JP2008045202A - Method for producing metal nanopowder using gas-phase reaction method - Google Patents
Method for producing metal nanopowder using gas-phase reaction method Download PDFInfo
- Publication number
- JP2008045202A JP2008045202A JP2007014915A JP2007014915A JP2008045202A JP 2008045202 A JP2008045202 A JP 2008045202A JP 2007014915 A JP2007014915 A JP 2007014915A JP 2007014915 A JP2007014915 A JP 2007014915A JP 2008045202 A JP2008045202 A JP 2008045202A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- metal
- chloride
- nanopowder
- nickel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/16—Making metallic powder or suspensions thereof using chemical processes
- B22F9/18—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
- B22F9/24—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
- B22F9/26—Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions using gaseous reductors
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/05—Metallic powder characterised by the size or surface area of the particles
- B22F1/054—Nanosized particles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2301/00—Metallic composition of the powder or its coating
- B22F2301/15—Nickel or cobalt
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2304/00—Physical aspects of the powder
- B22F2304/05—Submicron size particles
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
本発明は金属ナノ粉末の製造方法に関し、より詳しくは、金属塩化物を蒸発させた後、アンモニアガス雰囲気下で、高温で水素ガスと還元反応させることにより、非常に均一な粒度を有する金属ナノ粉末を製造する方法に関する。 The present invention relates to a method for producing metal nanopowder, and more specifically, after metal chloride is evaporated, a metal nanoparticle having a very uniform particle size is obtained by a reduction reaction with hydrogen gas at high temperature in an ammonia gas atmosphere. The present invention relates to a method for producing a powder.
最近、全世界的にナノ技術に関心が集中しており、これに関する研究開発が活発に行われ、各種ナノ材料の製造及び応用に関する新しい技術が国内外で続々と報告されている。このようなナノ技術の特徴は、既存の素材や材料が有する物性を画期的に改善することにより、実現不可能であると考えられていた様々な製品を現実的に実現可能にすることである。例えば、半導体回路の線幅を100ナノメートル以下にすることにより、従来の水準に比べて集積度を大きく向上させることができ、新しい概念のメモリチップであるMRAMの実現、各種高性能センサ、及び化学触媒などに広範囲に応用できる。 Recently, attention has been focused on nanotechnology all over the world, and research and development related to this has been actively conducted, and new technologies relating to the production and application of various nanomaterials have been reported one after another in Japan and overseas. The feature of such nanotechnology is to make it possible to realistically realize various products that were thought to be impossible by improving the physical properties of existing materials and materials. is there. For example, by reducing the line width of a semiconductor circuit to 100 nanometers or less, the degree of integration can be greatly improved as compared to the conventional level. Realization of a new concept memory chip MRAM, various high-performance sensors, It can be applied to a wide range of chemical catalysts.
金属ナノ粉末を製造するための方法としては、液相で化学反応を起こさせてナノサイズの金属を沈殿させる方法、および気相で高温熱分解して金属ナノ粉末を得る方法が知られているが、これら2つの方法においては、原料として金属アルコキシドなどの有機金属化合物を使用するのが一般的である。しかし、有機金属化合物は、その多くが非常に高価であるため、金属ナノ粉末の大量生産には経済性の問題が伴う。 Known methods for producing metal nanopowder include a method in which a chemical reaction is caused in a liquid phase to precipitate a nanosized metal, and a method in which a metal nanopowder is obtained by high-temperature pyrolysis in a gas phase. However, in these two methods, it is common to use an organometallic compound such as a metal alkoxide as a raw material. However, since many of the organometallic compounds are very expensive, mass production of metal nanopowder involves economic problems.
このような有機金属化合物を使用して金属ナノ粉末を製造する方法以外の超微粒子製造方法としては、ガス蒸発法、高温で金属シュウ酸塩を水素ガスで還元する方法、金属塩化物蒸気を水素ガスで還元する方法、金属カルボニル化合物を熱分解する方法、金属水溶液に水素ガスを注入して還元する方法などを挙げることができる。 The ultrafine particle production method other than the method of producing metal nanopowder using such an organometallic compound includes a gas evaporation method, a method of reducing metal oxalate with hydrogen gas at a high temperature, and metal chloride vapor by hydrogen. Examples thereof include a method of reducing with a gas, a method of thermally decomposing a metal carbonyl compound, and a method of reducing by injecting hydrogen gas into an aqueous metal solution.
このうち、特に工業的に関心を集めている方法は、金属塩化物蒸気を水素ガスで還元する方法であり、原料として非常に安価な金属塩化物を使用する。この方法は、金属塩化物を適当な温度で加熱して蒸発させ、これにより得られた金属塩化物蒸気と還元ガスである水素との高温反応により所望の粒度を有する金属ナノ粉末を得る。 Among them, the method that is attracting industrial interest is a method of reducing metal chloride vapor with hydrogen gas, and uses a very inexpensive metal chloride as a raw material. In this method, the metal chloride is heated and evaporated at an appropriate temperature, and a metal nanopowder having a desired particle size is obtained by a high-temperature reaction between the metal chloride vapor thus obtained and hydrogen as a reducing gas.
前述した各種原料でナノ金属を製造する方法に関する資料としては、特許文献1〜6などがある。 There are Patent Documents 1 to 6 as materials relating to the method for producing nanometals using the various raw materials described above.
前述した金属ナノ粉末の製造方法のうち、ガス蒸発法などの物理的方法の場合、化学的方法に比べて結晶性が良好で粒度分布が非常に狭いという利点はあるが、装置コスト及び工程コストが高いため、化学的方法に比べて全般的な製造コストが高いという欠点があった。例えば、ニッケルナノ粉末をガス蒸発法で製造する場合、水素還元法で製造する場合に比べて約2倍の製造コストが必要である。 Among the metal nanopowder production methods described above, the physical method such as the gas evaporation method has the advantages that the crystallinity is good and the particle size distribution is very narrow compared to the chemical method. Therefore, there is a drawback that the overall production cost is high compared to the chemical method. For example, when manufacturing nickel nanopowder by the gas evaporation method, the manufacturing cost is about twice as high as when manufacturing by the hydrogen reduction method.
これに対し、金属塩化物を水素還元する方法により金属ナノ粉末を製造する場合は、製造コストが比較的安価で工業的な大量生産が可能であるという利点はあるが、高温での化学反応の精密な制御が難しいため、生産されたナノ粉末の粒度分布が広いという欠点があった。これは、金属塩化物蒸気と水素ガスとが反応する過程で生成された金属粒子核同士が衝突して粒度が大きくなる現象のためであり、通常の方法で高温反応を行う場合、このような現象の制御が極めて難しいという問題があった。
本発明は、このような問題を解決するためになされたもので、金属塩化物を原料として使用してこれを蒸発させた後、高温で水素ガスとの還元反応によりニッケルナノ粉末を製造する方法において、通常の方法に比べて生成されたナノ粉末の粒度が小さく、かつ粒度分布が非常に狭いナノ粉末を非常に安価に製造できる手段を提供することを目的とする。 The present invention has been made to solve such problems, and uses a metal chloride as a raw material to evaporate it, and then produces a nickel nanopowder by a reduction reaction with hydrogen gas at a high temperature. Therefore, an object of the present invention is to provide means capable of producing a nanopowder having a smaller particle size and a very narrow particle size distribution than those obtained by a conventional method at a very low cost.
上記の目的を達成するために、本発明による金属ナノ粉末の製造方法は、窒素ガスを供給しながら原料である金属塩化物を蒸発させる工程と、窒素ガスの供給を維持しながら水素ガスとアンモニアガスを同時に供給して、前記蒸発させた金属塩化物蒸気との還元反応により金属ナノ粉末を得る工程とを含む。 In order to achieve the above object, a method for producing metal nanopowder according to the present invention includes a step of evaporating metal chloride as a raw material while supplying nitrogen gas, and hydrogen gas and ammonia while maintaining the supply of nitrogen gas. And simultaneously supplying gas to obtain metal nanopowder by a reduction reaction with the evaporated metal chloride vapor.
この場合、窒素ガスの供給と水素ガスの供給とは独立して行われることが好ましい。 In this case, the supply of nitrogen gas and the supply of hydrogen gas are preferably performed independently.
また、供給ガスである窒素ガス:水素ガスの割合は1:1〜5:1の範囲であり、水素ガス:アンモニアガスの割合は5:1〜10:1の範囲であることが好ましい。 Further, the ratio of nitrogen gas: hydrogen gas as the supply gas is preferably in the range of 1: 1 to 5: 1, and the ratio of hydrogen gas: ammonia gas is preferably in the range of 5: 1 to 10: 1.
また、前記金属塩化物は、ニッケル塩化物、タングステン塩化物、鉄塩化物、クロム塩化物、及び銅塩化物から選択されるいずれか1つであることが好ましい。 The metal chloride is preferably any one selected from nickel chloride, tungsten chloride, iron chloride, chromium chloride, and copper chloride.
また、前記金属塩化物がニッケル塩化物の場合、ニッケル塩化物の蒸発温度は780〜850℃の範囲であり、蒸発したニッケル塩化物蒸気と水素ガス及びアンモニアガスとの反応温度は500〜900℃の範囲であることが好ましい。 When the metal chloride is nickel chloride, the evaporation temperature of nickel chloride is in the range of 780 to 850 ° C., and the reaction temperature of the evaporated nickel chloride vapor with hydrogen gas and ammonia gas is 500 to 900 ° C. It is preferable that it is the range of these.
本発明による気相反応法を用いた金属ナノ粉末の製造方法は、ニッケル塩化物を原料として使用してこれを蒸発させた後、高温で水素ガスとの還元反応によりニッケルナノ粉末を製造する方法において、水素ガスと共にアンモニアガスを注入することにより、通常の方法に比べて生成されたニッケルナノ粉末の粒度が小さく、かつ粒度分布が非常に狭い均一なニッケルナノ粉末を製造できるという利点がある。 The method for producing metal nanopowder using the vapor phase reaction method according to the present invention is a method for producing nickel nanopowder by using nickel chloride as a raw material and evaporating it, followed by a reduction reaction with hydrogen gas at a high temperature. In this case, by injecting ammonia gas together with hydrogen gas, there is an advantage that uniform nickel nanopowder having a small particle size distribution and a very narrow particle size distribution can be produced as compared with a normal method.
また、本発明は、ニッケル塩化物を水素還元する方法でニッケルナノ粉末を製造することにより、従来のガス蒸発法や高温熱分解法に比べて製造コストが比較的安価であると共に工業的な大量生産が可能であるという特徴がある。 In addition, the present invention produces nickel nanopowder by a method in which nickel chloride is reduced by hydrogen, thereby making the production cost relatively low compared with the conventional gas evaporation method and high-temperature pyrolysis method and industrial mass production. It has the feature that production is possible.
以下、本発明による金属ナノ粉末の製造方法を詳細に説明する。 Hereinafter, a method for producing metal nanopowder according to the present invention will be described in detail.
本発明の目的は、ニッケル塩化物(NiCl2)を蒸発させ、これにより得た金属塩化物蒸気と水素ガスとの高温還元反応によりニッケルナノ粉末を生成する過程で、水素ガスと共に少量のアンモニアガス(NH3)を注入することにより達成できる。 An object of the present invention is to evaporate nickel chloride (NiCl 2 ) and produce nickel nanopowder by a high-temperature reduction reaction between the metal chloride vapor obtained thereby and hydrogen gas, and a small amount of ammonia gas together with hydrogen gas. This can be achieved by injecting (NH 3 ).
ここで、水素ガスと混合して注入するアンモニアガスは、水素ガスより比較的還元性が低く、かつ粒子表面での吸着性が非常に強いため、還元反応により生成されたニッケルナノ粒子核に付着して、粒子核同士が凝集する現象を抑制したり、ナノ粒子が急速に成長するのを防止することにより、粒度分布が狭くて均一なサイズを有するニッケルナノ粉末の製造を可能にする。アンモニアガスを加えずに水素ガスだけで還元工程を行った場合、製造されたニッケル粉末の粒度が不均一であり、特に全体的に平均粒度が非常に大きくなるため、上記の効果を達成することができない。 Here, ammonia gas mixed and injected with hydrogen gas is relatively less reducible than hydrogen gas and has a very strong adsorptivity on the particle surface, so it adheres to the nickel nanoparticle nuclei produced by the reduction reaction. Thus, it is possible to manufacture nickel nanopowder having a narrow particle size distribution and a uniform size by suppressing the phenomenon of aggregation of particle nuclei and preventing the nanoparticles from growing rapidly. When the reduction process is performed only with hydrogen gas without adding ammonia gas, the particle size of the produced nickel powder is non-uniform, especially the average particle size becomes very large as a whole. I can't.
以下、例を挙げて本発明の方法をより詳細に説明する。 Hereafter, an example is given and the method of this invention is demonstrated in detail.
図1に示すように、まず、直径が異なる2つの石英管1、2を準備し、大きい石英管1の内部に小さい石英管2を挿入する。ここで、小さい石英管2の長さは大きい石英管1の半分程度にする。準備した石英管1、2をそれぞれ温度制御が可能な2つの管状炉3、4に導入する。これら2つの管状炉3、4のうち、第1管状炉3(蒸発炉)は、塩化ニッケル(NiCl2)を加熱して蒸気にするためのものであり、第2管状炉4(反応炉)は、蒸気化した塩化ニッケルと水素ガスとの還元反応のためのものである。このように準備した装置に、塩化ニッケル5を耐火容器6に入れて小さい石英管2の中間部位に装入する。また、2つのガス注入管7、8を準備し、図1に示すように、第1ガス注入管7は小さい石英管2の内部に、第2ガス注入管8は大きい石英管1の内部に挿入し、排出管9を連結した後にゴム栓10で石英管1を密封する。 As shown in FIG. 1, first, two quartz tubes 1 and 2 having different diameters are prepared, and a small quartz tube 2 is inserted into a large quartz tube 1. Here, the length of the small quartz tube 2 is about half that of the large quartz tube 1. The prepared quartz tubes 1 and 2 are introduced into two tubular furnaces 3 and 4 each capable of temperature control. Of these two tubular furnaces 3 and 4, the first tubular furnace 3 (evaporation furnace) is for heating nickel chloride (NiCl 2 ) into steam, and the second tubular furnace 4 (reaction furnace). Is for the reduction reaction between vaporized nickel chloride and hydrogen gas. In the apparatus prepared in this way, nickel chloride 5 is placed in a refractory container 6 and charged into an intermediate portion of the small quartz tube 2. Further, two gas injection pipes 7 and 8 are prepared. As shown in FIG. 1, the first gas injection pipe 7 is placed inside the small quartz pipe 2 and the second gas injection pipe 8 is placed inside the large quartz pipe 1. After inserting and connecting the discharge tube 9, the quartz tube 1 is sealed with a rubber plug 10.
前述のように装置の組立が終わった後、第1ガス注入管7に窒素ガスを約30分間、十分に流して石英管2内部の空気を排出させる。空気の排出が終わった後、塩化ニッケルが位置する第1管状炉3の温度を780〜850℃まで昇温して塩化ニッケルを蒸発させる。蒸発温度が前記範囲より低いと塩化ニッケルの蒸発速度が遅すぎ、前記範囲より高いと不要なエネルギー消費が発生する。 After assembling the apparatus as described above, nitrogen gas is sufficiently allowed to flow through the first gas injection pipe 7 for about 30 minutes to discharge the air inside the quartz pipe 2. After the discharge of air is finished, the temperature of the first tubular furnace 3 where the nickel chloride is located is raised to 780 to 850 ° C. to evaporate the nickel chloride. When the evaporation temperature is lower than the above range, the evaporation rate of nickel chloride is too slow, and when it is higher than the above range, unnecessary energy consumption occurs.
一方、反応炉である第2管状炉4の温度も、反応温度である500〜900℃まで予め昇温し、昇温が終わると、第1ガス注入管7からの窒素ガスの供給はそのまま維持しながら、第2ガス注入管8から反応ガスである水素ガスと共にアンモニア(NH3)ガスを同時に供給することにより、ニッケルナノ粉末を製造する。反応温度が前記範囲より低いと還元率が低下し、前記範囲より高いとエネルギーコストが上昇する。 On the other hand, the temperature of the second tubular furnace 4 as the reaction furnace is also raised in advance to the reaction temperature of 500 to 900 ° C., and when the temperature rise is finished, the supply of nitrogen gas from the first gas injection pipe 7 is maintained as it is. Meanwhile, nickel nanopowder is manufactured by simultaneously supplying ammonia (NH 3 ) gas together with hydrogen gas as a reaction gas from the second gas injection pipe 8. When the reaction temperature is lower than the above range, the reduction rate decreases, and when it is higher than the above range, the energy cost increases.
本発明において、供給ガスである窒素、水素、及びアンモニアガスの割合は、窒素:水素の割合が1:1〜5:1の範囲であり、かつ水素:アンモニアガスの割合が5:1〜10:1の範囲であることが適当である。このようなガスの混合割合は、均一な粒度のニッケルナノ粉末の製造に適した範囲であり、ガスの混合割合が前記範囲を外れると、ニッケル粒子が不均一になったり還元率が低下する。 In the present invention, the ratios of nitrogen, hydrogen, and ammonia gas that are supply gases are such that the ratio of nitrogen: hydrogen is 1: 1 to 5: 1, and the ratio of hydrogen: ammonia gas is 5: 1-10. A range of 1 is appropriate. Such a gas mixing ratio is in a range suitable for producing nickel nanopowder with a uniform particle size. If the gas mixing ratio is out of the above range, the nickel particles become non-uniform or the reduction rate decreases.
本発明において石英管を2つ使用してガス注入管を独立して設置した理由は、水素を塩化ニッケル試料側に直接供給した場合、蒸発していない塩化ニッケルと水素とが反応して塩化ニッケル試料の表面で直ちにニッケル金属が生成されるためである。 In the present invention, the reason why the gas injection pipe is independently installed using two quartz tubes is that when hydrogen is directly supplied to the nickel chloride sample side, nickel chloride that has not evaporated reacts with hydrogen to react with nickel chloride. This is because nickel metal is immediately generated on the surface of the sample.
また、前述した本発明の方法により製造されたニッケルナノ粉末は、供給ガスと共に外部に排出され、液相捕集器などを利用してニッケルナノ粉末を回収する。しかし、本発明において、生成されたニッケルナノ粉末の捕集方法はこれに限定されるものではない。 Moreover, the nickel nanopowder produced by the above-described method of the present invention is discharged to the outside together with the supply gas, and the nickel nanopowder is recovered using a liquid phase collector or the like. However, in the present invention, the method for collecting the produced nickel nanopowder is not limited to this.
また、本発明において、水素ガスとアンモニアガスを使用した金属ナノ粉末の製造における対象金属はニッケルに限定されず、金属塩化物を蒸発させて水素との還元反応により金属粉末を製造できるタングステン、鉄、クロム、銅などの金属に適用することもできる。 In the present invention, the target metal in the production of metal nanopowder using hydrogen gas and ammonia gas is not limited to nickel, but tungsten, iron that can produce metal powder by evaporating metal chloride and reducing reaction with hydrogen It can also be applied to metals such as chromium and copper.
本発明による気相反応法を用いた金属ナノ粉末の製造方法は、ニッケル塩化物を原料として使用してこれを蒸発させた後、高温で水素ガスとの還元反応によりニッケルナノ粉末を製造する方法において、水素ガスと共にアンモニアガスを注入することにより、通常の方法に比べて生成されたニッケルナノ粉末の粒度が小さく、かつ粒度分布が非常に狭い均一なニッケルナノ粉末を製造することができる。 The method for producing metal nanopowder using the vapor phase reaction method according to the present invention is a method for producing nickel nanopowder by using nickel chloride as a raw material and evaporating it, followed by a reduction reaction with hydrogen gas at a high temperature. In this case, by injecting ammonia gas together with hydrogen gas, it is possible to produce uniform nickel nanopowder having a small particle size and a very narrow particle size distribution compared to the usual method.
以下、本発明の具体的な工程条件及び特徴を次の実施例により詳細に説明する。 Hereinafter, specific process conditions and features of the present invention will be described in detail with reference to the following examples.
実施例1
塩化ニッケル(NiCl2)5gを耐火容器に入れ、図1に示すように本発明の装置を組み立てた後、第1ガス注入管から窒素ガスを30分間流した。石英管内部の空気の排出が終わった後、反応炉の温度を900℃、蒸発炉の温度を780℃に昇温し、昇温が終わると、窒素の供給はそのまま維持し、第2ガス注入管から水素ガスとアンモニアガスを同時に供給して、ニッケルナノ粉末を製造した。ここで、窒素:水素の供給割合は1:1にし、水素:アンモニアガスの供給割合は10:1にした。塩化ニッケルと水素との反応により生成されたニッケルナノ粉末は、供給ガスと共に外部に排出させ、排出ガスを灯油が充填された液相捕集器を通過させることにより、ニッケルナノ粉末を回収した。
Example 1
After putting 5 g of nickel chloride (NiCl 2 ) in a refractory container and assembling the apparatus of the present invention as shown in FIG. 1, nitrogen gas was allowed to flow from the first gas injection pipe for 30 minutes. After exhausting the air inside the quartz tube, the temperature of the reactor is raised to 900 ° C. and the temperature of the evaporation furnace is raised to 780 ° C. When the temperature rises, the supply of nitrogen is maintained and the second gas is injected. Nickel nanopowder was manufactured by simultaneously supplying hydrogen gas and ammonia gas from the tube. Here, the supply ratio of nitrogen: hydrogen was 1: 1, and the supply ratio of hydrogen: ammonia gas was 10: 1. Nickel nanopowder produced by the reaction between nickel chloride and hydrogen was discharged to the outside together with the supply gas, and the nickel nanopowder was recovered by passing the exhaust gas through a liquid phase collector filled with kerosene.
このような本発明の方法により製造されたニッケルナノ粉末の粒度を分析した結果、図2に示すように、平均粒度は45nmで、粒度範囲は20〜80nmであり、アンモニアガスを供給しない方法に比べて粒度が小さくて均一度が大きく向上した。 As a result of analyzing the particle size of the nickel nanopowder produced by the method of the present invention, as shown in FIG. 2, the average particle size is 45 nm, the particle size range is 20 to 80 nm, and no ammonia gas is supplied. Compared with the smaller particle size, the uniformity was greatly improved.
実施例2
塩化ニッケル5gを耐火容器に入れ、実施例1と同様に本発明の装置を組み立てた後、第1ガス注入管から窒素ガスを30分間流した。石英管内部の空気の排出が終わった後、反応炉の温度を500℃、蒸発炉の温度を850℃に昇温し、昇温が終わると、実施例1と同様の方法で、第2ガス注入管から水素ガスとアンモニアガスを同時に供給した。ここで、窒素:水素の供給割合は5:1にし、水素:アンモニアガスの供給割合は5:1にした。塩化ニッケルと水素との反応により生成されたニッケルナノ粉末は、実施例1と同様の方法で、液相捕集器を使用して回収した。
Example 2
After putting 5 g of nickel chloride into a refractory container and assembling the apparatus of the present invention in the same manner as in Example 1, nitrogen gas was allowed to flow from the first gas injection pipe for 30 minutes. After the discharge of air inside the quartz tube is finished, the temperature of the reactor is raised to 500 ° C. and the temperature of the evaporation furnace is raised to 850 ° C. When the temperature rise is finished, the second gas is produced in the same manner as in Example 1. Hydrogen gas and ammonia gas were simultaneously supplied from the injection tube. Here, the supply ratio of nitrogen: hydrogen was 5: 1, and the supply ratio of hydrogen: ammonia gas was 5: 1. Nickel nanopowder produced by the reaction between nickel chloride and hydrogen was recovered using a liquid phase collector in the same manner as in Example 1.
このような本発明の方法により製造されたニッケルナノ粉末の粒度を分析した結果、図3に示すように、平均粒度は37nmで、粒度範囲は15〜75nmであり、従来の方法に比べて粒度が小さくて均一度が大きく向上した。 As a result of analyzing the particle size of the nickel nanopowder produced by the method of the present invention, the average particle size is 37 nm and the particle size range is 15 to 75 nm as shown in FIG. Is small and the uniformity is greatly improved.
以上、本発明を、図示の実施例を中心に説明したが、これは例示にすぎず、本発明が多様な変形及び様々な実施例を含むことは本発明が属する技術の分野における通常の知識を有する者であれば理解できるであろう。 The present invention has been described above mainly with reference to the illustrated embodiments. However, this is merely an example, and it is understood that the present invention includes various modifications and various embodiments in the technical field to which the present invention belongs. Anyone who has
1、2 石英管
3、4 管状炉
5 塩化ニッケル
6 耐火容器
7、8 ガス注入管
9 排出管
10 ゴム栓
1, 2 Quartz tube 3, 4 Tubular furnace 5 Nickel chloride 6 Refractory vessel 7, 8 Gas injection tube 9 Discharge tube 10 Rubber stopper
Claims (5)
窒素ガスの供給を維持しながら水素ガスとアンモニアガスを同時に供給して、前記蒸発させた金属塩化物蒸気との還元反応により金属ナノ粉末を得る工程と、
を含むことを特徴とする金属ナノ粉末の製造方法。 Evaporating the metal chloride as a raw material while supplying nitrogen gas;
A step of simultaneously supplying hydrogen gas and ammonia gas while maintaining supply of nitrogen gas to obtain metal nanopowder by a reduction reaction with the evaporated metal chloride vapor;
The manufacturing method of the metal nanopowder characterized by including.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060078431A KR100808027B1 (en) | 2006-08-18 | 2006-08-18 | Fabrication method of nickel nano-powder by gas phase reaction |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008045202A true JP2008045202A (en) | 2008-02-28 |
JP4546975B2 JP4546975B2 (en) | 2010-09-22 |
Family
ID=39179223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007014915A Expired - Fee Related JP4546975B2 (en) | 2006-08-18 | 2007-01-25 | Method for producing metal nanopowder using gas phase reaction method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP4546975B2 (en) |
KR (1) | KR100808027B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102764895A (en) * | 2012-07-30 | 2012-11-07 | 北京科技大学 | Device and method for preparing high-purity ultrafine nickel powder |
JP2018165391A (en) * | 2017-03-28 | 2018-10-25 | 日本新金属株式会社 | Method for producing tungsten fine powder |
JP7236063B1 (en) | 2021-11-10 | 2023-03-09 | コリア インスティチュート オブ インダストリアル テクノロジー | Inorganic powder production apparatus and production method |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101132436B1 (en) | 2010-02-24 | 2012-03-30 | 국민대학교산학협력단 | Method for the spinel vanadate materials |
KR101854500B1 (en) * | 2015-04-28 | 2018-05-03 | 주식회사 엘지화학 | Manufacturing Method of Metal Nano Particle for Preparation of Light Absorbing Layer of Solar Cell |
CN113070474A (en) * | 2021-03-29 | 2021-07-06 | 深圳市注成科技股份有限公司 | Preparation and forming method of nano tungsten-copper alloy radiating fin |
KR102466392B1 (en) * | 2021-08-05 | 2022-11-11 | 한국생산기술연구원 | Manufacturing Apparatus For Uniform Insulating Layer Coated Soft Magenetic Alloy Powder Using Selective Oxidation Heat Treatment And Method Thereof |
KR102466390B1 (en) * | 2021-08-05 | 2022-11-11 | 한국생산기술연구원 | Manufacturing Apparatus For Fe-Based Soft Magenetic Alloy Powder Using Selective Oxidation Heat Treatment And Method Thereof |
KR102642963B1 (en) * | 2021-09-07 | 2024-03-05 | 한국생산기술연구원 | Method of manufacturing metal nanopowder using vapor synthesis |
KR102564634B1 (en) * | 2021-11-10 | 2023-08-08 | 한국생산기술연구원 | Inorganic powder manufacturing apparatus and manufacturing method |
KR102572729B1 (en) * | 2021-11-10 | 2023-08-31 | 한국생산기술연구원 | Inorganic powder manufacturing apparatus and manufacturing method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59170211A (en) * | 1983-03-14 | 1984-09-26 | Toho Aen Kk | Production of ultrafine powder |
JPS6148506A (en) * | 1984-08-10 | 1986-03-10 | Mitsui Toatsu Chem Inc | Refining method of fine particle by gaseous phase process |
WO2002102533A1 (en) * | 2001-06-14 | 2002-12-27 | Toho Titanium Co., Ltd. | Method for producing metal powder and metal powder, and electroconductive paste and monolithic ceramic capacitor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0412008A (en) * | 1990-04-27 | 1992-01-16 | Mitsubishi Petrochem Co Ltd | Production of magnetic powder |
JPH1180816A (en) | 1997-09-10 | 1999-03-26 | Sumitomo Metal Mining Co Ltd | Nickel powder for conductive paste and its production |
KR100526728B1 (en) * | 2003-05-13 | 2005-11-09 | 한국과학기술연구원 | Preparation of Tungsten Nano-Powder from Tungsten Chlorides |
-
2006
- 2006-08-18 KR KR1020060078431A patent/KR100808027B1/en not_active IP Right Cessation
-
2007
- 2007-01-25 JP JP2007014915A patent/JP4546975B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59170211A (en) * | 1983-03-14 | 1984-09-26 | Toho Aen Kk | Production of ultrafine powder |
JPS6148506A (en) * | 1984-08-10 | 1986-03-10 | Mitsui Toatsu Chem Inc | Refining method of fine particle by gaseous phase process |
WO2002102533A1 (en) * | 2001-06-14 | 2002-12-27 | Toho Titanium Co., Ltd. | Method for producing metal powder and metal powder, and electroconductive paste and monolithic ceramic capacitor |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102764895A (en) * | 2012-07-30 | 2012-11-07 | 北京科技大学 | Device and method for preparing high-purity ultrafine nickel powder |
JP2018165391A (en) * | 2017-03-28 | 2018-10-25 | 日本新金属株式会社 | Method for producing tungsten fine powder |
JP7236063B1 (en) | 2021-11-10 | 2023-03-09 | コリア インスティチュート オブ インダストリアル テクノロジー | Inorganic powder production apparatus and production method |
JP2023071129A (en) * | 2021-11-10 | 2023-05-22 | コリア インスティチュート オブ インダストリアル テクノロジー | Apparatus and method for producing inorganic powder |
Also Published As
Publication number | Publication date |
---|---|
KR20080016371A (en) | 2008-02-21 |
KR100808027B1 (en) | 2008-02-28 |
JP4546975B2 (en) | 2010-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4546975B2 (en) | Method for producing metal nanopowder using gas phase reaction method | |
JP5900510B2 (en) | Plasma equipment for metal powder production | |
NL2026635B1 (en) | Integrated manufacturing of core-shell particles for Li-ion batteries | |
CN101456074B (en) | Method for filling carbon nano tube with magnetic nano metal iron particles | |
He et al. | Carbon nanotubes and onions from methane decomposition using Ni/Al catalysts | |
Sengupta | Carbon nanotube fabrication at industrial scale: Opportunities and challenges | |
CN103060770A (en) | Preparation method of iron-clad aluminum type composite powder and product thereof | |
CN103056381A (en) | Method for manufacturing nanometer tungsten/cobalt carbide composite powder | |
CN103056377A (en) | Method for manufacturing nanometer tungsten/cobalt carbide composite powder | |
CN110227826A (en) | A method of preparing high-purity nm molybdenum powder | |
WO2015156080A1 (en) | Nickel powder | |
Gu et al. | Effect of glucose on the synthesis of iron carbide nanoparticles from combustion synthesis precursors | |
CN1768002B (en) | Method of preparing carbon nanotube from liquid phased-carbon source | |
CN113798504B (en) | Preparation method of rare earth oxide dispersion-reinforced tungsten powder for 3D printing | |
CN105289624B (en) | A kind of low-pressure synthetic ammonia catalyst and preparation method thereof | |
US20090297709A1 (en) | Carbon encapsulated metal particles and method of manufacturing the same | |
Liu et al. | Size-controlled synthesis of copper oxide nanoparticles with a supercritical hydrothermal synthesis method | |
JP5768232B2 (en) | Method for producing vertically aligned carbon nanotubes | |
CN105271179A (en) | Method for preparing porous wall carbon nano cages through nitrogen doped template | |
WO2022047600A1 (en) | Method for preparing multi-walled carbon nanotubes | |
KR100526728B1 (en) | Preparation of Tungsten Nano-Powder from Tungsten Chlorides | |
KR100593268B1 (en) | A manufacturing process of Fe nano powder with carbide coating by Chemical Vapor Condensation | |
KR100503126B1 (en) | A method for producing ultrafine spherical particles of nickel metal using gas-phase synthesis | |
Bhoraskar et al. | Thermal plasma assisted synthesis of nanocrystalline silicon—a review | |
CN100333995C (en) | Zinc-containing alkane cracking catalyst and its prepn and application in the synthesis of single-wall carbon nanotube |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100209 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20100423 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20100428 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100520 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100615 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100702 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130709 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |