs. Fc / Fc + , which was equivalent to the ionization potential (0.31 V vs. Fc / Fc + ) of NPD, which has been conventionally known as a hole transport material.

比較例1 (比較化合物(a)のイオン化ポテンシャルの評価)
実施例7と同様の方法でカルバゾール環の3位にアミノ基が結合した以下に示す比較化合物(a)のイオン化ポテンシャルを評価したところ、0.15V vs.Fc/Fcであり、従来から正孔輸送材料として知られているNPDのイオン化ポテンシャル(0.31V vs.Fc/Fc)と比較すると低い値であった。
Comparative Example 1 (Evaluation of ionization potential of comparative compound (a))
When the ionization potential of the following comparative compound (a) in which an amino group was bonded to the 3-position of the carbazole ring by the same method as in Example 7 was evaluated, 0.15 V vs. Fc / Fc + , which was lower than the ionization potential (0.31 V vs. Fc / Fc + ) of NPD, which has been conventionally known as a hole transport material.

Figure 2011088836
実施例13 (化合物(A3)の素子評価)
厚さ200nmのITO透明電極(陽極)を積層したガラス基板を、アセトン及び純水による超音波洗浄、イソプロピルアルコールによる沸騰洗浄を行った。更に紫外線オゾン洗浄を行ない、真空蒸着装置へ設置後、1×10−4Paになるまで真空ポンプにて排気した。まず、ITO透明電極上に銅フタロシアニンを蒸着速度0.1nm/秒で蒸着し、25nmの正孔注入層とした。引続き、化合物(A3)を蒸着速度0.3nm/秒で40nm蒸着した後、トリス(8−キノリノラート)アルミニウムを蒸着速度0.3nm/秒で60nm蒸着して発光層とした。引続き、電子注入層として沸化リチウムを蒸着速度0.01nm/秒で0.5nm蒸着し、更にアルミニウムを蒸着速度0.25nm/秒で100nm蒸着して陰極を形成した。窒素雰囲気下、封止用のガラス板をUV硬化樹脂で接着し、評価用の有機EL素子とした。このように作製した素子に20mA/cmの電流を印加し、駆動電圧及び外部量子効率を測定した。結果を表1に示す。
Figure 2011088836
Example 13 (Element evaluation of compound (A3))
The glass substrate on which the ITO transparent electrode (anode) having a thickness of 200 nm was laminated was subjected to ultrasonic cleaning with acetone and pure water and boiling cleaning with isopropyl alcohol. Furthermore, ultraviolet ozone cleaning was performed, and after evacuation with a vacuum pump until it was 1 × 10 −4 Pa after installation in a vacuum deposition apparatus. First, copper phthalocyanine was deposited on the ITO transparent electrode at a deposition rate of 0.1 nm / second to form a 25 nm hole injection layer. Subsequently, after compound (A3) was deposited at a deposition rate of 0.3 nm / second to 40 nm, tris (8-quinolinolato) aluminum was deposited at a deposition rate of 0.3 nm / second to 60 nm to obtain a light emitting layer. Subsequently, lithium fluoride was deposited as an electron injection layer at a deposition rate of 0.01 nm / second to 0.5 nm, and aluminum was deposited at a deposition rate of 0.25 nm / second to 100 nm to form a cathode. In a nitrogen atmosphere, a sealing glass plate was bonded with a UV curable resin to obtain an organic EL element for evaluation. A current of 20 mA / cm 2 was applied to the device thus fabricated, and driving voltage and external quantum efficiency were measured. The results are shown in Table 1.

実施例14 (化合物(A6)の素子評価)
化合物(A3)を化合物(A6)に変更した以外は実施例13と同様な有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
Example 14 (Element Evaluation of Compound (A6))
An organic EL device was produced in the same manner as in Example 13 except that the compound (A3) was changed to the compound (A6). Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.

実施例15 (化合物(B3)の素子評価)
化合物(A3)を化合物(B3)に変更した以外は実施例13と同様な有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
Example 15 (Element evaluation of compound (B3))
An organic EL device was produced in the same manner as in Example 13 except that the compound (A3) was changed to the compound (B3). Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.

実施例16 (化合物(B10)の素子評価)
化合物(A3)を化合物(B10)に変更した以外は実施例13と同様な有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
Example 16 (Element Evaluation of Compound (B10))
An organic EL device was produced in the same manner as in Example 13 except that the compound (A3) was changed to the compound (B10). Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.

実施例17 (化合物(B14)の素子評価)
化合物(A3)を化合物(B14)に変更した以外は実施例13と同様な有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
Example 17 (Element Evaluation of Compound (B14))
An organic EL device was produced in the same manner as in Example 13 except that the compound (A3) was changed to the compound (B14). Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.

実施例18 (化合物(C7)の素子評価)
化合物(A3)を化合物(C7)に変更した以外は実施例13と同様な有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
Example 18 (Element evaluation of compound (C7))
An organic EL device was produced in the same manner as in Example 13 except that the compound (A3) was changed to the compound (C7). Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.

比較例2
化合物(A3)をNPDに変更した以外は実施例13と同様な有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
Comparative Example 2
An organic EL device was produced in the same manner as in Example 13 except that the compound (A3) was changed to NPD. Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.

比較例3
化合物(A3)を比較化合物(a)に変更した以外は実施例13と同様な有機EL素子を作製した。20mA/cmの電流を印加した際の駆動電圧及び外部量子効率を表1に示す。
Comparative Example 3
An organic EL device was produced in the same manner as in Example 13 except that the compound (A3) was changed to the comparative compound (a). Table 1 shows the driving voltage and the external quantum efficiency when a current of 20 mA / cm 2 is applied.

Figure 2011088836
Figure 2011088836

Claims (6)

一般式(1)
Figure 2011088836
(式中、Ar、Ar及びArは各々独立して置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。なお、ArとArは互いに結合して環を形成してもよい。Rは炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表し、R及びRは各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表し、Xは置換若しくは無置換の炭素数6〜50のアリーレン基を表し、nは1〜3の整数を表す。ただし、Rが置換基を有するアリール基である場合、置換基としてアミノ基は除く。)
で表されるカルバゾール化合物。
General formula (1)
Figure 2011088836
(In the formula, Ar 1 , Ar 2 and Ar 3 each independently represent a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms. , Ar 2 and Ar 3 may be bonded to each other to form a ring, R 1 is a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, substituted or unsubstituted aryl having 6 to 50 carbon atoms Or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms, wherein R 2 and R 3 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms. Group, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms, X is substitution Properly represents the unsubstituted arylene group having a carbon number of 6 to 50, n is an integer of 1-3. However, if R 1 is an aryl group having a substituent, an amino group is excluded as a substituent.)
The carbazole compound represented by these.
前記一般式(1)において、Xが置換若しくは無置換のフェニレン基、置換若しくは無置換のビフェニレン基、及び置換若しくは無置換のターフェニレン基から選ばれる一種であることを特徴とする請求項1に記載のカルバゾール化合物。 2. The general formula (1), wherein X is a kind selected from a substituted or unsubstituted phenylene group, a substituted or unsubstituted biphenylene group, and a substituted or unsubstituted terphenylene group. The carbazole compound described. 前記一般式(1)において、nが1であり、Xが下記一般式(2)〜(6)
Figure 2011088836
(式中、R〜R12は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。)
のいずれか一つで表されることを特徴とする請求項1乃至2に記載のカルバゾール化合物。
In the general formula (1), n is 1, and X is the following general formulas (2) to (6).
Figure 2011088836
(In the formula, R 4 to R 12 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms. Represents a group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms.)
The carbazole compound according to claim 1, which is represented by any one of the following.
前記一般式(1)において、ArとArが互いに結合し、下記一般式(7)
Figure 2011088836
(式中、R13及びR14は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。)
で表されるカルバゾール環を形成することを特徴とする請求項1乃至3に記載のカルバゾール化合物。
In the general formula (1), Ar 2 and Ar 3 are bonded to each other, and the following general formula (7)
Figure 2011088836
Wherein R 13 and R 14 are each independently a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic alkoxy group having 1 to 18 carbon atoms. Represents a group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms.)
The carbazole compound according to claim 1, wherein a carbazole ring represented by the formula:
前記一般式(1)において、Arが下記一般式(8)
Figure 2011088836
(式中、R15は炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表し、R16及びR17は各々独立して水素原子、ハロゲン原子、炭素数1〜18の直鎖、分岐若しくは環状のアルキル基、炭素数1〜18の直鎖、分岐若しくは環状のアルコキシ基、置換若しくは無置換の炭素数6〜50のアリール基、又は置換若しくは無置換の炭素数4〜50のヘテロアリール基を表す。)
で表される置換基であることを特徴とする請求項1乃至3に記載のカルバゾール化合物。
In the general formula (1), Ar 2 represents the following general formula (8)
Figure 2011088836
(In the formula, R 15 is a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted hetero group having 4 to 50 carbon atoms. R 16 and R 17 each independently represent a hydrogen atom, a halogen atom, a linear, branched or cyclic alkyl group having 1 to 18 carbon atoms, a linear, branched or cyclic group having 1 to 18 carbon atoms. Represents an alkoxy group, a substituted or unsubstituted aryl group having 6 to 50 carbon atoms, or a substituted or unsubstituted heteroaryl group having 4 to 50 carbon atoms.)
The carbazole compound according to claim 1, wherein the carbazole compound is represented by the formula:
請求項1乃至5に記載のカルバゾール化合物を発光層、正孔輸送層及び正孔注入層の少なくともいずれか一層に用いることを特徴とする有機EL素子。 6. An organic EL device comprising the carbazole compound according to claim 1 in at least one of a light emitting layer, a hole transport layer, and a hole injection layer.
JP2009241666A 2009-10-20 2009-10-20 Carbazole compounds and uses thereof Active JP5585044B2 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2009241666A JP5585044B2 (en) 2009-10-20 2009-10-20 Carbazole compounds and uses thereof
TW099135767A TWI527796B (en) 2009-10-20 2010-10-20 Carbazole compound and use thereof
EP10824972.3A EP2492260B1 (en) 2009-10-20 2010-10-20 Carbazole compound
CN201410525675.8A CN104326968B (en) 2009-10-20 2010-10-20 Carbazole compound and use thereof
CN201080057970.5A CN102666487B (en) 2009-10-20 2010-10-20 Carbazole compound and use thereof
CN201410525660.1A CN104370801B (en) 2009-10-20 2010-10-20 Carbazole compound and application thereof
KR1020127012994A KR101801412B1 (en) 2009-10-20 2010-10-20 Carbazole compound and use thereof
PCT/JP2010/068469 WO2011049123A1 (en) 2009-10-20 2010-10-20 Carbazole compound and use thereof
US13/502,834 US9650565B2 (en) 2009-10-20 2010-10-20 Carbazole compound and use thereof
KR1020177032800A KR101935710B1 (en) 2009-10-20 2010-10-20 Carbazole compound and use thereof
KR1020177032801A KR101929151B1 (en) 2009-10-20 2010-10-20 Carbazole compound and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009241666A JP5585044B2 (en) 2009-10-20 2009-10-20 Carbazole compounds and uses thereof

Publications (2)

Publication Number Publication Date
JP2011088836A true JP2011088836A (en) 2011-05-06
JP5585044B2 JP5585044B2 (en) 2014-09-10

Family

ID=44107432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241666A Active JP5585044B2 (en) 2009-10-20 2009-10-20 Carbazole compounds and uses thereof

Country Status (1)

Country Link
JP (1) JP5585044B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001349A (en) * 2009-05-20 2011-01-06 Tosoh Corp 2-aminocarbazole compound and application thereof
US9172047B2 (en) 2012-11-30 2015-10-27 Samsung Display Co., Ltd. Hole transport material for organic electroluminescence device and organic electroluminescence device using the same
EP3021372A1 (en) * 2013-07-12 2016-05-18 Hodogaya Chemical Co., Ltd. Organic electroluminescent element
WO2016079944A1 (en) * 2014-11-18 2016-05-26 保土谷化学工業株式会社 Organic electroluminescent element
KR20180021028A (en) * 2018-02-12 2018-02-28 덕산네오룩스 주식회사 Novel compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
WO2020027264A1 (en) * 2018-08-03 2020-02-06 日産化学株式会社 Aniline derivative

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102552251B1 (en) 2016-06-17 2023-07-06 덕산네오룩스 주식회사 Compound for organic electronic element, organic electronic element comprising the same, and electronic device thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003316035A (en) * 2002-04-19 2003-11-06 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2005516059A (en) * 2002-01-28 2005-06-02 センシエント イマジング テクノロジイズ ゲーエムベーハー Triarylamine derivatives and their use in organic electroluminescence and electrophotographic devices
JP2006028176A (en) * 2004-07-14 2006-02-02 Samsung Sdi Co Ltd Phenylcarbazole compound and organic electroluminescence device using the same
JP2006151979A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Phenylcarbazole-based compound and method for producing the same and organic electroluminescent device
JP2006298895A (en) * 2004-10-19 2006-11-02 Semiconductor Energy Lab Co Ltd Carbazole derivative and light-emitting element and light-emitting apparatus using carbazole derivative
JP2006298898A (en) * 2004-12-28 2006-11-02 Semiconductor Energy Lab Co Ltd Carbazole derivative and light-emitting element and light-emitting apparatus using carbazole derivative
JP2007520470A (en) * 2004-03-19 2007-07-26 エルジー・ケム・リミテッド Novel hole injection or transport material and organic light emitting device using the same
JP2008078362A (en) * 2006-09-21 2008-04-03 Toray Ind Inc Light emitting element material and light emitting element
JP2008195841A (en) * 2007-02-14 2008-08-28 Toray Ind Inc Material for light-emitting element and the resulting light-emitting element
JP2009013315A (en) * 2007-07-06 2009-01-22 Toyo Ink Mfg Co Ltd Sealing composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005516059A (en) * 2002-01-28 2005-06-02 センシエント イマジング テクノロジイズ ゲーエムベーハー Triarylamine derivatives and their use in organic electroluminescence and electrophotographic devices
JP2003316035A (en) * 2002-04-19 2003-11-06 Canon Inc Electrophotographic photoreceptor, process cartridge and electrophotographic device
JP2007520470A (en) * 2004-03-19 2007-07-26 エルジー・ケム・リミテッド Novel hole injection or transport material and organic light emitting device using the same
JP2006028176A (en) * 2004-07-14 2006-02-02 Samsung Sdi Co Ltd Phenylcarbazole compound and organic electroluminescence device using the same
JP2006298895A (en) * 2004-10-19 2006-11-02 Semiconductor Energy Lab Co Ltd Carbazole derivative and light-emitting element and light-emitting apparatus using carbazole derivative
JP2006151979A (en) * 2004-11-29 2006-06-15 Samsung Sdi Co Ltd Phenylcarbazole-based compound and method for producing the same and organic electroluminescent device
JP2006298898A (en) * 2004-12-28 2006-11-02 Semiconductor Energy Lab Co Ltd Carbazole derivative and light-emitting element and light-emitting apparatus using carbazole derivative
JP2008078362A (en) * 2006-09-21 2008-04-03 Toray Ind Inc Light emitting element material and light emitting element
JP2008195841A (en) * 2007-02-14 2008-08-28 Toray Ind Inc Material for light-emitting element and the resulting light-emitting element
JP2009013315A (en) * 2007-07-06 2009-01-22 Toyo Ink Mfg Co Ltd Sealing composition

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001349A (en) * 2009-05-20 2011-01-06 Tosoh Corp 2-aminocarbazole compound and application thereof
US9172047B2 (en) 2012-11-30 2015-10-27 Samsung Display Co., Ltd. Hole transport material for organic electroluminescence device and organic electroluminescence device using the same
EP3021372A4 (en) * 2013-07-12 2017-04-05 Hodogaya Chemical Co., Ltd. Organic electroluminescent element
EP3021372A1 (en) * 2013-07-12 2016-05-18 Hodogaya Chemical Co., Ltd. Organic electroluminescent element
CN107078226A (en) * 2014-11-18 2017-08-18 保土谷化学工业株式会社 Organic electroluminescence device
JP6038387B2 (en) * 2014-11-18 2016-12-07 保土谷化学工業株式会社 Organic electroluminescence device
WO2016079944A1 (en) * 2014-11-18 2016-05-26 保土谷化学工業株式会社 Organic electroluminescent element
CN107078226B (en) * 2014-11-18 2020-02-28 保土谷化学工业株式会社 Organic electroluminescent device
KR20180021028A (en) * 2018-02-12 2018-02-28 덕산네오룩스 주식회사 Novel compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
KR101986172B1 (en) * 2018-02-12 2019-06-05 덕산네오룩스 주식회사 Novel compound for organic electronic element, organic electronic element using the same, and a electronic device thereof
WO2020027264A1 (en) * 2018-08-03 2020-02-06 日産化学株式会社 Aniline derivative
JPWO2020027264A1 (en) * 2018-08-03 2021-08-19 日産化学株式会社 Aniline derivative
JP7505407B2 (en) 2018-08-03 2024-06-25 日産化学株式会社 Aniline Derivatives

Also Published As

Publication number Publication date
JP5585044B2 (en) 2014-09-10

Similar Documents

Publication Publication Date Title
JP5609256B2 (en) 2-Aminocarbazole compounds and uses thereof
KR101801412B1 (en) Carbazole compound and use thereof
TWI641604B (en) Compound having diazatriphenylene ring structure, and organic electroluminescent device
JP6307689B2 (en) AMINE DERIVATIVE, ORGANIC LIGHT EMITTING MATERIAL AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME
JP5927875B2 (en) Amine compounds and uses thereof
JP5585044B2 (en) Carbazole compounds and uses thereof
KR20080108115A (en) Benzofluorene compound and use thereof
WO2012001969A1 (en) Aromatic amine derivative, and organic electroluminescent element comprising same
JP5145717B2 (en) Benzofluorene compounds and uses thereof
JP2015071582A (en) 2-aminocarbazole compound and use thereof
JP2015119055A (en) Material for organic electroluminescent element and organic electroluminescent element using the same
KR102137292B1 (en) Novel amine compound and use thereof
JP5609234B2 (en) Biscarbazole compounds and uses thereof
JP5716270B2 (en) Carbazole compounds and uses thereof
JP6032107B2 (en) 2,5-Diaminocarbazole compound and use thereof
JP5754116B2 (en) Amine compound, production method thereof, and use thereof
JP6311266B2 (en) Carbazole compounds and uses thereof
JP2015119054A (en) Material for organic electroluminescent devices, and organic electroluminescent device arranged by use thereof
JP2016076519A (en) Material for organic electroluminescent element and organic electroluminescent element including the same
JP2011136910A (en) Amide derivative, and use thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140624

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140707

R151 Written notification of patent or utility model registration

Ref document number: 5585044

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151