JP2008042146A - Single ccd solid imaging element and method for manufacturing the same, and digital camera - Google Patents

Single ccd solid imaging element and method for manufacturing the same, and digital camera Download PDF

Info

Publication number
JP2008042146A
JP2008042146A JP2006218470A JP2006218470A JP2008042146A JP 2008042146 A JP2008042146 A JP 2008042146A JP 2006218470 A JP2006218470 A JP 2006218470A JP 2006218470 A JP2006218470 A JP 2006218470A JP 2008042146 A JP2008042146 A JP 2008042146A
Authority
JP
Japan
Prior art keywords
pixel
microlens
manufacturing
imaging device
color
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006218470A
Other languages
Japanese (ja)
Inventor
Tomohiro Sakamoto
智洋 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Priority to JP2006218470A priority Critical patent/JP2008042146A/en
Publication of JP2008042146A publication Critical patent/JP2008042146A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Color Television Image Signal Generators (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a color mixture in a single CCD solid imaging element where a micro lens mounted pixel and a micro lens unmounted pixel are adjacently provided. <P>SOLUTION: A boundary position between a first color color-filter and a second color color-filter is manufactured so as to arrange a positional relation to allow an incident light with the maximum angle of incident θincident upon the micro lens unmounted pixel passing through the boundary position between the first color color-filter of the micro lens mounted pixel and the second color color-filter of the micro lens unmounted pixel to be incident upon the opening end of a shielding film on the micro lens mounted pixel side out of the opening end 108a of the micro lens unmounted pixel. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、マイクロレンズ搭載画素とマイクロレンズ非搭載画素とが隣接して設けられる単板式固体撮像素子の製造方法及び単板式固体撮像素子並びにデジタルカメラに関する。   The present invention relates to a method for manufacturing a single-plate solid-state imaging device, a single-plate solid-state imaging device, and a digital camera in which a microlens mounting pixel and a microlens non-mounting pixel are provided adjacently.

カラー画像を撮像する単板式の固体撮像素子には、例えば下記特許文献1に記載されている様に、マイクロレンズが搭載された画素と、マイクロレンズが搭載されていない画素とが隣接配置されたものがある。   In a single-plate solid-state imaging device that captures a color image, for example, as described in Patent Document 1 below, a pixel on which a microlens is mounted and a pixel on which a microlens is not mounted are arranged adjacent to each other. There is something.

図2は、マイクロレンズ搭載画素とマイクロレンズ非搭載画素とが隣接した固体撮像素子における2画素分の断面模式図である。n型半導体基板1にはPウェル層2が形成され、その表面部に、フォトダイオードを構成するn型領域3が形成されている。   FIG. 2 is a schematic cross-sectional view of two pixels in a solid-state imaging device in which a microlens mounting pixel and a microlens non-mounting pixel are adjacent to each other. A p-well layer 2 is formed on the n-type semiconductor substrate 1, and an n-type region 3 constituting a photodiode is formed on the surface portion.

半導体基板1の最表面にはゲート絶縁膜4が積層され、その上に、遮光膜5が形成される。この遮光膜5には、各フォトダイオードの受光面上に開口5aが設けられている。   A gate insulating film 4 is laminated on the outermost surface of the semiconductor substrate 1, and a light shielding film 5 is formed thereon. The light shielding film 5 has an opening 5a on the light receiving surface of each photodiode.

遮光膜5の上には透明な平坦化層6が積層され、平坦化層6の上に、カラーフィルタ層7が積層されている。図示する例では、左側画素に赤色(R)のカラーフィルタ層が設けられ、右側画素に緑色(G)のカラーフィルタ層が設けられている。   A transparent planarizing layer 6 is laminated on the light shielding film 5, and a color filter layer 7 is laminated on the planarizing layer 6. In the illustrated example, a red (R) color filter layer is provided on the left pixel, and a green (G) color filter layer is provided on the right pixel.

そして、カラーフィルタ層7の上に平坦化層8が積層され、その表面のうち、左側画素の上にマイクロレンズ9が設けられ、右側画素の上にはマイクロレンズは設けられていない。   Then, a planarizing layer 8 is laminated on the color filter layer 7, and a microlens 9 is provided on the left pixel of the surface, and no microlens is provided on the right pixel.

図2に示す固体撮像素子を上方から見た場合、マイクロレンズ9は円形をしており、各色毎のカラーフィルタは例えば夫々矩形または円形に形成されている。各画素のカラーフィルタは、隣接する画素のカラーフィルタと密接に配置される。   When the solid-state imaging device shown in FIG. 2 is viewed from above, the microlens 9 has a circular shape, and the color filters for each color are each formed in, for example, a rectangular shape or a circular shape. The color filter of each pixel is closely arranged with the color filter of the adjacent pixel.

マイクロレンズ非搭載画素の遮光膜開口端から両画素のカラーフィルタ境界までの水平距離をX、この遮光膜開口端からマイクロレンズ9端部までの水平距離をXMLとした場合、X≧XMLとなるようにマイクロレンズ9が形成されるのが通常である。即ち、マイクロレンズ9の端部が隣接のマイクロレンズ非搭載画素のカラーフィルタ側に若干はみ出る様にマイクロレンズ9が形成される。   When the horizontal distance from the light shielding film opening end of the pixel not equipped with the micro lens to the color filter boundary of both pixels is X, and the horizontal distance from the light shielding film opening end to the end of the micro lens 9 is XML, X ≧ XML. Usually, the microlens 9 is formed as described above. That is, the microlens 9 is formed so that the end of the microlens 9 slightly protrudes to the color filter side of the adjacent non-microlens pixel.

これにより、マイクロレンズ9への入射光は全て自身画素のカラーフィルタRを通ってフォトダイオードに受光され、マイクロレンズ9に入らない隣接マイクロレンズ非搭載画素への入射光は、マイクロレンズ搭載画素のカラーフィルタを通ることなく、自身のフォトダイオードに受光される。つまり、混色が発生しない様にマイクレンズ9が製造される。   As a result, all the incident light to the microlens 9 is received by the photodiode through the color filter R of the pixel itself, and the incident light to the adjacent non-microlens mounting pixel that does not enter the microlens 9 The light is received by its own photodiode without passing through the color filter. That is, the microphone lens 9 is manufactured so that color mixing does not occur.

特開2005―259750号公報JP 2005-259750 A

近年の固体撮像素子は多画素化が進展し、数百万画素を有するものが普通になってきている。更に多画素化が進展すると、小さな1チップ上に1000万画素以上を製造しなければならなくなる。   In recent years, solid-state imaging devices have been increased in number of pixels, and those having millions of pixels have become common. As the number of pixels increases, more than 10 million pixels must be manufactured on one small chip.

多画素化が進むと、1画素1画素を微細に製造する必要があり、全てのマイクロレンズ搭載画素のマイクロレンズを図2の状態で製造するのが困難になってしまう。これは、カラーフィルタ層とマイクロレンズの位置関係がそれぞれバラツキを含むためである。   As the number of pixels increases, it is necessary to manufacture each pixel minutely, and it becomes difficult to manufacture the microlenses of all the microlens mounted pixels in the state shown in FIG. This is because the positional relationship between the color filter layer and the microlens includes variations.

このため、図3に示す様に、マイクロレンズ9が自身画素のカラーフィルタ7よりかなり小さくなってしまう事態が生じる。図3に示す状態になると、斜め入射光がマイクロレンズ搭載画素のカラーフィルタRを通った後に、カラーフィルタ境界を通って隣接するマイクロレンズ非搭載画素のカラーフィルタGに入り、マイクロレンズ非搭載画素のフォトダイオードに受光されてしまう。   For this reason, as shown in FIG. 3, the microlens 9 becomes considerably smaller than the color filter 7 of its own pixel. In the state shown in FIG. 3, obliquely incident light passes through the color filter R of the microlens mounting pixel, then enters the color filter G of the adjacent microlens nonmounting pixel through the color filter boundary, and the microlens nonmounting pixel. The photo diode receives light.

カラーフィルタR,Gの分光感度特性は完全に独立した分光特性になってはおらず(カラーフィルタG,B間も同様)、裾の部分で重なり合っている。このため、カラーフィルタRを通った緑色光が、マイクロレンズ非搭載画素に受光されてしまい、混色が発生し色シェーディング不良を起こしてしまう。   The spectral sensitivity characteristics of the color filters R and G are not completely independent spectral characteristics (the same applies to the color filters G and B), and overlap at the bottom. For this reason, the green light that has passed through the color filter R is received by the pixels not equipped with the microlens, resulting in color mixture and poor color shading.

本発明の目的は、混色が生じない単板式固体撮像素子の製造方法及びこの固体撮像素子並びにデジタルカメラを提供することにある。   An object of the present invention is to provide a method for manufacturing a single-plate solid-state imaging device that does not cause color mixing, a solid-state imaging device, and a digital camera.

本発明の単板式固体撮像素子の製造方法は、マイクロレンズ搭載画素とマイクロレンズ非搭載画素とが隣接して設けられる単板式固体撮像素子の製造方法において、前記マイクロレンズ搭載画素の第1色カラーフィルタと前記マイクロレンズ非搭載画素の第2色カラーフィルタとの間の境界位置を通って該マイクロレンズ非搭載画素に入射する最大入射角の入射光が、前記マイクロレンズ非搭載画素の遮光膜開口端のうち前記マイクロレンズ搭載画素側の遮光膜開口端に入射する位置関係となるように前記第1色カラーフィルタと前記第2色カラーフィルタの境界位置が製造されることを特徴とする。   The method for manufacturing a single-plate solid-state imaging device according to the present invention is a method for manufacturing a single-plate solid-state imaging device in which a microlens mounting pixel and a microlens non-mounting pixel are provided adjacent to each other. The incident light of the maximum incident angle that enters the pixel not mounted with the microlens through the boundary position between the filter and the second color filter of the pixel not mounted with the microlens is a light shielding film opening of the pixel not mounted with the microlens. A boundary position between the first color filter and the second color filter is manufactured so as to be in a positional relationship of being incident on a light-shielding film opening end on the microlens mounted pixel side among the ends.

本発明の単板式固体撮像素子の製造方法の前記最大入射角は、前記単板式固体撮像素子が搭載されるデジタルカメラの撮影レンズによって決められることを特徴とする。   In the method for manufacturing a single-plate solid-state image sensor according to the present invention, the maximum incident angle is determined by a photographing lens of a digital camera on which the single-plate solid-state image sensor is mounted.

本発明の単板式固体撮像素子の製造方法は、前記マイクロレンズ搭載画素側の前記遮光膜開口端と前記境界位置までの水平距離をX、前記第1,第2色カラーフィルタの上面位置と前記遮光膜開口端の上面位置との間の垂直距離をZ、前記最大入射角をθとしたとき、
X>Z・tanθ
を満たす位置に前記境界位置が設けられることを特徴とする。
In the method for manufacturing a single-plate solid-state imaging device according to the present invention, the horizontal distance from the light shielding film opening end on the microlens mounting pixel side to the boundary position is X, the upper surface position of the first and second color filters, and the When the vertical distance between the top surface position of the light shielding film opening end is Z and the maximum incident angle is θ,
X> Z · tanθ
The said boundary position is provided in the position which satisfy | fills.

本発明の単板式固体撮像素子の製造方法は、前記デジタルカメラに装着可能な撮影レンズのうち前記最大入射角が最も大きい撮影レンズによって決まる前記θで前記境界位置が決められることを特徴とする。   The method for manufacturing a single-plate solid-state imaging device according to the present invention is characterized in that the boundary position is determined by the θ determined by the photographing lens having the largest maximum incident angle among the photographing lenses that can be mounted on the digital camera.

本発明の単板式固体撮像素子の製造方法は、前記マイクロレンズの全周囲の前記境界位置が前記位置関係となる様に製造されていることを特徴とする。   The method for manufacturing a single-plate solid-state imaging device according to the present invention is characterized in that the boundary position around the entire circumference of the microlens is manufactured in the positional relationship.

本発明の単板式固体撮像素子の製造方法は、前記マイクロレンズの一部周囲の前記境界位置が前記位置関係となる様に製造されていることを特徴とする。   The method for manufacturing a single-plate solid-state imaging device according to the present invention is characterized in that the boundary position around a part of the microlens is manufactured in the positional relationship.

本発明の単板式固体撮像素子は、上記のいずれかに記載の製造方法により製造されたことを特徴とする。   The single-plate solid-state imaging device of the present invention is manufactured by any one of the manufacturing methods described above.

本発明のデジタルカメラは、上記記載の単板式固体撮像素子を搭載したことを特徴とする。   The digital camera of the present invention is characterized by mounting the above-described single-plate solid-state imaging device.

本発明によれば、各画素に入射する光が、マイクロレンズの製造誤差に関わらず、色の異なるカラーフィルタを2つ透過することがなくなるため、混色がなくなる。   According to the present invention, the light incident on each pixel does not pass through two color filters having different colors regardless of the manufacturing error of the microlens.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

図1は、本発明の一実施形態に係るデジタルカメラに搭載する固体撮像素子の2画素分の断面模式図である。図示する例の固体撮像素子はCCD型であるが、CMOS等のMOS型の固体撮像素子にも本実施形態は適用可能である。   FIG. 1 is a schematic cross-sectional view of two pixels of a solid-state imaging device mounted on a digital camera according to an embodiment of the present invention. Although the solid-state image pickup device in the illustrated example is a CCD type, this embodiment can also be applied to a MOS type solid-state image pickup device such as a CMOS.

マイクロレンズ搭載画素とマイクロレンズ非搭載画素とが隣接して設けられる本実施形態に係る固体撮像素子100は、n型半導体基板101に形成される。この半導体基板101の表面部にはPウェル層102が形成され、その表面部に、フォトダイオードを構成するn型領域103と、垂直電荷転送路(VCCD)の埋め込みチャネルを構成するn型領域104とが交互に形成されている。   A solid-state imaging device 100 according to this embodiment in which a microlens mounting pixel and a microlens non-mounting pixel are provided adjacent to each other is formed on an n-type semiconductor substrate 101. A P-well layer 102 is formed on the surface portion of the semiconductor substrate 101, and an n-type region 103 constituting a photodiode and an n-type region 104 constituting a buried channel of a vertical charge transfer path (VCCD) are formed on the surface portion. And are formed alternately.

n型領域103の表面には暗電流阻止用のp型高濃度不純物表面層105が形成され、半導体基板101の最表面全面にゲート絶縁膜106が積層される。ゲート絶縁膜106上のn型領域104の上には、n型領域103端部位置まで延びるポリシリコンでなる電極膜(読出電極兼用の垂直転送電極膜)107が積層され、その上に、例えばタングステン膜で成る遮光膜108が積層される。   A p-type high-concentration impurity surface layer 105 for blocking dark current is formed on the surface of the n-type region 103, and a gate insulating film 106 is laminated on the entire outermost surface of the semiconductor substrate 101. On the n-type region 104 on the gate insulating film 106, an electrode film (vertical transfer electrode film serving also as a readout electrode) 107 made of polysilicon extending to the end position of the n-type region 103 is laminated. A light shielding film 108 made of a tungsten film is laminated.

遮光膜108の、n型領域103上には、夫々開口108aが設けられる。遮光膜開口108aの上端位置を「a」とする。   Openings 108a are provided on the n-type region 103 of the light shielding film 108, respectively. The upper end position of the light shielding film opening 108a is defined as “a”.

遮光膜108の上には透明な平坦化層110が積層され、平坦化層110の上に、カラーフィルタ層111が積層される。RGBの原色系カラーフィルタを搭載した単板式固体撮像素子の場合、カラーフィルタ層111は、例えば平坦化層110の表面一面に所定厚さの赤色フィルタ層を形成し、赤色画素位置の赤色フィルタ層のみ残すパターンエッチングを行い、次に表面一面に所定厚さの緑色フィルタ層を形成し、赤色画素位置と緑色画素位置のカラーフィルタ層を残すパターンエッチングを行い、最後に表面一面に所定厚さの青色フィルタ層を形成し、全フィルタ層が均一の厚さとなる様にエッチングすることで製造される。   A transparent planarizing layer 110 is laminated on the light shielding film 108, and a color filter layer 111 is laminated on the planarizing layer 110. In the case of a single-plate solid-state imaging device equipped with RGB primary color filters, the color filter layer 111 is formed, for example, by forming a red filter layer having a predetermined thickness over the entire surface of the planarizing layer 110, and the red filter layer at the red pixel position. Pattern etching is performed, and then a green filter layer having a predetermined thickness is formed on the entire surface, and pattern etching is performed to leave the color filter layer at the red pixel position and the green pixel position. Finally, a predetermined thickness is formed on the entire surface. It is manufactured by forming a blue filter layer and etching so that the entire filter layer has a uniform thickness.

各色のカラーフィルタ層R,G,Bは、上面から見たとき矩形または円形をなしており、色の異なる隣接カラーフィルタとの境界は、図1に示す様に、フォトダイオード(n型領域103)間に来るように製造されるが、この境界位置を後述する様にカラーフィルタの設計時に調整する。   The color filter layers R, G, B of each color are rectangular or circular when viewed from above, and the boundary between adjacent color filters of different colors is a photodiode (n-type region 103) as shown in FIG. The boundary position is adjusted when designing the color filter as described later.

カラーフィルタ層111の上端面の位置を「b」とする。このカラーフィルタ層111の上に平坦化層112が積層され、マイクロレンズ搭載画素位置に、マイクロレンズ113が積層され、マイクロレンズ非搭載画素位置にはマイクロレンズは設けない。   The position of the upper end surface of the color filter layer 111 is “b”. A planarizing layer 112 is laminated on the color filter layer 111, a microlens 113 is laminated at the pixel position where the microlens is mounted, and no microlens is provided at the pixel position where the microlens is not mounted.

マイクロレンズ113は、例えば、液体状のマイクロレンズ材料を該当位置に滴下してその表面張力を利用してレンズ状に固化させたり、あるいは、マイクロレンズ材料を表面一面に積層し、転写技術を用いてレンズ状にドライエッチングする等して製造される。   For example, the microlens 113 may be formed by dropping a liquid microlens material onto a corresponding position and solidifying it into a lens shape using the surface tension, or by laminating the microlens material over the entire surface and using a transfer technique. For example, it is manufactured by dry etching into a lens shape.

マイクロレンズ搭載画素に搭載されたマイクロレンズ113の隣接マイクロレンズ非搭載画素側の端部と、当該隣接マイクロレンズ非搭載画素の遮光膜開口端(当該マイクロレンズ搭載画素側の開口端)との水平距離をXML、当該遮光膜開口端と両画素間のカラーフィルタ層の境界との間の水平距離をXとし、位置aと位置bとの垂直距離をZとする。   Horizontal end of the microlens 113 mounted on the microlens mounting pixel on the adjacent microlens non-mounting pixel side and the light shielding film opening end (opening end on the microlens mounting pixel side) of the adjacent microlens nonmounting pixel. The distance is XML, the horizontal distance between the opening edge of the light shielding film and the boundary of the color filter layer between the two pixels is X, and the vertical distance between the position a and the position b is Z.

そこで、本実施形態の固体撮像素子を製造する場合には、カラーフィルタ層111のRフィルタ位置,Gフィルタ位置,Bフィルタ位置の間の境界を、次の様にして決める。   Therefore, when manufacturing the solid-state imaging device of this embodiment, the boundaries among the R filter position, G filter position, and B filter position of the color filter layer 111 are determined as follows.

即ち、マイクロレンズ113及びカラーフィルタ111の製造誤差を考慮し、マイクロレンズ113が当該画素のカラーフィルタの内側に小さく製造されてしまいX≦XMLとなった場合にも、
X>Z・tanθ
を満たすように、各色カラーフィルタR,G,B及びマイクロレンズを製造する。
That is, in consideration of manufacturing errors of the microlens 113 and the color filter 111, even when the microlens 113 is manufactured small inside the color filter of the pixel and X ≦ XML,
X> Z · tanθ
Each color filter R, G, B and microlens is manufactured to satisfy the above.

ここで、θとは、マイクロレンズ搭載画素からカラーフィルタ境界に入った斜め入射光が隣接マイクロレンズ非搭載画素の遮光膜開口108aの開口端に入るギリギリの角度である。このθは、この固体撮像素子100が搭載されるデジタルカメラの撮影レンズ性能で決まる値である。撮影レンズ性能が決まれば、このθに合わせて固体撮像素子100を製造することになる。   Here, θ is the last angle at which the obliquely incident light entering the color filter boundary from the pixel mounted with the microlens enters the opening end of the light shielding film opening 108a of the pixel not mounted with the adjacent microlens. This θ is a value determined by the photographing lens performance of the digital camera on which the solid-state image sensor 100 is mounted. If the photographing lens performance is determined, the solid-state imaging device 100 is manufactured in accordance with this θ.

斯かる構成の固体撮像素子100を搭載したデジタルカメラで被写体を撮像すると、マイクロレンズ搭載画素に入った入射光はマイクロレンズ113で集光されることで当該画素の遮光膜開口108a内に入り、フォトダイオードに受光される。一方、マイクロレンズ非搭載画素に入った入射光のうち、遮光膜開口108a内に入らない入射光は、そのまま遮光膜108に当たり、遮光されることになる。   When a subject is imaged with a digital camera equipped with the solid-state imaging device 100 having such a configuration, incident light that has entered the microlens mounting pixel enters the light shielding film opening 108a of the pixel by being condensed by the microlens 113, Light is received by the photodiode. On the other hand, incident light that does not enter the light-shielding film opening 108a out of incident light that has entered the pixel not equipped with the microlens is directly hit the light-shielding film 108 and is shielded.

つまり、マイクロレンズ搭載画素の方が、マイクロレンズ非搭載画素より入射光量が多くなり、高感度な画像データを得ることができる。これに対し、マイクロレンズ非搭載画素からは、入射光量が少ないため、低感度な画像データを得ることができる。従って、両方の画像データを合成することで、ダイナミックレンジの広い画像データを得ることができる。   In other words, the amount of incident light is larger in the pixel mounted with the microlens than in the pixel not mounted with the microlens, so that highly sensitive image data can be obtained. On the other hand, low-sensitivity image data can be obtained from a pixel not equipped with a microlens because the amount of incident light is small. Therefore, image data with a wide dynamic range can be obtained by combining both image data.

今、斜め入射光が固体撮像素子100に入射してきたとする。この場合、上述した条件「X>Z・tanθ」を満たすようにして製造された固体撮像素子100では、マイクロレンズ搭載画素側から入射し、カラーフィルタの境界部分を通り、隣接マイクロレンズ非搭載画素のカラーフィルタに入射した光は、マイクロレンズ非搭載画素の遮光膜開口108a内に入ることはなく、遮光膜108によって遮光されてしまう。即ち、マイクロレンズ非搭載画素の遮光膜開口108a内には、当該画素のカラーフィルタを透過した光だけが入りフォトダイオードに受光されるため、混色が生じることがなくなる。   Now, it is assumed that oblique incident light is incident on the solid-state imaging device 100. In this case, in the solid-state imaging device 100 manufactured so as to satisfy the above-described condition “X> Z · tan θ”, the light enters from the microlens mounted pixel side, passes through the boundary portion of the color filter, and is not adjacent to the microlens mounted pixel. The light incident on the color filter does not enter the light shielding film opening 108a of the pixel not equipped with the microlens and is shielded by the light shielding film 108. That is, only light that has passed through the color filter of the pixel enters the light shielding film opening 108a of the pixel not equipped with the microlens and is received by the photodiode, so that color mixing does not occur.

尚、上述した製造条件「X>Z・tanθ」は、マイクロレンズ113の全周囲で満足するのが好ましいのはいうまでもないが、全周囲で対策する必要のない画素においては、対策しなければならないマイクロレンズ端部箇所にだけ製造条件を適用すればよい。   Needless to say, it is preferable that the manufacturing condition “X> Z · tan θ” described above is satisfied all around the microlens 113, but it is necessary to take measures for pixels that do not need to be treated all around. The manufacturing conditions need only be applied to the end portions of the microlenses that must be provided.

また、上述した実施形態では、R(赤),G(緑),B(青)の原色系カラーフィルタを例に説明したが、補色系カラーフィルタを用いる単板式固体撮像素子にも上述した実施形態を適用可能であることはいうまでもない。   In the above-described embodiments, R (red), G (green), and B (blue) primary color filters have been described as examples. However, the above-described implementation is also applied to a single-plate solid-state imaging device using complementary color filters. Needless to say, the form is applicable.

本発明によれば、混色の発生がなくなるため、高精細画像を撮像するデジタルカメラに適用すると有用である。   According to the present invention, since color mixing does not occur, it is useful when applied to a digital camera that captures a high-definition image.

本発明の一実施形態に係る単板式固体撮像素子の2画素分の断面模式図である。It is a cross-sectional schematic diagram for 2 pixels of the single-plate-type solid-state image sensor which concerns on one Embodiment of this invention. 従来の単板式固体撮像素子の2画素分の断面模式図である。It is a cross-sectional schematic diagram for two pixels of a conventional single-plate solid-state imaging device. 従来の単板式固体撮像素子の課題説明図である。It is problem explanatory drawing of the conventional single plate type solid-state image sensor.

符号の説明Explanation of symbols

100 単板式固体撮像素子
101 半導体基板
103 n型領域(フォトダイオード)
108 遮光膜
108a 遮光膜開口
111 カラーフィルタ層
113 マイクロレンズ
100 single-plate solid-state image sensor 101 semiconductor substrate 103 n-type region (photodiode)
108 light shielding film 108a light shielding film opening 111 color filter layer 113 microlens

Claims (8)

マイクロレンズ搭載画素とマイクロレンズ非搭載画素とが隣接して設けられる単板式固体撮像素子の製造方法において、前記マイクロレンズ搭載画素の第1色カラーフィルタと前記マイクロレンズ非搭載画素の第2色カラーフィルタとの間の境界位置を通って該マイクロレンズ非搭載画素に入射する最大入射角の入射光が、前記マイクロレンズ非搭載画素の遮光膜開口端のうち前記マイクロレンズ搭載画素側の遮光膜開口端に入射する位置関係となるように前記第1色カラーフィルタと前記第2色カラーフィルタの境界位置が製造されることを特徴とする単板式固体撮像素子の製造方法。   In a method for manufacturing a single-plate solid-state imaging device in which a microlens mounting pixel and a non-microlens mounting pixel are provided adjacent to each other, a first color filter of the microlens mounting pixel and a second color of the microlens nonmounting pixel The incident light of the maximum incident angle that enters the pixel not mounted with the micro lens through the boundary position with the filter is the light blocking film opening on the micro lens mounted pixel side of the light blocking film opening end of the pixel not mounted with the micro lens. A manufacturing method of a single-plate solid-state imaging device, wherein a boundary position between the first color filter and the second color filter is manufactured so as to be in a positional relationship incident on an end. 前記最大入射角は、前記単板式固体撮像素子が搭載されるデジタルカメラの撮影レンズによって決められることを特徴とする請求項1に記載の単板式固体撮像素子の製造方法。   The method for manufacturing a single-plate solid-state image pickup device according to claim 1, wherein the maximum incident angle is determined by a photographing lens of a digital camera on which the single-plate solid-state image pickup device is mounted. 前記マイクロレンズ搭載画素側の前記遮光膜開口端と前記境界位置までの水平距離をX、前記第1,第2色カラーフィルタの上面位置と前記遮光膜開口端の上面位置との間の垂直距離をZ、前記最大入射角をθとしたとき、
X>Z・tanθ
を満たす位置に前記境界位置が設けられることを特徴とする請求項1または請求項2に記載の単板式固体撮像素子の製造方法。
The horizontal distance from the light shielding film opening end on the microlens mounting pixel side to the boundary position is X, and the vertical distance between the upper surface position of the first and second color filters and the upper surface position of the light shielding film opening end. Is Z and the maximum incident angle is θ,
X> Z · tanθ
The method for manufacturing a single-plate solid-state imaging device according to claim 1, wherein the boundary position is provided at a position satisfying the above condition.
前記デジタルカメラに装着可能な撮影レンズのうち前記最大入射角が最も大きい撮影レンズによって決まる前記θで前記境界位置が決められることを特徴とする請求項3に記載の単板式固体撮像素子の製造方法。   4. The method for manufacturing a single-plate solid-state image pickup device according to claim 3, wherein the boundary position is determined by the θ determined by a photographic lens having the largest maximum incident angle among photographic lenses that can be attached to the digital camera. . 前記マイクロレンズの全周囲の前記境界位置が前記位置関係となる様に製造されていることを特徴とする請求項1乃至請求項4のいずれかに記載の単板式固体撮像素子の製造方法。   5. The method for manufacturing a single-plate solid-state imaging device according to claim 1, wherein the boundary position around the entire circumference of the microlens is manufactured in the positional relationship. 前記マイクロレンズの一部周囲の前記境界位置が前記位置関係となる様に製造されていることを特徴とする請求項1乃至請求項4のいずれかに記載の単板式固体撮像素子の製造方法。   5. The method for manufacturing a single-plate solid-state imaging device according to claim 1, wherein the boundary position around a part of the microlens is manufactured in the positional relationship. 6. 請求項1乃至請求項6のいずれかに記載の製造方法により製造されたことを特徴とする単板式固体撮像素子。   A single-plate solid-state imaging device manufactured by the manufacturing method according to claim 1. 請求項7に記載の単板式固体撮像素子を搭載したことを特徴とするデジタルカメラ。   A digital camera comprising the single-plate solid-state imaging device according to claim 7.
JP2006218470A 2006-08-10 2006-08-10 Single ccd solid imaging element and method for manufacturing the same, and digital camera Pending JP2008042146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006218470A JP2008042146A (en) 2006-08-10 2006-08-10 Single ccd solid imaging element and method for manufacturing the same, and digital camera

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006218470A JP2008042146A (en) 2006-08-10 2006-08-10 Single ccd solid imaging element and method for manufacturing the same, and digital camera

Publications (1)

Publication Number Publication Date
JP2008042146A true JP2008042146A (en) 2008-02-21

Family

ID=39176773

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006218470A Pending JP2008042146A (en) 2006-08-10 2006-08-10 Single ccd solid imaging element and method for manufacturing the same, and digital camera

Country Status (1)

Country Link
JP (1) JP2008042146A (en)

Similar Documents

Publication Publication Date Title
US9349766B2 (en) Solid-state imaging device
US9508767B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and electronic apparatus
KR102431210B1 (en) Image sensor having phase difference detection pixel
TWI636557B (en) Solid-state imaging device, manufacturing method thereof, and electronic device
JP2011061239A (en) Solid-state imaging device and method for manufacturing the same as well as electronic apparatus
JP2009088255A (en) Color solid-state imaging device and electronic information equipment
US8339488B2 (en) Solid-state image pickup device having laminated color filters, manufacturing method thereof, and electronic apparatus incorporating same
WO2008065952A1 (en) Solid-state imaging device, its manufacturing method, and electronic information device
TW201933599A (en) Solid-state image pickup element, image pickup apparatus, electronic apparatus, and manufacturing method
JP2004311594A (en) Solid-state image pickup element
JP2007005629A (en) Solid-state imaging apparatus
US20100214464A1 (en) Solid-state imaging apparatus
JP4696104B2 (en) Back-illuminated solid-state imaging device and manufacturing method thereof
TW201444068A (en) Solid state imaging device and method for manufacturing solid state imaging device
KR100848945B1 (en) Microlens Array Compensating Chief Ray and Image Sensor Assembly Having the Same
JP4264249B2 (en) MOS type image sensor and digital camera
JP2009049117A (en) Method of forming color filter of solid-state image pickup device, solid-state image pickup device, and pattern mask set for solid-state image pickup device
US10672811B2 (en) Image sensing device
JP2012124213A (en) Solid state imaging device
JP2006202907A (en) Image pickup element
JP4724469B2 (en) Solid-state image sensor
JP2006216904A (en) Color solid state image sensor and method of fabricating the same
JP2010153603A (en) Solid state imaging apparatus
JP2008042146A (en) Single ccd solid imaging element and method for manufacturing the same, and digital camera
TWI837516B (en) Solid-state image sensor

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071109

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071126