JP2008041746A - Substrate of solar cell - Google Patents

Substrate of solar cell Download PDF

Info

Publication number
JP2008041746A
JP2008041746A JP2006210884A JP2006210884A JP2008041746A JP 2008041746 A JP2008041746 A JP 2008041746A JP 2006210884 A JP2006210884 A JP 2006210884A JP 2006210884 A JP2006210884 A JP 2006210884A JP 2008041746 A JP2008041746 A JP 2008041746A
Authority
JP
Japan
Prior art keywords
solar cell
film
layer
substrate
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006210884A
Other languages
Japanese (ja)
Inventor
Koji Kubo
耕司 久保
Rei Nishio
玲 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2006210884A priority Critical patent/JP2008041746A/en
Publication of JP2008041746A publication Critical patent/JP2008041746A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide the substrate for a solar cell, which has a surface of moderate roughness for attaining light confinement effect and useful for manufacturing a solar cell exhibiting excellent photoelectric conversion efficiency, when it is used as the substrate of a flexible solar cell, especially a thin film solar cell. <P>SOLUTION: The substrate for a solar cell consists of: a surface roughness layer composed of a thermoplastic crystalline resin composition containing inert particles, and having surface roughness Ra in the range of 30-500 nm; and a support layer composed of a thermoplastic crystalline resin contacting the surface roughness layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は太陽電池の基材に関し、さらに詳しくはフレキシブルタイプの薄膜太陽電池の基材として用いた際に優れた光電変換効率を示す太陽電池を製造することができる太陽電池の基材に関する。   The present invention relates to a solar cell substrate, and more particularly to a solar cell substrate capable of producing a solar cell exhibiting excellent photoelectric conversion efficiency when used as a flexible thin-film solar cell substrate.

太陽電池には、一般的にガラスを基板材料とするリジットタイプのものと、プラスチックフィルムを基板材料とするフレキシブルタイプがある。そうした中で最近では、時計あるいは携帯電話や携帯端末のような移動体通信機器の補助電源として、フレキシブルタイプの太陽電池が多く活用されるようになってきた。従来のリジットタイプは、フレキシブルタイプに比べると太陽電池セルでのエネルギーの変換効率は高いが、機器の薄型化や軽量化に限界があり、また衝撃を受けた場合には太陽電池モジュールが破損するケースも考えられる。   Solar cells generally include a rigid type using glass as a substrate material and a flexible type using a plastic film as a substrate material. Recently, flexible solar cells have come to be widely used as auxiliary power sources for mobile communication devices such as watches or mobile phones and mobile terminals. The conventional rigid type has higher energy conversion efficiency in solar cells than the flexible type, but there is a limit to making the device thinner and lighter, and the solar cell module will be damaged when subjected to an impact. Cases are also conceivable.

このため、フレキシブルタイプの有用性は以前から注目されてきた。例えば特開平1−198081号公報では、高分子フィルム基板上にアモルファスシリコン層を電極層で挟んだ構造の薄膜太陽電池が開示されており、その中でポリエチレンテレフタレートフィルムやポリエチレンナフタレートフィルム、ポリイミドフィルム等が例示されている。この他にも特開平2−260577号公報、特公平6−5782号公報、特開平6−350117号公報では、可撓性基板を用いた太陽電池モジュールが開示されている。   For this reason, the usefulness of the flexible type has been attracting attention for some time. For example, Japanese Patent Application Laid-Open No. 1-198081 discloses a thin film solar cell having a structure in which an amorphous silicon layer is sandwiched between electrode layers on a polymer film substrate, among which a polyethylene terephthalate film, a polyethylene naphthalate film, and a polyimide film are disclosed. Etc. are illustrated. In addition, JP-A-2-260577, JP-B-6-5782, and JP-A-6-350117 disclose solar cell modules using a flexible substrate.

他方、アモルファスシリコンなどの薄膜太陽電池では、その光電変換効率を向上させるには光吸収層の膜厚内での光吸収量を増大させることが重要であり、基板表面に凹凸のある導電層を形成し、光を拡散させることによって光吸収層中での光の光路長を増加させることが従来より行われてきた。しかしながら、凹凸のある金属層や金属酸化物層を形成するには、一般的に350℃以上の高温が必要であり、プラスチックフィルムを基板とする場合には適用が困難である。これに対し、特開平1−119074号公報では、樹脂溶液に充填剤を添加し支持体上に流延することにより表面に凹凸をつけ、その上に導電層を形成する方法が記載されている。しかしながら、この方法では充填剤濃度を高くしないと効果的に凹凸を形成することができず、充填剤濃度を高めると基材が脆くなり実用に耐え得ない。また、特開平4−196364号公報には、支持基板上に樹脂溶液を塗工して皮膜形成し、さらにその上に粒子を含む樹脂溶液を塗工皮膜形成する方法が、特許第3749015号公報には、基材フィルムの表面に紫外線硬化型の樹脂を塗工し、金型に押し付けて硬化させ凹凸を形成し、その上に導電層を形成する技術が記載されている。しかしながら、これらの方法はフィルム製造後に別工程で行われることからコストアップの要因となるばかりでなく、凹凸層を形成する樹脂の塗工で用いる残留溶媒が透明導電層形成時に脱ガスとなって影響し、凹凸層で形成した形状がうまく反映されないという問題がある。なお、この脱ガスを利用した凹凸形成技術は特公平7−50794号公報に記載されているが、樹脂中の残留溶媒および脱ガス量を定量的に制御することは困難であり、凹凸形状のコントロールは非常に難しい。   On the other hand, in thin film solar cells such as amorphous silicon, it is important to increase the amount of light absorption within the thickness of the light absorption layer in order to improve the photoelectric conversion efficiency. It has been conventionally performed to increase the optical path length of light in the light absorption layer by forming and diffusing light. However, in order to form an uneven metal layer or metal oxide layer, a high temperature of 350 ° C. or higher is generally required, and application is difficult when a plastic film is used as a substrate. On the other hand, Japanese Patent Application Laid-Open No. 1-119074 describes a method in which a filler is added to a resin solution and cast on a support to make the surface uneven, and a conductive layer is formed thereon. . However, this method cannot effectively form unevenness unless the filler concentration is increased, and if the filler concentration is increased, the substrate becomes brittle and cannot be put into practical use. Japanese Patent Application Laid-Open No. 4-196364 discloses a method of forming a film by coating a resin solution on a support substrate and further forming a film by applying a resin solution containing particles thereon. Describes a technique in which an ultraviolet curable resin is applied to the surface of a base film, pressed against a mold and cured to form irregularities, and a conductive layer is formed thereon. However, since these methods are performed in a separate process after film production, not only the cost increases, but also the residual solvent used in the coating of the resin for forming the concavo-convex layer is degassed when the transparent conductive layer is formed. There is a problem that the shape formed by the uneven layer is not reflected well. Although this unevenness forming technique using degassing is described in Japanese Patent Publication No. 7-50794, it is difficult to quantitatively control the residual solvent and degassing amount in the resin. Control is very difficult.

特開平1−198081号公報Japanese Patent Laid-Open No. 1-198081 特開平2−260577号公報JP-A-2-260577 特公平6−5782号公報Japanese Patent Publication No. 6-5782 特開平6−350117号公報JP-A-6-350117 特開平1−119074号公報Japanese Patent Laid-Open No. 1-119074 特開平4−196364号公報JP-A-4-196364 特許第3749015号公報Japanese Patent No. 3749015 特公平7−50794号公報Japanese Patent Publication No. 7-50794

本発明の目的は、かかる技術の課題を解決して、光閉じ込め効果を得るための適度な粗さの表面を備え、フレキシブルタイプの太陽電池、特に薄膜太陽電池の基材として用いた際、優れた光電変換効率を有する太陽電池を製造するのに有用な太陽電池の基材を提供することにある。   The object of the present invention is to solve the problems of the technology, and have an appropriately rough surface for obtaining a light confinement effect, and is excellent when used as a base material for flexible solar cells, particularly thin film solar cells. Another object of the present invention is to provide a solar cell substrate useful for producing a solar cell having photoelectric conversion efficiency.

すなわち、本発明は、不活性粒子を含有する熱可塑性結晶性樹脂の組成物から構成され表面粗さRaが30〜500nmの粗面層、およびこれに接する熱可塑性結晶性樹脂から構成される支持層からなる太陽電池の基材である。   That is, the present invention is a support composed of a composition of a thermoplastic crystalline resin containing inert particles, a rough surface layer having a surface roughness Ra of 30 to 500 nm, and a thermoplastic crystalline resin in contact therewith. It is the base material of the solar cell which consists of layers.

本発明によれば、光閉じ込め効果を得るための適度な粗さの表面を備え、フレキシブルタイプの太陽電池、特に薄膜太陽電池の基材として用いた際、優れた光電変換効率を有する太陽電池を製造するのに有用な太陽電池の基材を提供することができる。   According to the present invention, a solar cell having an appropriately rough surface for obtaining a light confinement effect and having excellent photoelectric conversion efficiency when used as a base material for a flexible solar cell, particularly a thin film solar cell. Solar cell substrates useful for manufacturing can be provided.

以下、本発明を詳細に説明する。
[表面粗さ]
本発明の太陽電池用の基材の粗面層は表面粗さRaが30〜500nm、好ましくは35〜300nm、さらに好ましくは40〜200nmである。Raが30nm未満であると光の散乱効果が小さくなり、太陽電池の光電変換効率を向上させる効果が小さくなる。他方、500nmを越えると、表面の突起が大きすぎるため、その上に均一な導電層を形成するのが困難になる。
Hereinafter, the present invention will be described in detail.
[Surface roughness]
The rough surface layer of the solar cell substrate of the present invention has a surface roughness Ra of 30 to 500 nm, preferably 35 to 300 nm, and more preferably 40 to 200 nm. When Ra is less than 30 nm, the light scattering effect is reduced, and the effect of improving the photoelectric conversion efficiency of the solar cell is reduced. On the other hand, if it exceeds 500 nm, the protrusions on the surface are too large, and it becomes difficult to form a uniform conductive layer thereon.

本発明の太陽電池の基材における粗面層は、不活性粒子を含有する熱可塑性結晶性樹脂の組成物から構成される。表面粗さは、粒子の粒径と含有量を適切な範囲とすることによって得ることができる。例えば、平均粒径0.3μmの粒子を用いる場合には1体積%〜20体積%の範囲で樹脂に粒子を含有させることでこの表面粗さを得ることができる。また、例えば平均粒径3μmの粒子を用いる場合には0.1体積%〜3体積%の範囲で樹脂に粒子を含有させることでこの表面粗さを得ることができる。
なお二軸延伸法にてフィルムを製造する場合には、後述のようにフィルムの製造条件によっても表面粗さを調節することができる。
The rough surface layer in the base material of the solar cell of the present invention is composed of a thermoplastic crystalline resin composition containing inert particles. The surface roughness can be obtained by adjusting the particle size and content of the particles to an appropriate range. For example, when using particles having an average particle size of 0.3 μm, the surface roughness can be obtained by incorporating particles into the resin in the range of 1% by volume to 20% by volume. For example, when using particles having an average particle diameter of 3 μm, the surface roughness can be obtained by incorporating particles into the resin in the range of 0.1% by volume to 3% by volume.
In addition, when manufacturing a film by a biaxial stretching method, surface roughness can be adjusted also by the manufacturing conditions of a film as mentioned later.

[その他物性]
本発明の太陽電池の基材は、全光線透過率が80%以上であることが好ましい。80%未満であると太陽電池に入射する入射光量が低下するため、高い発電効率を得ることができない。この光線透過率を備えることによって、本発明の太陽電池の基材は、スーパーストレート型太陽電池の基材として、表面電極側基材としても用いることができる。
[Other physical properties]
The substrate of the solar cell of the present invention preferably has a total light transmittance of 80% or more. If it is less than 80%, the amount of incident light entering the solar cell is reduced, so that high power generation efficiency cannot be obtained. By providing this light transmittance, the base material of the solar cell of the present invention can be used as a base material of a super straight type solar cell or a surface electrode side base material.

本発明の太陽電池の基材は、太陽電池製造工程における加熱工程での寸法変化を抑制する観点から、200℃で10分間処理したときの熱収縮率が好ましくは1%以下、さらに好ましくは0.8%以下、特に好ましくは0.6%以下である。   The base material of the solar cell of the present invention preferably has a thermal shrinkage rate of 1% or less, more preferably 0, when treated at 200 ° C. for 10 minutes from the viewpoint of suppressing dimensional changes in the heating step in the solar cell manufacturing process. 0.8% or less, particularly preferably 0.6% or less.

本発明の太陽電池の基材の厚みは、好ましくは40〜150μm、さらに好ましくは50〜130μm、特に好ましくは60〜125μmである。厚みが40μm未満であると太陽電池の支持体である基材としてのスティフネスが小さく太陽電池を支えきれない場合があり好ましくなく、150μmを越えると太陽電池モジュールの厚みが厚くなりすぎ、可撓性が失われるようになるため好ましくない。   The thickness of the substrate of the solar cell of the present invention is preferably 40 to 150 μm, more preferably 50 to 130 μm, and particularly preferably 60 to 125 μm. If the thickness is less than 40 μm, the stiffness as a base material that is a support for the solar cell is small and the solar cell may not be supported, and if it exceeds 150 μm, the thickness of the solar cell module becomes too thick and flexible. Is not preferable because it is lost.

本発明の太陽電池の基材を得るためには、粒子を含有する熱可塑性結晶性樹脂の組成物からなり、表面粗さRaが30〜500nmである粗面層、およびこれに接する熱可塑性結晶性樹脂からなる支持層から構成されるフィルムを用いればよい。   In order to obtain the substrate of the solar cell of the present invention, a rough surface layer comprising a composition of a thermoplastic crystalline resin containing particles, having a surface roughness Ra of 30 to 500 nm, and a thermoplastic crystal in contact therewith A film composed of a support layer made of a conductive resin may be used.

[樹脂]
本発明の太陽電池の基材は、溶融押出可能な樹脂であって、熱可塑性結晶性樹脂のフィルムから構成される。本発明では、溶融押出にて未延伸積層シートを得、延伸してフィルムとするが、もし溶液法にてフィルムを製造すると、太陽電池に加工するために後工程でフィルムに導電層を設ける工程で残留溶媒由来の脱ガスが発生し、導電層を設ける工程の前にフィルムに形成した凹凸構造が乱され、凹凸構造が太陽電池に正確に反映されず好ましくない。機械的強度を維持するために、フィルムは二軸延伸してフィルムであることが好ましい。
[resin]
The substrate of the solar cell of the present invention is a resin that can be melt-extruded, and is composed of a thermoplastic crystalline resin film. In the present invention, an unstretched laminated sheet is obtained by melt extrusion and stretched to obtain a film. However, if a film is produced by a solution method, a process of providing a conductive layer on the film in a later step for processing into a solar cell. In this case, degassing derived from the residual solvent is generated, and the uneven structure formed on the film before the step of providing the conductive layer is disturbed, and the uneven structure is not accurately reflected in the solar cell, which is not preferable. In order to maintain the mechanical strength, the film is preferably a film biaxially stretched.

太陽電池に加工する工程を考慮すると、耐熱性の高い樹脂が好ましい。熱可塑性結晶性樹脂としては、二軸延伸可能な樹脂を用いることが好ましく、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリアミド、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートが好ましく、なかでも高い機械強度を有するポリエチレン−2,6−ナフタレートが特に好ましい。   Considering the process of processing into a solar cell, a resin having high heat resistance is preferable. As the thermoplastic crystalline resin, a biaxially stretchable resin is preferably used, and polyether ether ketone, polyphenylene sulfide, polyamide, polyethylene terephthalate, and polyethylene-2,6-naphthalate are preferable. Polyethylene-2,6-naphthalate is particularly preferred.

支持層を構成することになる熱可塑性結晶性樹脂と、粗面層を構成することになる熱可塑性結晶性樹脂とは同じでも異なってもよい。二軸延伸する際に延伸加工を容易に行う観点から、同じ種類の熱可塑性結晶性樹脂を用いることが好ましい。   The thermoplastic crystalline resin that constitutes the support layer and the thermoplastic crystalline resin that constitutes the rough surface layer may be the same or different. From the viewpoint of facilitating stretching when biaxially stretching, it is preferable to use the same kind of thermoplastic crystalline resin.

[粗面層の粒子]
本発明においては、表面粗さRa30〜500nmの面を得るために、平均粒径が0.05μm〜10μmの粒子を0.5〜20体積%含有する熱可塑性結晶性樹脂の組成物を用いて粗面層を形成する。
[Rough surface layer particles]
In the present invention, in order to obtain a surface having a surface roughness Ra of 30 to 500 nm, a thermoplastic crystalline resin composition containing 0.5 to 20% by volume of particles having an average particle diameter of 0.05 to 10 μm is used. A rough surface layer is formed.

粒子としては、樹脂を溶融押出する際の十分な耐熱性を有する不活性な粒子を用い、例えば球状シリカ、多孔質シリカ、炭酸カルシウム、アルミナ、二酸化チタン、カオリンクレー、硫酸バリウム、ゼオライトの如き無機粒子、あるいはシリコーン樹脂粒子、架橋ポリスチレン粒子の如き架橋高分子粒子、あるいは有機塩粒子を用いることができる。   As the particles, inert particles having sufficient heat resistance during melt extrusion of the resin are used. For example, inorganic particles such as spherical silica, porous silica, calcium carbonate, alumina, titanium dioxide, kaolin clay, barium sulfate, and zeolite are used. Particles, crosslinked polymer particles such as silicone resin particles and crosslinked polystyrene particles, or organic salt particles can be used.

粒子の平均粒径は0.05μm〜10μm、好ましくは0.1μm〜8μm、さらに好ましくは0.2μm〜6μmである。粒子の平均粒径が0.05μm未満であると十分に光を散乱させる表面形状を形成することができず、他方10μmを越えると表面に形成される突起が大きくなりすぎて、その上に均一な導電層を形成するのが困難になることがある。   The average particle diameter of the particles is 0.05 μm to 10 μm, preferably 0.1 μm to 8 μm, more preferably 0.2 μm to 6 μm. If the average particle size of the particles is less than 0.05 μm, a surface shape that sufficiently scatters light cannot be formed. On the other hand, if the average particle size exceeds 10 μm, protrusions formed on the surface become too large and uniform on the surface. It may be difficult to form a conductive layer.

なお、粒子の平均粒径は、島津制作所製CP−50型セントリフューグルパーティクルサイズアナライザー(Centrifugal Particle Size Annalyzer)を用いて測定し、得られる遠心沈降曲線を基に算出した各粒径の粒子とその存在量との積算曲線から、50重量%に相当する粒径を読み取った値である(「粒度測定技術」日刊工業新聞発行、1975年 頁242〜247参照)。   The average particle size of the particles was measured using a CP-50 type centrifuggle particle size analyzer manufactured by Shimadzu Corporation, and particles of each particle size calculated based on the obtained centrifugal sedimentation curve. The particle size corresponding to 50% by weight is read from the integrated curve of the amount and the abundance thereof (see “Particle Size Measurement Technology” published by Nikkan Kogyo Shimbun, pages 242 to 247 in 1975).

粗面相の粒子の含有量は、好ましくは0.5〜20体積%、さらに好ましくは1〜15体積%、特にに好ましくは2〜10体積%である。ここで体積%は、重量%から粒子の真密度および樹脂の非晶状態の密度を用いて計算により求める。粒子の含有量が0.5体積%未満であると十分に光を散乱させる表面形状を形成することができず好ましくなく、他方、20体積%を超えるとこの樹脂が構成する層が脆くなり、実用的な機械強度が得られなくなることがあり好ましくない。   The content of the rough surface phase particles is preferably 0.5 to 20% by volume, more preferably 1 to 15% by volume, and particularly preferably 2 to 10% by volume. Here, the volume% is obtained by calculation using the true density of the particles and the density of the amorphous state of the resin from the weight%. When the content of the particles is less than 0.5% by volume, it is not preferable because a surface shape that sufficiently scatters light cannot be formed. On the other hand, when the content exceeds 20% by volume, the resin layer becomes brittle. Practical mechanical strength may not be obtained, which is not preferable.

なお、粒子は上記に例示した中から選ばれた単一成分でもよく、二成分あるいは三成分以上を含む多成分でもよい。また単一成分の場合には、平均粒径が異なった2種類以上の粒子を含有していても良い。   The particles may be a single component selected from those exemplified above, or may be a multicomponent including two components or three or more components. Further, in the case of a single component, it may contain two or more kinds of particles having different average particle diameters.

支持層を構成する熱可塑性結晶性樹脂には、全光線透過率を向上させる観点から、これらの粒子は含有させないことが好ましく、含有するとしても高々0.5体積%以下、好ましくは0.3体積%以下にとどめるべきである。   From the viewpoint of improving the total light transmittance, it is preferable not to contain these particles in the thermoplastic crystalline resin constituting the support layer, and even if it is contained, it is at most 0.5% by volume, preferably 0.3%. It should be kept below the volume percent.

[添加剤]
熱可塑性結晶性樹脂の組成物には、上記の粒子以外に酸化防止剤、熱安定化剤、ワックスのような易滑剤、難燃剤、帯電防止剤、紫外線吸収剤などを添加してもよい。
このなかでも、フィルムの耐候性を向上させるために、紫外線吸収剤を含有させることが好ましい。紫外線吸収剤としては、少量で効果のある吸光係数の大きい化合物が好ましく、2,2’−p−フェニレンビス(3,1−ベンゾオキサジン−4−オン)、2,2’−(4,4’−ジフェニレン)ビス(3,1−ベンゾオキサジン−4−オン)および2,2’−(2,6−ナフチレン)ビス(3,1−ベンゾオキサジン−4−オン)が好ましい。
[Additive]
In addition to the above particles, an antioxidant, a heat stabilizer, a lubricant such as a wax, a flame retardant, an antistatic agent, an ultraviolet absorber and the like may be added to the thermoplastic crystalline resin composition.
Among these, in order to improve the weather resistance of the film, it is preferable to contain an ultraviolet absorber. As an ultraviolet absorber, a compound having a large absorption coefficient which is effective in a small amount is preferable. 2,2′-p-phenylenebis (3,1-benzoxazin-4-one), 2,2 ′-(4,4 '-Diphenylene) bis (3,1-benzoxazin-4-one) and 2,2'-(2,6-naphthylene) bis (3,1-benzoxazin-4-one) are preferred.

紫外線吸収剤を含有させる場合には、フィルムの光入射側の最も表層に配置される樹脂に添加するのが、耐候性を向上させるには効果的である。
紫外線吸収剤を含有させる場合には、フィルムの光入射側の最も表層に配置される樹脂の層に添加するのが耐候性を向上させるには効果的である。例えば、支持層と粗面層の2層構造として薄膜太陽電池の表面電極側基材として用いる場合には、支持層が光入射側最表層となるため、支持層の熱可塑性結晶性樹脂に紫外線吸収剤を添加するとよい。
When the ultraviolet absorber is contained, it is effective to improve the weather resistance by adding it to the resin arranged on the most surface layer on the light incident side of the film.
When an ultraviolet absorber is contained, it is effective to improve the weather resistance by adding it to the resin layer disposed on the most surface layer on the light incident side of the film. For example, when using as a surface electrode side base material of a thin film solar cell as a two-layer structure of a support layer and a rough surface layer, since the support layer becomes the light incident side outermost layer, the thermoplastic crystalline resin of the support layer is made of ultraviolet rays. An absorbent may be added.

[フィルムの製造方法]
本発明の太陽電池の基材は、支持層を構成することになる熱可塑性結晶性樹脂と粗面層を構成することになる熱可塑性結晶性樹脂の組成物とをそれぞれ溶融し、これらを共押出法により溶融押出して積層することによって製造する。積層する方法としては、別々の押出機から押出した樹脂を、フィードブロックにより合流させてダイより押出す方法と、別々の押出機から押出した樹脂をマルチマニホールドダイを用いてダイ内で押出直前に合流させ押出す方法を例えば用いることができる。積層構成は、支持層/粗面層の2層構造、粗面層/支持層/粗面層の3層構造が好ましい。3層以上の多層構造とする場合には、必ず粗面層が少なくとも片面の最外層に配置されるようにする。
[Film Production Method]
The base material of the solar cell of the present invention is obtained by melting the thermoplastic crystalline resin that constitutes the support layer and the thermoplastic crystalline resin composition that constitutes the rough surface layer. It is manufactured by melt-extrusion and lamination by an extrusion method. As a method of laminating, resin extruded from separate extruders is merged by a feed block and extruded from a die, and resin extruded from separate extruders is used in a die immediately before extrusion in a die. For example, a method of joining and extruding can be used. The laminated structure is preferably a two-layer structure of support layer / rough surface layer and a three-layer structure of rough surface layer / support layer / rough surface layer. In the case of a multilayer structure of three or more layers, the rough surface layer is always arranged at least on the outermost layer on one side.

また、粗面層の樹脂に粒子を高濃度添加した際にも実用的な機械的強度が得られることから、フィルムは二軸延伸により製造されることが好ましい。
ここではフィルムの製造方法について、共押出により2層に積層した後、逐次二軸延伸によりフィルムを製造する方法を例に詳述する。
Moreover, since practical mechanical strength is obtained even when particles are added at a high concentration to the resin of the rough surface layer, the film is preferably produced by biaxial stretching.
Here, a method for producing a film will be described in detail by taking, as an example, a method for producing a film by sequential biaxial stretching after being laminated in two layers by coextrusion.

支持層を構成することになる熱可塑性結晶性樹脂と、粗面層を構成することになる熱可塑性結晶性樹脂の組成物は、必要に応じて通常の加熱または減圧雰囲気下における乾燥により水分を除去した後、通常の溶融押出温度、すなわち融点(以下Tmと表わす)以上、(Tm+50℃)以下の温度でそれぞれ別の押出機で溶融し、フィードブロックを用いて2層構造に積層したのち、ダイのスリットから押出して、2つの樹脂のうちガラス転移温度(以下Tgと表わす)の低い樹脂のTg以下に冷却した回転冷却ドラムの上で急冷固化することにより、非晶質のシートを得る。得られたシートは、2つの樹脂のうち、Tgが高い樹脂のTg以上、(Tg+50℃)の範囲で、縦方向に2.5〜4.5倍の延伸倍率で延伸し、次いで横方向に、2つの樹脂のうちTgが高い樹脂のTg以上、(Tg+50℃)の範囲で、2.5〜4.5倍の延伸倍率で延伸する。なお、縦延伸と横延伸を同時に行う同時二軸延伸も、縦横の機械的特性のバランスがとりやすいため、好ましい延伸方法である。   The composition of the thermoplastic crystalline resin that constitutes the support layer and the thermoplastic crystalline resin that constitutes the rough surface layer is subjected to moisture by drying under a normal heating or reduced pressure atmosphere as necessary. After removal, the melt is melted in a separate extruder at a normal melt extrusion temperature, that is, a melting point (hereinafter referred to as Tm) or more and (Tm + 50 ° C.) or less, and laminated in a two-layer structure using a feed block. The amorphous sheet is obtained by extruding from the slit of the die and rapidly solidifying on a rotary cooling drum cooled to Tg of a resin having a low glass transition temperature (hereinafter referred to as Tg) out of the two resins. The obtained sheet is stretched at a stretch ratio of 2.5 to 4.5 times in the longitudinal direction within the range of (Tg + 50 ° C.) of Tg of the resin having a high Tg out of the two resins, and then in the transverse direction. The two resins are stretched at a stretch ratio of 2.5 to 4.5 times within the range of Tg of a resin having a high Tg and (Tg + 50 ° C.). Note that simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are simultaneously performed is also a preferred stretching method because it is easy to balance longitudinal and lateral mechanical properties.

先述の表面粗さRaは、この延伸条件でも調整することができる。例えば外力により変形しない粒子を用いる場合、フィルムの延伸過程で表面に突起を形成するが、延伸で発生する内部応力が大きい、すなわち低温で高倍率の延伸を行うほど、Raは大きくなる。
縦横に延伸し薄膜化したフィルムは、2つの樹脂のうち、結晶化温度(以下Tcと表わす)が高い樹脂のTc以上、(樹脂Aまたは樹脂BのうちTmが低い樹脂のTm−20℃)の温度で熱固定を行う。その後、熱収縮率を低下させる目的で、縦方向および/または横方向に、弛緩率0.5〜15%の範囲で熱弛緩処理を行うことが好ましい。熱弛緩処理は、フィルム製造時に行う方法の他に、巻き取った後に別の工程で熱処理を行っても良い。巻き取った後の熱処理方法としては、例えば特開平1−275031号公報に示される、フィルムを懸垂状態で弛緩熱処理する方法を用いることができる。
The aforementioned surface roughness Ra can be adjusted even under this stretching condition. For example, when particles that are not deformed by an external force are used, protrusions are formed on the surface during the stretching process of the film, but Ra increases as the internal stress generated by stretching increases, that is, the higher magnification is performed at a lower temperature.
A film that has been stretched vertically and horizontally and made into a thin film has a crystallization temperature (hereinafter referred to as Tc) of two resins that is higher than Tc or higher (Tm-20 ° C. of resin A or resin B having a lower Tm). Heat fixing at a temperature of Thereafter, for the purpose of reducing the thermal shrinkage rate, it is preferable to perform a thermal relaxation treatment in the longitudinal direction and / or the lateral direction within a range of relaxation rate of 0.5 to 15%. The thermal relaxation treatment may be performed in a separate step after winding, in addition to the method performed during film production. As a heat treatment method after winding, for example, a method of relaxing heat treatment in a suspended state as disclosed in JP-A-1-275031 can be used.

フィルムの全光線透過率を高めるためには、前述の通り樹脂Aに含有させる粒子をできるだけ少なくするとともに、支持層と粗面層との厚み比率(支持層/粗面層)を大きくすればよい。粗面層も、光拡散効果を高めるためにはある程度の厚みが必要であり、厚み比率は好ましくは1〜30、さらに好ましくは3〜20、特に好ましくは5〜15ある。   In order to increase the total light transmittance of the film, the number of particles contained in the resin A is minimized as described above, and the thickness ratio (support layer / rough surface layer) between the support layer and the rough surface layer is increased. . The rough surface layer also needs a certain thickness to enhance the light diffusion effect, and the thickness ratio is preferably 1 to 30, more preferably 3 to 20, and particularly preferably 5 to 15.

以下、実施例により本発明をさらに説明する。
なお、各特性値は以下の方法で測定した。
Hereinafter, the present invention will be further described by examples.
Each characteristic value was measured by the following method.

(1)固有粘度
オルソクロロフェノール溶媒による溶液の粘度を35℃にて測定し求めた。
(1) Intrinsic Viscosity The viscosity of a solution using an orthochlorophenol solvent was measured and determined at 35 ° C.

(2)各層の厚み
フィルムサンプルを三角形に切出し、包埋カプセルに固定後、エポキシ樹脂にて包埋した。包埋されたサンプルをミクロトーム(ULTRACUT−S)で縦方向に平行な断面を50nm厚の薄膜切片にした後、透過型電子顕微鏡を用いて、加速電圧100kVにて観察撮影し、写真から各層の厚みを測定した。
(2) Thickness of each layer A film sample was cut into a triangle, fixed in an embedded capsule, and then embedded in an epoxy resin. The embedded sample was made into a thin film section having a thickness of 50 nm with a microtome (ULTRACUT-S) and then observed and photographed at an acceleration voltage of 100 kV using a transmission electron microscope. The thickness was measured.

(3)熱収縮率
200℃に温度設定されたオーブンの中に無緊張状態で10分間フィルムを保持し、熱処理前の標点間距離Lと熱処理後の標点間距離Lをそれぞれ測定し、その寸法変化率を熱収縮率S(%)として下式により算出した。
S=((L−L)/L)×100
(3) Heat shrinkage rate Hold the film in an unstrained state for 10 minutes in an oven set at a temperature of 200 ° C., and measure the distance L 0 between gauge points before heat treatment and the distance L between gauge points after heat treatment. The dimensional change rate was calculated as the thermal shrinkage rate S (%) by the following equation.
S = ((L 0 −L) / L 0 ) × 100

(4)粒子の平均粒径
島津制作所製CP−50型セントリフューグルパーティクルサイズアナライザー(Centrifugal Particle Size Annalyzer)を用いて測定し、得られる遠心沈降曲線を基に算出した各粒径の粒子とその存在量との積算曲線から、50重量%に相当する粒径を読み取った(「粒度測定技術」日刊工業新聞発行、1975年 頁242〜247参照)。
(4) Average particle diameter of particles Measured using a CP-50 type centrifuggle particle size analyzer manufactured by Shimadzu Corporation, and particles having respective particle diameters calculated based on the obtained centrifugal sedimentation curve The particle size corresponding to 50% by weight was read from the integrated curve with the abundance (see “Particle Size Measurement Technology”, published by Nikkan Kogyo Shimbun, 1975, pages 242-247).

(5)中心線平均表面粗さ(Ra)
非接触式3次元粗さ計(小坂研究所製、ET30HK)を用いて波長780nmの半導体レーザー、ビーム径1.6μmの光触針で測定長(LX)1mm、サンプリングピッチ2μm、カットオフ0.25mm、縦方向拡大倍率5000倍、横方向拡大倍率200倍、走査線数100本(従って、Y方向の測定長LY=0.2mm)の条件にてフィルム表面の突起プロファイルを測定し、その粗さ曲面をZ=F(X、Y)で表したとき、次の式で得られる値(Ra、単位nm)をフィルムの表面粗さとして定義した。

Figure 2008041746
(5) Centerline average surface roughness (Ra)
Using a non-contact type three-dimensional roughness meter (manufactured by Kosaka Laboratories, ET30HK) with a semiconductor laser having a wavelength of 780 nm, an optical stylus with a beam diameter of 1.6 μm, a measurement length (LX) of 1 mm, a sampling pitch of 2 μm, a cutoff of 0. The projection profile on the film surface was measured under the conditions of 25 mm, longitudinal magnification of 5000 times, lateral magnification of 200 times, and the number of scanning lines of 100 (thus, the measurement length LY in the Y direction was 0.2 mm). When the curved surface is expressed by Z = F (X, Y), a value (Ra, unit nm) obtained by the following formula was defined as the surface roughness of the film.
Figure 2008041746

(6)フィルムの全光線透過率
JIS規格 K6714−1958に従い、全光線透過率Tt(%)を測定した。
(6) Total light transmittance of film Total light transmittance Tt (%) was measured according to JIS standard K6714-1958.

(7)薄膜太陽電池の光電変換効率
フィルムの粗面層の表面に、櫛形形状のマスクを用い、基板温度を常温とし、DCスパッタリング法によって2000ÅのAg薄膜を形成した。次にRFスパッタリング法によって、ITO層(透明導電層)を、基板温度140℃の条件で2000Åの厚みで形成した。その後、このフィルムをプラズマCVD装置に入れ、1.33×10−5Paになるまで装置内を減圧し、続いて基板温度を140℃とし、水素ガスおよび少量のBガスを含むモノシランガス(モル比、SiH:H:B=1:181:3×10−3)を用いて、透明導電層上に厚み0.2μmのp型シリコン膜層を形成した。続いて水素ガスおよびモノシランガス(モル比、SiH:H=1:39)を用いて、p型シリコン膜層の上に厚み2μmのi型シリコン膜層を形成した。さらに、水素ガスおよび少量のPHガスを含むモノシランガス(モル比、SiH:H:PH=1:143:8×10−3)を用いて、i型シリコン膜層上に厚み0.4μmのn型シリコン膜層を形成した。その後、DCスパッタリング法によって200℃で酸化亜鉛薄膜を500Åの厚みで形成し、基板を常温まで連客してからAg薄膜(裏面電極層)を2000Åの厚みで形成し、薄膜太陽電池を得た。
(7) Photoelectric conversion efficiency of thin film solar cell Using a comb-shaped mask on the surface of the rough surface layer of the film, a substrate temperature was set to room temperature, and a 2000 Å Ag thin film was formed by DC sputtering. Next, an ITO layer (transparent conductive layer) was formed with a thickness of 2000 mm under a substrate temperature of 140 ° C. by RF sputtering. Thereafter, this film is put into a plasma CVD apparatus, the inside of the apparatus is depressurized until it reaches 1.33 × 10 −5 Pa, subsequently the substrate temperature is set to 140 ° C., and monosilane gas containing hydrogen gas and a small amount of B 2 H 6 gas (Molar ratio, SiH 4 : H 2 : B 2 H 6 = 1: 181: 3 × 10 −3 ), a p-type silicon film layer having a thickness of 0.2 μm was formed on the transparent conductive layer. Subsequently, an i-type silicon film layer having a thickness of 2 μm was formed on the p-type silicon film layer using hydrogen gas and monosilane gas (molar ratio, SiH 4 : H 2 = 1: 39). Further, a monosilane gas (molar ratio, SiH 4 : H 2 : PH 3 = 1: 143: 8 × 10 −3 ) containing hydrogen gas and a small amount of PH 3 gas is used to form a thickness of 0. A 4 μm n-type silicon film layer was formed. Thereafter, a zinc oxide thin film was formed to a thickness of 500 mm at 200 ° C. by DC sputtering, and the Ag thin film (back electrode layer) was formed to a thickness of 2000 mm after serving the substrate to room temperature to obtain a thin film solar cell. .

500Wのキセノンランプ(ウシオ電気社製)に太陽光シミュレーション用補正フィルター(オリエール社製AM1.5Global)を装着し、上記の薄膜太陽電池に対し、入射光強度が100mW/cmの模擬太陽光を、水平面に対して垂直になるよう照射した。システムは屋内、気温18℃、湿度50%の雰囲気に静置した。電流電圧測定装置(ケースレー製ソースメジャーユニット238型)を用いて、システムに印加するDC電圧を10mV/秒の定速でスキャンし、素子の出力する光電流を計測することにより、光電流−電圧特性を測定し、光電変換効率を算出した。 A 500 W xenon lamp (USHIO INC.) Is equipped with a solar simulation correction filter (AM 1.5 Global manufactured by Oriel), and simulated solar light with an incident light intensity of 100 mW / cm 2 is applied to the above thin film solar cell. Irradiated so as to be perpendicular to the horizontal plane. The system was left indoors at a temperature of 18 ° C. and a humidity of 50%. Using a current-voltage measuring device (Keutley source measure unit 238 type), the DC voltage applied to the system is scanned at a constant speed of 10 mV / second, and the photocurrent output from the device is measured, so that photocurrent-voltage The characteristics were measured and the photoelectric conversion efficiency was calculated.

[実施例1]
支持層の熱可塑性結晶性樹脂として平均粒径3.5μmの塊状シリカ(真密度2.2)を0.05体積%含有するポリエチレン−2,6−ナフタレート(非晶密度1.33、固有粘度:0.65)と、粗面層の熱可塑性結晶性樹脂の組成物として平均粒径3.5μmの塊状シリカ(真密度2.2)を1.2体積%含有するポリエチレン−2,6−ナフタレート(非晶密度1.33、固有粘度:0.65)と、をそれぞれ170℃で6時間乾燥させた後に別々の押出機に供給した。溶融温度305℃で溶融した後に、フィードブロックを用いて2層構造となるように合流させて、スリット状ダイより押出し、表面温度を50℃に維持した回転冷却ドラム上で急冷固化させて未延伸フィルムを得た。
[Example 1]
Polyethylene-2,6-naphthalate (amorphous density 1.33, intrinsic viscosity) containing 0.05% by volume of bulk silica (true density 2.2) having an average particle size of 3.5 μm as the thermoplastic crystalline resin of the support layer : 0.65) and polyethylene-2,6- containing 1.2% by volume of bulk silica (true density 2.2) having an average particle size of 3.5 μm as the composition of the thermoplastic crystalline resin of the rough surface layer Naphthalate (amorphous density 1.33, intrinsic viscosity: 0.65) and each were dried at 170 ° C. for 6 hours and then fed to separate extruders. After melting at a melting temperature of 305 ° C, they are merged to form a two-layer structure using a feed block, extruded from a slit die, and rapidly cooled and solidified on a rotary cooling drum maintained at a surface temperature of 50 ° C, unstretched A film was obtained.

次いで縦方向に140℃で3.1倍に延伸した後、横方向に145℃で3.3倍に延伸し、245℃で5秒間熱固定処理および幅方向に2%収縮させ、厚さ75μmの2層フィルムを得た。この2層フィルムの支持層の厚みと粗面層の厚みはそれぞれ70μmと5μmであった。粗面層の表面のRaは135nm、フィルムの200℃における熱収縮率は0.4%であった。フィルムの全光線透過率は81%であった。
得られたフィルムを用いて薄膜太陽電池を作成し、光電変換効率を測定した結果、開放電圧が0.42V、短絡電流密度が23.1mA/cm、光電変換効率は5.3%であった。
Next, the film was stretched 3.1 times at 140 ° C. in the longitudinal direction, then stretched 3.3 times at 145 ° C. in the transverse direction, heat-set at 245 ° C. for 5 seconds, and contracted 2% in the width direction, and the thickness was 75 μm. A two-layer film was obtained. The thickness of the support layer and the roughness layer of this two-layer film were 70 μm and 5 μm, respectively. Ra of the surface of the rough surface layer was 135 nm, and the thermal shrinkage rate of the film at 200 ° C. was 0.4%. The total light transmittance of the film was 81%.
A thin film solar cell was prepared using the obtained film and the photoelectric conversion efficiency was measured. As a result, the open-circuit voltage was 0.42 V, the short-circuit current density was 23.1 mA / cm 2 , and the photoelectric conversion efficiency was 5.3%. It was.

[実施例2]
支持層の熱可塑性結晶性樹脂として平均粒径2.2μmの炭酸カルシウム(真密度2.9)を0.1体積%含有するポリエチレン−2,6−ナフタレート(非晶密度1.33、固有粘度:0.64)と、粗面層の熱可塑性結晶性樹脂の組成物として平均粒径2.2μmの炭酸カルシウム(真密度2.9)を3.0体積%含有するポリエチレン−2,6−ナフタレート(非晶密度1.33、固有粘度:0.62)を、それぞれ170℃で6時間乾燥させた後に別々の押出機に供給した。溶融温度305℃で溶融した後に、フィードブロックを用いて2層構造となるように合流させて、スリット状ダイより押出し、表面温度を50℃に維持した回転冷却ドラム上で急冷固化させて未延伸フィルムを得た。
[Example 2]
Polyethylene-2,6-naphthalate (amorphous density 1.33, intrinsic viscosity) containing 0.1% by volume of calcium carbonate (true density 2.9) having an average particle size of 2.2 μm as the thermoplastic crystalline resin of the support layer : 0.64) and polyethylene-2,6- containing 3.0% by volume of calcium carbonate (true density 2.9) having an average particle size of 2.2 μm as the composition of the thermoplastic crystalline resin of the rough surface layer Naphthalate (amorphous density 1.33, intrinsic viscosity: 0.62) was dried at 170 ° C. for 6 hours and then fed to a separate extruder. After melting at a melting temperature of 305 ° C, they are merged to form a two-layer structure using a feed block, extruded from a slit die, and rapidly cooled and solidified on a rotary cooling drum maintained at a surface temperature of 50 ° C, unstretched A film was obtained.

次いで縦方向に140℃で3.1倍に延伸した後、横方向に145℃で3.3倍に延伸し、245℃で5秒間熱固定処理および幅方向に2%収縮させ、厚さ75μmの2層フィルムを得た。この2層フィルムの支持層の厚みと粗面層の厚みはそれぞれ65μmと10μmであった。粗面層の表面のRaは75nm、フィルムの200℃における熱収縮率は0.2%であった。フィルムの全光線透過率は84%であった。
得られたフィルムを用いて薄膜太陽電池を作成し、光電変換効率を測定した結果、開放電圧が0.43V、短絡電流密度が24.5mA/cm、光電変換効率は6.3%であった。
Next, the film was stretched 3.1 times at 140 ° C. in the longitudinal direction, then stretched 3.3 times at 145 ° C. in the transverse direction, heat-set at 245 ° C. for 5 seconds, and contracted 2% in the width direction, and the thickness was 75 μm. A two-layer film was obtained. The thickness of the support layer and the roughness layer of this two-layer film were 65 μm and 10 μm, respectively. Ra of the surface of the rough surface layer was 75 nm, and the thermal shrinkage rate of the film at 200 ° C. was 0.2%. The total light transmittance of the film was 84%.
A thin film solar cell was prepared using the obtained film and the photoelectric conversion efficiency was measured. As a result, the open circuit voltage was 0.43 V, the short-circuit current density was 24.5 mA / cm 2 , and the photoelectric conversion efficiency was 6.3%. It was.

[比較例1]
平均粒径2μmの塊状シリカ(真密度2.2)を0.3体積%含有する、ポリエチレン−2,6−ナフタレート(非晶密度1.33、固有粘度:0.65)を、170℃で6時間乾燥させた後に押出機に供給し、溶融温度305℃でスリット状ダイより押出して、表面温度を50℃に維持した回転冷却ドラム上に溶融押出しして未延伸フィルムを得た。
[Comparative Example 1]
Polyethylene-2,6-naphthalate (amorphous density 1.33, intrinsic viscosity: 0.65) containing 0.3% by volume of bulk silica having an average particle diameter of 2 μm (true density 2.2) at 170 ° C. After drying for 6 hours, it was supplied to an extruder, extruded from a slit die at a melting temperature of 305 ° C., and melt-extruded on a rotating cooling drum maintained at a surface temperature of 50 ° C. to obtain an unstretched film.

次いで縦方向に140℃で3.1倍に延伸した後、横方向に145℃で3.3倍に延伸し、245℃で5秒間熱固定処理および幅方向に2%収縮させ、厚さ75μmのフィルムを得た。得られたフィルムの表面のRaは28nm、フィルムの200℃における熱収縮率は0.3%であった。フィルムの全光線透過率は78%であった。
得られたフィルムを用いて薄膜太陽電池を作成し、光電変換効率を測定した結果、開放電圧が0.42V、短絡電流密度が17.7mA/cm、光電変換効率は4.5%であった。
Next, the film was stretched 3.1 times at 140 ° C. in the longitudinal direction, then stretched 3.3 times at 145 ° C. in the transverse direction, heat-set at 245 ° C. for 5 seconds, and contracted 2% in the width direction, and the thickness was 75 μm. Film was obtained. Ra of the surface of the obtained film was 28 nm, and the thermal shrinkage rate at 200 ° C. of the film was 0.3%. The total light transmittance of the film was 78%.
A thin film solar cell was prepared using the obtained film and the photoelectric conversion efficiency was measured. As a result, the open-circuit voltage was 0.42 V, the short-circuit current density was 17.7 mA / cm 2 , and the photoelectric conversion efficiency was 4.5%. It was.

本発明の太陽電池の基材は、フレキシブルタイプの薄膜太陽電池の基材として好適に用いることができる。   The substrate of the solar cell of the present invention can be suitably used as a substrate of a flexible type thin film solar cell.

Claims (2)

不活性粒子を含有する熱可塑性結晶性樹脂の組成物から構成され表面粗さRaが30〜500nmの粗面層、およびこれに接する熱可塑性結晶性樹脂から構成される支持層からなる太陽電池の基材。   A solar cell comprising a thermoplastic crystalline resin composition containing inert particles and a rough surface layer having a surface roughness Ra of 30 to 500 nm, and a support layer comprising a thermoplastic crystalline resin in contact with the rough surface layer Base material. フレキシブルタイプの薄膜太陽電池の基材として用いられる、請求項1記載の太陽電池の基材。   The base material of the solar cell of Claim 1 used as a base material of a flexible type thin film solar cell.
JP2006210884A 2006-08-02 2006-08-02 Substrate of solar cell Pending JP2008041746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210884A JP2008041746A (en) 2006-08-02 2006-08-02 Substrate of solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210884A JP2008041746A (en) 2006-08-02 2006-08-02 Substrate of solar cell

Publications (1)

Publication Number Publication Date
JP2008041746A true JP2008041746A (en) 2008-02-21

Family

ID=39176463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210884A Pending JP2008041746A (en) 2006-08-02 2006-08-02 Substrate of solar cell

Country Status (1)

Country Link
JP (1) JP2008041746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041674A (en) * 2006-08-01 2008-02-21 Teijin Dupont Films Japan Ltd Substrate of solar cell
WO2009096610A1 (en) * 2008-01-31 2009-08-06 Teijin Dupont Films Japan Limited Solar battery base
JP2010221655A (en) * 2009-03-25 2010-10-07 Teijin Dupont Films Japan Ltd Laminated film
JP2011052118A (en) * 2009-09-02 2011-03-17 Sumitomo Bakelite Co Ltd Resin composition, transparent substrate and substrate for solar battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006128A1 (en) * 1994-08-19 1996-02-29 Asahi Kasei Kogyo Kabushiki Kaisha Aromatic polyamide film, process for producing the same, and magnetic recording medium and solar cell produced by using the same
JPH1120019A (en) * 1997-07-02 1999-01-26 Asahi Chem Ind Co Ltd Heat-resistant film
JP2000312014A (en) * 1999-04-27 2000-11-07 Sharp Corp Thin-film photoelectric conversion device
JP2003110125A (en) * 2001-10-01 2003-04-11 Mitsubishi Heavy Ind Ltd Solar battery cell and its manufacturing method
JP2004140143A (en) * 2002-10-17 2004-05-13 National Institute Of Advanced Industrial & Technology Substrate for solar cell and solar cell
JP2004179441A (en) * 2002-11-27 2004-06-24 Kyocera Corp Thin film silicon solar battery
JP2004335517A (en) * 2003-04-30 2004-11-25 Teijin Dupont Films Japan Ltd Base film for solar battery
JP2006114263A (en) * 2004-10-13 2006-04-27 Teijin Ltd Transparent conductive laminate
JP2007059534A (en) * 2005-08-23 2007-03-08 Toyobo Co Ltd Film-like solar cell
JP2008041674A (en) * 2006-08-01 2008-02-21 Teijin Dupont Films Japan Ltd Substrate of solar cell

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996006128A1 (en) * 1994-08-19 1996-02-29 Asahi Kasei Kogyo Kabushiki Kaisha Aromatic polyamide film, process for producing the same, and magnetic recording medium and solar cell produced by using the same
JPH1120019A (en) * 1997-07-02 1999-01-26 Asahi Chem Ind Co Ltd Heat-resistant film
JP2000312014A (en) * 1999-04-27 2000-11-07 Sharp Corp Thin-film photoelectric conversion device
JP2003110125A (en) * 2001-10-01 2003-04-11 Mitsubishi Heavy Ind Ltd Solar battery cell and its manufacturing method
JP2004140143A (en) * 2002-10-17 2004-05-13 National Institute Of Advanced Industrial & Technology Substrate for solar cell and solar cell
JP2004179441A (en) * 2002-11-27 2004-06-24 Kyocera Corp Thin film silicon solar battery
JP2004335517A (en) * 2003-04-30 2004-11-25 Teijin Dupont Films Japan Ltd Base film for solar battery
JP2006114263A (en) * 2004-10-13 2006-04-27 Teijin Ltd Transparent conductive laminate
JP2007059534A (en) * 2005-08-23 2007-03-08 Toyobo Co Ltd Film-like solar cell
JP2008041674A (en) * 2006-08-01 2008-02-21 Teijin Dupont Films Japan Ltd Substrate of solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008041674A (en) * 2006-08-01 2008-02-21 Teijin Dupont Films Japan Ltd Substrate of solar cell
WO2009096610A1 (en) * 2008-01-31 2009-08-06 Teijin Dupont Films Japan Limited Solar battery base
JPWO2009096610A1 (en) * 2008-01-31 2011-05-26 帝人デュポンフィルム株式会社 Substrates for solar cells
JP2010221655A (en) * 2009-03-25 2010-10-07 Teijin Dupont Films Japan Ltd Laminated film
JP2011052118A (en) * 2009-09-02 2011-03-17 Sumitomo Bakelite Co Ltd Resin composition, transparent substrate and substrate for solar battery

Similar Documents

Publication Publication Date Title
JP5156739B2 (en) Multilayer film for solar cell substrate
JP5728944B2 (en) Polyester film for solar cell, solar cell backsheet using the same, and solar cell
JP2007208179A (en) Plastic film for rear surface protective film of solar cell, and rear surface protective film of solar cell
EP2091087A1 (en) Seal film for solar cell module and solar cell module utilizing the same
JP5722994B2 (en) Back sheet for solar module and method for manufacturing the same
JP2008041746A (en) Substrate of solar cell
JP2008041674A (en) Substrate of solar cell
ES2663432T3 (en) Back plate for solar module and manufacturing procedure
JP2009267301A (en) Multilayer film for protecting backside of solar cell
KR101551510B1 (en) Solar battery base
JP2018027695A (en) Polyester film for solar cell back sheet
JP5378809B2 (en) Film for solar cell substrate
JP2011192790A (en) Polyester film for solar cells, and method of manufacturing the same
JP2011100773A (en) Base for solar cell
JP2010163511A (en) Film for solar cell substrate
JP2018032753A (en) Sheet for solar battery module and solar battery module
JP2011222154A (en) Laminate film for dye sensitized solar cell
KR20050032696A (en) Biaxial oriented polyethylene naphthalate film
JP2015138924A (en) Backsheet for solar battery modules, and solar battery module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101026

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110708

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110708

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130604