JP2008038855A - Particulate material-containing exhaust gas purifying method - Google Patents

Particulate material-containing exhaust gas purifying method Download PDF

Info

Publication number
JP2008038855A
JP2008038855A JP2006217401A JP2006217401A JP2008038855A JP 2008038855 A JP2008038855 A JP 2008038855A JP 2006217401 A JP2006217401 A JP 2006217401A JP 2006217401 A JP2006217401 A JP 2006217401A JP 2008038855 A JP2008038855 A JP 2008038855A
Authority
JP
Japan
Prior art keywords
dpf
exhaust gas
flow path
switching means
temperature detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006217401A
Other languages
Japanese (ja)
Inventor
Masatoshi Fujisawa
雅敏 藤澤
Yasuyoshi Kato
泰良 加藤
Satoki Sasaki
郷紀 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2006217401A priority Critical patent/JP2008038855A/en
Publication of JP2008038855A publication Critical patent/JP2008038855A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filtering Of Dispersed Particles In Gases (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas purifying method in which a device can be stopped to prevent unburnt components or ashes from remaining in a DPF even when operated at an exhaust gas temperature of 400°C or lower. <P>SOLUTION: The device to be used consists of a diesel particulate filter (DPF) 1 supporting a nitrogen monoxide oxidation catalyst on a molded product which has porous corrugated plates and porous flat plates paired as base units and laminated alternately intersecting each other, an exhaust gas temperature detector 2 arranged on the upstream side of the DPF, and a flow path selecting means 3 for selecting a flow path 4 for filter operation of the DPF 1 or a flow path 6 for extracting deposits from the DPF. During inputting a stop signal from a DE, when a DPF inlet temperature detected by the temperature detector is 400°C or lower, the flow selecting means 3 selects the flow path 6 for extracting the deposits from the DPF. After normal operation for five minutes or more to substantially remove the deposits, the device is stopped. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は粒子状物質含有排ガスの浄化方法に関し、特にディーゼルエンジン(DE)などの内燃機関からの排ガスに含まれる粒子状物質(PM)を除去するフィルタ(DPF)を用いる排ガスの浄化方法に関するものである。   The present invention relates to a method for purifying particulate matter-containing exhaust gas, and more particularly to a method for purifying exhaust gas using a filter (DPF) that removes particulate matter (PM) contained in exhaust gas from an internal combustion engine such as a diesel engine (DE). It is.

ディーゼル排ガス中の粒子状物質(PM,Particulate Matters)の除去に関する研究はDEメーカ及び自動車メーカを中心に各方面で行われており、優れた除去性能を有するフィルタや、酸化触媒により排ガス中の一酸化窒素(NO)を二酸化窒素(NO2)にして捕集したPMを酸化し、長期間詰まりを防止できるようにした研究・開発がなされている(非特許文献1)。これらの発明の多くは、多孔質セラミックスの薄壁に通して濾過することを目指し、板状または円筒状の金属、セラミックス焼結フィルタ、ハニカム状のセラミックス多孔体のガス流入部又は排出部の一方が、隣り合うセルで交互に封じられたDPF(ディーゼルパティキュレートフィルタ)などが広く用いられている。更に、これらにNOのNO2への酸化機能を付与し、低温から効率よく煤を燃焼することで長期間煤の詰まりを防止できるようにした技術などが知られている (特許文献1及び2)。
産業環境管理協会、環境管理Vol.37、p441-449 特開平1-318715号公報 特開昭60-235620号公報
Research on the removal of particulate matter (PM, Particulate Matters) in diesel exhaust gas has been carried out in various fields, mainly by DE manufacturers and automobile manufacturers. Research and development has been made to oxidize PM collected by converting nitrogen oxide (NO) to nitrogen dioxide (NO 2 ) to prevent clogging for a long time (Non-patent Document 1). Many of these inventions aim to filter through a thin wall of porous ceramics, and either one of a plate-like or cylindrical metal, a ceramic sintered filter, a gas inflow portion or a discharge portion of a honeycomb-like ceramic porous body. However, DPF (diesel particulate filter) and the like, which are alternately sealed in adjacent cells, are widely used. Further, a technique is known in which a function of oxidizing NO to NO 2 is imparted to these so that the soot can be efficiently burned from a low temperature to prevent clogging of soot for a long period of time (Patent Documents 1 and 2). ).
Industrial Environment Management Association, Environmental Management Vol.37, p441-449 JP-A-1-318715 JP-A-60-235620

上記した従来技術を分散型電源装置などのDE排ガス中のPM除去に用いる場合の代表的なフローを図5及び図6に示す。これらの図において、ディーゼルエンジン7から排出された排ガスは、ディーゼルパティキュレートフィルタ(DPF)1に入って排ガス中のDPが除去され、浄化された排ガスはフィルタライン4を経て系外に排出される。この場合、流路切替手段3がDPFの前段(図5)または後段(図6)に設けられ、それぞれDPF1を迂回するバイパスライン5及び6を介してフィルタライン4に連結され、DPFの停止の場合のアイドリング操作(図5)やDPF内部の堆積物を除去するための抜き出し操作(図6)に用いられる。すなわち、DPFの停止操作では、停止信号の入力によりDEをアイドリング運転に切替え、その際、DPFのバイパスライン(図5の5)に排ガス流路を切替えたり、DPF内部の堆積物を抜出すライン(図6の6)に切替えたりする操作が行われる。
しかしながら、DPFにおけるPMの燃焼は、PMの堆積量とNO2濃度及び温度の関数で示され、停止時にバイパスラインに切替えてもDPF内部にPMは残存する。また、堆積物を抜出すラインでアイドリング運転を行った場合も排ガス温度は急速に低下するため、運転時の排ガス温度が400℃以下では、フィルタ内部などに残存する未燃分を酸化分解するのに十分な時間を確保できず、DPF内部に未燃の煤や灰が付着した状態で装置が停止される。その結果、装置を長期間停止した際には、吸水性の高い煤や灰分がフィルタ表面に固着するとともに、無機成分が溶解してDPFや触媒の細孔内に析出し、圧損上昇や触媒活性の低下を引き起こすという問題があった。また、再起動直後の高濃度のPMを処理することにより、セルの閉塞などのトラブルを引き起こし、急激な圧損上昇の要因となっている。
本発明の課題は、DE装置の長期間の停止時の吸湿によるDPF及び触媒の劣化を防止するために、排ガス温度400℃以下で運転しても、DPF内部に未燃分や灰が残らないように装置を停止することができる排ガス浄化方法、すなわちDPFの操作方法を提供することである。
FIGS. 5 and 6 show typical flows when the above-described conventional technology is used for removing PM in DE exhaust gas such as a distributed power supply device. In these figures, the exhaust gas discharged from the diesel engine 7 enters the diesel particulate filter (DPF) 1 to remove DP in the exhaust gas, and the purified exhaust gas is discharged out of the system through the filter line 4. . In this case, the flow path switching means 3 is provided at the front stage (FIG. 5) or the rear stage (FIG. 6) of the DPF, and is connected to the filter line 4 via the bypass lines 5 and 6 that bypass the DPF 1, respectively. It is used for the idling operation (FIG. 5) in the case and the extraction operation (FIG. 6) for removing the deposits inside the DPF. That is, in the DPF stop operation, the DE is switched to idling operation by inputting a stop signal. At this time, the exhaust gas flow path is switched to the DPF bypass line (5 in FIG. 5), or the deposit inside the DPF is extracted. The operation of switching to (6 in FIG. 6) is performed.
However, the combustion of PM in the DPF is indicated by a function of the amount of accumulated PM, the concentration of NO 2 and the temperature, and the PM remains in the DPF even when switching to the bypass line when stopped. Also, when idling operation is performed on the line for extracting deposits, the exhaust gas temperature decreases rapidly, so if the exhaust gas temperature during operation is 400 ° C or less, the unburned fuel remaining inside the filter is oxidized and decomposed. Insufficient time is available, and the system is shut down with unburned soot and ash inside the DPF. As a result, when the device is stopped for a long time, soot and ash with high water absorption adhere to the filter surface, and inorganic components dissolve and precipitate in the pores of DPF and catalyst, increasing pressure loss and catalytic activity. There was a problem of causing a drop in In addition, processing high-concentration PM immediately after restarting causes troubles such as cell blockage, which causes a rapid increase in pressure loss.
An object of the present invention is to prevent the DPF and catalyst from deteriorating due to moisture absorption during long-term shutdown of the DE apparatus, so that no unburned matter or ash remains in the DPF even when operated at an exhaust gas temperature of 400 ° C. or lower. It is an object to provide an exhaust gas purification method capable of stopping the apparatus, that is, a DPF operation method.

上記課題を解決するため、本発明者らは、DE装置の長期間の停止によるDPF及び触媒の劣化の機構について詳細に検討した結果、次にような結論に至った。即ち、排ガス温度が400℃以上の高温で運転したDPFは、長期停止してもDPF及び触媒の劣化は小さいが、400℃以下の運転後に長期停止した場合のDPF及び触媒の劣化は大きく、これは400℃以下の低温での運転を経て停止した場合、DPF内部に未燃の煤や灰が残存し、停止中に吸湿することにより劣化が進行するためであることが分った。そこで、400℃以下の運転条件からの装置の停止操作について鋭意検討したところ、停止時にDPF内部に未燃分である堆積物を残存させないように、抜き出しラインから除去するか、または堆積物が吸湿して付着しないように一旦昇温してから停止することにより、上記課題が解決できることを見出し、本発明に到達した。   In order to solve the above problems, the present inventors have studied in detail the mechanism of DPF and catalyst deterioration due to long-term shutdown of the DE apparatus, and have reached the following conclusions. In other words, the DPF operated at a high temperature of 400 ° C or higher has little deterioration of the DPF and the catalyst even if it is stopped for a long time, but the DPF and catalyst are greatly deteriorated when it is stopped for a long time after the operation at 400 ° C or less. It was found that when stopped after operation at a low temperature of 400 ° C. or less, unburned soot and ash remained inside the DPF, and the deterioration progressed due to moisture absorption during the stop. Therefore, when intensive investigations were made on the operation of stopping the equipment under operating conditions of 400 ° C or lower, it was removed from the extraction line so that unburned deposits would not remain inside the DPF during shutdown, or the deposits absorb moisture. Thus, the inventors have found that the above problem can be solved by raising the temperature once so as not to adhere and then stopping, and have reached the present invention.

すなわち、本願で特許請求される発明は下記のとおりである。
(1)一対の多孔質波板と多孔質平板を基本単位とし、これが交互に交差するように積層された成形体に一酸化窒素を酸化する触媒を担持したディーゼルパティキュレートフィルタ(DPF)、該DPF前流に配置された排ガスの温度検出器及びDPFのフィルタ操作の流路とDPF内部の堆積物を抜出す流路とを切替える流路切替手段から構成されるディーゼルエンジン排ガス中の粒子状物質(PM)除去装置を用い、DEの停止信号入力時に、前記温度検出器で検出されたDPF入口温度が400℃以下となった場合、前記流路切替手段によりDPF内部の堆積物を抜出す流路に切替え、該堆積物が実質的に除去されるように5分以上の定常運転を行った後、前記装置を停止することを特徴とする粒子状物質含有排ガスの浄化方法。
(2)一対の多孔質波板と多孔質平板を基本単位とし、これが交互に交差するように積層された成形体に一酸化窒素を酸化する触媒を担持したディーゼルパティキュレートフィルタ(DPF)、該DPF前流に配置された排ガスの温度検出器及びDPFのフィルタ操作の流路とDPF内部の堆積物を抜出す流路とを切替える流路切替手段から構成されるディーゼルエンジン排ガス中の粒子状物質(PM)除去装置を用い、DEの停止信号入力時に、温度検出器で検出されたDPF入口温度が400℃以下となった場合、該DPF内部の堆積物が吸湿して付着しないようにDPF入口温度を400℃以上に昇温し、前記流路切替手段によりDPF内部の堆積物を抜出す流路に切替えた後、装置を停止することを特徴とする粒子状物質含有排ガスの浄化方法。
(3)ハニカムの隣り合うセルのどちらか一方が交互に目封じされた構造物に一酸化窒素酸化触媒を担持するか、またはその前流に同触媒を設置したDPF、該DPF前流に配置された排ガスの温度検出器、該DPFのバイパスライン、及び該DPFのバイパスラインに流路を切替える流路切替手段から構成されるディーゼルエンジン(DE)排ガス中の粒子状物質除去装置を用い、DEの停止信号入力時に前記温度検出器で検出されたDPF入口温度が400℃以下となった場合、該DPF内部の堆積物が吸湿して付着しないようにDPF入口温度を400℃以上に昇温した後、前記流路切替手段により前記DPFのバイパス流路に切替え、装置を停止することを特徴とする粒子状物質含有排ガスの浄化方法。
That is, the invention claimed in the present application is as follows.
(1) A diesel particulate filter (DPF) having a pair of porous corrugated plates and porous flat plates as basic units, and a catalyst that oxidizes nitric oxide supported on a molded body laminated so as to alternately intersect, Particulate matter in diesel engine exhaust gas composed of exhaust gas temperature detector and DPF filter operation flow channel and DPF filter flow channel switching means for switching deposits inside DPF (PM) When a DE stop signal is input using a (PM) removal device, if the DPF inlet temperature detected by the temperature detector is 400 ° C. or less, the flow switching means extracts the deposits inside the DPF. A method for purifying particulate matter-containing exhaust gas, wherein the apparatus is stopped after switching to a road and performing a steady operation for 5 minutes or more so that the deposit is substantially removed.
(2) Diesel particulate filter (DPF) comprising a pair of porous corrugated plates and porous flat plates as basic units, and a catalyst that oxidizes nitric oxide on a molded body that is laminated so that these cross alternately. Particulate matter in diesel engine exhaust gas composed of exhaust gas temperature detector and DPF filter operation flow channel and DPF filter flow channel switching means for switching deposits inside DPF (PM) When a DPF stop signal is input using the (PM) removal device, if the DPF inlet temperature detected by the temperature detector is 400 ° C or lower, the DPF inlet will prevent the deposit inside the DPF from absorbing moisture and adhering. A method for purifying exhaust gas containing particulate matter, wherein the apparatus is stopped after the temperature is raised to 400 ° C. or higher and the flow path switching means is switched to a flow path for extracting deposits in the DPF.
(3) A nitric oxide oxidation catalyst is supported on a structure in which either one of adjacent cells of the honeycomb is alternately sealed, or a DPF in which the catalyst is installed in the upstream, and disposed in the upstream of the DPF Using a particulate matter removing device in exhaust gas from a diesel engine (DE) exhaust gas comprising a temperature detector for the exhaust gas, a DPF bypass line, and a flow path switching means for switching the flow path to the DPF bypass line, When the DPF inlet temperature detected by the temperature detector when the stop signal is input is 400 ° C. or lower, the DPF inlet temperature is raised to 400 ° C. or higher so that the deposit inside the DPF absorbs moisture and does not adhere. Then, the particulate matter-containing exhaust gas purifying method is characterized by switching to the DPF bypass passage by the passage switching means and stopping the apparatus.

本発明によれば、DE排ガス温度が400℃以下の条件においても、DPF内部に未燃分や灰分を残存させずに装置を停止することができ、装置が長期間停止された場合においても吸湿によるDPF及び触媒の劣化を防止できる。   According to the present invention, even when the DE exhaust gas temperature is 400 ° C. or less, the apparatus can be stopped without leaving unburned or ash content in the DPF, and even when the apparatus is stopped for a long period of time, moisture absorption is possible. Can prevent deterioration of DPF and catalyst.

本発明の原理を図により説明する。図3は、一酸化窒素を酸化する触媒を担持したDPFにおける、NO2による排ガス中の煤燃焼の温度特性を示すが、燃焼速度は300℃前後で大きく上昇していることが分かる。また、図4は、所定の運転温度(排ガス温度)と、アイドリング状態に負荷を低下した際、DPF入口での排ガス温度が300℃まで低下するのに要する時間との関係を示すが、運転温度と所要時間はほぼ比例関係にあることが分かる。この結果、装置のアイドリング運転における酸化可能な煤の量は、運転温度の上昇に伴い、大幅に増加することが明らかである。 The principle of the present invention will be described with reference to the drawings. FIG. 3 shows the temperature characteristics of soot combustion in exhaust gas by NO 2 in a DPF carrying a catalyst that oxidizes nitric oxide, and it can be seen that the combustion rate is greatly increased around 300 ° C. FIG. 4 shows the relationship between the predetermined operating temperature (exhaust gas temperature) and the time required for the exhaust gas temperature at the DPF inlet to drop to 300 ° C. when the load is lowered to the idling state. It can be seen that the required time is almost proportional. As a result, it is clear that the amount of oxidizable soot in the idling operation of the apparatus greatly increases as the operating temperature increases.

一方、NO2によるPMの酸化分解を行う連続再生式のDPFの特徴として、所定の温度における煤の燃焼速度は、ガス中のNO2濃度とDPFに堆積しているPM量との積に比例の関係にあるため、NO2生成量の少ない低温運転ほどDPF内部に堆積しているPM量は多い。このため、400℃以下の低温運転から装置を停止する場合は、PM処理を行わない条件で、一定時間DPF内部に付着した未燃分を酸化分解することが有効である。そのため、DE停止信号が入力時に、DPF入口における排ガス温度が400℃以下であった場合、堆積物を抜出す条件で5分以上運転を継続することにより、DPF内部の煤や灰分を抜出すと共に、フィルタ内部などに残存する未燃分を酸化分解することができ、装置停止後のDPF内部への未燃分の残存を防止できる。さらに、運転時のPM堆積量が少なく、停止時の300℃以上の保持時間が長い400℃以上に昇温してから停止する操作によっても、同様の効果が得られる。その結果、装置の長期停止においても吸湿によるDPF及び触媒の劣化を防止でき、耐久性に優れた運用が可能となる。 On the other hand, as a feature of the continuous regeneration type DPF that oxidizes and decomposes PM with NO 2 , the soot burning rate at a given temperature is proportional to the product of the NO 2 concentration in the gas and the amount of PM accumulated in the DPF Therefore, the amount of PM deposited in the DPF increases as the temperature of the NO 2 generation decreases. For this reason, when the apparatus is stopped from a low temperature operation of 400 ° C. or lower, it is effective to oxidize and decompose the unburned portion adhering to the inside of the DPF for a certain time under the condition that the PM treatment is not performed. Therefore, when the DE stop signal is input and the exhaust gas temperature at the DPF inlet is 400 ° C or lower, the operation is continued for 5 minutes or more under conditions to extract the deposits, and soot and ash content inside the DPF is extracted. In addition, the unburned portion remaining in the filter or the like can be oxidized and decomposed, and the unburned portion remaining in the DPF after the apparatus is stopped can be prevented. Further, the same effect can be obtained by an operation of stopping the temperature after raising the temperature to 400 ° C. or higher, where the PM accumulation amount during operation is small and the holding time of 300 ° C. or longer at the time of stopping is long. As a result, even when the apparatus is stopped for a long time, the deterioration of the DPF and the catalyst due to moisture absorption can be prevented, and the operation with excellent durability is possible.

本発明において、温度検出器はDPF前流に配置されるが、DPF入口における排ガス温度を推定できれば、DE出口に設置し、それに応じた設定温度を変更しても構わない。また、上記400℃以上への昇温は、負荷変動、過熱器(バーナーや電気ヒータなど)、さらには可燃物添加などの公知の技術を用いて行なうことができる。   In the present invention, the temperature detector is disposed upstream of the DPF. However, as long as the exhaust gas temperature at the DPF inlet can be estimated, the temperature detector may be installed at the DE outlet and the set temperature may be changed accordingly. The temperature rise to 400 ° C. or higher can be performed using a known technique such as load fluctuation, superheater (burner, electric heater, etc.), and addition of combustible substances.

以下、実施例を用いて本発明を詳細に説明する。
[実施例1]
25kW-DEを用い、図1に示す系統の排ガス浄化装置のフィルタライン4により、DPF入口温度340℃での定常運転を行った。運転後、流路切替手段3により流路をDPF内部の堆積物抜出しラインに切替え30分間保持した。その後、アイドリング運転を5分間行ってDEを停止した。
[比較例1]
実施例1における流路切替え後に直ぐアイドリング運転を30分間行ってDEを停止した。
[実施例2]
実施例1のDPF入口温度を380℃、保持時間を5分に変更した以外は同様の操作によりDEを停止した。
[比較例2]
比較例2におけるアイドリング時間を10分に変更した以外は同様の操作によりDEを停止した。
Hereinafter, the present invention will be described in detail using examples.
[Example 1]
Using 25 kW-DE, steady operation was performed at a DPF inlet temperature of 340 ° C. by the filter line 4 of the exhaust gas purification system of the system shown in FIG. After operation, the flow path switching means 3 switched the flow path to the deposit extraction line inside the DPF and held it for 30 minutes. After that, idling operation was performed for 5 minutes to stop DE.
[Comparative Example 1]
The idling operation was performed for 30 minutes immediately after the flow path switching in Example 1 to stop DE.
[Example 2]
The DE was stopped by the same operation except that the DPF inlet temperature in Example 1 was changed to 380 ° C. and the holding time was changed to 5 minutes.
[Comparative Example 2]
The DE was stopped by the same operation except that the idling time in Comparative Example 2 was changed to 10 minutes.

[比較例3]
比較例におけるDPF入口温度を400℃に変更した以外は同様の操作によりDEを停止した。
[実施例3]
25kW-DEを用い、図2に示す系統の排ガス浄化装置のフィルタライン4により340℃で定常運転後、DPF入口温度が400℃となるよう負荷を上げて差圧が安定した後、流路切替手段3によりバイパスライン5に流路を切替え、5分間のアイドリング運転後にDEを停止した。
[比較例4]
25kW-DEを用い、図2に示す系統の排ガス浄化装置のフィルタライン4により340℃で定常運転後、流路切替手段3によりバイパスライン5に流路を切替え、5分間のアイドリング運転後にDEを停止した。
[Comparative Example 3]
The DE was stopped by the same operation except that the DPF inlet temperature in the comparative example was changed to 400 ° C.
[Example 3]
After 25 kW-DE, steady operation at 340 ° C by filter line 4 of the exhaust gas purification system of the system shown in Fig. 2, the load is increased so that the DPF inlet temperature becomes 400 ° C, and the differential pressure is stabilized, then the flow path is switched The flow path was switched to the bypass line 5 by means 3, and DE was stopped after 5 minutes of idling operation.
[Comparative Example 4]
Using 25 kW-DE, after the steady operation at 340 ° C. by the filter line 4 of the exhaust gas purification system of the system shown in FIG. 2, the flow path switching means 3 switches the flow path to the bypass line 5, and after the idling operation for 5 minutes, the DE is Stopped.

実施例1〜3及び比較例1〜4における試験後のDPFの質量を測定し、DPF内部に残存しているPM量を比較した結果を表1に示す。実施例1〜3と比較例1、2、4との比較により、停止信号入力後に一定時間の煤の燃焼運転を行うか、又は400℃以上までの昇温運転を行うことで、DE停止後にDPF内部に残存する未燃分を低減できることが分った。更に実施例1、2と比較例3の比較から400℃以下での低温運転時に有効な操作であることが分った。   Table 1 shows the results of measuring the mass of DPF after the tests in Examples 1 to 3 and Comparative Examples 1 to 4, and comparing the amount of PM remaining inside the DPF. By comparing Examples 1 to 3 with Comparative Examples 1, 2, and 4, by performing a soot combustion operation for a certain time after a stop signal is input, or by performing a temperature rising operation up to 400 ° C. or higher, after DE stop It has been found that unburned fuel remaining in the DPF can be reduced. Further, it was found from the comparison between Examples 1 and 2 and Comparative Example 3 that the operation was effective during low temperature operation at 400 ° C. or lower.

Figure 2008038855
Figure 2008038855

本発明における装置の系統図。The system diagram of the apparatus in this invention. 本発明における装置の系統図。The system diagram of the apparatus in this invention. NO2によるPM酸化の温度特性を示す図。It shows the temperature characteristic of the PM oxidation by NO 2. 運転時の排ガス温度と、停止時に300℃に低下するのに要する時間の関係を示す図。The figure which shows the relationship between the exhaust gas temperature at the time of driving | operation, and the time required for it to fall to 300 degreeC at the time of a stop. 従来のDE灰ガス処理装置の代表的な系統を示す図。The figure which shows the typical system | strain of the conventional DE ash gas processing apparatus. 従来のDE灰ガス処理装置の代表的な系統を示す図。The figure which shows the typical system | strain of the conventional DE ash gas processing apparatus.

符号の説明Explanation of symbols

1:DPF、2:温度検出器、3:流路切替手段、4:フィルタライン、5:バイパスライン、6:DPF内部の堆積物抜出しライン、7:ディーゼルエンジン
1: DPF, 2: temperature detector, 3: flow path switching means, 4: filter line, 5: bypass line, 6: deposit extraction line inside DPF, 7: diesel engine

Claims (3)

一対の多孔質波板と多孔質平板を基本単位とし、これが交互に交差するように積層された成形体に一酸化窒素を酸化する触媒を担持したディーゼルパティキュレートフィルタ(DPF)、該DPF前流に配置された排ガスの温度検出器及びDPFのフィルタ操作の流路とDPF内部の堆積物を抜出す流路とを切替える流路切替手段から構成されるディーゼルエンジン排ガス中の粒子状物質(PM)除去装置を用い、DEの停止信号入力時に、前記温度検出器で検出されたDPF入口温度が400℃以下となった場合、前記流路切替手段によりDPF内部の堆積物を抜出す流路に切替え、該堆積物が実質的に除去されるように5分以上の定常運転を行った後、前記装置を停止することを特徴とする粒子状物質含有排ガスの浄化方法。   A diesel particulate filter (DPF) carrying a catalyst that oxidizes nitric oxide on a molded body that is made up of a pair of porous corrugated plates and porous flat plates that are alternately crossed, and the upstream flow of the DPF Particulate matter (PM) in diesel engine exhaust gas, which is composed of exhaust gas temperature detector and DPF filter operating flow channel switching means and flow path switching means for switching the DPF internal deposit extraction flow path When the DPF inlet temperature detected by the temperature detector is 400 ° C or lower when a DE stop signal is input using a removal device, the flow path switching means switches to a flow path for extracting deposits inside the DPF. A method for purifying exhaust gas containing particulate matter, wherein the apparatus is stopped after a steady operation of 5 minutes or more is performed so that the deposit is substantially removed. 一対の多孔質波板と多孔質平板を基本単位とし、これが交互に交差するように積層された成形体に一酸化窒素を酸化する触媒を担持したディーゼルパティキュレートフィルタ(DPF)、該DPF前流に配置された排ガスの温度検出器及びDPFのフィルタ操作の流路とDPF内部の堆積物を抜出す流路とを切替える流路切替手段から構成されるディーゼルエンジン排ガス中の粒子状物質(PM)除去装置を用い、DEの停止信号入力時に、温度検出器で検出されたDPF入口温度が400℃以下となった場合、該DPF内部の堆積物が吸湿して付着しないようにDPF入口温度を400℃以上に昇温し、前記流路切替手段によりDPF内部の堆積物を抜出す流路に切替えた後、装置を停止することを特徴とする粒子状物質含有排ガスの浄化方法。   A diesel particulate filter (DPF) carrying a catalyst that oxidizes nitric oxide on a molded body that is made up of a pair of porous corrugated plates and porous flat plates that are alternately crossed, and the upstream flow of the DPF Particulate matter (PM) in diesel engine exhaust gas, which is composed of exhaust gas temperature detector and DPF filter operating flow channel switching means and flow path switching means for switching the DPF internal deposit extraction flow path If the DPF inlet temperature detected by the temperature detector becomes 400 ° C or less when the DE stop signal is input using the removal device, the DPF inlet temperature is set to 400 so that the deposit inside the DPF absorbs moisture and does not adhere. A method for purifying particulate matter-containing exhaust gas, characterized in that the apparatus is stopped after the temperature is raised to at least ° C. and the flow path switching means is switched to a flow path for extracting deposits inside the DPF. ハニカムの隣り合うセルのどちらか一方が交互に目封じされた構造物に一酸化窒素酸化触媒を担持するか、またはその前流に同触媒を設置したDPF、該DPF前流に配置された排ガスの温度検出器、該DPFのバイパスライン、及び該DPFのバイパスラインに流路を切替える流路切替手段から構成されるディーゼルエンジン(DE)排ガス中の粒子状物質除去装置を用い、DEの停止信号入力時に前記温度検出器で検出されたDPF入口温度が400℃以下となった場合、該DPF内部の堆積物が吸湿して付着しないようにDPF入口温度を400℃以上に昇温した後、前記流路切替手段により前記DPFのバイパス流路に切替え、装置を停止することを特徴とする粒子状物質含有排ガスの浄化方法。   A DPF in which a nitric oxide oxidation catalyst is supported on a structure in which either one of adjacent cells of the honeycomb is alternately sealed, or in which the catalyst is installed, and exhaust gas disposed in the upstream of the DPF A diesel engine (DE) exhaust gas particulate matter removing device comprising a temperature detector, a DPF bypass line, and a flow path switching means for switching the flow path to the DPF bypass line, a DE stop signal When the DPF inlet temperature detected by the temperature detector at the time of input is 400 ° C. or lower, after raising the DPF inlet temperature to 400 ° C. or higher so that the deposit inside the DPF does not absorb moisture and adhere, A method for purifying particulate matter-containing exhaust gas, wherein the device is stopped by switching to the DPF bypass channel by a channel switching means.
JP2006217401A 2006-08-09 2006-08-09 Particulate material-containing exhaust gas purifying method Pending JP2008038855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006217401A JP2008038855A (en) 2006-08-09 2006-08-09 Particulate material-containing exhaust gas purifying method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006217401A JP2008038855A (en) 2006-08-09 2006-08-09 Particulate material-containing exhaust gas purifying method

Publications (1)

Publication Number Publication Date
JP2008038855A true JP2008038855A (en) 2008-02-21

Family

ID=39174156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006217401A Pending JP2008038855A (en) 2006-08-09 2006-08-09 Particulate material-containing exhaust gas purifying method

Country Status (1)

Country Link
JP (1) JP2008038855A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119771A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
KR101619665B1 (en) 2014-12-11 2016-05-10 현대자동차주식회사 An apparatus of preventing dpf failure of commercial engine and a control method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013119771A (en) * 2011-12-06 2013-06-17 Toyota Motor Corp Exhaust emission control device of internal combustion engine
KR101619665B1 (en) 2014-12-11 2016-05-10 현대자동차주식회사 An apparatus of preventing dpf failure of commercial engine and a control method thereof

Similar Documents

Publication Publication Date Title
JP2006312921A (en) System and method for purifying exhaust gas of diesel engine
JP2006348888A (en) Exhaust emission control device
KR20120057583A (en) Exhaust gas treatment device for diesel engine
WO2005026506A1 (en) Exhaust gas-purifying device
US20130312329A1 (en) Combination Ceramic Filter and Filter Cleaning System System for Removing or Converting Undesirable Species from a Biomass Gasfifier Product Gas Stream and Method of Using the Same
JP2007132240A (en) Exhaust emission control device for internal combustion engine
JP2006307802A (en) Exhaust emission control device
JP2008038855A (en) Particulate material-containing exhaust gas purifying method
JP4762560B2 (en) Filter for removing particulate matter in exhaust gas and exhaust gas purification method
JP2006316758A (en) Exhaust emission control method and exhaust emission control system
JP4607769B2 (en) Diesel engine exhaust gas particulate matter removal filter, exhaust gas treatment method and apparatus
JP4582806B2 (en) Exhaust gas purification device
KR20200141170A (en) System for after-treatment of exhaust gas, and method for controlling of the same
JP2005344581A (en) Particulate filter
JP2008088903A (en) Device for collecting particulate in exhaust gas
JP3600582B2 (en) Method and apparatus for treating engine exhaust gas
KR100769571B1 (en) Harmfulness matter reduction system of diesel engine
KR101526373B1 (en) Exhaust gas purification system
JP2007270645A (en) Exhaust gas postprocessing system
CN103670611B (en) A kind of exhaust gas processing device and comprise the diesel engine of this exhaust gas processing device
JP2007046516A (en) Exhaust gas treatment device
JP4499581B2 (en) Exhaust gas purification apparatus and method
JP3230799B2 (en) Exhaust gas purification equipment for diesel engines
JP2006226185A (en) Device and method for purifying exhaust gas containing particular matter
JP2011056393A (en) Exhaust gas cleaning apparatus