JP2008041264A - Battery and short circuit member - Google Patents

Battery and short circuit member Download PDF

Info

Publication number
JP2008041264A
JP2008041264A JP2006209761A JP2006209761A JP2008041264A JP 2008041264 A JP2008041264 A JP 2008041264A JP 2006209761 A JP2006209761 A JP 2006209761A JP 2006209761 A JP2006209761 A JP 2006209761A JP 2008041264 A JP2008041264 A JP 2008041264A
Authority
JP
Japan
Prior art keywords
battery
conductive member
negative electrode
positive electrode
short
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006209761A
Other languages
Japanese (ja)
Inventor
Kotaro Kurihara
孝太郎 栗原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2006209761A priority Critical patent/JP2008041264A/en
Publication of JP2008041264A publication Critical patent/JP2008041264A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a battery improved in safety when it is crushed by external force and a short circuit member used for the same. <P>SOLUTION: A battery element layering a positive electrode and a negative electrode through a separator and spirally wound, is housed in a battery can. A short circuit member 30 is provided in a gap between the battery can and the battery element. The short circuit member 30 is constructed in such a manner that an insulative intermediate member 33 is arranged between a first conductive member 31 electrically connected to the positive electrode and having a projection part 34 and a second conductive member 32 electrically connected to the negative electrode which face each other. The intermediate member 33 is made thinner in response to the external force applied to the battery can and thus the space between the first conductive member 31 and the second conductive member 32 gets smaller than the height h of the projection part 34. When the external force is applied to the battery to deform the battery can, the projection part 34 penetrates through the intermediate member 33 and sticks in the second conductive member 32, thereby producing short circuit between the positive electrode and the negative electrode. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電池缶の内部に電池素子を収容した電池およびこの電池に用いられる短絡部材に関する。   The present invention relates to a battery in which a battery element is accommodated in a battery can and a short-circuit member used in the battery.

近年、カメラ一体型VTR(ビデオテープレコーダ),携帯電話あるいはノートパソコンなどのポータブル電子機器が多く登場し、その小型軽量化が図られている。これらの電子機器のポータブル電源として用いられている電池、特に二次電池はキーデバイスとして、エネルギー密度の向上を図る研究開発が活発に進められている。中でも、非水電解質二次電池(例えば、リチウムイオン二次電池)は、従来の水系電解液二次電池である鉛電池、ニッケルカドミウム電池と比較して大きなエネルギー密度が得られるので、その改良に関する検討が各方面で行われている。   In recent years, many portable electronic devices such as a camera-integrated VTR (video tape recorder), a mobile phone, or a notebook computer have appeared, and their size and weight have been reduced. Batteries used as portable power sources for these electronic devices, particularly secondary batteries, are actively used as key devices for research and development aimed at improving energy density. Among them, non-aqueous electrolyte secondary batteries (for example, lithium ion secondary batteries) can provide a larger energy density than conventional lead batteries and nickel cadmium batteries, which are conventional aqueous electrolyte secondary batteries. Considerations are being made in various directions.

リチウムイオン二次電池には様々な形状のものが開発されているが、その一つに、正極と負極とをセパレータを間にして積層して渦巻き状に巻き、その巻回中心に金属または樹脂材料よりなる円筒形のセンターピンを挿入したものがある(例えば、特許文献1および特許文献2参照。)。   Lithium ion secondary batteries have been developed in various shapes. For example, a positive electrode and a negative electrode are stacked with a separator between them and wound in a spiral shape, and a metal or resin is wound around the winding center. There is one in which a cylindrical center pin made of a material is inserted (for example, see Patent Document 1 and Patent Document 2).

図11は、従来のセンターピンの一例を表したものである。このセンターピンは、例えば金属よりなる円筒管状の本体130の軸方向に切れ目131を有している。電池に外力が加わると、本体130が押し潰され、その結果切れ目131の縁が外側に開き、その開いた部分がセパレータを貫通して正極と負極との間を短絡させる。これにより、電池反応を阻止して、発電機能を安全に喪失させようとするものである。
特開平4−332481号公報 特開平11−204140号公報
FIG. 11 shows an example of a conventional center pin. The center pin has a cut 131 in the axial direction of a cylindrical tubular body 130 made of, for example, metal. When an external force is applied to the battery, the main body 130 is crushed, and as a result, the edge of the cut 131 opens to the outside, and the opened portion penetrates the separator to short-circuit between the positive electrode and the negative electrode. As a result, the battery reaction is prevented and the power generation function is safely lost.
Japanese Patent Laid-Open No. 4-332481 JP-A-11-204140

しかしながら、上述の従来構造のセンターピンを用いた二次電池では、外力により押し潰された場合の切れ目部分での変形が十分ではなく、正極と負極とを確実に短絡させることができないという問題があり、より確実に電極間を短絡させて安全性を確保するための有効な手段が望まれている。   However, in the secondary battery using the center pin of the above-described conventional structure, there is a problem that deformation at the cut portion when being crushed by an external force is not sufficient, and the positive electrode and the negative electrode cannot be short-circuited reliably. There is a demand for an effective means for ensuring safety by short-circuiting the electrodes more reliably.

本発明はかかる問題点に鑑みてなされたもので、その目的は、外力に押し潰された場合に、より確実に電極間を短絡させることができる、安全性の向上した電池およびこの電池に用いられる短絡部材を提供することにある。   The present invention has been made in view of such problems, and its purpose is to use a battery with improved safety, which can more reliably short-circuit between electrodes when crushed by an external force, and the battery. It is to provide a short-circuit member.

本発明による電池は、正極および負極を有する電池素子と、電池素子を収納する電池缶とを備えたものであって、正極に電気的に接続された第1導電部材と、負極に電気的に接続された第2導電部材とが絶縁性の中間部材を間にして対向配置された短絡部材を備え、第1導電部材および第2導電部材のうち少なくとも一方は、他方との対向面に突起部を有し、中間部材は、電池缶にかかる外力に応じて厚みが薄くなることにより第1導電部材と第2導電部材との間の間隔を突起部の高さ以下にするものである。   A battery according to the present invention includes a battery element having a positive electrode and a negative electrode, and a battery can that houses the battery element, the first conductive member electrically connected to the positive electrode, and the negative electrode electrically A short-circuit member disposed opposite to the connected second conductive member with an insulating intermediate member interposed therebetween, and at least one of the first conductive member and the second conductive member has a protrusion on a surface facing the other The intermediate member is configured such that the distance between the first conductive member and the second conductive member is equal to or less than the height of the protruding portion by reducing the thickness according to the external force applied to the battery can.

本発明による短絡部材は、本発明の電池に用いられるものであって、正極に電気的に接続された第1導電部材と、負極に電気的に接続された第2導電部材とが絶縁性の中間部材を間にして対向配置され、第1導電部材および第2導電部材のうち少なくとも一方は、他方との対向面に突起部を有し、中間部材は、電池缶にかかる外力に応じて厚みが薄くなることにより第1導電部材と第2導電部材との間の間隔を突起部の高さ以下にするものである。   The short-circuit member according to the present invention is used for the battery according to the present invention, and the first conductive member electrically connected to the positive electrode and the second conductive member electrically connected to the negative electrode are insulative. The intermediate member is disposed to face the intermediate member, and at least one of the first conductive member and the second conductive member has a protrusion on the surface facing the other, and the intermediate member has a thickness corresponding to an external force applied to the battery can. By reducing the thickness, the distance between the first conductive member and the second conductive member is made equal to or less than the height of the protrusion.

本発明による電池、または本発明による短絡部材では、電池缶にかかる外力に応じて中間部材の厚みが薄くなることにより第1導電部材と第2導電部材との間の間隔が突起部の高さ以下になるので、外部から電池に力がかかって電池缶が変形した場合、突起部が中間部材を貫通して他方の導電部材に突き刺さり、これにより正極と負極との短絡が生じる。   In the battery according to the present invention or the short-circuit member according to the present invention, the distance between the first conductive member and the second conductive member becomes the height of the protruding portion by reducing the thickness of the intermediate member according to the external force applied to the battery can. Therefore, when a force is applied to the battery from the outside and the battery can is deformed, the protrusion penetrates the intermediate member and pierces the other conductive member, thereby causing a short circuit between the positive electrode and the negative electrode.

本発明の電池、または本発明の短絡部材によれば、第1導電部材と第2導電部材とを絶縁性の中間部材を間にして対向配置し、電池缶にかかる外力に応じて中間部材の厚みを薄くすることにより第1導電部材と第2導電部材との間の間隔を突起部の高さ以下にするようにしたので、外部からの力で押し潰されたり折れたりした場合において正極と負極とを確実に短絡させることができ、安全性が向上する。   According to the battery of the present invention or the short-circuit member of the present invention, the first conductive member and the second conductive member are arranged to face each other with an insulating intermediate member interposed therebetween, and the intermediate member is formed according to the external force applied to the battery can. Since the distance between the first conductive member and the second conductive member is made smaller than the height of the protrusion by reducing the thickness, the positive electrode The negative electrode can be reliably short-circuited, and safety is improved.

特に、負極が、電極反応物質を吸蔵および放出することが可能であり、構成元素として金属元素および半金属元素のうちの少なくとも1種を含む負極活物質を含む場合には、電池のエネルギー密度が大きく、より高い安全性が求められるので、より高い効果を得ることができる。   In particular, when the negative electrode is capable of occluding and releasing electrode reactants and includes a negative electrode active material containing at least one of a metal element and a metalloid element as a constituent element, the energy density of the battery is Since a larger and higher safety is required, a higher effect can be obtained.

以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、図において各構成要素は本発明が理解できる程度の形状、大きさおよび配置関係を概略的に示したものであり、実寸とは異なっている。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the figure, each component schematically shows the shape, size, and arrangement relationship to the extent that the present invention can be understood, and is different from the actual size.

図1および図2は本発明の一実施の形態に係る二次電池の断面構造を表すものである。この二次電池は、いわゆる角型といわれるものであり、ほぼ中空直方体形状の電池缶11の内部に、偏平な電池素子20を有している。   1 and 2 show a cross-sectional structure of a secondary battery according to an embodiment of the present invention. This secondary battery is a so-called square type, and has a flat battery element 20 inside a battery can 11 having a substantially hollow rectangular parallelepiped shape.

電池缶11は、例えばニッケル(Ni)のめっきがされた鉄(Fe)により構成されており、負極端子としての機能も有している。この電池缶11は、一端部が閉鎖され他端部が開放されており、開放端部に絶縁板12および電池蓋13が取り付けられることにより電池缶11の内部が密閉されている。絶縁板12は、ポリプロピレンなどにより構成され、電池素子20の上に巻回周面に対して垂直に配置されている。電池蓋13は、例えば、電池缶11と同様の材料により構成され、電池缶11と共に負極端子としての機能も有している。電池蓋13の外側には、正極端子となる端子板14が配置されている。また、電池蓋13の中央付近には貫通孔が設けられ、この貫通孔に、端子板14に電気的に接続された正極ピン15が挿入されている。端子板14と電池蓋13との間は絶縁ケース16により電気的に絶縁され、正極ピン15と電池蓋13との間はガスケット17により電気的に絶縁されている。絶縁ケース16は、例えばポリブチレンテレフタレートにより構成されている。ガスケット17は、例えば、絶縁材料により構成されており、表面にはアスファルトが塗布されている。   The battery can 11 is made of, for example, iron (Fe) plated with nickel (Ni), and also has a function as a negative electrode terminal. The battery can 11 has one end closed and the other end open, and the inside of the battery can 11 is sealed by attaching an insulating plate 12 and a battery lid 13 to the open end. The insulating plate 12 is made of polypropylene or the like, and is disposed on the battery element 20 perpendicular to the winding peripheral surface. The battery lid 13 is made of, for example, the same material as that of the battery can 11 and has a function as a negative electrode terminal together with the battery can 11. A terminal plate 14 serving as a positive electrode terminal is disposed outside the battery lid 13. A through hole is provided near the center of the battery lid 13, and a positive electrode pin 15 electrically connected to the terminal plate 14 is inserted into the through hole. The terminal plate 14 and the battery lid 13 are electrically insulated by an insulating case 16, and the positive electrode pin 15 and the battery lid 13 are electrically insulated by a gasket 17. The insulating case 16 is made of, for example, polybutylene terephthalate. The gasket 17 is made of, for example, an insulating material, and asphalt is applied to the surface.

電池蓋13の周縁付近には開裂弁18および電解液注入孔19が設けられている。開裂弁18は、電池蓋13と電気的に接続されており、内部短絡あるいは外部からの加熱などにより電池の内圧が一定以上となった場合に開裂して内圧の上昇を抑えるようになっている。電解液注入孔19は、例えばステンレス鋼球よりなる封止部材19Aにより塞がれている。   A cleavage valve 18 and an electrolyte injection hole 19 are provided near the periphery of the battery lid 13. The cleaving valve 18 is electrically connected to the battery lid 13 and is cleaved when the internal pressure of the battery exceeds a certain level due to an internal short circuit or external heating, thereby suppressing an increase in the internal pressure. . The electrolyte injection hole 19 is closed by a sealing member 19A made of, for example, a stainless steel ball.

電池素子20は、正極21と負極22とをセパレータ23を間にして積層し、渦巻き状に巻回したものであり、電池缶11の形状に合わせて偏平な形状に成形されている。電池素子20の正極21にはアルミニウム(Al)などよりなる正極リード24が接続されており、負極22にはニッケルなどよりなる負極リード25が接続されている。正極リード24は正極ピン15の下端に溶接されることにより端子板14と電気的に接続されており、負極リード25は電池缶11に溶接され電気的に接続されている。   The battery element 20 is formed by laminating a positive electrode 21 and a negative electrode 22 with a separator 23 therebetween and winding them in a spiral shape, and is formed into a flat shape in accordance with the shape of the battery can 11. A positive electrode lead 24 made of aluminum (Al) or the like is connected to the positive electrode 21 of the battery element 20, and a negative electrode lead 25 made of nickel or the like is connected to the negative electrode 22. The positive electrode lead 24 is welded to the lower end of the positive electrode pin 15 to be electrically connected to the terminal plate 14, and the negative electrode lead 25 is welded to and electrically connected to the battery can 11.

図3は図1に示した正極21の巻回前の断面構成を表すものである。この正極21は、帯状の正極集電体21Aの両面に正極活物質層21Bを設けたものである。具体的には、正極集電体21Aの外周面側および内周面側の少なくとも一方に正極活物質層21Bが存在する正極被覆領域21Cを有している。加えて、この正極21では、巻回中心側および巻回外周側の端部が正極露出領域21D、すなわち、正極集電体21Aの両面とも正極活物質層21Bが存在せずに露出している領域となっている。   FIG. 3 shows a cross-sectional configuration of the positive electrode 21 shown in FIG. 1 before winding. This positive electrode 21 is obtained by providing a positive electrode active material layer 21B on both surfaces of a strip-shaped positive electrode current collector 21A. Specifically, the positive electrode current collector 21A has a positive electrode covering region 21C where the positive electrode active material layer 21B is present on at least one of the outer peripheral surface side and the inner peripheral surface side. In addition, in the positive electrode 21, the ends on the winding center side and the winding outer peripheral side are exposed without the positive electrode active material layer 21 </ b> B on the positive electrode exposed region 21 </ b> D, that is, on both surfaces of the positive electrode current collector 21 </ b> A. It is an area.

正極集電体21Aは、例えば、厚みが5μm〜50μm程度であり、アルミニウム箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。   The positive electrode current collector 21A has, for example, a thickness of about 5 μm to 50 μm and is made of a metal foil such as an aluminum foil, a nickel foil, or a stainless steel foil.

正極活物質層21Bは、例えば、正極活物質として、電極反応物質であるリチウムを吸蔵および放出可能な正極材料のいずれか1種または2種以上を含んでおり、必要に応じて炭素材料などの導電材およびポリフッ化ビニリデンなどの結着剤を含んでいてもよい。リチウムを吸蔵および放出可能な正極材料としては、例えば、硫化チタン(TiS2 ),硫化モリブデン(MoS2 ),セレン化ニオブ(NbSe2 )あるいは酸化バナジウム(V2 5 )などのリチウムを含有しない金属硫化物,金属セレン化物あるいは金属酸化物など、またはリチウムを含有するリチウム含有化合物が挙げられる。 The positive electrode active material layer 21B includes, for example, any one or more of positive electrode materials capable of occluding and releasing lithium, which is an electrode reactant, as a positive electrode active material. A conductive material and a binder such as polyvinylidene fluoride may be included. The positive electrode material capable of inserting and extracting lithium does not contain lithium such as titanium sulfide (TiS 2 ), molybdenum sulfide (MoS 2 ), niobium selenide (NbSe 2 ), or vanadium oxide (V 2 O 5 ). Examples thereof include metal sulfides, metal selenides, metal oxides, and lithium-containing compounds containing lithium.

中でも、リチウム含有化合物は、高電圧および高エネルギー密度を得ることができるものがあるので好ましい。このようなリチウム含有化合物としては、例えば、リチウムと遷移金属元素とを含む複合酸化物、またはリチウムと遷移金属元素とを含むリン酸化合物が挙げられ、特にコバルト(Co),ニッケルおよびマンガン(Mn)のうちの少なくとも1種を含むものが好ましい。より高い電圧を得ることができるからである。その化学式は、例えば、Lix MIO2 あるいはLiy MIIPO4 で表される。式中、MIおよびMIIは1種類以上の遷移金属元素を表す。xおよびyの値は電池の充放電状態によって異なり、通常、0.05≦x≦1.10、0.05≦y≦1.10である。 Among these, lithium-containing compounds are preferable because some compounds can obtain a high voltage and a high energy density. Examples of such a lithium-containing compound include a composite oxide containing lithium and a transition metal element, or a phosphate compound containing lithium and a transition metal element. In particular, cobalt (Co), nickel and manganese (Mn Among these, those containing at least one of them are preferred. This is because a higher voltage can be obtained. The chemical formula is represented by, for example, Li x MIO 2 or Li y MIIPO 4 . In the formula, MI and MII represent one or more transition metal elements. The values of x and y vary depending on the charge / discharge state of the battery, and are generally 0.05 ≦ x ≦ 1.10 and 0.05 ≦ y ≦ 1.10.

リチウムと遷移金属元素とを含む複合酸化物の具体例としては、層状岩塩型構造を有するリチウムコバルト複合酸化物(Lix CoO2 )、リチウムニッケル複合酸化物(Lix NiO2 )、リチウムニッケルコバルト複合酸化物(Lix Ni1-z Coz 2 (z<1))、あるいはスピネル型構造を有するリチウムマンガン複合酸化物(LiMn2 4 )などが挙げられる。中でも、ニッケルを含む複合酸化物が好ましい。高い容量を得ることができると共に、優れたサイクル特性も得ることができるからである。リチウムと遷移金属元素とを含むリン酸化合物の具体例としては、例えばオリビン型構造を有するリチウム鉄リン酸化合物(LiFePO4 )あるいはリチウム鉄マンガンリン酸化合物(LiFe1-v Mnv PO4 (v<1))が挙げられる。 Specific examples of the composite oxide containing lithium and a transition metal element include lithium cobalt composite oxide (Li x CoO 2 ), lithium nickel composite oxide (Li x NiO 2 ), and lithium nickel cobalt having a layered rock salt structure. Examples thereof include a composite oxide (Li x Ni 1-z Co z O 2 (z <1)) or a lithium manganese composite oxide (LiMn 2 O 4 ) having a spinel structure. Among these, a composite oxide containing nickel is preferable. This is because a high capacity can be obtained and excellent cycle characteristics can also be obtained. Specific examples of the phosphate compound containing lithium and a transition metal element include, for example, a lithium iron phosphate compound (LiFePO 4 ) or a lithium iron manganese phosphate compound (LiFe 1-v Mn v PO 4 (v <1)).

図4は、負極22の構成を表したものである。この負極22は、帯状の負極集電体22Aの両面に負極活物質層22Bを設けたものである。具体的には、負極集電体22Aの外周面側および内周面側の少なくとも一方に負極活物質層22Bが存在する負極被覆領域22Cと、巻回中心側および巻回外周側の端部に、負極集電体22Aの両面とも負極活物質層22Bが存在せずに露出している負極露出領域22Dとを有している。   FIG. 4 shows the configuration of the negative electrode 22. The negative electrode 22 is obtained by providing a negative electrode active material layer 22B on both surfaces of a strip-shaped negative electrode current collector 22A. Specifically, the negative electrode covering region 22C where the negative electrode active material layer 22B exists on at least one of the outer peripheral surface side and the inner peripheral surface side of the negative electrode current collector 22A, and the winding center side and the winding outer peripheral side end portions Further, both surfaces of the negative electrode current collector 22A have a negative electrode exposed region 22D that is exposed without the negative electrode active material layer 22B.

負極集電体22Aは、例えば、銅箔,ニッケル箔あるいはステンレス箔などの金属箔により構成されている。この負極集電体22Aの厚みは、例えば5μm〜50μmである。   The negative electrode current collector 22A is made of, for example, a metal foil such as a copper foil, a nickel foil, or a stainless steel foil. The thickness of the negative electrode current collector 22A is, for example, 5 μm to 50 μm.

負極活物質層22Bは、例えば、負極活物質を含んでおり、必要に応じて導電材および結着剤などの他の材料を含んでいてもよい。負極活物質としては、例えば、電極反応物質であるリチウムを吸蔵および放出することが可能であり、金属元素および半金属元素のうちの少なくとも1種を構成元素として含む負極材料が挙げられる。このような負極材料を用いれば、高いエネルギー密度を得ることができるので好ましい。この負極材料は金属元素あるいは半金属元素の単体でも合金でも化合物でもよく、またこれらの1種または2種以上の相を少なくとも一部に有するようなものでもよい。なお、本発明において、合金には2種以上の金属元素からなるものに加えて、1種以上の金属元素と1種以上の半金属元素とを含むものも含める。また、非金属元素を含んでいてもよい。その組織には固溶体,共晶(共融混合物),金属間化合物あるいはそれらのうちの2種以上が共存するものがある。   The negative electrode active material layer 22B includes, for example, a negative electrode active material, and may include other materials such as a conductive material and a binder as necessary. Examples of the negative electrode active material include a negative electrode material that can occlude and release lithium, which is an electrode reactant, and includes at least one of a metal element and a metalloid element as a constituent element. Use of such a negative electrode material is preferable because a high energy density can be obtained. The negative electrode material may be a single element, alloy or compound of a metal element or metalloid element, or may have at least a part of one or more of these phases. In the present invention, alloys include those containing one or more metal elements and one or more metalloid elements in addition to those composed of two or more metal elements. Moreover, the nonmetallic element may be included. There are structures in which a solid solution, a eutectic (eutectic mixture), an intermetallic compound, or two or more of them coexist.

この負極材料を構成する金属元素あるいは半金属元素としては、例えばリチウムと合金を形成可能な金属元素あるいは半金属元素が挙げられる。具体的には、マグネシウム(Mg),ホウ素(B),アルミニウム(Al),ガリウム(Ga),インジウム(In),ケイ素,ゲルマニウム(Ge),スズ,鉛(Pb),ビスマス(Bi),カドミウム(Cd),銀(Ag),亜鉛(Zn),ハフニウム(Hf),ジルコニウム(Zr),イットリウム(Y),パラジウム(Pd)あるいは白金(Pt)などが挙げられる。   Examples of the metal element or metalloid element constituting the negative electrode material include a metal element or metalloid element capable of forming an alloy with lithium. Specifically, magnesium (Mg), boron (B), aluminum (Al), gallium (Ga), indium (In), silicon, germanium (Ge), tin, lead (Pb), bismuth (Bi), cadmium Examples thereof include (Cd), silver (Ag), zinc (Zn), hafnium (Hf), zirconium (Zr), yttrium (Y), palladium (Pd), and platinum (Pt).

中でも、この負極材料としては、長周期型周期表における14族の金属元素あるいは半金属元素を構成元素として含むものが好ましく、特に好ましいのはケイ素およびスズの少なくとも一方を構成元素として含むものである。ケイ素およびスズは、リチウムを吸蔵および放出する能力が大きく、高いエネルギー密度を得ることができるからである。具体的には、例えば、ケイ素の単体,合金,あるいは化合物、またはスズの単体,合金,あるいは化合物、またはこれらの1種あるいは2種以上の相を少なくとも一部に有する材料が挙げられる。   Among these, the negative electrode material preferably includes a group 14 metal element or metalloid element in the long-period periodic table as a constituent element, and particularly preferably includes at least one of silicon and tin as a constituent element. This is because silicon and tin have a large ability to occlude and release lithium, and a high energy density can be obtained. Specifically, for example, a simple substance, an alloy, or a compound of silicon, a simple substance, an alloy, or a compound of tin, or a material having one or two or more phases thereof at least in part.

スズの合金としては、例えば、スズ以外の第2の構成元素として、ケイ素,ニッケル,銅,鉄(Fe),コバルト(Co),マンガン(Mn),亜鉛(Zn),インジウム(In),銀(Ag),チタン(Ti),ゲルマニウム(Ge),ビスマス(Bi),アンチモン(Sb)およびクロム(Cr)からなる群のうちの少なくとも1種を含むものが挙げられる。ケイ素の合金としては、例えば、ケイ素以外の第2の構成元素として、スズ,ニッケル,銅,鉄,コバルト,マンガン,亜鉛,インジウム,銀,チタン,ゲルマニウム,ビスマス,アンチモンおよびクロムからなる群のうちの少なくとも1種を含むものが挙げられる。   Examples of tin alloys include silicon, nickel, copper, iron (Fe), cobalt (Co), manganese (Mn), zinc (Zn), indium (In), and silver as second constituent elements other than tin. (Ag), titanium (Ti), germanium (Ge), bismuth (Bi), antimony (Sb), and the thing containing at least 1 sort (s) of chromium (Cr) are mentioned. As an alloy of silicon, for example, as a second constituent element other than silicon, among the group consisting of tin, nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, antimony and chromium The thing containing at least 1 sort (s) of these is mentioned.

スズの化合物あるいはケイ素の化合物としては、例えば、酸素(O)あるいは炭素(C)を含むものが挙げられ、スズまたはケイ素に加えて、上述した第2の構成元素を含んでいてもよい。   Examples of the tin compound or silicon compound include those containing oxygen (O) or carbon (C), and may contain the second constituent element described above in addition to tin or silicon.

中でも、この負極材料としては、スズと、コバルトと、炭素とを構成元素として含み、炭素の含有量が9.9質量%以上29.7質量%以下であり、かつスズとコバルトとの合計に対するコバルトの割合が30質量%以上70質量%以下であるCoSnC含有材料が好ましい。このような組成範囲において高いエネルギー密度を得ることができると共に、優れたサイクル特性を得ることができるからである。   Among these, as this negative electrode material, tin, cobalt, and carbon are included as constituent elements, the carbon content is 9.9 mass% or more and 29.7 mass% or less, and the total of tin and cobalt is A CoSnC-containing material having a cobalt ratio of 30% by mass to 70% by mass is preferable. This is because a high energy density can be obtained in such a composition range, and excellent cycle characteristics can be obtained.

このCoSnC含有材料は、必要に応じて更に他の構成元素を含んでいてもよい。他の構成元素としては、例えば、ケイ素,鉄,ニッケル,クロム,インジウム,ニオブ(Nb),ゲルマニウム,チタン,モリブデン(Mo),アルミニウム(Al),リン(P),ガリウム(Ga)またはビスマスが好ましく、2種以上を含んでいてもよい。容量またはサイクル特性を更に向上させることができるからである。   This CoSnC-containing material may further contain other constituent elements as necessary. Examples of other constituent elements include silicon, iron, nickel, chromium, indium, niobium (Nb), germanium, titanium, molybdenum (Mo), aluminum (Al), phosphorus (P), gallium (Ga), or bismuth. Preferably, 2 or more types may be included. This is because the capacity or cycle characteristics can be further improved.

なお、このCoSnC含有材料は、スズと、コバルトと、炭素とを含む相を有しており、この相は結晶性の低いまたは非晶質な構造を有していることが好ましい。また、このCoSnC含有材料では、構成元素である炭素の少なくとも一部が、他の構成元素である金属元素または半金属元素と結合していることが好ましい。サイクル特性の低下はスズなどが凝集あるいは結晶化することによるものであると考えられるが、炭素が他の元素と結合することにより、そのような凝集あるいは結晶化を抑制することができるからである。   This CoSnC-containing material has a phase containing tin, cobalt, and carbon, and this phase preferably has a low crystallinity or an amorphous structure. In this CoSnC-containing material, it is preferable that at least a part of carbon as a constituent element is bonded to a metal element or a semimetal element as another constituent element. The decrease in cycle characteristics is thought to be due to the aggregation or crystallization of tin or the like, but this is because such aggregation or crystallization can be suppressed by combining carbon with other elements. .

元素の結合状態を調べる測定方法としては、例えばX線光電子分光法(X-ray Photoelectron Spectroscopy;XPS)が挙げられる。XPSでは、炭素の1s軌道(C1s)のピークは、グラファイトであれば、金原子の4f軌道(Au4f)のピークが84.0eVに得られるようにエネルギー較正された装置において、284.5eVに現れる。また、表面汚染炭素であれば、284.8eVに現れる。これに対して、炭素元素の電荷密度が高くなる場合、例えば炭素が金属元素または半金属元素と結合している場合には、C1sのピークは、284.5eVよりも低い領域に現れる。すなわち、CoSnC含有材料について得られるC1sの合成波のピークが284.5eVよりも低い領域に現れる場合には、CoSnC含有材料に含まれる炭素の少なくとも一部が他の構成元素である金属元素または半金属元素と結合している。   As a measuring method for examining the bonding state of elements, for example, X-ray photoelectron spectroscopy (XPS) can be cited. In XPS, the peak of the carbon 1s orbital (C1s) appears at 284.5 eV in an energy calibrated apparatus so that the peak of the gold atom 4f orbital (Au4f) is obtained at 84.0 eV if it is graphite. . Moreover, if it is surface contamination carbon, it will appear at 284.8 eV. On the other hand, when the charge density of the carbon element increases, for example, when carbon is bonded to a metal element or a metalloid element, the C1s peak appears in a region lower than 284.5 eV. That is, when the peak of the synthetic wave of C1s obtained for the CoSnC-containing material appears in a region lower than 284.5 eV, at least a part of the carbon contained in the CoSnC-containing material is a metal element or a half of other constituent elements. Combined with metal elements.

なお、XPS測定では、スペクトルのエネルギー軸の補正に、例えばC1sのピークを用いる。通常、表面には表面汚染炭素が存在しているので、表面汚染炭素のC1sのピークを284.8eVとし、これをエネルギー基準とする。XPS測定では、C1sのピークの波形は、表面汚染炭素のピークとCoSnC含有材料中の炭素のピークとを含んだ形として得られるので、例えば市販のソフトウエアを用いて解析することにより、表面汚染炭素のピークと、CoSnC含有材料中の炭素のピークとを分離する。波形の解析では、最低束縛エネルギー側に存在する主ピークの位置をエネルギー基準(284.8eV)とする。   In XPS measurement, for example, the C1s peak is used to correct the energy axis of the spectrum. Usually, since surface-contaminated carbon exists on the surface, the C1s peak of the surface-contaminated carbon is set to 284.8 eV, which is used as an energy standard. In the XPS measurement, the waveform of the C1s peak is obtained as a shape including the surface contamination carbon peak and the carbon peak in the CoSnC-containing material. For example, by analyzing using a commercially available software, the surface contamination The carbon peak and the carbon peak in the CoSnC-containing material are separated. In the waveform analysis, the position of the main peak existing on the lowest bound energy side is used as the energy reference (284.8 eV).

負極活物質としては、また、天然黒鉛,人造黒鉛,難黒鉛化炭素あるいは易黒鉛化炭素などの炭素材料を用いてもよい。炭素材料を用いれば優れたサイクル特性を得ることができるので好ましい。また、負極活物質としては、リチウム金属も挙げられる。負極活物質はこれらの1種を単独で用いてもよいが、2種以上を混合して用いてもよい。   As the negative electrode active material, a carbon material such as natural graphite, artificial graphite, non-graphitizable carbon, or graphitizable carbon may be used. Use of a carbon material is preferable because excellent cycle characteristics can be obtained. Moreover, lithium metal is also mentioned as a negative electrode active material. The negative electrode active material may be used alone or in combination of two or more.

図1に示したセパレータ23は、例えばポリプロピレンあるいはポリエチレンなどのポリオレフィン系の材料よりなる多孔質膜、またはセラミック製の不織布などの無機材料よりなる多孔質膜により構成されており、これら2種以上の多孔質膜を積層した構造とされていてもよい。   The separator 23 shown in FIG. 1 is composed of a porous film made of a polyolefin-based material such as polypropylene or polyethylene, or a porous film made of an inorganic material such as a ceramic nonwoven fabric. A structure in which a porous film is laminated may be used.

セパレータ23には、液状の電解質である電解液が含浸されている。この電解液は、例えば、溶媒と、電解質塩であるリチウム塩とを含んで構成されている。溶媒は、電解質塩を溶解し解離させるものである。溶媒としては、プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、1, 2−ジメトキシエタン、1, 2−ジエトキシエタン、γ−ブチロラクトン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1, 3−ジオキソラン、4メチル1, 3ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、アセトニトリル、プロピオニトリル、アニソール、酢酸エステル、酪酸エステルあるいはプロピオン酸エステルなどが挙げられ、これらのいずれか1種または2種以上を混合して用いてもよい。   The separator 23 is impregnated with an electrolytic solution that is a liquid electrolyte. For example, the electrolytic solution includes a solvent and a lithium salt that is an electrolyte salt. The solvent dissolves and dissociates the electrolyte salt. Solvents include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, and 4-methyl. 1,3 dioxolane, diethyl ether, sulfolane, methyl sulfolane, acetonitrile, propionitrile, anisole, acetic acid ester, butyric acid ester or propionic acid ester, etc., and any one of these or a mixture of two or more May be.

リチウム塩としては、例えば、LiClO4 ,LiAsF6 ,LiPF6 ,LiBF4 ,LiB(C6 5 4 ,CH3 SO3 Li,CF3 SO3 Li,LiClあるいはLiBrが挙げられ、これらのいずれか1種または2種以上を混合して用いてもよい。 Examples of the lithium salt include LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO 3 Li, LiCl, or LiBr. One kind or a mixture of two or more kinds may be used.

更に、本実施の形態では、電池素子20と電池缶11との間の隙間に、導電性の短絡部材30が設けられている。この短絡部材30は、図5に示したように、第1導電部材31と第2導電部材32とが絶縁性の中間部材33を間にして対向配置された構成を有している。第1導電部材31は、正極集電体21Aの端部に接合されることにより正極21に電気的に接続されていると共に、第2導電部材32との対向面に突起部34を有している。第2導電部材32は、電池缶11に接合されることにより負極22に電気的に接続されている。   Further, in the present embodiment, a conductive short-circuit member 30 is provided in the gap between the battery element 20 and the battery can 11. As shown in FIG. 5, the short-circuit member 30 has a configuration in which a first conductive member 31 and a second conductive member 32 are arranged to face each other with an insulating intermediate member 33 therebetween. The first conductive member 31 is electrically connected to the positive electrode 21 by being joined to the end of the positive electrode current collector 21 </ b> A, and has a protrusion 34 on the surface facing the second conductive member 32. Yes. The second conductive member 32 is electrically connected to the negative electrode 22 by being joined to the battery can 11.

中間部材33は、電池缶11にかかる外力に応じて厚みが薄くなることにより第1導電部材31と第2導電部材32との間の間隔Dを突起部34の高さh以下にするものである。これにより、この電池では、正極21と負極22とを確実に短絡させることができ、安全性を向上させることができるようになっている。   The intermediate member 33 is configured such that the distance D between the first conductive member 31 and the second conductive member 32 is less than or equal to the height h of the protrusion 34 by reducing the thickness according to the external force applied to the battery can 11. is there. Thereby, in this battery, the positive electrode 21 and the negative electrode 22 can be reliably short-circuited, and safety can be improved.

特に、負極22が、電極反応物質を吸蔵および放出することが可能であり、構成元素として金属元素および半金属元素のうちの少なくとも1種を含む負極活物質を含む場合には、電池のエネルギー密度が大きく、より高い安全性が求められるので、より高い効果を得ることができる。   In particular, when the negative electrode 22 can occlude and release the electrode reactant and includes a negative electrode active material containing at least one of a metal element and a metalloid element as a constituent element, the energy density of the battery Therefore, a higher effect can be obtained because higher safety is required.

第1導電部材31および第2導電部材32は、例えば、電池素子20の高さに略等しい長さを有する帯状の金属板により構成され、その長手方向を電池素子20の高さ方向に合わせて配設されている。第1導電部材31の構成材料としては、例えば、アルミニウム(Al)が挙げられ、第2導電部材32の構成材料としては、例えば、銅(Cu),ニッケル(Ni)あるいはステンレス鋼が挙げられる。   The first conductive member 31 and the second conductive member 32 are constituted by, for example, a strip-shaped metal plate having a length substantially equal to the height of the battery element 20, and the longitudinal direction thereof is matched with the height direction of the battery element 20. It is arranged. Examples of the constituent material of the first conductive member 31 include aluminum (Al), and examples of the constituent material of the second conductive member 32 include copper (Cu), nickel (Ni), and stainless steel.

なお、第1導電部材31は、正極リード24あるいは正極集電体21Aと同一の材料により構成された別部材として設けられていてもよく、また、それら自体またはそれらの一部が第1導電部材31を兼ねるようにしてもよい。第2導電部材32は、負極リード25,電池缶11,電池蓋13あるいは負極集電体22Aと同一の材料により構成された別部材として設けられていてもよく、また、それら自体またはそれらの一部が第2導電部材32を兼ねるようにしてもよい。   The first conductive member 31 may be provided as a separate member made of the same material as the positive electrode lead 24 or the positive electrode current collector 21A, and the first conductive member 31 itself or a part thereof may be provided as the first conductive member. 31 may also be used. The second conductive member 32 may be provided as a separate member made of the same material as the negative electrode lead 25, the battery can 11, the battery lid 13, or the negative electrode current collector 22A. The portion may also serve as the second conductive member 32.

第1導電部材31および第2導電部材32の寸法は、二次電池の寸法により異なるが、例えば、幅Wが3.0mm程度、長さLが2.5cm以上8.0cm以下、厚みTが0.05mm以上5mm以下であることが好ましい。第1導電部材31の寸法と第2導電部材32の寸法とは必ずしも同一である必要はない。ここで、第1導電部材31および第2導電部材32の「厚み」とはそれらの積層されている方向における寸法をいい、「幅」とは、厚み方向に対して直交すると共に互いに垂直な二方向の寸法のうち短いほう、「長さ」はそのうち長いほうをいう。   The dimensions of the first conductive member 31 and the second conductive member 32 differ depending on the dimensions of the secondary battery. For example, the width W is about 3.0 mm, the length L is 2.5 cm to 8.0 cm, and the thickness T is It is preferable that it is 0.05 mm or more and 5 mm or less. The dimensions of the first conductive member 31 and the second conductive member 32 are not necessarily the same. Here, the “thickness” of the first conductive member 31 and the second conductive member 32 refers to the dimension in the direction in which they are stacked, and the “width” refers to two perpendicular to the thickness direction and perpendicular to each other. The shorter dimension of the direction, the “length” means the longer one.

中間部材33は、例えば、電解液に対する耐性を有する樹脂により構成され、通常時は所定の厚みを保持し、一方、外力により電池が押し潰された場合にはその外力に応じて変形したり潰されたりして、厚みが薄くなることができるものとする。具体的には、中間部材33は、ポリエチレン(PE)あるいはポリプロピレン(PP)などセパレータ23と同一の材料により構成されていてもよいし、セパレータ23自体あるいはその一部が中間部材33を兼ねるようにしてもよい。   The intermediate member 33 is made of, for example, a resin having resistance to an electrolytic solution, and normally maintains a predetermined thickness. On the other hand, when the battery is crushed by an external force, the intermediate member 33 is deformed or crushed according to the external force. In other words, the thickness can be reduced. Specifically, the intermediate member 33 may be made of the same material as the separator 23 such as polyethylene (PE) or polypropylene (PP), or the separator 23 itself or a part thereof may also serve as the intermediate member 33. May be.

突起部34は、例えば図6に示したように、第1導電部材31の長手方向には全体に亘り、幅方向には1列以上(図6では例えば3列)設けられていることが望ましいが、図7に示したように1列のみでもよい。突起部34の形状は、円錐でもよいし、図8に示したような三角錐または図9に示したような四角錐などの多角錐でもよい。   For example, as shown in FIG. 6, the protrusions 34 are preferably provided in the longitudinal direction of the first conductive member 31 as a whole and in one or more rows (for example, three rows in FIG. 6) in the width direction. However, only one column may be used as shown in FIG. The shape of the protrusion 34 may be a cone, or a polygonal pyramid such as a triangular pyramid as shown in FIG. 8 or a quadrangular pyramid as shown in FIG.

突起部34の寸法としては、例えば、下端すなわち第1導電部材31との境界における寸法dが0.1mm〜3mm、高さhが0.1mm〜2mmであることが好ましく、突起部34どうしの間隔pは、例えば0.5mm〜3mmであることが好ましい。また、通常時の中間部材33の厚み、すなわち第1導電部材31と第2導電部材32との間の間隔Dは、例えば、突起部34の高さhよりも大きく、高さhの3倍程度以下であることが好ましい。   As the dimensions of the protrusions 34, for example, the lower end, that is, the dimension d at the boundary with the first conductive member 31 is preferably 0.1 mm to 3 mm, and the height h is 0.1 mm to 2 mm. The interval p is preferably 0.5 mm to 3 mm, for example. Further, the thickness of the intermediate member 33 at the normal time, that is, the distance D between the first conductive member 31 and the second conductive member 32 is, for example, larger than the height h of the protrusion 34 and three times the height h. It is preferable that it is below a grade.

この二次電池は、例えば、次のようにして製造することができる。   For example, the secondary battery can be manufactured as follows.

まず、例えば、正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の正極合剤スラリーとする。続いて、この正極合剤スラリーを正極集電体21Aにドクタブレードあるいはバーコーターなどを用いて均一に塗布し溶剤を乾燥させたのち、ロールプレス機などにより圧縮成型して正極活物質層21Bを形成し、正極21を作製する。   First, for example, a positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like material. A positive electrode mixture slurry is obtained. Subsequently, the positive electrode mixture slurry is uniformly applied to the positive electrode current collector 21A using a doctor blade or a bar coater, and the solvent is dried. Then, the positive electrode active material layer 21B is formed by compression molding using a roll press or the like. Then, the positive electrode 21 is produced.

次いで、例えば、負極活物質と、結着剤とを混合して負極合剤を調製し、この負極合剤をN−メチル−2−ピロリドンなどの溶剤に分散させてペースト状の負極合剤スラリーとする。続いて、この負極合剤スラリーを負極集電体22Aにドクタブレードあるいはバーコーターなどを用いて均一に塗布し溶剤を乾燥させたのち、ロールプレス機により圧縮成型して負極合剤層22Bを形成し、負極22を作製する。ロールプレス機は加熱して用いてもよい。また、目的の物性値になるまで複数回圧縮成型してもよい。更に、ロールプレス機以外のプレス機を用いてもよい。   Next, for example, a negative electrode active material and a binder are mixed to prepare a negative electrode mixture, and the negative electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone to obtain a paste-like negative electrode mixture slurry. And Subsequently, the negative electrode mixture slurry is uniformly applied to the negative electrode current collector 22A using a doctor blade or a bar coater, and the solvent is dried. Then, the negative electrode mixture layer 22B is formed by compression molding using a roll press. Then, the negative electrode 22 is produced. The roll press machine may be used by heating. Moreover, you may compression-mold several times until it becomes the target physical-property value. Furthermore, you may use press machines other than a roll press machine.

続いて、正極集電体21Aに正極リード24を溶接などにより取り付けると共に、負極集電体22Aに負極リード25を溶接などにより取り付ける。そののち、正極21と負極22とをセパレータ23を間にして積層し図3および図4に示した巻回方向に多数回巻回したのち偏平な形状に成形し、電池素子20を作製する。   Subsequently, the positive electrode lead 24 is attached to the positive electrode current collector 21A by welding or the like, and the negative electrode lead 25 is attached to the negative electrode current collector 22A by welding or the like. After that, the positive electrode 21 and the negative electrode 22 are stacked with the separator 23 interposed therebetween, wound many times in the winding direction shown in FIGS. 3 and 4, and then formed into a flat shape, thereby producing the battery element 20.

一方、例えば上述した材料よりなる第1導電部材31および第2導電部材32を用意し、第1導電部材31の一面に、突起形状を有する金型を用いたプレス成形法により、突起部34を形成する。   On the other hand, for example, the first conductive member 31 and the second conductive member 32 made of the above-described material are prepared, and the protrusion 34 is formed on one surface of the first conductive member 31 by a press molding method using a mold having a protrusion shape. Form.

次いで、第1導電部材31の突起部34を形成した面を第2導電部材32に対向させて、上述した材料よりなる中間部材33を間にして積層することにより短絡部材30を形成する。続いて、短絡部材30を電池缶11の四隅のうちの一角に配置し、第1導電部材31に正極集電体21Aの端部を溶接などにより接合し、第2導電部材32を電池缶11に溶接などにより接合する。   Next, the surface of the first conductive member 31 on which the protruding portion 34 is formed is opposed to the second conductive member 32, and the intermediate member 33 made of the above-described material is laminated therebetween to form the short-circuit member 30. Subsequently, the short-circuit member 30 is disposed at one of the four corners of the battery can 11, the end of the positive electrode current collector 21 </ b> A is joined to the first conductive member 31 by welding or the like, and the second conductive member 32 is connected to the battery can 11. To be joined by welding.

そののち、電池素子20を電池缶11の内部に収容し、電池素子20の上に絶縁板12を配置し、負極リード25を電池缶11に溶接すると共に、正極リード24を正極ピン15の下端に溶接して、電池缶11の開放端部に電池蓋13をレーザ溶接により固定する。そののち、電解液を電解液注入孔19から電池缶11の内部に注入し、セパレータ23に含浸させたのち、電解液注入孔19を封止部材19Aで塞ぐ。これにより、図1および図2に示した二次電池が完成する。   After that, the battery element 20 is accommodated in the battery can 11, the insulating plate 12 is disposed on the battery element 20, the negative electrode lead 25 is welded to the battery can 11, and the positive electrode lead 24 is connected to the lower end of the positive electrode pin 15. The battery lid 13 is fixed to the open end of the battery can 11 by laser welding. After that, the electrolytic solution is injected into the inside of the battery can 11 through the electrolytic solution injection hole 19 and impregnated in the separator 23, and then the electrolytic solution injection hole 19 is closed with a sealing member 19A. Thereby, the secondary battery shown in FIGS. 1 and 2 is completed.

この二次電池では、充電を行うと、例えば、正極21からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して負極22に吸蔵される。放電を行うと、例えば、負極22からリチウムイオンが放出され、セパレータ23に含浸された電解液を介して正極21に吸蔵される。そして、この二次電池では、突起部34を有する第1導電部材31と第2導電部材32とが中間部材33を間にして対向配置された短絡部材30が設けられており、中間部材33の厚みが電池缶11にかかる外力に応じて薄くなることにより第1導電部材31と第2導電部材32との間の間隔が突起部34の高さh以下になるので、外部から二次電池に力がかかって電池缶11が変形した場合、中間部材33も押し潰されて厚みが薄くなり、図10に示したように、突起部34が中間部材33を貫通して第2導電部材32に食い込み、突き刺さる。これにより、正極21と負極22とが確実に短絡する。   In the secondary battery, when charged, for example, lithium ions are extracted from the positive electrode 21 and inserted in the negative electrode 22 through the electrolytic solution impregnated in the separator 23. When the discharge is performed, for example, lithium ions are released from the negative electrode 22 and inserted into the positive electrode 21 through the electrolytic solution impregnated in the separator 23. In this secondary battery, the short-circuit member 30 in which the first conductive member 31 and the second conductive member 32 having the protrusions 34 are disposed to face each other with the intermediate member 33 interposed therebetween is provided. Since the distance between the first conductive member 31 and the second conductive member 32 becomes equal to or less than the height h of the protrusion 34 by reducing the thickness according to the external force applied to the battery can 11, When force is applied and the battery can 11 is deformed, the intermediate member 33 is also crushed and thinned, and the projection 34 penetrates the intermediate member 33 to the second conductive member 32 as shown in FIG. I bite and pierce. Thereby, the positive electrode 21 and the negative electrode 22 are short-circuited reliably.

更に、この二次電池では、短絡部材30において正極21と負極22との間の短絡が生じ、抵抗値の高い正極活物質層21Bを介して短絡することがなくなり、正極活物質層21Bでの昇温が抑制されて、更に安全性が向上する。また、巻回外周側の正極露出領域21Dや負極露出領域22Dを少なくすることが可能となり、それだけ容量が向上する。   Further, in this secondary battery, a short circuit between the positive electrode 21 and the negative electrode 22 occurs in the short circuit member 30, and no short circuit occurs via the positive electrode active material layer 21B having a high resistance value. Temperature rise is suppressed and safety is further improved. Further, the positive electrode exposed region 21D and the negative electrode exposed region 22D on the winding outer periphery side can be reduced, and the capacity is improved accordingly.

このように本実施の形態では、突起部34を有する第1導電部材31と第2導電部材32とを中間部材33を間にして対向配置した短絡部材30を設け、この中間部材33の厚みが電池缶11にかかる外力に応じて薄くなることにより第1導電部材31と第2導電部材32との間の間隔を突起部34の高さh以下にするようにしたので、外力が加わって電池缶11が変形した場合に、突起部34が第2導電部材32に突き刺さり、正極21と負極22との間を確実に短絡させることができる。とりわけ円筒形のセンターピンを用いることのできない角型電池や、発熱量の大きい大型電池の場合に好適であり、高い安全性を得ることができる。   As described above, in the present embodiment, the short-circuit member 30 in which the first conductive member 31 and the second conductive member 32 having the protrusions 34 are disposed to face each other with the intermediate member 33 interposed therebetween is provided. Since the distance between the first conductive member 31 and the second conductive member 32 is made equal to or less than the height h of the protrusion 34 by thinning in accordance with the external force applied to the battery can 11, the external force is applied to the battery When the can 11 is deformed, the projecting portion 34 pierces the second conductive member 32, and the positive electrode 21 and the negative electrode 22 can be reliably short-circuited. In particular, it is suitable for a prismatic battery in which a cylindrical center pin cannot be used or a large battery with a large calorific value, and high safety can be obtained.

また、短絡部材30において正極21と負極22との間の短絡を生じさせることができるので、抵抗値の高い正極活物質層21Bを介して短絡することがなくなり、正極活物質層21Bでの昇温を抑制し、更に安全性を向上させることができる。また、巻回外周側の正極露出領域21Dや負極露出領域22Dを少なくすることが可能となり、それだけ容量を高めることができる。   Moreover, since the short circuit between the positive electrode 21 and the negative electrode 22 can be caused in the short-circuit member 30, there is no short-circuit through the positive electrode active material layer 21B having a high resistance value, and the short circuit member 30 rises in the positive electrode active material layer 21B. Temperature can be suppressed and safety can be further improved. Further, the positive electrode exposed region 21D and the negative electrode exposed region 22D on the winding outer periphery side can be reduced, and the capacity can be increased accordingly.

特に、負極22が、電極反応物質を吸蔵および放出することが可能であり、構成元素として金属元素および半金属元素のうちの少なくとも1種を含む負極活物質を含むようにした場合には、電池のエネルギー密度が大きく、より高い安全性が求められるので、より高い効果を得ることができる。   In particular, when the negative electrode 22 is capable of inserting and extracting an electrode reactant and includes a negative electrode active material containing at least one of a metal element and a metalloid element as a constituent element, the battery Since the energy density is high and higher safety is required, higher effects can be obtained.

更に、本発明の具体的な実施例について詳細に説明する。   Further, specific embodiments of the present invention will be described in detail.

(実施例1〜4)
第1の実施の形態で説明した二次電池を作製した。まず、炭酸リチウム(Li2 CO3 )と炭酸コバルト(CoCO3 )とを、Li2 CO3 :CoCO3 =0.5:1(モル比)の割合で混合し、空気中において900℃で5時間焼成して、正極活物質としてのリチウム・コバルト複合酸化物(LiCoO2 )を得た。次いで、このリチウム・コバルト複合酸化物91質量部と、導電剤であるグラファイト6質量部と、結着剤であるポリフッ化ビニリデン3質量部とを混合して正極合剤を調整した。続いて、この正極合剤を溶剤であるN−メチル−2−ピロリドンに分散させて正極合剤スラリーとし、厚み20μmのアルミニウム箔よりなる正極集電体21Aの両面に均一に塗布して乾燥させ、ロールプレス機で圧縮成型して正極活物質層21Bを形成し正極21を作製した。続いて、正極集電体21Aの一端にアルミニウム製の正極リード24を取り付けた。
(Examples 1-4)
The secondary battery described in the first embodiment was manufactured. First, lithium carbonate (Li 2 CO 3 ) and cobalt carbonate (CoCO 3 ) are mixed at a ratio of Li 2 CO 3 : CoCO 3 = 0.5: 1 (molar ratio), and 5 ° C. at 900 ° C. in the air. After firing for a time, lithium-cobalt composite oxide (LiCoO 2 ) as a positive electrode active material was obtained. Next, 91 parts by mass of this lithium / cobalt composite oxide, 6 parts by mass of graphite as a conductive agent, and 3 parts by mass of polyvinylidene fluoride as a binder were mixed to prepare a positive electrode mixture. Subsequently, this positive electrode mixture is dispersed in N-methyl-2-pyrrolidone as a solvent to form a positive electrode mixture slurry, which is uniformly applied to both surfaces of a positive electrode current collector 21A made of an aluminum foil having a thickness of 20 μm and dried. Then, the positive electrode active material layer 21B was formed by compression molding with a roll press machine, and the positive electrode 21 was produced. Subsequently, a positive electrode lead 24 made of aluminum was attached to one end of the positive electrode current collector 21A.

また、負極活物質としてCoSnC含有材料を作製した。まず、原料としてコバルト粉末とスズ粉末と炭素粉末とを用意し、コバルト粉末とスズ粉末とを合金化してコバルト・スズ合金粉末を作製したのち、この合金粉末に炭素粉末を加えて乾式混合した。続いて、この混合物を遊星ボールミルを用いてメカノケミカル反応を利用して合成し、CoSnC含有材料を得た。   In addition, a CoSnC-containing material was produced as a negative electrode active material. First, cobalt powder, tin powder, and carbon powder were prepared as raw materials, and cobalt powder and tin powder were alloyed to produce a cobalt-tin alloy powder. Then, carbon powder was added to the alloy powder and dry mixed. Subsequently, this mixture was synthesized using a mechanochemical reaction using a planetary ball mill to obtain a CoSnC-containing material.

得られたCoSnC含有材料について組成の分析を行ったところ、コバルトの含有量は29.3質量%、スズの含有量は49.9質量%、炭素の含有量は19.8質量%であった。なお、炭素の含有量は、炭素・硫黄分析装置により測定し、コバルトおよびスズの含有量は、ICP(Inductively Coupled Plasma:誘導結合プラズマ)発光分析により測定した。また、得られたCoSnC含有材料についてX線回折を行ったところ、回折角2θ=20°〜50°の間に、回折角2θが1.0°以上の広い半値幅を有する回折ピークが観察された。更に、このCoSnC含有材料についてXPSを行ったところ、CoSnC含有材料中におけるC1sのピークは284.5eVよりも低い領域に得られた。すなわち、CoSnC含有材料中の炭素が他の元素と結合していることが確認された。   When the composition of the obtained CoSnC-containing material was analyzed, the cobalt content was 29.3 mass%, the tin content was 49.9 mass%, and the carbon content was 19.8 mass%. . The carbon content was measured by a carbon / sulfur analyzer, and the cobalt and tin contents were measured by ICP (Inductively Coupled Plasma) emission analysis. Further, when X-ray diffraction was performed on the obtained CoSnC-containing material, a diffraction peak having a wide half-width with a diffraction angle 2θ of 1.0 ° or more was observed between diffraction angles 2θ = 20 ° to 50 °. It was. Further, when XPS was performed on the CoSnC-containing material, the C1s peak in the CoSnC-containing material was obtained in a region lower than 284.5 eV. That is, it was confirmed that carbon in the CoSnC-containing material was bonded to other elements.

次いで、このCoSnC含有材料60質量部と、導電剤および負極活物質である人造黒鉛28質量部およびカーボンブラック2質量部と、結着剤であるポリフッ化ビニリデン10質量部とを混合し、負極合剤を調整した。続いて、この負極合剤を溶剤であるN−メチル−2−ピロリドンに分散させて負極合剤スラリーとし、厚み15μmの銅箔よりなる負極集電体22Aの両面に塗布して乾燥させ、ロールプレス機で圧縮成型して負極活物質層22Bを形成した。そののち、負極集電体22Aの一端にニッケル製の負極リード25を取り付けた。   Next, 60 parts by mass of this CoSnC-containing material, 28 parts by mass of artificial graphite as a conductive agent and a negative electrode active material and 2 parts by mass of carbon black, and 10 parts by mass of polyvinylidene fluoride as a binder are mixed. The agent was adjusted. Subsequently, the negative electrode mixture is dispersed in N-methyl-2-pyrrolidone as a solvent to form a negative electrode mixture slurry, which is applied to both surfaces of a negative electrode current collector 22A made of a copper foil having a thickness of 15 μm, and dried. The negative electrode active material layer 22B was formed by compression molding with a press. Thereafter, a negative electrode lead 25 made of nickel was attached to one end of the negative electrode current collector 22A.

続いて、厚み25μmの微孔性ポリプロピレンフィルムよりなるセパレータ23を用意し、正極21,セパレータ23,負極22,セパレータ23の順に積層して積層体を形成したのち、この積層体を渦巻状に多数回巻回し、電池素子20を作製した。   Subsequently, a separator 23 made of a microporous polypropylene film having a thickness of 25 μm was prepared, and a positive electrode 21, a separator 23, a negative electrode 22, and a separator 23 were laminated in this order to form a laminated body. The battery element 20 was produced by winding.

一方、アルミニウム(Al)よりなる第1導電部材31および銅(Cu)よりなる第2導電部材32を用意し、第1導電部材31の一面に突起部34を形成した。その際、実施例1では、円錐の突起部34を3列設けた(図6参照。)。実施例2では、三角錐の突起部34を3列設けた(図8参照。)。実施例3では、四角錐の突起部34を3列設けた(図9参照。)。実施例4では、円錐の突起部34を1列設けた(図7参照。)。   On the other hand, a first conductive member 31 made of aluminum (Al) and a second conductive member 32 made of copper (Cu) were prepared, and a protrusion 34 was formed on one surface of the first conductive member 31. At that time, in Example 1, three rows of conical protrusions 34 were provided (see FIG. 6). In Example 2, three rows of triangular pyramidal protrusions 34 were provided (see FIG. 8). In Example 3, three rows of quadrangular pyramidal projections 34 were provided (see FIG. 9). In Example 4, one row of conical protrusions 34 was provided (see FIG. 7).

次いで、第1導電部材31の突起部34を形成した面を第2導電部材32に対向させて、ポリエチレンよりなる中間部材33を間にして積層することにより短絡部材30を形成した。続いて、厚み方向の内寸が6.5mmの電池缶11に、この短絡部材30を配置し、第1導電部材31に正極集電体21Aの端部を溶接により接合し、第2導電部材32を電池缶11に溶接により接合した。   Next, the surface of the first conductive member 31 on which the protrusions 34 were formed was opposed to the second conductive member 32, and the intermediate member 33 made of polyethylene was laminated therebetween to form the short-circuit member 30. Subsequently, the short-circuit member 30 is disposed in the battery can 11 having an inner dimension in the thickness direction of 6.5 mm, the end of the positive electrode current collector 21A is joined to the first conductive member 31 by welding, and the second conductive member 32 was joined to the battery can 11 by welding.

そののち、電池素子20を電池缶11の内部に収容し、電池素子20の上に絶縁板12を配置し、負極リード25を電池缶11に溶接すると共に、正極リード24を正極ピン15の下端に溶接して、電池缶11の開放端部に電池蓋13をレーザ溶接により固定した。そののち、電解液注入孔19から電池缶11の内部に電解液を注入した。電解液には、炭酸エチレン50体積%と炭酸ジエチル50体積%とを混合した溶媒に、電解質塩としてLiPF6 を1mol/dm3 の含有量で溶解させたものを用いた。最後に、電解液注入孔19を封止部材19Aで塞ぐことにより、厚さ8mm、幅34mm、高さ42mmの角型の二次電池を得た。 After that, the battery element 20 is accommodated in the battery can 11, the insulating plate 12 is disposed on the battery element 20, the negative electrode lead 25 is welded to the battery can 11, and the positive electrode lead 24 is connected to the lower end of the positive electrode pin 15. The battery lid 13 was fixed to the open end of the battery can 11 by laser welding. After that, an electrolytic solution was injected into the battery can 11 from the electrolytic solution injection hole 19. As the electrolytic solution, a solution obtained by dissolving LiPF 6 as an electrolyte salt at a content of 1 mol / dm 3 in a solvent obtained by mixing 50% by volume of ethylene carbonate and 50% by volume of diethyl carbonate was used. Finally, the electrolyte injection hole 19 was closed with a sealing member 19A to obtain a rectangular secondary battery having a thickness of 8 mm, a width of 34 mm, and a height of 42 mm.

比較例1として、短絡部材を設けなかったことを除き、他は実施例1と同様にして二次電池を作製した。   As Comparative Example 1, a secondary battery was fabricated in the same manner as in Example 1 except that the short-circuit member was not provided.

このようにして得られた実施例1〜4および比較例1の二次電池をそれぞれ5個(電池1〜電池5)作製し、圧壊試験を行って発火や破裂の有無を調べた。得られた結果を表1に示す。   Five secondary batteries (Battery 1 to Battery 5) of Examples 1 to 4 and Comparative Example 1 thus obtained were produced, and a crush test was performed to examine the presence or absence of ignition or rupture. The obtained results are shown in Table 1.

Figure 2008041264
Figure 2008041264

表1からわかるように、短絡部材を設けない比較例1では5個の二次電池のすべてで破裂が生じたのに対して、短絡部材30を設けた実施例1〜4では破裂を抑えることができた。すなわち、上述した構造の短絡部材30を設けるようにすれば、電池が押し潰されたり折れたりして短絡が発生した場合にも安全性を向上させることができることが分かった。   As can be seen from Table 1, in Comparative Example 1 in which no short-circuit member is provided, rupture occurred in all five secondary batteries, whereas in Examples 1 to 4 in which short-circuit member 30 was provided, the rupture was suppressed. I was able to. That is, it was found that if the short-circuit member 30 having the above-described structure is provided, safety can be improved even when the battery is crushed or broken and a short-circuit occurs.

以上、実施の形態および実施例を挙げて本発明を説明したが、本発明は上記実施の形態および実施例に限定されるものではなく、種々変形可能である。例えば、上記実施の形態および実施例では、第1導電部材31が正極21に、第2導電部材32が負極22にそれぞれ電気的に接続されている場合について説明したが、第1導電部材31を負極22に、第2導電部材32を正極31に電気的に接続するようにしてもよい。その場合、第1導電部材31の構成材料としては、銅(Cu),ニッケル(Ni)あるいはステンレス鋼が挙げられ、第2導電部材32の構成材料としては、アルミニウム(Al)が挙げられる。   Although the present invention has been described with reference to the embodiments and examples, the present invention is not limited to the above embodiments and examples, and various modifications can be made. For example, in the embodiments and examples described above, the case where the first conductive member 31 is electrically connected to the positive electrode 21 and the second conductive member 32 is electrically connected to the negative electrode 22 has been described. The second conductive member 32 may be electrically connected to the positive electrode 31 to the negative electrode 22. In this case, the constituent material of the first conductive member 31 includes copper (Cu), nickel (Ni), or stainless steel, and the constituent material of the second conductive member 32 includes aluminum (Al).

また、例えば、本発明は、電池缶11および電池蓋13が正極端子としての機能を有する場合にも適用することができる。その場合、電池缶11あるいは電池蓋13自体、またはその一部が第1導電部材31を兼ねるようにしてもよい。   Further, for example, the present invention can also be applied when the battery can 11 and the battery lid 13 have a function as a positive electrode terminal. In that case, the battery can 11 or the battery lid 13 itself, or a part thereof, may also serve as the first conductive member 31.

更に、例えば、上記実施の形態および実施例では、第1導電部材31に突起部34を設けた場合について説明したが、突起部34は、第2導電部材32に設けてもよいし、また、第1導電部材31および第2導電部材32の両方に設けるようにしてもよい。   Furthermore, for example, in the embodiment and the example described above, the case where the first conductive member 31 is provided with the protrusion 34 has been described. However, the protrusion 34 may be provided on the second conductive member 32, You may make it provide in both the 1st conductive member 31 and the 2nd conductive member 32. FIG.

加えて、例えば、短絡部材30は、電池缶11の四隅のうち1箇所に限らず、2箇所,3箇所または4箇所に設けられていてもよい。また、例えば、短絡部材30は、電池缶11と電池素子20との間の隙間に限らず、電池素子20の内部に設けられていてもよい。   In addition, for example, the short-circuit member 30 is not limited to one place among the four corners of the battery can 11 and may be provided at two places, three places, or four places. For example, the short-circuit member 30 is not limited to the gap between the battery can 11 and the battery element 20, and may be provided inside the battery element 20.

更にまた、上記実施の形態および実施例では、電池缶11が直方体形状であるいわゆる角型電池を例として説明したが、本発明は、円筒型または楕円型の電池にも適用可能である。また、本発明は、一次電池への適用も可能である。   Furthermore, in the above-described embodiments and examples, a so-called square battery in which the battery can 11 has a rectangular parallelepiped shape has been described as an example, but the present invention can also be applied to a cylindrical or elliptic battery. The present invention can also be applied to a primary battery.

加えてまた、例えば、上記実施の形態および実施例では、溶媒に液状の電解質である電解液を用いる場合について説明したが、電解液に代えて、他の電解質を用いるようにしてもよい。他の電解質としては、例えば、電解液を高分子化合物に保持させたゲル状の電解質、イオン伝導性を有する固体電解質、固体電解質と電解液とを混合したもの、あるいは固体電解質とゲル状の電解質とを混合したものが挙げられる。   In addition, for example, in the above-described embodiments and examples, the case where an electrolytic solution that is a liquid electrolyte is used as a solvent has been described. However, another electrolyte may be used instead of the electrolytic solution. Other electrolytes include, for example, a gel electrolyte in which an electrolyte is held in a polymer compound, a solid electrolyte having ionic conductivity, a mixture of a solid electrolyte and an electrolyte, or a solid electrolyte and a gel electrolyte. And a mixture thereof.

なお、ゲル状の電解質には電解液を吸収してゲル化するものであれば種々の高分子化合物を用いることができる。そのような高分子化合物としては、例えば、ポリビニリデンフルオロライドあるいはビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体などのフッ素系高分子化合物、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、またはポリアクリロニトリルなどが挙げられる。特に、酸化還元安定性の点からは、フッ素系高分子化合物が望ましい。   Note that various polymer compounds can be used for the gel electrolyte as long as it absorbs the electrolyte and gels. Examples of such a polymer compound include a fluorine-based polymer compound such as polyvinylidene fluoride or a copolymer of vinylidene fluoride and hexafluoropropylene, an ether-based polymer such as polyethylene oxide or a crosslinked product containing polyethylene oxide. A molecular compound, polyacrylonitrile, etc. are mentioned. In particular, a fluorine-based polymer compound is desirable from the viewpoint of redox stability.

固体電解質には、例えば、イオン伝導性を有する高分子化合物に電解質塩を分散させた有機固体電解質、またはイオン伝導性ガラスあるいはイオン性結晶などよりなる無機固体電解質を用いることができる。このとき、高分子化合物としては、例えば、ポリエチレンオキサイドあるいはポリエチレンオキサイドを含む架橋体などのエーテル系高分子化合物、ポリメタクリレートなどのエステル系高分子化合物、アクリレート系高分子化合物を単独あるいは混合して、または分子中に共重合させて用いることができる。また、無機固体電解質としては、窒化リチウムあるいはヨウ化リチウムなどを用いることができる。   As the solid electrolyte, for example, an organic solid electrolyte in which an electrolyte salt is dispersed in a polymer compound having ion conductivity, or an inorganic solid electrolyte made of ion conductive glass or ionic crystals can be used. At this time, as the polymer compound, for example, an ether polymer compound such as polyethylene oxide or a crosslinked product containing polyethylene oxide, an ester polymer compound such as polymethacrylate, an acrylate polymer compound alone or mixed, Alternatively, it can be used by being copolymerized in the molecule. As the inorganic solid electrolyte, lithium nitride, lithium iodide, or the like can be used.

加えて、上記実施の形態および実施例では、電極反応物質としてリチウムを用いる場合について説明したが、ナトリウム(Na)あるいはカリウム(K)などの長周期型周期表における他の1族の元素、またはマグネシウムあるいはカルシウム(Ca)などの長周期型周期表における2族の元素、またはアルミニウムなどの他の軽金属、またはリチウムあるいはこれらの合金を用いる場合についても、本発明を適用することができ、同様の効果を得ることができる。その際、電極反応物質を吸蔵および放出することが可能な負極活物質、正極活物質あるいは溶媒などは、その電極反応物質に応じて選択される。   In addition, in the above embodiments and examples, the case where lithium is used as the electrode reactant has been described. However, other group 1 elements in the long-period periodic table such as sodium (Na) or potassium (K), or The present invention can also be applied to the case of using elements of Group 2 in the long-period periodic table such as magnesium or calcium (Ca), other light metals such as aluminum, lithium, or alloys thereof. An effect can be obtained. At that time, a negative electrode active material, a positive electrode active material, a solvent, or the like that can occlude and release the electrode reactant is selected according to the electrode reactant.

本発明の第1の実施の形態に係る二次電池の構成を表す断面図である。It is sectional drawing showing the structure of the secondary battery which concerns on the 1st Embodiment of this invention. 図1のII−II線に沿った断面図である。It is sectional drawing along the II-II line of FIG. 図1に示した正極の巻回前の構成を表す断面図である。It is sectional drawing showing the structure before winding of the positive electrode shown in FIG. 図1に示した負極の巻回前の構成を表す断面図である。It is sectional drawing showing the structure before winding of the negative electrode shown in FIG. 短絡部材の構成の一例を表す断面図である。It is sectional drawing showing an example of a structure of a short circuit member. 短絡部材の構成の他の例を表す平面図である。It is a top view showing the other example of a structure of a short circuit member. 短絡部材の構成の更に他の例を表す平面図である。It is a top view showing the further another example of a structure of a short circuit member. 短絡部材の構成の更に他の例を表す平面図である。It is a top view showing the further another example of a structure of a short circuit member. 短絡部材の構成の更に他の例を表す平面図である。It is a top view showing the further another example of a structure of a short circuit member. 図1に示した二次電池が押し潰された場合における短絡部材の作用を説明するための断面図である。It is sectional drawing for demonstrating the effect | action of a short circuit member when the secondary battery shown in FIG. 1 is crushed. 従来のセンターピンの一例を表す斜視図である。It is a perspective view showing an example of the conventional center pin.

符号の説明Explanation of symbols

11…電池缶、12…絶縁板、13…電池蓋、13A…貫通孔、14…端子板、15…正極ピン、16…絶縁ケース、17…ガスケット、18…開裂弁、19…電解液注入孔、19A…封止部材、20…電池素子、21…正極、21A…正極集電体、21B…正極活物質層、21C…正極被覆領域、21D…正極露出領域、22…負極、22A…負極集電体、22B…負極活物質層、22C…負極被覆領域、22D…負極露出領域、23…セパレータ、24…正極リード、25…負極リード、30…短絡部材、31…第1導電部材、32…第2導電部材、33…中間部材、34…突起部   DESCRIPTION OF SYMBOLS 11 ... Battery can, 12 ... Insulation board, 13 ... Battery cover, 13A ... Through-hole, 14 ... Terminal board, 15 ... Positive electrode pin, 16 ... Insulation case, 17 ... Gasket, 18 ... Cleavage valve, 19 ... Electrolyte injection hole , 19A ... sealing member, 20 ... battery element, 21 ... positive electrode, 21A ... positive electrode current collector, 21B ... positive electrode active material layer, 21C ... positive electrode coating region, 21D ... positive electrode exposed region, 22 ... negative electrode, 22A ... negative electrode collector Electrical body, 22B ... negative electrode active material layer, 22C ... negative electrode coating region, 22D ... negative electrode exposed region, 23 ... separator, 24 ... positive electrode lead, 25 ... negative electrode lead, 30 ... short circuit member, 31 ... first conductive member, 32 ... Second conductive member 33 ... Intermediate member 34 ... Projection

Claims (5)

正極および負極を有する電池素子と、前記電池素子を収納する電池缶とを備えた電池であって、
前記正極に電気的に接続された第1導電部材と、前記負極に電気的に接続された第2導電部材とが絶縁性の中間部材を間にして対向配置された短絡部材を備え、
前記第1導電部材および前記第2導電部材のうち少なくとも一方は、他方との対向面に突起部を有し、
前記中間部材は、前記電池缶にかかる外力に応じて厚みが薄くなることにより前記第1導電部材と前記第2導電部材との間の間隔を前記突起部の高さ以下にする
ことを特徴とする電池。
A battery comprising a battery element having a positive electrode and a negative electrode, and a battery can containing the battery element,
A first conductive member electrically connected to the positive electrode and a second conductive member electrically connected to the negative electrode are provided with a short-circuit member disposed opposite to each other with an insulating intermediate member therebetween,
At least one of the first conductive member and the second conductive member has a protrusion on the surface facing the other,
The intermediate member has a thickness that is reduced in accordance with an external force applied to the battery can, so that a distance between the first conductive member and the second conductive member is equal to or less than a height of the protrusion. Battery to play.
前記短絡部材は、前記電池素子と前記電池缶との間の隙間に設けられている
ことを特徴とする請求項1記載の電池。
The battery according to claim 1, wherein the short-circuit member is provided in a gap between the battery element and the battery can.
前記電池素子は、帯状の正極集電体の面上に正極活物質層を有する前記正極と、帯状の負極集電体の面上に負極活物質層を有する前記負極とをセパレータを間にして積層し、巻回した構成を有する
ことを特徴とする請求項1記載の電池。
The battery element includes a separator between the positive electrode having a positive electrode active material layer on a surface of a strip-shaped positive electrode current collector and the negative electrode having a negative electrode active material layer on a surface of a strip-shaped negative electrode current collector. The battery according to claim 1, wherein the battery has a laminated and wound configuration.
前記負極は、スズ(Sn)およびケイ素(Si)のうちの少なくとも一方を構成元素として含む負極活物質を含有することを特徴とする請求項1記載の電池。   The battery according to claim 1, wherein the negative electrode contains a negative electrode active material containing at least one of tin (Sn) and silicon (Si) as a constituent element. 正極および負極を有する電池素子と、前記電池素子を収納する電池缶とを備えた電池に用いられる短絡部材であって、
前記正極に電気的に接続された第1導電部材と、前記負極に電気的に接続された第2導電部材とが絶縁性の中間部材を間にして対向配置され、
前記第1導電部材および前記第2導電部材のうち少なくとも一方は、他方との対向面に突起部を有し、
前記中間部材は、前記電池缶にかかる外力に応じて厚みが薄くなることにより前記第1導電部材と前記第2導電部材との間の間隔を前記突起部の高さ以下にする
ことを特徴とする短絡部材。
A short-circuit member used for a battery including a battery element having a positive electrode and a negative electrode, and a battery can that houses the battery element,
The first conductive member electrically connected to the positive electrode and the second conductive member electrically connected to the negative electrode are arranged to face each other with an insulating intermediate member interposed therebetween,
At least one of the first conductive member and the second conductive member has a protrusion on the surface facing the other,
The intermediate member has a thickness that is reduced in accordance with an external force applied to the battery can, so that a distance between the first conductive member and the second conductive member is equal to or less than a height of the protrusion. Short-circuit member to be used.
JP2006209761A 2006-08-01 2006-08-01 Battery and short circuit member Pending JP2008041264A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006209761A JP2008041264A (en) 2006-08-01 2006-08-01 Battery and short circuit member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006209761A JP2008041264A (en) 2006-08-01 2006-08-01 Battery and short circuit member

Publications (1)

Publication Number Publication Date
JP2008041264A true JP2008041264A (en) 2008-02-21

Family

ID=39176072

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006209761A Pending JP2008041264A (en) 2006-08-01 2006-08-01 Battery and short circuit member

Country Status (1)

Country Link
JP (1) JP2008041264A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041136A1 (en) * 2007-09-28 2009-04-02 Mitsubishi Heavy Industries, Ltd. Lithium secondary battery
KR100988694B1 (en) 2009-06-16 2010-10-18 삼성에스디아이 주식회사 Rechargeable battery
US20110104528A1 (en) * 2009-10-30 2011-05-05 Sang-Won Byun Secondary battery
EP2385567A1 (en) * 2010-05-07 2011-11-09 SB LiMotive Co., Ltd. Rechargeable secondary battery having improved safety against puncture and collapse
KR101136287B1 (en) 2009-08-27 2012-04-20 에스비리모티브 주식회사 Rechargeable battery improved safety of penetration and collapse
US20120308879A1 (en) * 2011-06-02 2012-12-06 Yong-Sam Kim Rechargeable battery
KR101217071B1 (en) * 2010-02-18 2012-12-31 로베르트 보쉬 게엠베하 Rechargeable battery
US8586236B2 (en) 2009-12-07 2013-11-19 Samsung Sdi Co., Ltd. Rechargeable battery
CN103840116A (en) * 2012-11-22 2014-06-04 三星Sdi株式会社 Rechargeable battery
WO2019220982A1 (en) * 2018-05-14 2019-11-21 株式会社村田製作所 Secondary cell
US11404727B2 (en) 2018-11-02 2022-08-02 Lg Energy Solution, Ltd. Method for evaluating internal short of secondary battery

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009041136A1 (en) * 2007-09-28 2009-04-02 Mitsubishi Heavy Industries, Ltd. Lithium secondary battery
KR100988694B1 (en) 2009-06-16 2010-10-18 삼성에스디아이 주식회사 Rechargeable battery
US8758930B2 (en) 2009-06-16 2014-06-24 Samsung Sdi Co., Ltd. Secondary battery having a short induction plate
KR101136287B1 (en) 2009-08-27 2012-04-20 에스비리모티브 주식회사 Rechargeable battery improved safety of penetration and collapse
US9023513B2 (en) 2009-08-27 2015-05-05 Samsung Sdi Co., Ltd. Rechargeable secondary battery having improved safety against puncture and collapse
KR101097220B1 (en) * 2009-10-30 2011-12-21 에스비리모티브 주식회사 Secondary battery
US20110104528A1 (en) * 2009-10-30 2011-05-05 Sang-Won Byun Secondary battery
US9028993B2 (en) 2009-10-30 2015-05-12 Samsung Sdi Co., Ltd. Secondary battery
US8586236B2 (en) 2009-12-07 2013-11-19 Samsung Sdi Co., Ltd. Rechargeable battery
US9246155B2 (en) 2009-12-07 2016-01-26 Samsung Sdi Co., Ltd. Rechargeable secondary battery having improved safety against puncture and collapse
US8691424B2 (en) 2010-02-18 2014-04-08 Samsung Sdi Co., Ltd. Rechargeable battery
KR101217071B1 (en) * 2010-02-18 2012-12-31 로베르트 보쉬 게엠베하 Rechargeable battery
EP2385567A1 (en) * 2010-05-07 2011-11-09 SB LiMotive Co., Ltd. Rechargeable secondary battery having improved safety against puncture and collapse
US20120308879A1 (en) * 2011-06-02 2012-12-06 Yong-Sam Kim Rechargeable battery
US8877371B2 (en) 2011-06-02 2014-11-04 Samsung Sdi Co., Ltd. Rechargeable battery
KR101256060B1 (en) 2011-06-02 2013-04-18 로베르트 보쉬 게엠베하 Rechargeable battery
CN103840116A (en) * 2012-11-22 2014-06-04 三星Sdi株式会社 Rechargeable battery
WO2019220982A1 (en) * 2018-05-14 2019-11-21 株式会社村田製作所 Secondary cell
US11404727B2 (en) 2018-11-02 2022-08-02 Lg Energy Solution, Ltd. Method for evaluating internal short of secondary battery

Similar Documents

Publication Publication Date Title
JP4848860B2 (en) battery
JP4984892B2 (en) Battery and center pin
JP4412304B2 (en) Secondary battery
JP2008041264A (en) Battery and short circuit member
JP4882220B2 (en) Secondary battery
JP2006286531A (en) Battery
JP4876495B2 (en) Electrolyte for lithium ion secondary battery and lithium ion secondary battery
JP2012089470A (en) Positive electrode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, battery pack, and method for producing positive electrode active material for nonaqueous electrolyte secondary battery
JP4539658B2 (en) battery
JP2006344505A (en) Electrolyte solution and battery
JP2007188855A (en) Battery and center pin
JP2008186708A (en) Secondary battery
JP2009206092A (en) Nonaqueous electrolyte battery and positive electrode, and method for manufacturing the same
JP4591674B2 (en) Lithium ion secondary battery
JP2009206091A (en) Nonaqueous electrolyte battery and negative electrode, and method for manufacturing the same
JP5141940B2 (en) Secondary battery
JP2005347222A (en) Electrolyte liquid and battery
JP4984551B2 (en) battery
JP4455008B2 (en) Nonaqueous electrolyte secondary battery
JP2007188859A (en) Battery and center pin
JP4798420B2 (en) Secondary battery
JP4222292B2 (en) Secondary battery
JP2007335104A (en) Battery and cap
JP4501638B2 (en) Lithium ion secondary battery
JP2007305423A (en) Battery and reed