JP2008039343A - Absorbent reproducing method - Google Patents

Absorbent reproducing method Download PDF

Info

Publication number
JP2008039343A
JP2008039343A JP2006217583A JP2006217583A JP2008039343A JP 2008039343 A JP2008039343 A JP 2008039343A JP 2006217583 A JP2006217583 A JP 2006217583A JP 2006217583 A JP2006217583 A JP 2006217583A JP 2008039343 A JP2008039343 A JP 2008039343A
Authority
JP
Japan
Prior art keywords
absorption
absorbent
absorption liquid
lithium hydroxide
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006217583A
Other languages
Japanese (ja)
Inventor
Tomoyoshi Irie
智芳 入江
Eiji Nakamoto
英治 中本
Kinya Ito
錦也 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Refrigeration Equipment and Systems Co Ltd
Original Assignee
Ebara Refrigeration Equipment and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Refrigeration Equipment and Systems Co Ltd filed Critical Ebara Refrigeration Equipment and Systems Co Ltd
Priority to JP2006217583A priority Critical patent/JP2008039343A/en
Priority to CNA2007101063737A priority patent/CN101122429A/en
Publication of JP2008039343A publication Critical patent/JP2008039343A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/27Relating to heating, ventilation or air conditioning [HVAC] technologies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/62Absorption based systems

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an absorbent liquid reproducing method eliminating copper content in absorbent liquid without causing elution of unnecessary metal ion while suppressing a cost increase. <P>SOLUTION: Lithium hydroxide is added into the absorbent of an absorption refrigerator or an absorption heat pump containing a lithium bromide water solution as a main component (ST14), and an insoluble substance containing the copper content produced in consequence is eliminated (ST15). Since an additive is lithium hydroxide containing the same kind of metal component as the metal component of lithium bromide which is the main component of the absorbent, metal content not required in a process of removing copper content is not mixed into the absorbent, and since lithium hydroxide is used to produce the insoluble substance, the cost increase can be suppressed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は吸収液再生方法に関し、特に吸収液中の銅分を除去する吸収液再生方法に関するものである。   The present invention relates to an absorption liquid regeneration method, and more particularly to an absorption liquid regeneration method for removing copper in the absorption liquid.

吸収冷凍機及び吸収ヒートポンプ(以下「吸収冷凍機等」という。)は、吸収剤として臭化リチウム水溶液を用い、冷媒として水を用いるものが多い。また、吸収冷凍機等は、一般に、主要構成材料が鋼材であり、熱交換器部分に銅あるいは銅合金が用いられている。従来、臭化リチウム水溶液(吸収液)により熱交換器部分が腐食して銅分が吸収液中に溶出し、さらに吸収液中の銅分が鋼鉄上に析出することにより、主要構成材料の鋼材の腐食を加速させていた。   Many absorption refrigerators and absorption heat pumps (hereinafter referred to as “absorption refrigerators”) use an aqueous lithium bromide solution as an absorbent and water as a refrigerant. In general, absorption refrigerators and the like are mainly made of steel, and copper or a copper alloy is used for the heat exchanger. Conventionally, the heat exchanger part is corroded by lithium bromide aqueous solution (absorbing liquid), copper is eluted in the absorbing liquid, and the copper in the absorbing liquid is deposited on the steel. Was accelerating corrosion.

このような事情を背景に、鋼材の腐食の進行を妨げるべく吸収液中から銅分を除去する技術として、例えば以下のものがある。一例として、不溶性電極に電圧を印加して銅イオンを電解除去する銅イオン除去装置を吸収冷凍機等に設け、あるいは吸収液中に酸化還元電位が銅よりも著しく低い金属(例えばアルミニウム)を設置して吸収液中の銅イオンを析出し除去するものがある(例えば、特許文献1参照。)。別の例として、活性炭やイオン交換樹脂の微小粒子中に、酸化剤である銅イオン、鉄イオン等を含む臭化リチウム水溶液を通過・接触させることにより、銅イオン、鉄イオンを置換析出・吸着することにより、吸収液中の銅イオン、鉄イオンを減少させて吸収冷凍機等における機器材料の防食を図る方法がある(例えば、特許文献2参照。)。
特公平7−94932号公報(第2頁) 特開平7−208825号公報(段落0009等)
Against this background, examples of techniques for removing copper from the absorbing solution to prevent the progress of corrosion of steel materials include the following. As an example, a copper ion removing device that removes copper ions by applying voltage to an insoluble electrode is installed in an absorption refrigerator or the like, or a metal (for example, aluminum) whose oxidation-reduction potential is significantly lower than copper is installed in the absorbing solution. Then, there is one that deposits and removes copper ions in the absorbing solution (see, for example, Patent Document 1). Another example is the substitution deposition and adsorption of copper ions and iron ions by passing and contacting a lithium bromide solution containing copper ions and iron ions, which are oxidizing agents, in fine particles of activated carbon or ion exchange resin. By doing this, there is a method of reducing the copper ions and iron ions in the absorption liquid to prevent corrosion of the equipment material in the absorption refrigerator or the like (for example, see Patent Document 2).
Japanese Patent Publication No. 7-94932 (page 2) Japanese Patent Laid-Open No. 7-208825 (paragraph 0009, etc.)

しかしながら、不溶性電極に電圧を印加して銅イオンを電解除去する銅イオン除去装置を用いるものは電極電位制御装置等が必要となりコスト高となる。また、吸収液中に酸化還元電位が銅よりも著しく低い金属を設置するものは吸収液として不要な金属イオンが溶出される。また、活性炭を使用する場合は銅分の除去効率が低く、イオン交換樹脂を使用する方法はイオン交換樹脂のコスト及びイオン交換樹脂を再生するためのコストを要することとなる。   However, a device using a copper ion removing device that applies a voltage to an insoluble electrode and electrolytically removes copper ions requires an electrode potential control device and the like, resulting in high costs. Further, when a metal having a remarkably lower oxidation-reduction potential than copper is installed in the absorbing solution, unnecessary metal ions are eluted as the absorbing solution. Moreover, when using activated carbon, the removal efficiency of copper content is low, and the method of using an ion exchange resin requires the cost of the ion exchange resin and the cost for regenerating the ion exchange resin.

本発明は上述の課題に鑑み、コストの上昇を抑制しつつ不要な金属イオンを吸収液中に溶出させることなく吸収液中の銅分を除去する吸収液再生方法を提供することを目的とする。   The present invention has been made in view of the above-described problems, and an object of the present invention is to provide an absorbent regenerating method for removing copper from the absorbent without causing unnecessary metal ions to elute into the absorbent while suppressing an increase in cost. .

上記目的を達成するために、請求項1に記載の発明に係る吸収液再生方法は、例えば図1に示すように、臭化リチウム水溶液を主成分とする吸収冷凍機又は吸収ヒートポンプの吸収液に水酸化リチウムを添加する工程(ST14)と;前記水酸化リチウムの添加により生成された銅分を含む不溶性物質を除去する工程(ST15)とを備える。   In order to achieve the above-mentioned object, an absorption liquid regeneration method according to the invention described in claim 1 is applied to an absorption liquid of an absorption refrigerator or an absorption heat pump mainly composed of an aqueous lithium bromide solution as shown in FIG. A step (ST14) of adding lithium hydroxide; and a step (ST15) of removing insoluble substances containing copper produced by the addition of lithium hydroxide.

このように構成すると、吸収液に水酸化リチウムを添加する工程を備えるので、吸収液中の銅分を不溶性物質として析出させることができる。また、添加物が吸収液の主成分である臭化リチウムの金属成分と同種の金属成分を含む水酸化リチウムなので、銅分を除去するプロセスにおいて不要な金属分が吸収液に混入することがない。また、不溶性物質を生成するのに水酸化リチウムを用いるので、コストの上昇を抑制することができる。   If comprised in this way, since the process of adding lithium hydroxide to an absorption liquid is provided, the copper content in an absorption liquid can be deposited as an insoluble substance. In addition, since the additive is lithium hydroxide containing the same metal component as the metal component of lithium bromide, which is the main component of the absorbent, unnecessary metal is not mixed into the absorbent in the process of removing copper. . In addition, since lithium hydroxide is used to generate the insoluble material, an increase in cost can be suppressed.

また、請求項2に記載の発明に係る吸収液再生方法は、請求項1に記載の吸収液再生方法において、前記水酸化リチウムの添加量が、前記不溶性物質を除去した後の吸収液のアルカリ度が200mol/m3以上となる量である。ここで「アルカリ度」とは、水溶液中に過剰の水酸化物イオンを持つ性質をいい、本明細書では単位容積当たりの水酸化物イオンの物質量をいうこととする。 The absorbent regenerating method according to claim 2 is the absorbent regenerating method according to claim 1, wherein the amount of lithium hydroxide added is an alkali of the absorbent after the insoluble material is removed. The amount is such that the degree is 200 mol / m 3 or more. Here, “alkalinity” refers to the property of having an excess of hydroxide ions in an aqueous solution, and in this specification refers to the amount of hydroxide ions per unit volume.

このように構成すると、吸収液中の銅分のほとんどを不溶性物質として析出させることができ、銅分の除去率を向上させることができる。   If comprised in this way, most copper content in an absorption liquid can be deposited as an insoluble substance, and the removal rate of a copper content can be improved.

また、請求項3に記載の発明に係る吸収液再生方法は、例えば図1に示すように、請求項1又は請求項2に記載の吸収液再生方法において、前記水酸化リチウムを添加する工程(ST14)に先立って前記吸収液を前記吸収冷凍機又は吸収ヒートポンプから抜き取る工程(ST11)と;前記不溶性物質を除去した後の吸収液を前記吸収冷凍機又は吸収ヒートポンプに注入する工程(ST17)とを備える。   Moreover, the absorption liquid reproduction | regeneration method based on invention of Claim 3 is a process of adding the said lithium hydroxide in the absorption liquid reproduction | regeneration method of Claim 1 or Claim 2, as shown, for example in FIG. Prior to ST14), the absorption liquid is extracted from the absorption refrigerator or absorption heat pump (ST11); the absorption liquid after the insoluble material is removed is injected into the absorption refrigerator or absorption heat pump (ST17); Is provided.

このように構成すると、吸収冷凍機又は吸収ヒートポンプから吸収液を抜き取った上で不溶性物質を生成し除去するので、不溶性物質を除去する作業が行いやすくなり、不溶性物質の除去率を向上させることができる。   With this configuration, since the insoluble substance is generated and removed after the absorption liquid is extracted from the absorption refrigerator or the absorption heat pump, the work for removing the insoluble substance can be easily performed, and the removal rate of the insoluble substance can be improved. it can.

また、請求項4に記載の発明に係る吸収液再生方法は、例えば図1に示すように、請求項1乃至請求項3のいずれか1項に記載の吸収液再生方法において、前記不溶性物質を除去した後の吸収液に臭化水素を添加して該吸収液のアルカリ度を調整する工程(ST16)を備える。   Moreover, the absorption liquid reproduction | regeneration method based on invention of Claim 4 is the absorption liquid reproduction | regeneration method of any one of Claims 1 thru | or 3, for example, as shown in FIG. A step (ST16) of adjusting the alkalinity of the absorbing solution by adding hydrogen bromide to the absorbing solution after the removal is provided.

このように構成すると、吸収液のアルカリ度を吸収冷凍機等の運転に適切な値にすることができると共に、臭化水素が水酸化リチウムと反応して吸収液の主成分である臭化リチウムと水とが生成されるので添加した臭化水素により再生された吸収液が悪い影響を被ることがない。   With this configuration, the alkalinity of the absorption liquid can be set to an appropriate value for the operation of an absorption refrigerator, etc., and hydrogen bromide reacts with lithium hydroxide to form the main component of the absorption liquid. And water are produced, so that the absorbing solution regenerated by the added hydrogen bromide is not adversely affected.

本発明によれば、吸収液に水酸化リチウムを添加するので、吸収液中の銅分を不溶性物質として析出させることができる。また、添加物が吸収液の主成分である臭化リチウムの金属成分と同種の金属成分を含む水酸化リチウムなので、銅分を除去するプロセスにおいて不要な金属分が吸収液に混入することがない。また、不溶性物質を生成するのに水酸化リチウムを用いるので、コストの上昇を抑制することができる。   According to the present invention, since lithium hydroxide is added to the absorption liquid, the copper content in the absorption liquid can be precipitated as an insoluble substance. In addition, since the additive is lithium hydroxide containing the same metal component as the metal component of lithium bromide, which is the main component of the absorbent, unnecessary metal is not mixed into the absorbent in the process of removing copper. . In addition, since lithium hydroxide is used to generate the insoluble material, an increase in cost can be suppressed.

以下、本発明の実施の形態について説明する。本発明において、除去すべき銅分が含有された臭化リチウム水溶液は、吸収冷凍機及び吸収ヒートポンプ(以下「吸収冷凍機等」という。)の吸収液として用いられるものである。この吸収冷凍機等は、水を冷媒、臭化リチウム水溶液を吸収液として用いる。吸収冷凍機は、吸収液に吸収される冷媒が水蒸気になる際の潜熱を被冷却流体から奪うことにより被冷却流体を冷却する。吸収ヒートポンプは、冷媒蒸気が吸収液に吸収される際に発生する吸収熱を被加熱流体に与えることにより被加熱流体を加熱する。なお、吸収液中の銅分は、典型的には臭化リチウム水溶液中に溶解している。   Embodiments of the present invention will be described below. In the present invention, the aqueous solution of lithium bromide containing the copper content to be removed is used as an absorption liquid for absorption refrigerators and absorption heat pumps (hereinafter referred to as “absorption refrigerators”). This absorption refrigerator or the like uses water as a refrigerant and an aqueous lithium bromide solution as an absorption liquid. The absorption refrigerator cools the fluid to be cooled by removing the latent heat when the refrigerant absorbed by the absorption liquid becomes water vapor from the fluid to be cooled. The absorption heat pump heats the fluid to be heated by giving the fluid to be heated the absorption heat generated when the refrigerant vapor is absorbed by the absorption liquid. The copper content in the absorbing solution is typically dissolved in a lithium bromide aqueous solution.

まず図1を参照して、本発明の第1の実施の形態に係る吸収液再生方法を説明する。最初に、除去すべき銅分を含有するLiBr(臭化リチウム)水溶液を吸収冷凍機等から抜き取り、ドラム缶等の容器に入れる(ST11)。このとき、LiBr水溶液中に鉄等の金属酸化物等の異物が浮遊している場合は、比較的目が粗いフィルタ(異物を除去できる程度のフィルタ)を用いて異物を除去することが好ましい。   First, with reference to FIG. 1, the absorbing liquid regeneration method according to the first embodiment of the present invention will be described. First, a LiBr (lithium bromide) aqueous solution containing copper to be removed is extracted from an absorption refrigerator or the like and placed in a container such as a drum can (ST11). At this time, when a foreign substance such as a metal oxide such as iron is floating in the LiBr aqueous solution, it is preferable to remove the foreign substance using a relatively coarse filter (a filter capable of removing the foreign substance).

LiBr水溶液(吸収液)を容器に移したら、容器から一定量のLiBr水溶液を複数個サンプリングする(ST12)。この複数個のサンプルを用いて容器中のLiBr水溶液に添加するLiOH(水酸化リチウム)の量を決定する(ST13)。LiOHの添加量の決定は、以下のように行う。複数個のサンプルに、それぞれ添加量の異なるLiOHを添加する。典型的には、所定量ずつ増やしたLiOHを各サンプルに添加する。各サンプルをろ過した後にそれぞれのサンプルのアルカリ度を測定し、あらかじめ求められたアルカリ度と銅分除去率との関係(例えば後述する図3参照)から意図する銅分除去率となるアルカリ度とするためのLiOH添加量を決定する。   When the LiBr aqueous solution (absorbing liquid) is transferred to the container, a plurality of a predetermined amount of LiBr aqueous solution are sampled from the container (ST12). The amount of LiOH (lithium hydroxide) added to the LiBr aqueous solution in the container is determined using the plurality of samples (ST13). The addition amount of LiOH is determined as follows. LiOH having different addition amounts is added to a plurality of samples. Typically, a predetermined amount of LiOH is added to each sample. After filtering each sample, the alkalinity of each sample is measured. From the relationship between the alkalinity obtained in advance and the copper removal rate (for example, see FIG. 3 described later) To determine the amount of LiOH added.

意図する銅分除去に要するLiOHを求めるのにアルカリ度を基準としたのは、アルカリ度の測定は、典型的には、フェノールフタレインを指示薬とした滴定法により行うことが可能であり、この滴定法によれば、吸収冷凍機等から抽出したLiBr水溶液に指示薬を添加することにより、その場で意図する銅分除去に要するLiOHを求めることが可能だからである。なお、ICP分析装置等を用いてLiBr水溶液中に含まれる銅分量を直接測定してもよい。銅分量を測定するのにICP分析装置等を用いる場合は、LiBr水溶液を吸収冷凍機等から抜き取ってドラム缶等の容器に入れる工程(ST11)の前に、サンプルを用いて、除去すべき銅分を含有するLiBr水溶液にLiOHを添加し、不溶性物質を除去した後のLiBr水溶液の銅分量の測定をあらかじめ実施しておくことにより、意図する銅分除去に要するLiOHを求めてもよい。ICP分析装置を用いる場合は、サンプルをICP分析装置がある場所に搬送する手間(時間やコスト)がかかるが、滴定法によればその場で意図する銅分除去に要するLiOHを求めることが可能なので好適である。なお、アルカリ度を測定する以外に銅分の測定を簡易に行うことができる方法がある場合は、前述の複数個のサンプルに所定量ずつ増やしたLiOHを添加し、各サンプルから銅分を除去した後の銅分量を測定し、所定値以下となっているサンプルに添加したLiOHの量から銅分除去に要するLiOHを求めてもよい。   The reason why alkalinity was used as a standard for determining LiOH required for intended copper removal is that alkalinity can be typically measured by a titration method using phenolphthalein as an indicator. This is because according to the titration method, by adding an indicator to the LiBr aqueous solution extracted from an absorption refrigerator or the like, it is possible to obtain LiOH required for copper removal intended on the spot. Note that the amount of copper contained in the LiBr aqueous solution may be directly measured using an ICP analyzer or the like. When using an ICP analyzer or the like to measure the copper content, the copper content to be removed using the sample before the step (ST11) of extracting the LiBr aqueous solution from the absorption refrigerator and placing it in a container such as a drum can LiOH may be obtained by adding LiOH to the LiBr aqueous solution containing, and measuring the copper content of the LiBr aqueous solution after removing insoluble substances in advance. When using an ICP analyzer, it takes time and cost to transport the sample to the location where the ICP analyzer is located. However, the titration method can determine the LiOH required for the intended removal of copper on the spot. Therefore, it is preferable. If there is a method that can easily measure the copper content in addition to measuring the alkalinity, add a predetermined amount of LiOH to the above-mentioned plurality of samples and remove the copper content from each sample. The amount of copper after the measurement may be measured, and LiOH required for removing the copper content may be determined from the amount of LiOH added to the sample that is equal to or less than a predetermined value.

容器中のLiBr水溶液に添加するLiOHの量を決定したら、次に容器中のLiBr水溶液に前工程(ST13)で決定した所定量のLiOHを添加し、攪拌する(ST14)。すると、青色の不溶性物質が析出される。青色の不溶性物質は、典型的には攪拌を停止すると沈殿する。次に、この不溶性物質を除去する(ST15)。不溶性物質の除去は、典型的には、容器中のLiBr水溶液をフィルタに通すことによって行う。フィルタは、比較的目が細かいフィルタを用いると不溶性物質を高い確率で除去できるので好ましい。   Once the amount of LiOH added to the LiBr aqueous solution in the container is determined, the predetermined amount of LiOH determined in the previous step (ST13) is then added to the LiBr aqueous solution in the container and stirred (ST14). Then, a blue insoluble substance is deposited. Blue insoluble material typically precipitates when stirring is stopped. Next, this insoluble substance is removed (ST15). Insoluble material is typically removed by passing the aqueous LiBr solution in the container through a filter. As the filter, it is preferable to use a filter having a relatively fine mesh because an insoluble material can be removed with a high probability.

この不溶性物質を除去したLiBr水溶液は、通常、吸収冷凍機等で用いるにはアルカリ度が高くなっているので、HBr(臭化水素)を添加してアルカリ度を調整し、管理基準値内(吸収冷凍機等における運転に適した範囲内)のアルカリ度とする(ST16)。アルカリ度の調整にHBrを用いると、HBrがLiOHと反応して水と吸収液の主成分であるLiBrとが生成されるので、添加したHBrを除去する必要がなく好適である。アルカリ度の調整が済んだら、この調整済のLiBr水溶液を吸収冷凍機等に注入し(ST17)、吸収冷凍機等の吸収液として使用する。このようにして吸収液から含有する銅分を除去し、吸収液を再生する。   Since the LiBr aqueous solution from which this insoluble material has been removed usually has a high alkalinity for use in an absorption refrigerator or the like, the alkalinity is adjusted by adding HBr (hydrogen bromide), and within the control standard value ( The alkalinity is within a range suitable for operation in an absorption refrigerator or the like (ST16). When HBr is used to adjust the alkalinity, HBr reacts with LiOH to produce water and LiBr, which is the main component of the absorbing solution, which is preferable because it is not necessary to remove the added HBr. When the alkalinity is adjusted, the adjusted LiBr aqueous solution is poured into an absorption refrigerator or the like (ST17) and used as an absorption liquid for the absorption refrigerator or the like. In this way, the copper content contained in the absorbent is removed and the absorbent is regenerated.

次に図2を参照して、本発明の第2の実施の形態に係る吸収液再生装置10について説明する。図2は吸収液再生装置10の系統図である。図2中、二点鎖線は吸収液再生装置10で銅分を除去する吸収液が使用される吸収冷凍機91、及び吸収冷凍機91と吸収液再生装置10とを結ぶ管92を表している。吸収液再生装置10は、吸収冷凍機91から抜き取った吸収液AS(LiBr水溶液)を入れる容器14と、吸収液ASを吸収冷凍機91から容器14へ導く配管11とを備えている。配管11には吸収液ASを吸収冷凍機91から抜き取るポンプ12と、吸収液AS内に金属酸化物等の異物が含まれる場合にこれを除去するフィルタ13fが収容されたフィルタケース13とが配設されている。フィルタ13fは、比較的目が粗いフィルタ(例えば、公称口径5μm:住友スリーエム(株)製の3Mリキッドフィルターバック100シリーズ型式125(商品名)、又は、公称口径2.5mm:同型式124)が用いられる。   Next, an absorbent regenerator 10 according to a second embodiment of the present invention will be described with reference to FIG. FIG. 2 is a system diagram of the absorbent regenerator 10. In FIG. 2, an alternate long and two short dashes line represents an absorption refrigerator 91 in which an absorption liquid that removes copper in the absorption liquid regenerating apparatus 10 is used, and a pipe 92 that connects the absorption refrigerator 91 and the absorption liquid regenerating apparatus 10. . The absorbent regenerator 10 includes a container 14 into which an absorbent AS (LiBr aqueous solution) extracted from the absorption refrigerator 91 is placed, and a pipe 11 that guides the absorbent AS from the absorption refrigerator 91 to the container 14. The pipe 11 includes a pump 12 for extracting the absorbing liquid AS from the absorption refrigerator 91, and a filter case 13 in which a filter 13f for removing foreign matter such as metal oxide is contained in the absorbing liquid AS. It is installed. The filter 13f is a relatively coarse filter (for example, a nominal aperture of 5 μm: 3M liquid filter back 100 series model 125 (trade name) manufactured by Sumitomo 3M Limited, or a nominal aperture of 2.5 mm: the same model 124). Used.

また、吸収液再生装置10は、容器14内の吸収液ASを攪拌及びろ過するために抽出する配管15を備えている。配管15には、容器14から吸収液ASを抽出するポンプ21が配設されている。配管15は三方弁22に接続されている。三方弁22には、配管15の他に、配管16及び配管17が接続されている。配管16には、吸収液ASにLiOHを添加することにより生成された不溶性物質を除去するフィルタ23fが収容されたフィルタケース23が配設されている。フィルタ23fは、比較的目が細かいフィルタ(例えば、公称口径1μm:住友スリーエム(株)製の3Mリキッドフィルターバック500シリーズ型式522(商品名))が用いられる。配管16は、三方弁22に接続されたのとは反対側で三方弁24に接続されている。   Further, the absorbent regenerator 10 includes a pipe 15 that extracts the absorbent AS in the container 14 for stirring and filtering. The pipe 15 is provided with a pump 21 that extracts the absorbent AS from the container 14. The pipe 15 is connected to the three-way valve 22. In addition to the pipe 15, a pipe 16 and a pipe 17 are connected to the three-way valve 22. The pipe 16 is provided with a filter case 23 in which a filter 23f for removing insoluble substances generated by adding LiOH to the absorbent AS is accommodated. As the filter 23f, a filter having a relatively fine mesh (for example, a nominal aperture of 1 μm: 3M liquid filter back 500 series model 522 (trade name) manufactured by Sumitomo 3M Limited) is used. The pipe 16 is connected to the three-way valve 24 on the side opposite to that connected to the three-way valve 22.

三方弁24には、配管16の他に、配管18及び配管19が接続されている。配管18は、吸収液ASを容器14に戻すように配設されている。また、配管18には、配管17が接続されている。他方、配管19の先には、不溶性物質を除去した後の吸収液ASを入れる容器20が配設されている。   In addition to the pipe 16, a pipe 18 and a pipe 19 are connected to the three-way valve 24. The pipe 18 is disposed so as to return the absorbing liquid AS to the container 14. A pipe 17 is connected to the pipe 18. On the other hand, at the end of the pipe 19, a container 20 for containing the absorbent AS after removing insoluble substances is disposed.

上記のような構成の吸収液再生装置10は以下のように作用する。吸収液再生装置10を作動させる前に、配管11に管92を接続する。管92の他端は、吸収冷凍機91のメンテナンス用の吸収液投入口に接続する。管92を接続したら、吸収冷凍機91内を窒素ガス等の不活性ガスで加圧してから吸収冷凍機91のメンテナンス用の吸収液投入口のバルブを開く。そして、ポンプ12を起動して、吸収冷凍機91内から吸収液ASを抜き取り、抜き取った吸収液ASを容器14に入れる。このとき、吸収液ASはフィルタ13fを通って容器14に流入する。フィルタ13fを通過することで吸収液AS中の金属酸化物等の異物が除去される。吸収冷凍機91内の吸収液ASの抽出が完了したら吸収冷凍機91のメンテナンス用の吸収液投入口のバルブを閉じてポンプ12を停止する。なお、吸収液AS中に異物が存在しない場合は、フィルタ13f及びフィルタケース13を設けなくてもよい。また、吸収冷凍機91内の不活性ガスによる加圧のみで吸収液ASを抜き取ることができる場合は、ポンプ12を設けなくてもよい。   The absorbent regenerator 10 configured as described above operates as follows. Before operating the absorbent regenerator 10, the pipe 92 is connected to the pipe 11. The other end of the pipe 92 is connected to an absorption liquid inlet for maintenance of the absorption refrigerator 91. After the pipe 92 is connected, the inside of the absorption refrigerator 91 is pressurized with an inert gas such as nitrogen gas, and then the valve for the absorption liquid inlet for maintenance of the absorption refrigerator 91 is opened. Then, the pump 12 is started, the absorption liquid AS is extracted from the absorption refrigerator 91, and the extracted absorption liquid AS is put into the container 14. At this time, the absorbent AS flows into the container 14 through the filter 13f. By passing through the filter 13f, foreign substances such as metal oxide in the absorbing liquid AS are removed. When the extraction of the absorption liquid AS in the absorption refrigerator 91 is completed, the valve of the absorption liquid inlet for maintenance of the absorption refrigerator 91 is closed and the pump 12 is stopped. Note that the filter 13f and the filter case 13 do not have to be provided when no foreign matter is present in the absorbent AS. Further, when the absorbing liquid AS can be extracted only by pressurization with an inert gas in the absorption refrigerator 91, the pump 12 may not be provided.

吸収液ASを容器14に入れたら、所定量のLiOHを容器14内の吸収液ASに添加する。所定量のLiOHは、後述する生成された不溶性物質を除去した後の吸収液ASのアルカリ度が200mol/m3以上となる量であり、典型的には複数のサンプルを取って求める。LiOHを添加したらポンプ21を起動し、吸収液ASが配管15から配管17へと流れるように三方弁22を切り替えると共に吸収液ASが配管18を通って容器14に戻るように(配管16及び配管19には流入しないように)三方弁24を切り替える。このように、吸収液ASを容器14から配管15、17、18を介して再び容器14に戻すように循環させ、LiOHを添加した吸収液ASを攪拌する。攪拌は10分〜30分程度行う。攪拌を行うことにより、吸収液ASとLiOHとが確実に反応して吸収液AS中の銅分が青色の不溶性物質として析出される。 When the absorption liquid AS is put in the container 14, a predetermined amount of LiOH is added to the absorption liquid AS in the container 14. The predetermined amount of LiOH is such an amount that the alkalinity of the absorbent AS after removing the produced insoluble substance described later becomes 200 mol / m 3 or more, and is typically obtained by taking a plurality of samples. When LiOH is added, the pump 21 is started, the three-way valve 22 is switched so that the absorbing liquid AS flows from the pipe 15 to the pipe 17, and the absorbing liquid AS returns to the container 14 through the pipe 18 (the pipe 16 and the pipe). The three-way valve 24 is switched (so that it does not flow into 19). In this way, the absorbing liquid AS is circulated from the container 14 back to the container 14 through the pipes 15, 17, 18, and the absorbing liquid AS to which LiOH has been added is stirred. Stirring is performed for about 10 to 30 minutes. By stirring, the absorption liquid AS and LiOH react reliably, and the copper content in the absorption liquid AS is deposited as a blue insoluble substance.

攪拌後、三方弁22、24を切り替えて、吸収液ASが容器14から配管15、配管16、配管18を流れて再び容器14に戻るようにする。このような流れにすると、吸収液ASがフィルタ23fを通ることとなり、これによって析出された不溶性物質がフィルタ23fに捕捉される。この吸収液ASのろ過は、60分程度行う。ろ過完了後、三方弁24を切り替えて、吸収液ASが配管16から配管19へと流れるようにする。これにより、容器14内の吸収液ASは容器20へと移される。   After the stirring, the three-way valves 22 and 24 are switched so that the absorbing liquid AS flows from the container 14 through the pipe 15, the pipe 16, and the pipe 18 and returns to the container 14 again. If it makes such a flow, absorption liquid AS will pass filter 23f, and the insoluble substance deposited by this will be caught by filter 23f. The absorption liquid AS is filtered for about 60 minutes. After the filtration is completed, the three-way valve 24 is switched so that the absorbent AS flows from the pipe 16 to the pipe 19. Thereby, the absorbing liquid AS in the container 14 is transferred to the container 20.

容器20へと移された吸収液ASは、ほとんどの銅分(典型的には吸収液AS中のおよそ95%の銅分)が除去されている反面、吸収冷凍機91での使用に適したアルカリ度よりも高くなっている。そのため、容器20内の吸収液ASにHBrを添加してアルカリ度の調整を行う。HBrの添加は典型的には手動で行う。アルカリ度の調整が完了したら、容器20内の吸収液ASを吸収冷凍機91に再注入する。   The absorption liquid AS transferred to the container 20 is suitable for use in the absorption refrigerator 91 while most of the copper content (typically about 95% of the copper content in the absorption liquid AS) is removed. It is higher than alkalinity. Therefore, the alkalinity is adjusted by adding HBr to the absorbent AS in the container 20. The addition of HBr is typically done manually. When the adjustment of the alkalinity is completed, the absorption liquid AS in the container 20 is reinjected into the absorption refrigerator 91.

以上では、吸収冷凍機91を例に説明したが、吸収ヒートポンプでも同様である。また、冷水と温水を生成することができる吸収冷温水発生機は、吸収冷凍機の一形態と見ることができるため、本明細書では吸収冷凍機の概念に含まれることとする。   The absorption refrigerator 91 has been described above as an example, but the same applies to an absorption heat pump. In addition, an absorption cold / hot water generator that can generate cold water and hot water can be regarded as one form of an absorption refrigerator, and is included in the concept of an absorption refrigerator in this specification.

以上では、吸収冷凍機91から抜き取った吸収液ASを入れる容器14とろ過した吸収液ASを入れる容器20とを区別して設けることとしたが、ろ過後の吸収液ASを容器14に戻すこととして、容器20を省いてもよい。このようにすると吸収液再生装置10をコンパクトにすることができる。しかしながら、容器14とは別に容器20を設けると、ろ過前後の吸収液ASを確実に分けることができるので、ろ過した吸収液ASとろ過できなかった吸収液ASとが混ざることがない。   In the above description, the container 14 into which the absorption liquid AS extracted from the absorption refrigerator 91 and the container 20 into which the filtered absorption liquid AS is to be provided are distinguished from each other. However, the filtered absorption liquid AS is returned to the container 14. The container 20 may be omitted. In this way, the absorbent regenerator 10 can be made compact. However, if the container 20 is provided separately from the container 14, the absorption liquid AS before and after filtration can be reliably separated, so that the filtered absorption liquid AS and the absorption liquid AS that could not be filtered are not mixed.

以上では、吸収液再生装置10は三方弁22、24を有することとして説明したが、三方弁22に代えて配管16、17のそれぞれに二方弁を設けてもよく、また、三方弁24に代えて配管18、19のそれぞれに二方弁を設けてもよい。   In the above description, the absorbent regenerator 10 has been described as having the three-way valves 22 and 24. However, instead of the three-way valve 22, two-way valves may be provided in the pipes 16 and 17, respectively. Instead, a two-way valve may be provided for each of the pipes 18 and 19.

なお、本発明の実施時期の一例として、吸収冷凍機等の定期点検時等に定期的にICP分析装置等で吸収液(LiBr水溶液)中の銅分を測定し、銅分の濃度が所定の濃度以上となったときに本発明に係る吸収液再生方法により吸収液中の銅分の除去を行うようにしてもよい。このようにすると、継続的に吸収冷凍機等の腐食を防止することができる。   In addition, as an example of the implementation timing of the present invention, the copper content in the absorption liquid (LiBr aqueous solution) is periodically measured with an ICP analyzer or the like during periodic inspection of the absorption refrigerator, etc., and the concentration of the copper content is predetermined. When the concentration becomes higher than the concentration, the copper content in the absorbing solution may be removed by the absorbing solution regeneration method according to the present invention. If it does in this way, corrosion of an absorption refrigerator etc. can be prevented continuously.

以下、ビーカーを用いて試験を行った実施例を説明する。銅分が26.0mg/L含まれたLiBr水溶液のサンプルを5個用意した。なお、このサンプルのアルカリ度は23mol/m3であった(5個共同じ)。これらのサンプルにLiOHをそれぞれ異なる添加量で添加した。添加後、攪拌し、約60分間静置した。その後、5種Cろ紙(JISP3801)でろ過し、LiOHの添加によって生成された青色の不溶性物質の沈殿物を除去した。その後、ろ過後のサンプルのアルカリ度及び銅分をICP発光分析装置で測定した。各サンプルについて、ろ過後のアルカリ度、ろ過後の銅分、及び銅分除去率を、図3にまとめて示す。 Hereinafter, examples in which tests were performed using a beaker will be described. Five LiBr aqueous samples containing 26.0 mg / L of copper were prepared. The alkalinity of this sample was 23 mol / m 3 (same for all five). LiOH was added to these samples in different amounts. After the addition, the mixture was stirred and allowed to stand for about 60 minutes. Thereafter, the mixture was filtered through 5 types C filter paper (JISP3801) to remove the precipitate of blue insoluble material generated by the addition of LiOH. Thereafter, the alkalinity and copper content of the sample after filtration were measured with an ICP emission spectrometer. About each sample, the alkalinity after filtration, the copper content after filtration, and the copper content removal rate are collectively shown in FIG.

図3に示すように、ろ過後のLiBr水溶液のアルカリ度と銅分除去率とは相関関係がある。言い換えれば、銅分除去率はLiOHの添加量と相関関係がある。この相関を利用して、本発明の第1の実施の形態に係る吸収液再生方法におけるLiOHの添加量を決定することができ(図1のステップST13参照)、ICP分析装置等を用いずにLiOH添加量を決定することができる。   As shown in FIG. 3, there is a correlation between the alkalinity of the LiBr aqueous solution after filtration and the copper content removal rate. In other words, the copper removal rate has a correlation with the amount of LiOH added. Using this correlation, it is possible to determine the amount of LiOH added in the absorption liquid regeneration method according to the first embodiment of the present invention (see step ST13 in FIG. 1), without using an ICP analyzer or the like. The amount of LiOH added can be determined.

本発明の第1の実施の形態に係る吸収液再生方法を説明するフローチャートである。It is a flowchart explaining the absorption liquid reproduction | regeneration method which concerns on the 1st Embodiment of this invention. 本発明の第2の実施の形態に係る吸収液再生装置の系統図である。It is a systematic diagram of the absorption liquid reproduction | regeneration apparatus which concerns on the 2nd Embodiment of this invention. ろ過後の溶液のアルカリ度、溶液中の銅分、銅分除去率の相関を示す図である。It is a figure which shows the correlation of the alkalinity of the solution after filtration, the copper content in a solution, and a copper content removal rate.

符号の説明Explanation of symbols

10 吸収液再生装置
12、21 ポンプ
14、20 容器
22、24 三方弁
23f フィルタ
91 吸収冷凍機
DESCRIPTION OF SYMBOLS 10 Absorption liquid reproduction | regeneration apparatus 12, 21 Pump 14, 20 Container 22, 24 Three-way valve 23f Filter 91 Absorption refrigerator

Claims (4)

臭化リチウム水溶液を主成分とする吸収冷凍機又は吸収ヒートポンプの吸収液に水酸化リチウムを添加する工程と;
前記水酸化リチウムの添加により生成された銅分を含む不溶性物質を除去する工程とを備える;
吸収液再生方法。
Adding lithium hydroxide to an absorption solution of an absorption refrigerator or absorption heat pump mainly composed of an aqueous lithium bromide solution;
Removing insoluble substances containing copper produced by the addition of lithium hydroxide;
Absorption liquid regeneration method.
前記水酸化リチウムの添加量が、前記不溶性物質を除去した後の吸収液のアルカリ度が200mol/m3以上となる量である;
請求項1に記載の吸収液再生方法。
The amount of lithium hydroxide added is such that the alkalinity of the absorbent after removal of the insoluble material is 200 mol / m 3 or more;
The method for regenerating an absorbent according to claim 1.
前記水酸化リチウムを添加する工程に先立って前記吸収液を前記吸収冷凍機又は吸収ヒートポンプから抜き取る工程と;
前記不溶性物質を除去した後の吸収液を前記吸収冷凍機又は吸収ヒートポンプに注入する工程とを備える;
請求項1又は請求項2に記載の吸収液再生方法。
Extracting the absorbent from the absorption refrigerator or absorption heat pump prior to adding the lithium hydroxide;
Injecting the absorption liquid after removing the insoluble substance into the absorption refrigerator or absorption heat pump;
The method for regenerating an absorbent according to claim 1 or 2.
前記不溶性物質を除去した後の吸収液に臭化水素を添加して該吸収液のアルカリ度を調整する工程を備える;
請求項1乃至請求項3のいずれか1項に記載の吸収液再生方法。
Adding hydrogen bromide to the absorbent after removing the insoluble material to adjust the alkalinity of the absorbent;
The absorption liquid reproduction | regeneration method of any one of Claim 1 thru | or 3.
JP2006217583A 2006-08-09 2006-08-09 Absorbent reproducing method Withdrawn JP2008039343A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006217583A JP2008039343A (en) 2006-08-09 2006-08-09 Absorbent reproducing method
CNA2007101063737A CN101122429A (en) 2006-08-09 2007-05-28 Absorption liquid regeneration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217583A JP2008039343A (en) 2006-08-09 2006-08-09 Absorbent reproducing method

Publications (1)

Publication Number Publication Date
JP2008039343A true JP2008039343A (en) 2008-02-21

Family

ID=39084863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217583A Withdrawn JP2008039343A (en) 2006-08-09 2006-08-09 Absorbent reproducing method

Country Status (2)

Country Link
JP (1) JP2008039343A (en)
CN (1) CN101122429A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788216A (en) * 2009-01-28 2010-07-28 荏原冷热系统株式会社 Copper component removing method in a lithium bromide water solution
JP2016057046A (en) * 2014-09-12 2016-04-21 大阪瓦斯株式会社 Absorbent for absorption type refrigeration machine, absorption type refrigeration machine and operation method of absorption type refrigeration machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101788216A (en) * 2009-01-28 2010-07-28 荏原冷热系统株式会社 Copper component removing method in a lithium bromide water solution
JP2010172796A (en) * 2009-01-28 2010-08-12 Ebara Refrigeration Equipment & Systems Co Ltd Method of removing copper in aqueous solution of lithium bromide
JP2016057046A (en) * 2014-09-12 2016-04-21 大阪瓦斯株式会社 Absorbent for absorption type refrigeration machine, absorption type refrigeration machine and operation method of absorption type refrigeration machine

Also Published As

Publication number Publication date
CN101122429A (en) 2008-02-13

Similar Documents

Publication Publication Date Title
WO2015025681A1 (en) Radioactive waste liquid treatment method and radioactive waste liquid treatment device
EP2388058A1 (en) Method and device for re-saturation of ammonia storage material in containers
JP2011523010A (en) How to minimize corrosion, scale and water consumption in cooling tower systems
US20130269425A1 (en) Device For Measuring The Purity Of Ultrapure Water
JP2008039343A (en) Absorbent reproducing method
US20100051053A1 (en) Washing storage solution for glass electrode and the like
US8618820B2 (en) Method and device for measuring the purity of ultrapure water
JP6114437B1 (en) Corrosive anion removing apparatus and method for regenerating anion exchange resin
JP5589327B2 (en) Regeneration method of amine liquid
JP6656108B2 (en) Method and apparatus for treating radioactive liquid waste
JP4356012B2 (en) Nuclear power plant
JP6800379B1 (en) A method for identifying the unit that causes a raw water leak in a condenser condenser
JP5585025B2 (en) Regeneration method of amine liquid
JP2005283528A (en) Reductive nitrogen compound injecting operation method for atomic power plant
JP3276103B2 (en) Method for evaluating performance of anion exchange resin and method for managing water treatment system by said method
JP2865974B2 (en) Water quality inspection method and device
JP6612177B2 (en) Water treatment system and water treatment method
JPH1123404A (en) Sea water leakage detector
JP2006194738A (en) Performance evaluation method for sulfonic acid type cation exchange resin of primary cooling water system desalination tower of pressurized water type nuclear power plant
JP6783192B2 (en) How to operate the boron recycling system and the boron recycling system
JPH09285785A (en) Ammonia-type condensate desalter and device for predicting amount of water to be collected
JP6688157B2 (en) Apparatus and method for treating radioactive waste liquid
JP5567781B2 (en) Method and apparatus for removing copper in aqueous lithium bromide solution
JPH08226864A (en) Apparatus for monitoring leak of salt water of condenser
KR20120083796A (en) Condensate polishing system and method

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091110