JP2008043115A - Rotating-electric machine and electric power generating system - Google Patents

Rotating-electric machine and electric power generating system Download PDF

Info

Publication number
JP2008043115A
JP2008043115A JP2006216363A JP2006216363A JP2008043115A JP 2008043115 A JP2008043115 A JP 2008043115A JP 2006216363 A JP2006216363 A JP 2006216363A JP 2006216363 A JP2006216363 A JP 2006216363A JP 2008043115 A JP2008043115 A JP 2008043115A
Authority
JP
Japan
Prior art keywords
temperature
rotating electrical
electrical machine
air volume
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006216363A
Other languages
Japanese (ja)
Other versions
JP4858001B2 (en
Inventor
Akihito Nakahara
明仁 中原
Akiyoshi Komura
昭義 小村
Kazumasa Ide
一正 井出
Kazuhiko Takahashi
和彦 高橋
Kengo Iwashige
健五 岩重
Kenichi Hattori
憲一 服部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2006216363A priority Critical patent/JP4858001B2/en
Publication of JP2008043115A publication Critical patent/JP2008043115A/en
Application granted granted Critical
Publication of JP4858001B2 publication Critical patent/JP4858001B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotating-electric machine which can be operated with high efficiency by controlling the quantity of cooling air necessarily and sufficiently while keeping the soundness by settling the maximum temperature of the rotating-electric machine within a limit value. <P>SOLUTION: This rotating-electric machine has a stator where armature winding is wound on a core, a rotor which is arranged rotatably in the concentric position on the inner diametrical side of the above stator, and a cooling air ventilating means which can adjust the quantity of air. Further, the machine is equipped with a means which measures the ambient temperature; and a means which detects any or plural of armature voltage, an armature current, and a field current. It computes the temperature calculated value within the rotating-electric machine by the measurement of the above ambient temperature, the detected value of the above detection means, and the command of the quantity of cooling air; and decides a new cooling air quantity command by the computation of the temperature within the rotating-electric machine. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は機内冷却通風手段を有する回転電機に関する。   The present invention relates to a rotating electric machine having in-machine cooling ventilation means.

従来の機内冷却通風手段を有する回転電機の例としては、特開平10−42522号公報に、回転子に取り付けた冷却ファンにより機内へ冷却風を導入し、冷却を行う回転電機が記載されている。ここで、冷却ファンは、機内の温度が制限値を超えることが無いよう予め定められた冷却風流量を流通するよう寸法が決められている。   As an example of a conventional rotating electrical machine having on-machine cooling ventilation means, Japanese Patent Application Laid-Open No. 10-42522 describes a rotating electrical machine that cools by introducing cooling air into the machine by a cooling fan attached to the rotor. . Here, the size of the cooling fan is determined so as to circulate a predetermined cooling air flow rate so that the temperature inside the machine does not exceed the limit value.

一方、特開2003−284289号公報には送風機による強制送風を行い、送風機入口温度と負荷電流を元に冷却風量を制御する制御装置を有する回転電機の例が示されている。ここに示されている冷却風量制御装置は、回転電機への送風入口または出口の温度を元に、実機あるいは実機モデルの実測に基づく送風温度と必要風量の関係により温度が所定値を超えないよう通風を制御している。   On the other hand, Japanese Patent Application Laid-Open No. 2003-284289 discloses an example of a rotating electrical machine having a control device that performs forced ventilation by a blower and controls the amount of cooling air based on the blower inlet temperature and load current. The cooling air volume control device shown here is based on the temperature at the air inlet or outlet to the rotating electrical machine so that the temperature does not exceed a predetermined value due to the relationship between the air temperature and the required air volume based on actual measurement of the actual machine or the actual machine model. Controls ventilation.

ところで、軸長が長く、軸方向に複数の通風セクションを有するタービン発電機などにおいては、軸方向位置によって機内の温度が大きく異なる場合がある。例えば、特開2005−210893号公報に記載の発電機コイルにおいては、コイル温度の解析結果が示されており、これによれば最高温度と最低温度とでは80K近い差があることが分かる。   By the way, in a turbine generator having a long axial length and having a plurality of ventilation sections in the axial direction, the temperature in the machine may vary greatly depending on the axial position. For example, in the generator coil described in Japanese Patent Laid-Open No. 2005-210893, the analysis result of the coil temperature is shown, and it can be seen that there is a difference of close to 80K between the maximum temperature and the minimum temperature.

特開平10−42522号公報Japanese Patent Laid-Open No. 10-42522 特開2003−284289号公報JP 2003-284289 A 特開2005−210893号公報JP 2005-210893 A

従来のタービン発電機などにおいて用いられていた冷却ファンによる機内冷却においては、機内の温度が制限値を超えることが無いよう予め決められた冷却風流量が常に一定で流通されており、雰囲気温度が低いあるいは負荷比率が低いなどの理由により機内温度が低い場合においては余剰の冷却風を流通させることにより余分な損失を生じていた。ここで、雰囲気温度とは、発電機外の送風入口又は出口以外の温度である。   In the in-machine cooling by a cooling fan used in a conventional turbine generator or the like, a predetermined cooling air flow rate is constantly circulated so that the temperature inside the apparatus does not exceed the limit value, and the ambient temperature is When the in-machine temperature is low due to low or low load ratio, excess cooling air is circulated to cause extra loss. Here, the atmospheric temperature is a temperature other than the air inlet or outlet outside the generator.

一方、従来の冷却風量制御装置は、回転電機への送風入口または出口温度を元に冷却風量制御を行っていた。しかしながら、軸長が長く、軸方向に複数の通風セクションを有する大型の回転電機などでは、軸方向位置によって機内の温度が大きく異なる場合があり、送風入口あるいは出口の温度で決めた風量では、必ずしも機内の最高温度が所定値を超えないことを保証することはできない。所定値を大きく超える温度となる部分では、コイル絶縁の劣化やコイルの不均一な熱伸びなどが起こり、コイルやコアの破損に繋がる可能性がある。また、温度分布を考慮して余裕を持たせた冷却風量を設定すれば、特に温度幅が大きい場合には、余裕も大きくとることとなり、余分な損失を多く生じることとなる。   On the other hand, the conventional cooling air volume control device controls the cooling air volume based on the temperature of the air inlet or outlet to the rotating electrical machine. However, in a large rotating electrical machine having a long axial length and having a plurality of ventilation sections in the axial direction, the temperature in the machine may vary greatly depending on the axial position, and the air volume determined by the temperature at the air inlet or outlet is not necessarily It cannot be guaranteed that the maximum temperature inside the aircraft will not exceed a predetermined value. In the portion where the temperature is much higher than the predetermined value, deterioration of the coil insulation, non-uniform thermal expansion of the coil, etc. may occur, leading to damage of the coil or core. In addition, if the cooling air flow with a margin is set in consideration of the temperature distribution, especially when the temperature range is large, the margin will be increased, resulting in a lot of extra loss.

また大型の回転電機などでは、1機ごとに仕様が異なるため、実機あるいは実機モデルに関し、機内温度と風量の十分な実測データを得られない場合もある。   In addition, since the specifications differ for each large machine such as a large rotating electric machine, sufficient actual measurement data of the in-machine temperature and the air volume may not be obtained for the actual machine or the actual machine model.

本発明が解決しようとする課題は、回転電機の最高温度を制限値内に収めて健全性を保ちながら、冷却風量を必要十分に制御し、高効率で運転できる回転電機を提供することにある。   The problem to be solved by the present invention is to provide a rotating electrical machine that can operate with high efficiency by controlling the amount of cooling air necessary and sufficiently while keeping the maximum temperature of the rotating electrical machine within a limit value and maintaining soundness. .

本発明の一つの特徴は、鉄心に電機子巻線を巻き回した固定子と、界磁巻線を巻き回した回転子と、風量可変の冷却通風手段と、電機子電圧および電機子電流検出手段と、雰囲気温度測定手段とを備え、検出した電機子電圧および電機子電流,温度を元に解析により算出した機内最高温度と必要冷却風量との関係に基づき、前記機内最高温度が予め定めた制限値を超えないように冷却風量を制御する回転電機としたことである。   One feature of the present invention is that a stator in which an armature winding is wound around an iron core, a rotor in which a field winding is wound, cooling air ventilation means with variable air volume, armature voltage and armature current detection. And an ambient temperature measuring means, and the maximum in-machine temperature is determined in advance based on the relationship between the maximum temperature in the machine calculated by analysis based on the detected armature voltage, armature current, and temperature and the required cooling air volume. This is a rotating electrical machine that controls the cooling air volume so as not to exceed the limit value.

先の特徴において、電機子電圧を検出によらず、所定値としてもよい。   In the above feature, the armature voltage may be set to a predetermined value regardless of detection.

先の特徴において、回転子は界磁巻線が巻き回された構成とし、検出する物理量を電機子電圧および電機子電流に代えて、あるいは併せて界磁電流としてもよい。   In the above feature, the rotor may have a configuration in which a field winding is wound, and a physical quantity to be detected may be a field current instead of or together with an armature voltage and an armature current.

先の特徴において、検出した電機子電圧および電機子電流,雰囲気温度を元に、機内最高温度または機内温度分布および必要風量を算出する手段を備えてもよい。   In the above feature, there may be provided means for calculating the in-machine maximum temperature or the in-machine temperature distribution and the required air volume based on the detected armature voltage, armature current, and ambient temperature.

先の特徴において、電機子電圧,電機子電流,界磁電流,雰囲気温度のいずれかあるいは複数と機内最高温度,必要冷却風量との関係を解析によりテーブル化し、このテーブルを参照して冷却風量を制御してもよい。   In the previous feature, the relationship between one or more of the armature voltage, armature current, field current, and ambient temperature, the maximum temperature in the machine, and the required cooling airflow is tabulated by analysis, and the cooling airflow is calculated by referring to this table. You may control.

先の特徴において、回転子に冷却ファンを設け、風量可変の冷却通風手段と冷却風量を分担してもよい。   In the above feature, a cooling fan may be provided in the rotor, and the cooling air flow means and the cooling air volume may be shared.

また、本発明の別の特徴は、鉄心に電機子巻線を巻き回した固定子と、界磁巻線を巻き回した回転子と、風量可変の冷却通風手段と、機内に複数の温度検出手段を備え、検出した温度と前記温度検出手段の位置とから機内最高温度を算出し、機内最高温度と必要冷却風量の関係に基づき、機内最高温度が予め定めた制限値を超えないように冷却風量を制御する回転電機としたことである。   In addition, another feature of the present invention is that a stator having an armature winding wound around an iron core, a rotor having a field winding wound thereon, a cooling air ventilation means having variable air volume, and a plurality of temperature detections in the machine. Means to calculate the maximum temperature in the machine from the detected temperature and the position of the temperature detection means, and based on the relationship between the maximum temperature in the machine and the required cooling air volume, cooling so that the maximum temperature in the machine does not exceed a predetermined limit value This is a rotating electrical machine that controls the air volume.

先の特徴において、検出した機内温度と温度検出手段の位置から機内最高温度または機内温度分布および必要風量を算出する手段を備えてもよい。   In the above feature, there may be provided means for calculating the in-machine maximum temperature or the in-machine temperature distribution and the necessary air volume from the detected in-machine temperature and the position of the temperature detecting means.

先の特徴において、負荷状態あるいは雰囲気温度と機内最高温度,必要冷却風量を予め複数パターン記憶した記憶装置を備え、決められた時間にこれらのパターンを呼び出して冷却風量を制御してもよい。   In the above feature, a storage device storing a plurality of patterns of the load state or the ambient temperature, the maximum temperature in the machine, and the required cooling air volume in advance may be provided, and these patterns may be called at a predetermined time to control the cooling air volume.

先の特徴において、回転子に冷却ファンを設け、風量可変の冷却通風手段と冷却風量を分担してもよい。   In the above feature, a cooling fan may be provided in the rotor, and the cooling air flow means and the cooling air volume may be shared.

本発明の別の特徴は、固定子鉄心に電機子巻線を巻き回した固定子と、界磁巻線を巻き回した回転子と、前記固定子および前記回転子を収容する固定子枠と、前記固定子鉄心と前記固定子枠との間に設けられた仕切り板によって軸方向に複数に分割された通風セクションと、前記通風セクションに対応した複数の冷却通風手段と、電機子の電圧および電流検出手段と、雰囲気温度測定手段とを備え、検出した電機子電圧および電流,雰囲気温度を元に解析により算出した機内最高温度と必要冷却風量との関係に基づき、前記機内最高温度が予め定めた制限値を超えないように最高温度点のある通風セクションの冷却通風手段の風量を増加させる回転電機としたことである。   Another feature of the present invention is a stator in which an armature winding is wound around a stator core, a rotor in which a field winding is wound, and a stator frame that houses the stator and the rotor. A ventilation section divided into a plurality of parts in the axial direction by a partition plate provided between the stator core and the stator frame, a plurality of cooling ventilation means corresponding to the ventilation section, a voltage of the armature, and A current detection means and an ambient temperature measurement means; the maximum internal temperature is determined in advance based on the relationship between the maximum temperature in the machine calculated by analysis based on the detected armature voltage, current, and ambient temperature, and the required cooling air volume. The rotating electrical machine increases the air volume of the cooling ventilation means in the ventilation section having the highest temperature point so as not to exceed the limit value.

先の特徴において、回転子に冷却ファンを設け、風量可変の冷却通風手段と冷却風量を分担してもよい。   In the above feature, a cooling fan may be provided in the rotor, and the cooling air flow means and the cooling air volume may be shared.

本発明の別の特徴は、鉄心に電機子巻線を巻き回した固定子と、界磁巻線を巻き回した回転子と、風量可変の冷却通風手段と、前記冷却通風手段の異常検出手段と、回転電機の運転を行う指令室との通信手段を備え、前記異常検出手段が異常を検知した場合に指令室へ異常を通知する発電システムを構成したことである。   Another feature of the present invention is a stator in which an armature winding is wound around an iron core, a rotor in which a field winding is wound, cooling air ventilation means with variable air volume, and abnormality detection means for the cooling air ventilation means. And a communication unit with a command room that operates the rotating electrical machine, and when the abnormality detection unit detects an abnormality, a power generation system that notifies the command room of the abnormality is configured.

先の特徴において、異常検出手段が異常を検知した場合には、原動機の指令室へ異常を通知してもよい。   In the above feature, when the abnormality detection means detects an abnormality, the abnormality may be notified to the command room of the prime mover.

本発明の別の特徴は、風量可変の冷却通風手段と、電機子電流検出手段と、周囲温度測定手段とを備え、電機子の電圧を指令することにより運転される発電機において、電機子電圧の指令値と、検出した電機子電流と、雰囲気温度とを元に解析により算出した機内最高温度と必要冷却風量との関係に基づき、前記機内最高温度が予め定めた制限値を超えないように冷却風量を制御する発電システムを構成したことである。   Another feature of the present invention is that, in a generator that is provided with cooling air ventilation means with variable air volume, armature current detection means, and ambient temperature measurement means, and that is operated by commanding the voltage of the armature, the armature voltage Based on the relationship between the in-machine maximum temperature calculated by analysis based on the command value, detected armature current, and ambient temperature, and the required cooling air volume, the in-machine maximum temperature should not exceed a predetermined limit value. That is, a power generation system that controls the cooling air volume is configured.

さらに、これらの構成において、無負荷運転した温度試験結果と、電機子端子を短絡して電機子電流を通電した温度試験結果と、機械損温度試験結果を最高温度あるいは温度分布の算出に用いてもよい。   Furthermore, in these configurations, the temperature test result obtained by operating with no load, the temperature test result obtained by short-circuiting the armature terminal and energizing the armature current, and the mechanical loss temperature test result are used to calculate the maximum temperature or the temperature distribution. Also good.

また、これらの構成において、風量可変の通風手段として、可変速電動機により駆動する電動ブロアあるいは、角度可変翼を備えた軸流ファンを用いてもよい。   In these configurations, an electric blower driven by a variable speed electric motor or an axial fan provided with variable angle blades may be used as the air flow variable means.

回転電機の最高温度を制限値内に収めて健全性を保ちながら、冷却風量を必要十分に制御し、高効率で運転できる回転電機を提供することができる。   It is possible to provide a rotating electrical machine that can operate with high efficiency by controlling the amount of cooling air necessary and sufficiently while keeping the maximum temperature of the rotating electrical machine within a limit value and maintaining soundness.

以下、本発明を実施するための最良の形態について、実施例に基づき説明する。以下の実施例では、回転電機として、回転子に界磁巻線を巻き回した巻線界磁型の発電機の例を示しているが、永久磁石を界磁源とした発電機あるいは電動機であっても構わない。また、二次導体を有する誘導発電機あるいは誘導電動機であっても構わない。   Hereinafter, the best mode for carrying out the present invention will be described based on examples. In the following embodiments, an example of a wound field type generator in which a field winding is wound around a rotor is shown as a rotating electric machine. However, in a generator or an electric motor using a permanent magnet as a field source, It does not matter. Further, it may be an induction generator or an induction motor having a secondary conductor.

図1は本発明の実施の形態1を示す構成図である。回転電機1は、風量可変の冷却通風手段2により機内を通風冷却されている。電機子電圧検出手段3と電機子電流検出手段4,雰囲気温度検出手段5の検出値を元に、算出手段7は機内最高温度を計算し、続いて機内最高温度が予め決めた制限値を超えないための必要風量を算出する。風量制御手段6は、必要風量算出手段7により決定された風量になるよう、冷却通風手段2の風量を調整する。本実施例の構成は、回転子に比べ、電機子の温度が高いことが予測される場合に有効である。   FIG. 1 is a block diagram showing Embodiment 1 of the present invention. The rotating electrical machine 1 is cooled by ventilation in the machine by a cooling ventilation means 2 with variable air volume. Based on the detection values of the armature voltage detection means 3, the armature current detection means 4, and the ambient temperature detection means 5, the calculation means 7 calculates the maximum temperature in the machine, and then the maximum temperature in the machine exceeds a predetermined limit value. Calculate the necessary air volume for not. The air volume control means 6 adjusts the air volume of the cooling ventilation means 2 so that the air volume determined by the required air volume calculation means 7 is obtained. The configuration of this embodiment is effective when the temperature of the armature is predicted to be higher than that of the rotor.

図2に、文献の方法に基づき通風および伝熱経路をネットワークとして各部の温度を計算する手法を想定し、最高温度および必要風量算出過程を示す。必要風量までのプロセスは大きく二つに分けられる。一つは通風計算の過程であり、回転電機の諸元から通風抵抗を計算し、続いて冷却通風手段風量を元に各部において流通する冷媒流量qを算出する。   FIG. 2 shows a process for calculating the maximum temperature and the required air volume, assuming a method of calculating the temperature of each part using the ventilation and heat transfer paths as a network based on the literature method. The process up to the required air volume is roughly divided into two. One is a process of calculating ventilation, which calculates ventilation resistance from the specifications of the rotating electrical machine, and then calculates the refrigerant flow rate q flowing in each part based on the cooling ventilation means air volume.

一方、温度計算の過程では、まず回転電機諸元と、電機子電圧V,電機子電流Ia ,界磁電流If を元に回転電機の機内で発生する損失すなわち発熱量を計算する。 On the other hand, in the temperature calculation process, first, the loss, that is, the amount of heat generated in the rotating electrical machine is calculated based on the rotating electrical machine specifications, the armature voltage V, the armature current Ia , and the field current If .

電機子における損失すなわち発熱量QS は、電機子巻線における発熱量Qc と鉄心における発熱量Qi との和で表され、Qc とQi はV,Ia に依存する。 The loss in the armature, that is, the calorific value Q S is expressed as the sum of the calorific value Q c in the armature winding and the calorific value Q i in the iron core, and Q c and Q i depend on V and I a .

S=Qc(V,Ia)+Qi(V,IaQ S = Q c (V, I a ) + Q i (V, I a )

また、回転子における発熱量QR は、摩擦など機械的損失による発熱量Qm と界磁巻線における発熱量Qf との和で表され、Qf はIf に依存する。ここで、回転電機の寸法と回転数が決まっているとき、Qm は電圧,電流によらず一定とする。 Further, the calorific value Q R on the rotor is represented by the sum of the calorific value Q f in the calorific value Q m and the field winding by mechanical loss such as friction, Q f is dependent on the I f. Here, when the dimensions and the number of rotations of the rotating electrical machine are determined, Q m is constant regardless of voltage and current.

R=Qm+Qf(IfQ R = Q m + Q f (I f )

上記の発熱量を熱源として、発熱部要素に割り振る。   The heat generation amount is assigned to the heat generating element as a heat source.

次に、この発熱量と先の通風計算で算出された各部風量を元に各部を伝わる伝熱量を計算する。   Next, the heat transfer amount transmitted through each part is calculated based on this heat generation amount and each part air volume calculated in the previous ventilation calculation.

ネットワークにおける、ある2点間における温度差(θ1−θ2)は、伝熱量Qe と各部の熱抵抗RT の積で表される。 The temperature difference (θ 1 −θ 2 ) between two points in the network is represented by the product of the heat transfer amount Q e and the thermal resistance RT of each part.

θ1−θ2=RTe θ 1 −θ 2 = R T Q e

熱抵抗RT は計算対象とする箇所が熱伝導要素の場合、熱伝導距離δに比例、熱伝導率λと伝熱面積Aに反比例する。 When the location to be calculated is a heat conduction element, the thermal resistance RT is proportional to the heat conduction distance δ and inversely proportional to the heat conductivity λ and the heat transfer area A.

Figure 2008043115
Figure 2008043115

一方、計算対象が熱伝達要素の場合、熱伝達率αと伝熱面積Aに反比例する。   On the other hand, when the calculation object is a heat transfer element, it is inversely proportional to the heat transfer coefficient α and the heat transfer area A.

Figure 2008043115
Figure 2008043115

温度計算では、発熱部分である固体の温度をまず求め、続いて冷媒である流体の温度を求める。熱伝達要素からの入熱量に対する流体の温度上昇ΔTは、流体要素への入熱量
ΔQに比例し、冷媒流量qと冷媒の定圧比熱Cp に反比例する。ここで、流量qは温度計算に先立ち通風計算により求められたものを用いる。
In the temperature calculation, the temperature of the solid that is the heat generating portion is first obtained, and then the temperature of the fluid that is the refrigerant is obtained. The temperature rise ΔT of the fluid with respect to the heat input from the heat transfer element is proportional to the heat input ΔQ to the fluid element and inversely proportional to the refrigerant flow rate q and the constant pressure specific heat C p of the refrigerant. Here, the flow rate q is obtained by ventilation calculation prior to temperature calculation.

Figure 2008043115
Figure 2008043115

各部温度上昇の計算結果を前ステップと比較し、差が一定値より小さくなったら収束と見なし、各部で初期温度Ta(雰囲気温度)に温度上昇の計算結果を加え、最高温度判定に受け渡す。 Comparing the calculation result of each part's temperature rise with the previous step, if the difference becomes smaller than a certain value, it is regarded as convergence. In each part, the calculation result of the temperature rise is added to the initial temperature T a (atmosphere temperature) and passed to the maximum temperature judgment. .

本実施例の構成では、電機子電圧および電機子電流は検出値、界磁電流は所定値を用いる。計算により求められた機内最高温度が制限値を以下となるまで風量を増して上記の過程を繰り返せば、温度制限値を満たす必要風量を計算することができる。   In the configuration of this embodiment, the armature voltage and the armature current are detected values, and the field current is a predetermined value. If the air volume is increased and the above process is repeated until the in-machine maximum temperature obtained by the calculation becomes the limit value or less, the necessary air volume that satisfies the temperature limit value can be calculated.

例として、ある回転電機に関する回転電機出力と必要風量の関係を図10に示す。このとき、冷却通風手段として風量可変のブロアファンを用いて回転電機内を冷却する場合、冷却に必要な風量と軸動力の関係は、図12に示すようになる。図10,図12において、必要風量,軸動力は回転電機出力100%のときを100%としたパーセント表示としてある。例えば、50%の出力で回転電機が運転される際に必要な風量は図10より50%程度であり、50%の風量をブロアファンが送風するのに必要な軸動力は図12より
20%程度となる。本発明では、冷却手段であるブロアファンの風量を可変とし、最高温度に基づいた必要風量に制御するため、不要な損失を削減し、高効率な運転が可能となる。この例では、約80%の軸動力を削減することが可能である。
As an example, FIG. 10 shows the relationship between the rotating electrical machine output and the required air volume for a certain rotating electrical machine. At this time, when the inside of the rotating electrical machine is cooled using a blower fan with variable air volume as the cooling ventilation means, the relationship between the air volume required for cooling and the shaft power is as shown in FIG. In FIGS. 10 and 12, the required air volume and shaft power are displayed as percentages when the rotating electrical machine output is 100%. For example, the air volume required when the rotating electrical machine is operated at 50% output is about 50% from FIG. 10, and the shaft power required for the blower fan to blow 50% air volume is 20% from FIG. It will be about. In the present invention, since the air volume of the blower fan, which is a cooling means, is made variable and controlled to the required air volume based on the maximum temperature, unnecessary loss can be reduced and highly efficient operation is possible. In this example, about 80% of shaft power can be reduced.

また、別の例としてある回転電機の雰囲気温度と必要風量の関係を図11に示す。このとき、冷却通風手段として風量可変のブロアファンを用いて、回転電機内を冷却する場合、冷却に必要な風量と軸動力の関係は、図12に示すようになる。図11,図12において、必要風量,軸動力は回転電機の雰囲気温度25℃のときを100%としたパーセント表示としてある。例えば、雰囲気温度25℃に対し0℃で回転電機が運転される際に必要な風量は図11より70%程度であり、この時必要な軸動力は図12より40%程度となる。本発明では、冷却手段であるブロアファンの風量を可変とし、最高温度に基づいた必要風量に制御するため、不要な損失を削減し、高効率な運転が可能となる。この例では、約60%の軸動力を削減することが可能である。   As another example, FIG. 11 shows the relationship between the atmospheric temperature of a rotating electrical machine and the required air volume. At this time, when the inside of the rotating electrical machine is cooled by using a blower fan with variable air volume as the cooling ventilation means, the relationship between the air volume necessary for cooling and the shaft power is as shown in FIG. In FIGS. 11 and 12, the required air volume and shaft power are expressed as percentages when the atmospheric temperature of the rotating electrical machine is 25 ° C. and 100%. For example, the air volume required when the rotating electrical machine is operated at 0 ° C. with respect to the ambient temperature of 25 ° C. is about 70% from FIG. 11, and the shaft power required at this time is about 40% from FIG. In the present invention, since the air volume of the blower fan, which is a cooling means, is made variable and controlled to the required air volume based on the maximum temperature, unnecessary loss can be reduced and highly efficient operation is possible. In this example, about 60% of shaft power can be reduced.

また、これらの回転電機出力と必要風量,雰囲気温度と必要風量の関係を予め図13に示すようなテーブルにしておけば、繰り返し計算などの過程を踏むことなく、簡易に必要風量を求めることができる。また、予め予測される時間毎に必要風量をテーブル化しておくことも考えられる。   Further, if the relationship between the output of the rotating electrical machine and the required air volume, the ambient temperature and the required air volume is set in a table as shown in FIG. 13 in advance, the required air volume can be easily obtained without going through a process such as repeated calculation. it can. It is also conceivable that the necessary air volume is tabulated for each predicted time.

上記の出力,雰囲気温度に対する必要風量,軸動力はある回転電機に関する一例であり、機械によってその数値は異なる。   The above output, the required air volume with respect to the ambient temperature, and the shaft power are examples of a certain rotating electric machine, and the numerical values differ depending on the machine.

また、上記の構成では、風量可変の冷却通風手段として、可変速電動機により駆動されるブロアを想定している。すなわち、風量制御手段は必要風量を元に、電動機の回転数を制御する。電動機の回転数に対するブロアの風量−圧力特性の一例を図14に示す。可変速電動機を用いて回転数で制御を行うことで、バッフルなどの機械的要素を必要とすることなく、風量の制御が可能である。   Further, the above configuration assumes a blower driven by a variable speed electric motor as the cooling air ventilation means with variable air volume. That is, the air volume control means controls the rotation speed of the electric motor based on the required air volume. An example of the air volume-pressure characteristic of the blower with respect to the rotation speed of the electric motor is shown in FIG. By controlling the number of revolutions using a variable speed electric motor, the air volume can be controlled without requiring mechanical elements such as baffles.

本発明の構成では、検出した電機子電圧,電機子電流,雰囲気温度から計算した機内最高温度の計算値に従って、機内の最高温度が制限値を超えないよう冷却通風手段2の必要風量を決定し制御を行うため、不要な損失を削減して高効率で回転電機を運転することが出来る。機内最高温度により必要風量の決定を行うことで、軸長が長い回転電機においても温度の余裕をみる必要がなく、適切な風量制御が可能となる。   In the configuration of the present invention, the required air volume of the cooling ventilation means 2 is determined so that the maximum temperature in the machine does not exceed the limit value according to the calculated value of the maximum temperature in the machine calculated from the detected armature voltage, armature current, and ambient temperature. Since the control is performed, the rotating electrical machine can be operated with high efficiency by reducing unnecessary loss. By determining the required air volume based on the in-machine maximum temperature, it is not necessary to allow a temperature margin even in a rotating electric machine having a long shaft length, and appropriate air volume control is possible.

また、最高温度を電機子電圧,電機子電流,雰囲気温度に基づいて算出するため、電流,電圧の変動や雰囲気温度の変化に追従した最適効率での運転が可能である。   In addition, since the maximum temperature is calculated based on the armature voltage, the armature current, and the ambient temperature, it is possible to operate at an optimum efficiency following changes in current and voltage and changes in ambient temperature.

図3は本発明の実施の形態2を示す構成図である。電機子電圧の変動が少ないことが予め分かっている場合、あるいは電機子電圧の指令値を用いることができる場合には、電機子電流のみを検出し、電機子電圧は所定値あるいは指令値を用いて、最高温度を算出する。すなわち、図2の算出過程における入力データ22として、所定あるいは指令された電機子電圧,検出した電機子電流と雰囲気温度を用い、最高温度,必要風量を算出する。   FIG. 3 is a block diagram showing Embodiment 2 of the present invention. When it is known in advance that there is little fluctuation in the armature voltage, or when the command value of the armature voltage can be used, only the armature current is detected, and the armature voltage uses a predetermined value or command value. To calculate the maximum temperature. That is, as the input data 22 in the calculation process of FIG. 2, the maximum temperature and the necessary air volume are calculated using a predetermined or commanded armature voltage, the detected armature current and the ambient temperature.

本実施例によれば、電機子電圧の検出手段を省略して簡単な構成とすることができる。   According to the present embodiment, the armature voltage detection means can be omitted and a simple configuration can be achieved.

図4は本発明の実施の形態3を示す構成図である。回転電機1の界磁電流を検出する界磁電流検出手段8,雰囲気温度算出手段5が備えられており、界磁電流検出手段8,雰囲気温度検出手段5の検出値を元に、算出手段7は機内最高温度を計算し、続いて機内最高温度が予め決めた制限値を超えないための必要風量を算出する。風量制御手段6は、必要風量算出手段7により決定された風量になるよう、冷却通風手段2の風量を調整する。すなわち、図2の算出過程における入力データ22として、所定の電機子電圧および電機子電流,検出した界磁電流と雰囲気温度を用い、最高温度,必要風量を算出する。   FIG. 4 is a block diagram showing Embodiment 3 of the present invention. A field current detecting means 8 for detecting the field current of the rotating electrical machine 1 and an ambient temperature calculating means 5 are provided. Based on the detection values of the field current detecting means 8 and the ambient temperature detecting means 5, the calculating means 7 is provided. Calculates the maximum in-machine temperature, and then calculates the required air volume for the maximum in-machine temperature not exceeding a predetermined limit value. The air volume control means 6 adjusts the air volume of the cooling ventilation means 2 so that the air volume determined by the required air volume calculation means 7 is obtained. That is, using the predetermined armature voltage and armature current, the detected field current and the ambient temperature as the input data 22 in the calculation process of FIG. 2, the maximum temperature and the required air volume are calculated.

本実施例の構成は、電機子巻線に比べ、界磁巻線の温度が高いことが予測される場合に有効である。界磁巻線の温度が制限値を超えないよう風量を制御して、損失削減を図ることができる。   The configuration of this embodiment is effective when the temperature of the field winding is predicted to be higher than that of the armature winding. Loss can be reduced by controlling the air volume so that the temperature of the field winding does not exceed the limit value.

本実施例では、界磁電流と雰囲気温度を検出して機内最高温度を算出しているが、界磁巻線,電機子巻線のいずれが高温であるかの予測が難しい場合には、併せて実施の形態1に示したように電機子電圧,電機子電流を検出し機内最高温度を算出する構成としてもよい。   In this example, the field current and the ambient temperature are detected to calculate the maximum temperature inside the machine. However, if it is difficult to predict which of the field winding or armature winding is hot, Thus, as shown in the first embodiment, the armature voltage and the armature current may be detected to calculate the maximum temperature in the machine.

図5は本発明の実施の形態4を示す構成図である。回転電機1内に温度センサ10が複数設けられ、温度検出手段9により温度を検出する。算出手段7は、温度センサ10の位置と検出温度を元に機内最高温度を計算し、続いて機内最高温度が予め決めた制限値を超えないための必要風量を算出する。風量制御手段6は、算出手段7により決定された風量になるよう、冷却通風手段2の風量を調整する。   FIG. 5 is a block diagram showing Embodiment 4 of the present invention. A plurality of temperature sensors 10 are provided in the rotating electrical machine 1, and the temperature is detected by the temperature detection means 9. The calculating means 7 calculates the in-machine maximum temperature based on the position of the temperature sensor 10 and the detected temperature, and then calculates the necessary air volume for preventing the in-machine maximum temperature from exceeding a predetermined limit value. The air volume control means 6 adjusts the air volume of the cooling ventilation means 2 so that the air volume determined by the calculation means 7 is obtained.

最高温度の算出過程を図6に示す。入力データ22として、所定の電機子電圧および電機子電流,界磁電流を用い、実施例1と同様に通風計算,損失計算を行い、図17に示すように電機子巻線の温度分布を求め、検出温度と計算温度を比較する。計算に用いる所定の電機子電圧,電機子電流,界磁電流とは、例えば、設計値,指令値などである。図6では検出した温度のうち最も小さいものを温度計算の初期値として用いているが、初期値に設計値などの所定値を用いてもよい。また、雰囲気温度を測定可能な構成では、初期値に雰囲気温度を用いてもよい。   The process for calculating the maximum temperature is shown in FIG. Using the predetermined armature voltage, armature current, and field current as the input data 22, ventilation calculation and loss calculation are performed in the same manner as in the first embodiment, and the temperature distribution of the armature winding is obtained as shown in FIG. Compare the detected temperature with the calculated temperature. The predetermined armature voltage, armature current, and field current used for the calculation are, for example, a design value, a command value, and the like. In FIG. 6, the lowest detected temperature is used as an initial value for temperature calculation, but a predetermined value such as a design value may be used as the initial value. In the configuration in which the atmospheric temperature can be measured, the atmospheric temperature may be used as the initial value.

ここで、図17に見られるように、温度検出値24a〜24gと温度計算値25とに差が生じる場合がある。このとき、温度計算値を上回る温度が検出された場合、温度検出値と温度計算値との差26が最大となる点における温度差分を温度計算値全体に足した温度を元に必要風量を決定する。逆に温度計算値が全ての温度検出値を上回る場合には、最も低い温度検出値の位置での差分を計算値から差し引いて補正を行う。   Here, as seen in FIG. 17, there may be a difference between the detected temperature values 24 a to 24 g and the calculated temperature value 25. At this time, if a temperature exceeding the calculated temperature value is detected, the required air volume is determined based on the temperature obtained by adding the temperature difference at the point where the difference 26 between the detected temperature value and the calculated temperature value is the maximum to the entire calculated temperature value. To do. Conversely, when the calculated temperature value exceeds all detected temperature values, the difference at the position of the lowest detected temperature value is subtracted from the calculated value to perform correction.

複数点の検出温度を元に最高温度算出を行うため、精度の高い機内温度推定が可能であり、健全性の保証,不要な風量の削減に有効である。   Since the maximum temperature is calculated based on the detected temperatures at multiple points, it is possible to accurately estimate the in-flight temperature, which is effective in ensuring soundness and reducing unnecessary air volume.

回転電機内外に複数の温度検出手段を設置可能な場合には、本実施例に記載の構成と、実施例1および2に記載の構成のいずれか、あるいは両方を併用することでより精度の高い機内温度推定が可能である。   When a plurality of temperature detection means can be installed inside and outside the rotating electrical machine, higher accuracy can be achieved by using either or both of the configuration described in the present embodiment and the configurations described in the first and second embodiments. In-flight temperature estimation is possible.

また、最高温度算出にあたり、無負荷運転した温度試験結果と、電機子端子を短絡して電機子電流を通電した温度試験結果と、機械損温度試験結果を用いれば、温度センサの異常などにより十分な温度データを得られない場合にも、測定点を補完して温度の推定が可能となる。   In addition, when calculating the maximum temperature, using the temperature test result with no-load operation, the temperature test result with the armature terminal short-circuited and energizing the armature current, and the mechanical loss temperature test result are sufficient due to abnormalities in the temperature sensor, etc. Even when accurate temperature data cannot be obtained, the temperature can be estimated by complementing the measurement points.

また、本実施例において検出温度が一定値を超えた場合に、図示しない通信手段により、指令室に通知する構成とすれば、異常を感知し、回転電機の破損等を未然に防ぐことができる。   Further, in this embodiment, when the detected temperature exceeds a certain value, if the communication room (not shown) notifies the command room, an abnormality can be detected and damage to the rotating electrical machine can be prevented. .

図7は本発明の実施の形態5を示す構成図である。回転電機1の回転子に冷却ファン
11が取り付けられている。回転電機1は、冷却ファン11と風量可変の冷却通風手段2により機内を通風冷却されている。電機子電圧検出手段3と電機子電流検出手段4,雰囲気温度検出手段5の検出値を元に、算出手段7は機内最高温度を計算し、続いて機内最高温度が予め決めた制限値を超えないための必要風量を算出する。風量制御手段6は、算出手段7により決定された風量になるよう、冷却通風手段2の風量を調整する。
FIG. 7 is a block diagram showing Embodiment 5 of the present invention. A cooling fan 11 is attached to the rotor of the rotating electrical machine 1. The rotating electrical machine 1 is air-cooled in the machine by a cooling fan 11 and cooling air ventilation means 2 with variable air volume. Based on the detection values of the armature voltage detection means 3, the armature current detection means 4, and the ambient temperature detection means 5, the calculation means 7 calculates the maximum temperature in the machine, and then the maximum temperature in the machine exceeds a predetermined limit value. Calculate the necessary air volume for not. The air volume control means 6 adjusts the air volume of the cooling ventilation means 2 so that the air volume determined by the calculation means 7 is obtained.

最高温度の算出過程を図8に示す。通風計算の際に、冷却ファン風量を加えて、風量算出を行う。その他の過程は実施例1と同様である。   The calculation process of the maximum temperature is shown in FIG. When calculating ventilation, add the cooling fan air volume and calculate the air volume. Other processes are the same as those in the first embodiment.

本実施例の構成により、万一冷却通風手段が停止した場合でも、冷却ファン11により機内の通風を行い、出力を下げることにより運転を継続することができる。   With the configuration of the present embodiment, even if the cooling ventilation means stops, the cooling fan 11 can ventilate the interior of the machine and reduce the output to continue the operation.

図9は本発明の実施の形態6における回転電機を示す断面図である。本実施例は、実施例1において、回転電機を固定子鉄心15と固定子枠16との間に設けられた仕切り板
17によって軸方向に複数に分割された通風セクション13a〜13gを有するもので構成し、風量可変の通風手段14a〜14gを回転電機の通風セクションに対応して複数設置してあり、通風手段14a〜14gは各々異なる風量に可変としてある。
FIG. 9 is a cross-sectional view showing a rotary electric machine according to Embodiment 6 of the present invention. In this embodiment, the rotating electrical machine according to the first embodiment has ventilation sections 13a to 13g divided into a plurality of parts in the axial direction by a partition plate 17 provided between the stator core 15 and the stator frame 16. A plurality of ventilation means 14a to 14g having a variable air volume are installed corresponding to the ventilation section of the rotating electrical machine, and each of the ventilation means 14a to 14g is variable to a different air volume.

この場合に、電機子電圧と、電機子電流と、雰囲気温度の検出値から算出した電機子巻線温度分布の例を制限温度1.0pu として温度を断面図下に示した。電機子巻線の温度分布は十分細かい分割のネットワークにより算出してあり、図のようにセクションごとの詳細な温度分布を得ることができる。   In this case, an example of the armature winding temperature distribution calculated from the armature voltage, the armature current, and the detected value of the ambient temperature is shown as a limit temperature of 1.0 pu, and the temperature is shown below the sectional view. The temperature distribution of the armature winding is calculated by a sufficiently fine division network, and a detailed temperature distribution for each section can be obtained as shown in the figure.

この例のように、通風セクション13cと13eの温度が制限値を超える結果を得た場合には、対応する通風手段14cと14eの風量を増加させる。   When the temperature of the ventilation sections 13c and 13e exceeds the limit value as in this example, the air volume of the corresponding ventilation means 14c and 14e is increased.

本実施例の構成により、必要なセクションの通風量のみを増加させることで、不要な通風による損失を削減し、高効率での回転電機運転が可能である。   With the configuration of this embodiment, by increasing only the ventilation amount of the necessary section, loss due to unnecessary ventilation can be reduced, and high-efficiency rotating electric machine operation is possible.

また、本実施例の構成に加えて、実施例4と同様に回転電機内の温度分布が得られ、図17に見られるような温度検出値と温度計算値の比較が通風セクションごとに可能な場合、温度計算値を通風セクションごとに補正してもよい。すなわち、図17において、通風セクションaでは温度検出値24aが温度計算値25を上回っており、この差分を計算値に加えて補正し、逆に通風セクションbでは計算値から差分を差し引いて補正する。これにより、通風セクションごとの温度計算のさらなる高精度化を計ることができる。   Further, in addition to the configuration of the present embodiment, a temperature distribution in the rotating electrical machine can be obtained similarly to the fourth embodiment, and the detected temperature value and the calculated temperature value as shown in FIG. 17 can be compared for each ventilation section. In this case, the calculated temperature value may be corrected for each ventilation section. That is, in FIG. 17, the detected temperature value 24a exceeds the calculated temperature value 25 in the ventilation section a, and this difference is corrected in addition to the calculated value. Conversely, in the ventilation section b, the difference is subtracted from the calculated value. . Thereby, the further precision improvement of the temperature calculation for every ventilation section can be achieved.

図15は本発明の実施の形態7における回転電機を示す構成図である。風量可変の冷却通風手段として、冷却ファン11に代えて、角度可変翼を回転子に取り付け構成した軸流ファンを用いている。その他の構成は、実施例1と同じとしている。図16に翼角度に対するブロアの風量−圧力特性の一例を示す。角度可変翼で構成した軸流ファンを用いることで、回転電機本体の構成を大きく変えることなく、風量制御を可能にできる。   FIG. 15 is a block diagram showing a rotating electrical machine according to Embodiment 7 of the present invention. As an air flow variable cooling ventilation means, instead of the cooling fan 11, an axial flow fan having a variable angle blade attached to the rotor is used. Other configurations are the same as those in the first embodiment. FIG. 16 shows an example of the air volume-pressure characteristics of the blower with respect to the blade angle. By using an axial fan composed of variable angle blades, it is possible to control the air volume without greatly changing the configuration of the rotating electrical machine main body.

図18は本発明の実施の形態8における発電システムを示す構成図である。回転電機1はタービン27と図示しないカップリングを介して接続されており、タービンの動力によって回転子を回転させ、発電した電力を電力系統28に供給する。指令室30ではタービンおよび回転電機1の運転,監視を行う。   FIG. 18 is a configuration diagram showing a power generation system according to Embodiment 8 of the present invention. The rotating electrical machine 1 is connected to the turbine 27 via a coupling (not shown), rotates the rotor by the power of the turbine, and supplies the generated power to the power system 28. In the command room 30, the turbine and the rotating electrical machine 1 are operated and monitored.

回転電機1は実施例4のごとく、機内に温度センサ10を複数設けてあり、温度検出手段9により温度を検出する。算出手段7は、温度センサ10の位置と検出温度を元に機内最高温度を計算し、続いて機内最高温度が予め決めた制限値を超えないための必要風量を算出する。風量制御手段6は、算出手段7により決定された風量になるよう、冷却通風手段2の風量を調整する。   As in the fourth embodiment, the rotating electrical machine 1 is provided with a plurality of temperature sensors 10 in the machine, and the temperature detecting means 9 detects the temperature. The calculating means 7 calculates the in-machine maximum temperature based on the position of the temperature sensor 10 and the detected temperature, and then calculates the necessary air volume for preventing the in-machine maximum temperature from exceeding a predetermined limit value. The air volume control means 6 adjusts the air volume of the cooling ventilation means 2 so that the air volume determined by the calculation means 7 is obtained.

また、回転電機1には、検出温度に対する異常検出手段29を備えてあり、温度検出手段9が所定の温度を超える値を検出した場合には、指令室30に異常を通知し、通知を受け取った指令室30はタービンおよび回転電機の出力を調整する。   Further, the rotating electrical machine 1 is provided with an abnormality detection means 29 for the detected temperature. When the temperature detection means 9 detects a value exceeding a predetermined temperature, the abnormality is notified to the command chamber 30 and the notification is received. The command chamber 30 adjusts the output of the turbine and the rotating electrical machine.

以上のように本発明によれば、回転電機内の最高温度または温度分布に基づいて、冷却風量を必要量に制御するので、機内最高温度が制限値を超えることなく、健全性を保証した上で、機内冷却風量を必要十分に制御し、高効率で回転電機を運転することが可能である。   As described above, according to the present invention, the amount of cooling air is controlled to the required amount based on the maximum temperature or temperature distribution in the rotating electrical machine, so that soundness is ensured without the maximum temperature in the machine exceeding the limit value. Therefore, it is possible to control the amount of cooling air in the machine as necessary and to operate the rotating electric machine with high efficiency.

また、本発明によれば、機内最高温度あるいは機内温度分布を算出する手段を備えることにより、雰囲気温度や負荷変動の激しい箇所に設置された回転電機においても、必要十分な風量に制御し、高効率で回転電機を運転することが可能である。   In addition, according to the present invention, by providing a means for calculating the maximum temperature in the machine or the temperature distribution in the machine, even in a rotating electrical machine installed in a place where the ambient temperature or the load fluctuates severely, the necessary and sufficient air volume is controlled. It is possible to operate the rotating electrical machine with efficiency.

また、本発明によれば、前もって負荷や雰囲気温度に対する必要風量をパターン化あるいはテーブル化しておくことで、制御を簡略化することができる。   Further, according to the present invention, control can be simplified by patterning or tabulating the required air volume with respect to the load and the ambient temperature in advance.

本発明の実施例1を示す構成図。The block diagram which shows Example 1 of this invention. 風量算出過程を示す説明図。Explanatory drawing which shows an air volume calculation process. 本発明の実施例2を示す構成図。The block diagram which shows Example 2 of this invention. 本発明の実施例3を示す構成図。The block diagram which shows Example 3 of this invention. 本発明の実施例4を示す構成図。The block diagram which shows Example 4 of this invention. 本発明の実施例4における風量算出過程を示す説明図。Explanatory drawing which shows the air volume calculation process in Example 4 of this invention. 本発明の実施例5を示す構成図。The block diagram which shows Example 5 of this invention. 本発明の実施例5における風量算出過程を示す説明図。Explanatory drawing which shows the air volume calculation process in Example 5 of this invention. 本発明の実施例6の回転電機を示す断面図および電機子巻線温度。Sectional drawing and armature winding temperature which show the rotary electric machine of Example 6 of this invention. 回転電機の出力と必要風量の関係を示す図。The figure which shows the relationship between the output of a rotary electric machine, and required air volume. 回転電機の雰囲気温度と必要風量の関係を示す図。The figure which shows the relationship between the atmospheric temperature of a rotary electric machine, and required air volume. 風量とファン動力の関係を示す図。The figure which shows the relationship between an air volume and fan motive power. 回転電機出力と雰囲気温度に対する必要風量のテーブルの一例を示す図。The figure which shows an example of the table of the required air volume with respect to a rotary electric machine output and atmospheric temperature. 可変速ブロアにおける、回転数に対する風量−圧力特性の関係を示す図。The figure which shows the relationship of the air volume-pressure characteristic with respect to the rotation speed in a variable speed blower. 本発明の実施例7を示す構成図。The block diagram which shows Example 7 of this invention. 角度可変ファンにおける、翼角度に対する風量−圧力特性の関係を示す図。The figure which shows the relationship of the air volume-pressure characteristic with respect to a blade angle in an angle variable fan. 本発明の実施例4における、電機子巻線の検出温度値と計算温度値の一例を示す図。The figure which shows an example of the detected temperature value of an armature winding and the calculated temperature value in Example 4 of this invention. 本発明の実施例8を示す構成図。The block diagram which shows Example 8 of this invention.

符号の説明Explanation of symbols

1…回転電機、2…冷却通風手段、3…電機子電圧検出手段、4…電機子電流検出手段、5…雰囲気温度検出手段、6…風量制御手段、7…必要風量算出手段、8…界磁電流検出手段、9…機内温度検出手段、10…温度センサ、11…冷却ファン、12…回転子、
13a〜13g…通風セクション、14a〜14g…通風セクションに対応した冷却通風手段、15…固定子鉄心、16…固定子枠、17…仕切り板、22…入力データ、23…角度可変翼を備えた軸流ファン、24a〜24g…各検出位置における温度値、25…温度計算値、26…温度検出値と温度計算値との差、27…タービン、28…電力系統、
29…異常検出手段、30…指令室。
DESCRIPTION OF SYMBOLS 1 ... Rotary electric machine, 2 ... Cooling ventilation means, 3 ... Armature voltage detection means, 4 ... Armature current detection means, 5 ... Atmosphere temperature detection means, 6 ... Air volume control means, 7 ... Necessary air volume calculation means, 8 ... Field Magnetic current detection means, 9 ... in-machine temperature detection means, 10 ... temperature sensor, 11 ... cooling fan, 12 ... rotor,
13a to 13g ... ventilation section, 14a to 14g ... cooling ventilation means corresponding to the ventilation section, 15 ... stator iron core, 16 ... stator frame, 17 ... partition plate, 22 ... input data, 23 ... variable angle blades Axial fan, 24a to 24g ... temperature value at each detection position, 25 ... temperature calculation value, 26 ... difference between temperature detection value and temperature calculation value, 27 ... turbine, 28 ... power system,
29 ... Abnormality detection means, 30 ... Command room.

Claims (15)

鉄心に電機子巻線を巻き回した固定子と、前記固定子の内径側同心位置に回転可能に配置される回転子と、風量を調節可能な冷却通風手段とを有する回転電機において、
雰囲気温度を測定する手段と、電機子電圧,電機子電流,界磁電流のいずれかあるいは複数を検出する手段とを備え、
前記雰囲気温度の測定値と前記検出手段の検出値と冷却風量指令値とにより回転電機内の温度計算値を算出し、
前記回転電機内の温度計算値により、新たな冷却風量指令値を決定することを特徴とする回転電機。
In a rotating electrical machine having a stator in which an armature winding is wound around an iron core, a rotor rotatably disposed at a concentric position on the inner diameter side of the stator, and cooling ventilation means capable of adjusting an air volume,
Means for measuring the ambient temperature, and means for detecting one or more of armature voltage, armature current, field current,
Calculate the temperature calculated value in the rotating electrical machine by the measured value of the ambient temperature, the detected value of the detecting means, and the cooling air volume command value,
A new cooling air flow command value is determined based on a temperature calculation value in the rotating electric machine.
請求項1において、
予め定めた制限温度を超えないように冷却風量を決定することを特徴とする回転電機。
In claim 1,
A rotating electrical machine characterized by determining a cooling air volume so as not to exceed a predetermined limit temperature.
請求項1において、
前記回転電機内の温度は回転電機の最高温度又は回転電機内の温度分布であることを特徴とする回転電機。
In claim 1,
The rotary electric machine is characterized in that the temperature in the rotary electric machine is a maximum temperature of the rotary electric machine or a temperature distribution in the rotary electric machine.
請求項1において、
前記電機子電圧,前記電機子電流,前記雰囲気温度,前記冷却風量の何れかあるいは複数と、前記新たな冷却風量指令値との関係をテーブル化しておくことを特徴とする回転電機。
In claim 1,
A rotary electric machine characterized in that a relationship between any one or more of the armature voltage, the armature current, the ambient temperature, and the cooling air volume and the new cooling air volume command value is tabulated.
請求項1において、
前記新たな冷却風量指令値を予め予測される時間毎にテーブル化しておくことを特徴とする回転電機。
In claim 1,
A rotating electric machine characterized in that the new cooling air flow rate command value is tabulated in advance for each predicted time.
請求項1において、
前記固定子と前記回転子を収容する固定子枠と、前記固定子枠と前記固定子との間に軸方向に分割された通風セクションと、前記通風セクション毎に対応した複数の前記冷却通風手段とを備え、
前記通風セクション毎に対応した複数の前記冷却通風手段毎に前記新たな冷却風量指令値を決定することを特徴とした回転電機。
In claim 1,
A stator frame that accommodates the stator and the rotor; a ventilation section that is axially divided between the stator frame and the stator; and a plurality of cooling ventilation means corresponding to each of the ventilation sections. And
The rotating electrical machine characterized in that the new cooling air amount command value is determined for each of the plurality of cooling ventilation means corresponding to each ventilation section.
請求項1において、
前記冷却通風手段は、可変速のブロアファン,回転子に取り付けたファンの何れか、又は両方であることを特徴とした回転電機。
In claim 1,
The rotating electrical machine is characterized in that the cooling ventilation means is either a variable speed blower fan, a fan attached to a rotor, or both.
請求項7において、
前記回転子に取り付けたファンは、羽の角度を変更することができることを特徴とする回転電機。
In claim 7,
The fan mounted on the rotor can change the angle of the wings.
請求項1において、
回転電機内に温度検出手段を有し、
前記温度検出手段により検出した温度により補正を加えて、前記回転電機内の温度を算出することを特徴とする回転電機。
In claim 1,
Having temperature detection means in the rotating electrical machine,
A rotating electrical machine characterized in that the temperature in the rotating electrical machine is calculated by correcting the temperature detected by the temperature detecting means.
請求項1において、
異常検出手段を有し、
前記回転電機内の温度が所定値を超えた場合に、回転電機の指令室に異常を通知することを特徴とする回転電機。
In claim 1,
Having an anomaly detection means,
When the temperature in the rotating electrical machine exceeds a predetermined value, an abnormality is notified to a command room of the rotating electrical machine.
請求項1において、
前記回転電機は発電機であり、前記発電機はタービンとカップリングを介して接続され、前記タービンの動力により回転子が回転することで発電を行い、電力系統あるいは電力貯蔵装置に電力を供給することを特徴とする発電システム。
In claim 1,
The rotating electrical machine is a generator, and the generator is connected to a turbine through a coupling. The rotor is rotated by the power of the turbine to generate power and supply power to an electric power system or an energy storage device. A power generation system characterized by that.
請求項1において、
電機子電圧,電機子電流,界磁電流のいずれかあるいは複数の検出値に代えて、電圧あるいは電流の所定値を用いて回転電機内の温度計算値を計算することを特徴とする回転電機。
In claim 1,
A rotating electrical machine characterized by calculating a temperature calculation value in a rotating electrical machine using a predetermined value of voltage or current instead of any one or a plurality of detected values of an armature voltage, an armature current, or a field current.
請求項12において、
所定値とは設計値であることを特徴とする回転電機。
In claim 12,
A rotating electrical machine characterized in that the predetermined value is a design value.
請求項12において、
所定値とは指令値であることを特徴とする回転電機。
In claim 12,
The rotating electrical machine characterized in that the predetermined value is a command value.
鉄心に電機子巻線を巻き回した固定子と、前記固定子の内径側同心位置に回転可能に配置される回転子と、風量を調節可能な冷却通風手段とを有する回転電機において、
回転電機内の温度を検出する手段と、電機子電圧,電機子電流,界磁電流のいずれか一つ以上を検出する手段とを備え、
前記温度検出手段により検出した温度と検出手段の検出値と冷却風量指令値とにより回転電機内の温度計算値を算出し、
前記回転電機内の温度計算値により、新たな冷却風量指令値を決定することを特徴とする回転電機。
In a rotating electrical machine having a stator in which an armature winding is wound around an iron core, a rotor rotatably disposed at a concentric position on the inner diameter side of the stator, and cooling ventilation means capable of adjusting an air volume,
Means for detecting the temperature in the rotating electrical machine, and means for detecting any one or more of the armature voltage, the armature current, and the field current,
Calculate the temperature calculation value in the rotating electrical machine by the temperature detected by the temperature detection means, the detection value of the detection means, and the cooling air volume command value,
A new cooling air flow command value is determined based on a temperature calculation value in the rotating electric machine.
JP2006216363A 2006-08-09 2006-08-09 Rotating electric machine and power generation system Expired - Fee Related JP4858001B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006216363A JP4858001B2 (en) 2006-08-09 2006-08-09 Rotating electric machine and power generation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006216363A JP4858001B2 (en) 2006-08-09 2006-08-09 Rotating electric machine and power generation system

Publications (2)

Publication Number Publication Date
JP2008043115A true JP2008043115A (en) 2008-02-21
JP4858001B2 JP4858001B2 (en) 2012-01-18

Family

ID=39177511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006216363A Expired - Fee Related JP4858001B2 (en) 2006-08-09 2006-08-09 Rotating electric machine and power generation system

Country Status (1)

Country Link
JP (1) JP4858001B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898595B1 (en) 2008-09-18 2009-05-21 주식회사 다텍 Electric generator having heat-resistant fan interior operated according to temperature
JP2012528301A (en) * 2009-05-26 2012-11-12 ホリバ ヨーロッパ ゲーエムベーハー Test bench with temperature controlled cooling blower
CN106374684A (en) * 2016-10-26 2017-02-01 中车唐山机车车辆有限公司 Power supply device for rail vehicle and rail vehicle
JP2017103918A (en) * 2015-12-02 2017-06-08 三菱電機株式会社 Control device for rotary electric machine and control method thereof
JP2019033633A (en) * 2017-08-09 2019-02-28 西芝電機株式会社 Cooling system of rotary electric machine
JP2020072608A (en) * 2018-11-02 2020-05-07 三菱日立パワーシステムズ株式会社 Rotating electric machine temperature monitoring system and temperature monitoring method
JP2021164347A (en) * 2020-04-02 2021-10-11 三菱電機株式会社 Control apparatus built-in rotary electric machine

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212342A (en) * 1982-06-02 1983-12-10 Sumitomo Metal Ind Ltd Cooler for synchronous rotary electric machine
JPS6258851A (en) * 1985-05-22 1987-03-14 Nippon Steel Corp Controlling method for air quantity of cooling fan for motor
JP2004135499A (en) * 2002-10-08 2004-04-30 General Electric Co <Ge> Forced air stator ventilation system and stator ventilating method of superconductive synchronous machine
JP2004180454A (en) * 2002-11-28 2004-06-24 Mitsubishi Electric Plant Engineering Corp Motor cooling control system
JP2006325347A (en) * 2005-05-19 2006-11-30 Sumitomo Metal Ind Ltd System and method for controlling airflow in motor-cooling means

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58212342A (en) * 1982-06-02 1983-12-10 Sumitomo Metal Ind Ltd Cooler for synchronous rotary electric machine
JPS6258851A (en) * 1985-05-22 1987-03-14 Nippon Steel Corp Controlling method for air quantity of cooling fan for motor
JP2004135499A (en) * 2002-10-08 2004-04-30 General Electric Co <Ge> Forced air stator ventilation system and stator ventilating method of superconductive synchronous machine
JP2004180454A (en) * 2002-11-28 2004-06-24 Mitsubishi Electric Plant Engineering Corp Motor cooling control system
JP2006325347A (en) * 2005-05-19 2006-11-30 Sumitomo Metal Ind Ltd System and method for controlling airflow in motor-cooling means

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100898595B1 (en) 2008-09-18 2009-05-21 주식회사 다텍 Electric generator having heat-resistant fan interior operated according to temperature
JP2012528301A (en) * 2009-05-26 2012-11-12 ホリバ ヨーロッパ ゲーエムベーハー Test bench with temperature controlled cooling blower
JP2017103918A (en) * 2015-12-02 2017-06-08 三菱電機株式会社 Control device for rotary electric machine and control method thereof
CN106374684A (en) * 2016-10-26 2017-02-01 中车唐山机车车辆有限公司 Power supply device for rail vehicle and rail vehicle
JP2019033633A (en) * 2017-08-09 2019-02-28 西芝電機株式会社 Cooling system of rotary electric machine
JP2020072608A (en) * 2018-11-02 2020-05-07 三菱日立パワーシステムズ株式会社 Rotating electric machine temperature monitoring system and temperature monitoring method
JP2021164347A (en) * 2020-04-02 2021-10-11 三菱電機株式会社 Control apparatus built-in rotary electric machine

Also Published As

Publication number Publication date
JP4858001B2 (en) 2012-01-18

Similar Documents

Publication Publication Date Title
US7755230B2 (en) Rotary electric machine having cooling device and electric generating system including the machine
JP4858001B2 (en) Rotating electric machine and power generation system
US10066631B2 (en) Direct power control for constant airflow control
US8773058B2 (en) Rotor temperature estimation and motor control torque limiting for vector-controlled AC induction motors
US9473002B2 (en) System and method for cooling dynamoelectric machine
CN104180858B (en) A kind of method that blower motor measures air quantity
JP6303986B2 (en) Control device for in-vehicle electric compressor
US9356551B2 (en) Method and apparatus for controlling an electric motor employed to power a fluidic pump
TW201525388A (en) Motor housing temperature control system
KR102297053B1 (en) Method for protecting an electric motor of a device with a motor driven consumer having a continuous capacity control system and selection of such a motor
JP4511117B2 (en) Turbo molecular pump
US20120056571A1 (en) Electric drive system
JP6456261B2 (en) Fuel cell stack cooling system
US9112394B2 (en) Optimized cooling system for a brushed electrical machine, and a corresponding method
KR101857344B1 (en) Turbine type flow rate control apparatus
JP2016194257A (en) Turbine type flow control device
US20220186970A1 (en) Method and a device for sensorless ascertaining of volume flow and pressure
EP2088410B1 (en) Rotary electric machine
JP2016160917A (en) Vacuum pump temperature control device
WO2022163055A1 (en) Temperature control device
WO2016090735A1 (en) Automatic speed regulating ecm motor and freezer using same
JPH05276711A (en) Cooling control method for rotary machine
WO2017177287A2 (en) Method for protecting an electric motor of a device with a motor driven consumer with a continuous capacity control system and choice of such a motor
RU79840U1 (en) DEVICE FOR MONITORING THE HEAT CONDITION OF THE TRACTION ENGINE
KR101628535B1 (en) An apparatus for controlling cooling fan speed and a control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111004

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111017

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141111

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees