JP2008038694A - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
JP2008038694A
JP2008038694A JP2006212028A JP2006212028A JP2008038694A JP 2008038694 A JP2008038694 A JP 2008038694A JP 2006212028 A JP2006212028 A JP 2006212028A JP 2006212028 A JP2006212028 A JP 2006212028A JP 2008038694 A JP2008038694 A JP 2008038694A
Authority
JP
Japan
Prior art keywords
valve seat
suction
valve
reed valve
suction reed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006212028A
Other languages
Japanese (ja)
Other versions
JP4692434B2 (en
Inventor
Masanori Kobayashi
正則 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006212028A priority Critical patent/JP4692434B2/en
Publication of JP2008038694A publication Critical patent/JP2008038694A/en
Application granted granted Critical
Publication of JP4692434B2 publication Critical patent/JP4692434B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compressor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compressor with high efficiency capable of preventing increase of suction loss caused by opening delay of a suction lead valve in a suction stroke. <P>SOLUTION: The compressor includes a cylinder that stores a reciprocating piston, a valve seat plate 120 provided on an opening end of the cylinder and having a suction hole 123 bored thereon, a valve seat 121 provided on an opening end side of the cylinder of the seat valve plate 120 to surround the suction hole 123, and the suction lead valve provided between the opening end and the valve seat plate 120 so as to open and close the valve seat 121. Since the valve seat 121 is provided with auxiliary valve seats 126a, 126b and 126c on its inner peripheral portion, peripheral stress acting on the suction lead valve in a compression stroke can be reduced so that the diameter of the valve seat 121 can be increased. As a result, a differential pressure load acting on the suction lead valve due to pressure difference between a compression chamber and the suction hole 123 can be increased in the suction stroke, and suction efficiency can be increased by advancing timing of start of opening the suction lead valve. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は主に冷蔵庫等の冷凍装置に用いられる圧縮機の効率向上に関するものである。   The present invention mainly relates to an improvement in the efficiency of a compressor used in a refrigeration apparatus such as a refrigerator.

従来、この種の圧縮機は、弁座板に設けられた吸入孔の径を漸次拡大させる拡径部を設けたもの(例えば、特許文献1参照)がある。   Conventionally, this type of compressor is provided with a diameter-expanding portion that gradually increases the diameter of a suction hole provided in a valve seat plate (see, for example, Patent Document 1).

以下、図面を参照しながら上記従来の圧縮機を説明する。   The conventional compressor will be described below with reference to the drawings.

図9は、従来の圧縮機の断面図、図10は従来の圧縮機の吸入リード弁部の断面図、図11は従来の圧縮機の弁座板平面図、図12は従来の圧縮機の吸入リード弁平面図である。   9 is a cross-sectional view of a conventional compressor, FIG. 10 is a cross-sectional view of a suction reed valve portion of a conventional compressor, FIG. 11 is a plan view of a valve seat plate of the conventional compressor, and FIG. It is an intake reed valve top view.

図9から図12において、密閉容器1は、固定子2と回転子3からなる電動要素4と、電動要素4によって駆動される圧縮要素5を収容する。吸入管6は、密閉容器1に固定されると共に冷凍サイクルの低圧側(図示せず)に接続され、吐出管(図示せず)は密閉容器1に固定されると共に冷凍サイクルの高圧側(図示せず)に接続されている。また、密閉容器1の底部にはオイル7が貯留されている。   9 to 12, the sealed container 1 accommodates an electric element 4 including a stator 2 and a rotor 3 and a compression element 5 driven by the electric element 4. The suction pipe 6 is fixed to the sealed container 1 and connected to the low pressure side (not shown) of the refrigeration cycle, and the discharge pipe (not shown) is fixed to the sealed container 1 and the high pressure side of the refrigeration cycle (shown). (Not shown). In addition, oil 7 is stored at the bottom of the sealed container 1.

次に圧縮要素5について説明する。   Next, the compression element 5 will be described.

クランクシャフト10は、回転子3を圧入固定した主軸部11および主軸部11に対して偏心して形成された偏心部12を有する。   The crankshaft 10 includes a main shaft portion 11 in which the rotor 3 is press-fitted and fixed, and an eccentric portion 12 that is formed eccentric to the main shaft portion 11.

シリンダ13は、略円筒形の圧縮室14を形成すると共に主軸部11を軸支する軸受部15を備えている。   The cylinder 13 includes a bearing portion 15 that forms a substantially cylindrical compression chamber 14 and supports the main shaft portion 11.

ピストン16は、圧縮室14に往復摺動自在に挿入され、偏心部12との間をコンロッド17によって連結されている。   The piston 16 is inserted into the compression chamber 14 so as to be slidable back and forth, and is connected to the eccentric portion 12 by a connecting rod 17.

圧縮室14の開口端面は弁座板20によって封止されている。弁座板20には、弁座21及び弁座21の内周部に穿設された吸入孔23が設けられている。   The opening end surface of the compression chamber 14 is sealed by a valve seat plate 20. The valve seat plate 20 is provided with a valve seat 21 and a suction hole 23 formed in the inner peripheral portion of the valve seat 21.

吸入リード弁22は、圧縮室14の開口端面と弁座板20の間に吸入孔23を開閉可能に挟持固定されている。   The suction reed valve 22 is fixed between the opening end face of the compression chamber 14 and the valve seat plate 20 so that the suction hole 23 can be opened and closed.

高圧室を形成するシリンダヘッド24は、弁座板20を介して圧縮室14の反対側に固定されている。   The cylinder head 24 forming the high pressure chamber is fixed to the opposite side of the compression chamber 14 via the valve seat plate 20.

合成樹脂で形成されて膨張空間25を有する吸入マフラー26は、弁座板20とシリンダヘッド24の間に吸入孔23と連通して挟持固定されている。   A suction muffler 26 made of synthetic resin and having an expansion space 25 is sandwiched and fixed between the valve seat plate 20 and the cylinder head 24 in communication with the suction hole 23.

吸入マフラー26の吸入口26aは、密閉容器1の空間1a内に開口している。ここで、図11に示す二点鎖線は、ボア内径の仮想線30及び吸入リード弁の仮想線31である。   The suction port 26 a of the suction muffler 26 opens into the space 1 a of the sealed container 1. Here, the two-dot chain line shown in FIG. 11 is a virtual line 30 of the bore inner diameter and a virtual line 31 of the suction reed valve.

以上のように構成された圧縮機について、以下その動作を説明する。   The operation of the compressor configured as described above will be described below.

電動要素4に通電がなされると、回転子3と回転子3に固着されたクランクシャフト10が回転し、偏芯部12の回転運動でコンロッド17を介してピストン16が圧縮室14で往復運動を行う。   When the electric element 4 is energized, the rotor 3 and the crankshaft 10 fixed to the rotor 3 rotate, and the piston 16 reciprocates in the compression chamber 14 via the connecting rod 17 by the rotational movement of the eccentric portion 12. I do.

吸入行程において、ピストン16が下死点方向へ移動し、圧縮室14内の圧力が弁座板20の吸入孔23内の圧力より低下すると、吸入リード弁22が開き始めて冷媒ガスの吸入が開始される。そして圧縮行程において冷媒ガスは、圧縮室14内で圧縮された後に圧縮室14から吐出される。   In the intake stroke, when the piston 16 moves toward the bottom dead center and the pressure in the compression chamber 14 falls below the pressure in the suction hole 23 of the valve seat plate 20, the suction reed valve 22 starts to open and the refrigerant gas starts to be sucked. Is done. In the compression stroke, the refrigerant gas is discharged from the compression chamber 14 after being compressed in the compression chamber 14.

このように、ピストン16の往復運動により吸入・圧縮・吐出の行程を繰り返すことで圧縮作用をなしており、冷媒ガスは、冷凍サイクルの低圧側(図示せず)から、吸入管6、密閉容器1内の空間1aを経て吸入マフラー26の吸入口26aから膨張空間25を通り弁座板20の吸入孔23から吸入され、圧縮室14内で圧縮された後、吐出管(図示せず)を通って密閉容器1に接続された冷凍サイクルの高圧側(図示せず)へと吐出される。   Thus, the compression action is achieved by repeating the suction, compression, and discharge strokes by the reciprocating motion of the piston 16, and the refrigerant gas flows from the low pressure side (not shown) of the refrigeration cycle to the suction pipe 6, the sealed container. 1 through a space 1a through the suction port 26a of the suction muffler 26, through the expansion space 25 and sucked from the suction hole 23 of the valve seat plate 20, and after being compressed in the compression chamber 14, a discharge pipe (not shown) is passed through. It is discharged to the high pressure side (not shown) of the refrigeration cycle connected to the sealed container 1 through.

また、密閉容器1の底部に貯留されたオイル7は、給油機構(図示せず)により圧縮要素5の摺動部を潤滑すると共に、圧縮室14内のピストン16のシール部や、吸入リード弁22と弁座21のシール部をシールしている。
特開平11−241683号公報
The oil 7 stored in the bottom of the sealed container 1 lubricates the sliding portion of the compression element 5 by an oil supply mechanism (not shown), and seals the piston 16 in the compression chamber 14 and the suction reed valve. The sealing part of 22 and the valve seat 21 is sealed.
JP-A-11-241683

しかしながら上記従来の構成では、吸入行程において圧縮室14の圧力低下に伴って吸入リード弁22が開き始める時、吸入リード弁22と弁座21をシールしているオイル7の粘性の密着力により吸入リード弁22の開き開始が遅れるため、吸入効率が吸入リード弁22の開き遅れの分だけ低下しており、オイル7の粘度が高い条件や、弁座21のシール部へのオイル7の供給が過度に多い条件の場合に、吸入リード弁22と弁座21の密着力増大により開き遅れが増大し、吸入効率が低下するという課題を有していた。   However, in the above-described conventional configuration, when the suction reed valve 22 starts to open as the pressure in the compression chamber 14 decreases during the suction stroke, the suction is performed by the viscous contact force of the oil 7 sealing the suction reed valve 22 and the valve seat 21. Since the opening start of the reed valve 22 is delayed, the suction efficiency is reduced by the opening delay of the suction reed valve 22, and the condition that the viscosity of the oil 7 is high or the supply of the oil 7 to the seal portion of the valve seat 21 is performed. In the case of an excessively large number of conditions, there is a problem that the delay in opening increases due to an increase in the adhesion between the suction reed valve 22 and the valve seat 21 and the suction efficiency decreases.

一方、弁座21の径を大きくすることで、より吸入リード弁22の開き開始を早期化することができるが、吐出行程時において吐出圧力により吸入リード弁22に作用する円周応力が増大するため、吸入リード弁22や弁座21の信頼性が低下するという課題を有していた。   On the other hand, by increasing the diameter of the valve seat 21, the opening of the suction reed valve 22 can be started earlier, but the circumferential stress acting on the suction reed valve 22 due to the discharge pressure during the discharge stroke increases. Therefore, there is a problem that the reliability of the suction reed valve 22 and the valve seat 21 is lowered.

本発明は上記従来の課題を解決するもので、吸入リード弁22の開き遅れに起因する吸入損失を低減した効率の高い圧縮機を提供することを目的とする。   The present invention solves the above-described conventional problems, and an object thereof is to provide a highly efficient compressor in which the suction loss due to the delay in opening the suction reed valve 22 is reduced.

上記従来の課題を解決するために、本発明の圧縮機は、弁座板に穿設された吸入孔を囲うように設けられた弁座の内周部に補助弁座を備えたものであり、補助弁座によって、吸入リード弁の吐出圧力作用時の変形を低減して円周応力を低減できるため、弁座径を拡大し吸入リード弁に作用する差圧荷重を増加させることで吸入リード弁の開き始めを早期化できるという作用を有する。   In order to solve the above-described conventional problems, the compressor according to the present invention includes an auxiliary valve seat on the inner peripheral portion of a valve seat provided so as to surround a suction hole formed in the valve seat plate. Because the auxiliary valve seat can reduce the deformation of the suction reed valve during the discharge pressure action and reduce the circumferential stress, the suction lead can be increased by increasing the differential pressure load acting on the suction reed valve by expanding the valve seat diameter. It has the effect of opening the valve early.

本発明の圧縮機は、吸入リード弁の開き始めを早期化できるので効率の高い圧縮機を提供することができる。   The compressor according to the present invention can provide an efficient compressor because the opening of the suction reed valve can be started earlier.

請求項1に記載の発明は、往復動するピストンを収納するシリンダと、前記シリンダの開口端に配設され吸入孔を穿設した弁座板と、前記弁座板の前記シリンダの開口端側に前記吸入孔を囲うように設けた弁座と、前記開口端と前記弁座板の間に備えられ前記弁座を開閉する吸入リード弁とを備え、前記弁座の内周部に補助弁座を備えたものであり、補助弁座によって、吸入リード弁の吐出圧力作用時の変形を低減して円周応力を低減できるので、弁座径を拡大し吸入リード弁に作用する差圧荷重を増加させることで吸入リード弁の開き始めを早期化できるため、吸入行程時における吸入リード弁の開き遅れに起因する吸入損失を低減できるので、吸入リード弁の信頼性を維持しつつ効率の高い圧縮機を提供することができる。   The invention according to claim 1 is a cylinder that houses a reciprocating piston, a valve seat plate that is disposed at an opening end of the cylinder and has a suction hole, and an opening end side of the cylinder of the valve seat plate A valve seat provided so as to surround the suction hole, and a suction reed valve provided between the opening end and the valve seat plate to open and close the valve seat, and an auxiliary valve seat is provided on an inner peripheral portion of the valve seat. With the auxiliary valve seat, the deformation of the suction reed valve during discharge pressure action can be reduced and the circumferential stress can be reduced, increasing the valve seat diameter and increasing the differential pressure load acting on the suction reed valve. This makes it possible to speed up the opening of the suction reed valve, thereby reducing the suction loss caused by the delay in opening the suction reed valve during the suction stroke. Therefore, the compressor is highly efficient while maintaining the reliability of the suction reed valve. Can be provided.

請求項2に記載の発明は、請求項1に記載の発明において、補助弁座は弁座と一体に形成されたものであり、補助弁座は弁座と一体に形成されることで弁座内周部の薄肉部の剛性が増大でき、圧縮行程時に高い圧力が作用する条件においても弁座密着面の変形を低減できるため、請求項1に記載の発明の効果に加えてさらに、シール性や信頼性の悪化を防止することができる。   The invention according to claim 2 is the invention according to claim 1, wherein the auxiliary valve seat is formed integrally with the valve seat, and the auxiliary valve seat is formed integrally with the valve seat so that the valve seat is formed. In addition to the effect of the invention according to claim 1, in addition to the effect of the invention according to claim 1, since the rigidity of the thin wall portion of the inner peripheral portion can be increased and the deformation of the valve seat contact surface can be reduced even under conditions where high pressure acts during the compression stroke. And deterioration of reliability can be prevented.

請求項3に記載の発明は、請求項1に記載の発明において、補助弁座は弁座と別体に形成されたものであり、弁座の内周部に設けられた補助弁座が別体のため弁座密着面の半径方向の密着距離が短いので吸入リード弁が開き始める時の密着力の増加を低減しつつ弁座内周部の薄肉部の剛性が増大でき、圧縮行程時に高い圧力が作用する条件においても弁座密着面の変形を低減できるため、請求項1に記載の発明の効果に加えてさらに、吸入リード弁が開き始める時の密着力の増加を低減しつつシール性や信頼性の悪化を防止することができる。   The invention according to claim 3 is the invention according to claim 1, wherein the auxiliary valve seat is formed separately from the valve seat, and the auxiliary valve seat provided on the inner peripheral portion of the valve seat is separate. Since the contact distance in the radial direction of the valve seat contact surface is short due to the body, the rigidity of the thin portion of the inner periphery of the valve seat can be increased while reducing the increase in contact force when the suction reed valve begins to open, and is high during the compression stroke Since the deformation of the valve seat contact surface can be reduced even under conditions where pressure acts, in addition to the effect of the invention of claim 1, the sealing performance is further reduced while reducing the increase in contact force when the suction reed valve starts to open. And deterioration of reliability can be prevented.

請求項4に記載の発明は、請求項1に記載の発明において、補助弁座は弁座の円形部と同心円の形状をなすものであり、吸入リード弁の吐出圧力作用時の円周応力は、弁座の内径の二乗に比例して円形部と同心円状の応力分布を示し、変形も同様に円形部と同心円状の変形形状を示すが、弁座の内周部に設けられた補助弁座が、応力分布及び変形形状に沿った同心円形状をなしているため、補助弁座に起因する変形形状の変化に伴う局所的な応力集中を回避することができるため、請求項1に記載の発明の効果に加えてさらに、信頼性の高い圧縮機を提供することができる。   The invention according to claim 4 is the invention according to claim 1, wherein the auxiliary valve seat has a concentric shape with the circular portion of the valve seat, and the circumferential stress at the time of the discharge pressure action of the suction reed valve is The auxiliary valve provided on the inner periphery of the valve seat shows a stress distribution that is concentric with the circular portion in proportion to the square of the inner diameter of the valve seat, and the deformation also shows a deformed shape that is concentric with the circular portion. The seat according to claim 1, wherein the seat has a concentric shape along the stress distribution and the deformed shape, so that local stress concentration due to a change in the deformed shape caused by the auxiliary valve seat can be avoided. In addition to the effects of the invention, a highly reliable compressor can be provided.

請求項5に記載の発明は、請求項1に記載の発明において、弁座板は焼結材料で成型されたものであり、弁座板に設けられた弁座の形状が単純な円形でなく、弁座の円形部の内部に補助弁座を備えた複雑な形状をなしたものであっても、金属粉末を型に封入後、加圧、加熱して成型するという焼結材料で成型される弁座板の加工工数はほとんど変わらず、生産性が低下することもないため、請求項1に記載の発明の効果に加えてさらに、弁座板の加工コストの増大を抑制することができる。   The invention according to claim 5 is the invention according to claim 1, wherein the valve seat plate is molded from a sintered material, and the shape of the valve seat provided on the valve seat plate is not a simple circle. Even if it has a complicated shape with an auxiliary valve seat inside the circular part of the valve seat, it is molded with a sintered material in which metal powder is sealed in a mold and then molded by pressurization and heating In addition to the effect of the invention of claim 1, further increase in the processing cost of the valve seat plate can be suppressed. .

請求項6に記載の発明は、請求項1に記載の発明において、吸入リード弁の中心線と弁座の円形部の中心位置が一致しないため、吸入行程時の圧縮室の圧力低下に伴って吸入リード弁は、圧縮室と吸入孔の圧力差による差圧荷重を受け、差圧荷重の作用点が吸入リード弁の中心線と一致しないため、吸入リード弁が、吸入リード弁の中心線を軸に捩りのモーメント力を受け、捩り変形を生じて開き始めるため、吸入リード弁と弁座のシール部が引き剥がされ易くなり、吸入リード弁の開き始めを早期化して吸入効率を高めることができるため、請求項1に記載の発明の効果に加えてさらに、吸入行程時における吸入リード弁の開き遅れに起因する吸入損失を低減することができる。   According to a sixth aspect of the present invention, in the first aspect of the present invention, since the center line of the suction reed valve and the center position of the circular part of the valve seat do not coincide with each other, the pressure in the compression chamber during the suction stroke decreases. The suction reed valve receives a differential pressure load due to the pressure difference between the compression chamber and the suction hole, and the point of action of the differential pressure load does not coincide with the center line of the suction reed valve. Since the shaft receives a torsional moment force and starts torsional deformation, the suction lead valve and the valve seat seal part are easily peeled off, and the opening of the suction reed valve can be started earlier to increase suction efficiency. Therefore, in addition to the effect of the first aspect of the invention, it is possible to further reduce the suction loss due to the delay in opening the suction reed valve during the suction stroke.

請求項7に記載の発明は、請求項1に記載の発明において、電動要素は複数の運転周波数でインバータ駆動されるものであり、特に冷媒循環量の小さい低速運転時において、吸入行程時の圧縮室の圧力低下速度が遅いため吸入リード弁の開き遅れが生じ易いが、低速運転時であっても吸入リード弁の開き始めを早期化して吸入効率を高めることができるため、請求項1に記載の発明の効果に加えてさらに、インバータ駆動による低速運転時においても吸入行程時における吸入リード弁の開き遅れに起因する吸入損失を低減することができる。   According to a seventh aspect of the present invention, in the first aspect of the present invention, the electric element is inverter-driven at a plurality of operating frequencies, particularly during low speed operation with a small amount of refrigerant circulation, compression during the suction stroke. 2. The suction reed valve is likely to be delayed due to a slow pressure drop rate in the chamber. However, even during low speed operation, the suction reed valve can be opened earlier and the suction efficiency can be increased. In addition to the effects of the present invention, it is possible to reduce the suction loss due to the delay in opening the suction reed valve during the suction stroke even during low speed operation by inverter drive.

請求項8に記載の発明は、請求項1に記載の発明において、圧縮媒体はハイドロカーボン冷媒であり、ハイドロカーボン冷媒は圧力が低いため、吸入行程時の圧縮室の圧力低下に伴って吸入リード弁に作用する圧縮室と吸入孔の圧力差による差圧荷重が小さいが、弁座の内周部面積が拡大できるため、吸入リード弁に作用する差圧荷重が増加し吸入リード弁の開き始めを早期化して吸入効率を高めることができるため、請求項1に記載の発明の効果に加えてさらに、圧縮媒体が圧力の低いハイドロカーボン冷媒である場合においても吸入行程時における吸入リード弁の開き遅れに起因する吸入損失を低減することができる。   According to an eighth aspect of the present invention, in the first aspect of the present invention, since the compression medium is a hydrocarbon refrigerant, and the pressure of the hydrocarbon refrigerant is low, the suction lead is reduced with a decrease in pressure in the compression chamber during the suction stroke. Although the differential pressure load due to the pressure difference between the compression chamber acting on the valve and the suction hole is small, the inner peripheral area of the valve seat can be expanded, so the differential pressure load acting on the suction reed valve increases and the suction reed valve begins to open. In addition to the effect of the invention of claim 1, the suction reed valve opens during the suction stroke even when the compression medium is a hydrocarbon refrigerant having a low pressure. Inhalation loss due to the delay can be reduced.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によってこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の実施の形態1における圧縮機の断面図、図2は、同実施の形態における圧縮機の要部断面図、図3は、同実施の形態における圧縮機の弁座板平面図、図4は、同実施の形態における圧縮機の吸入リード弁平面図である。
(Embodiment 1)
1 is a cross-sectional view of a compressor according to Embodiment 1 of the present invention, FIG. 2 is a cross-sectional view of essential parts of the compressor according to the same embodiment, and FIG. 3 is a valve seat plate of the compressor according to the same embodiment. FIG. 4 is a plan view of a suction reed valve of the compressor according to the embodiment.

図1から図4において、密閉容器101は、固定子102と回転子103からなり複数の運転周波数でインバータ駆動される電動要素104と、電動要素104によって駆動される圧縮要素105を収容する。吸入管106は、密閉容器101に固定されると共に冷凍サイクルの低圧側(図示せず)に接続され、吐出管(図示せず)は密閉容器101に固定されると共に冷凍サイクルの高圧側(図示せず)に接続されている。また、密閉容器101の底部にはオイル107が貯留されている。   In FIGS. 1 to 4, the sealed container 101 contains an electric element 104 that includes a stator 102 and a rotor 103 and is inverter-driven at a plurality of operating frequencies, and a compression element 105 that is driven by the electric element 104. The suction pipe 106 is fixed to the closed vessel 101 and connected to the low pressure side (not shown) of the refrigeration cycle, and the discharge pipe (not shown) is fixed to the closed vessel 101 and the high pressure side of the refrigeration cycle (shown). (Not shown). An oil 107 is stored at the bottom of the sealed container 101.

密閉容器101に封入される冷媒は、炭化水素系のR600aで、オイル107は鉱油あるいはアルキルベンゼンである。   The refrigerant sealed in the sealed container 101 is hydrocarbon-based R600a, and the oil 107 is mineral oil or alkylbenzene.

次に圧縮要素105について説明する。   Next, the compression element 105 will be described.

クランクシャフト110は、回転子103を圧入固定した主軸部111および主軸部111に対して偏心して形成された偏心部112を有する。シリンダ113は、略円筒形の圧縮室114を形成すると共に主軸部111を軸支する軸受部115を備えている。ピストン116は、圧縮室114に往復摺動自在に挿入され、偏心部112との間をコンロッド117によって連結されている。   The crankshaft 110 has a main shaft portion 111 in which the rotor 103 is press-fitted and fixed, and an eccentric portion 112 formed eccentrically with respect to the main shaft portion 111. The cylinder 113 includes a bearing portion 115 that forms a substantially cylindrical compression chamber 114 and supports the main shaft portion 111. The piston 116 is inserted into the compression chamber 114 so as to be slidable back and forth, and is connected to the eccentric portion 112 by a connecting rod 117.

圧縮室114の開口端面を封止する弁座板120は、鉄系焼結材で成型されており、圧縮室114に開口する吸入孔123が穿設されている。弁座板120の圧縮室114の開口端面側面には吸入孔123を囲むように弁座121が形成されている。   The valve seat plate 120 that seals the opening end face of the compression chamber 114 is formed of an iron-based sintered material, and a suction hole 123 that opens into the compression chamber 114 is formed. A valve seat 121 is formed on the side surface of the opening end surface of the compression chamber 114 of the valve seat plate 120 so as to surround the suction hole 123.

弁座121は、円形に設けられた円形部124を備え、円形部124の内周側には円形部124から突出した複数の補助弁座126a、126b、126cが円形部124と一体に形成されている。弁座121の円形部124の内径は従来の弁座21の内径より大きく形成されており、また、補助弁座126a、126b、126cの内周部は弁座121の円形部124と同心円状の円弧をなしている。   The valve seat 121 includes a circular portion 124 provided in a circular shape, and a plurality of auxiliary valve seats 126 a, 126 b, 126 c protruding from the circular portion 124 are formed integrally with the circular portion 124 on the inner peripheral side of the circular portion 124. ing. The inner diameter of the circular portion 124 of the valve seat 121 is larger than the inner diameter of the conventional valve seat 21, and the inner peripheral portions of the auxiliary valve seats 126 a, 126 b, 126 c are concentric with the circular portion 124 of the valve seat 121. It has an arc.

弁座121および複数の補助弁座126a、126b、126cを開閉する吸入リード弁122は、疲労強度の高いフラッパーバルブスチール材で形成されている。   The suction reed valve 122 that opens and closes the valve seat 121 and the plurality of auxiliary valve seats 126a, 126b, and 126c is formed of a flapper valve steel material having high fatigue strength.

円形部124の中心位置124aは吸入リード弁122の中心線122b位置に対してオフセットされている。   The center position 124 a of the circular portion 124 is offset with respect to the position of the center line 122 b of the suction reed valve 122.

高圧室を形成するシリンダヘッド130は、弁座板120を介して圧縮室114の反対側に固定されている。   The cylinder head 130 forming the high pressure chamber is fixed to the opposite side of the compression chamber 114 via the valve seat plate 120.

合成樹脂で形成されて膨張空間131を有する吸入マフラー132は、弁座板120とシリンダヘッド130の間に吸入孔123と連通して挟持固定されている。   A suction muffler 132 formed of a synthetic resin and having an expansion space 131 communicates with the suction hole 123 and is fixed between the valve seat plate 120 and the cylinder head 130.

吸入マフラー132の吸入口132aは、密閉容器101の空間101a内に開口している。また、図3に示す二点鎖線は、ボア内径の仮想線140及び吸入リード弁の仮想線141である。   The suction port 132 a of the suction muffler 132 opens into the space 101 a of the sealed container 101. 3 are a virtual line 140 of the bore inner diameter and a virtual line 141 of the suction reed valve.

以上のように構成された圧縮機について、以下その動作を説明する。   The operation of the compressor configured as described above will be described below.

電動要素104に通電がなされると、回転子103と回転子103に固着されたクランクシャフト110が回転し、偏心部112の回転運動でコンロッド117を介してピストン116が圧縮室114で往復運動を行う。   When the electric element 104 is energized, the rotor 103 and the crankshaft 110 fixed to the rotor 103 rotate, and the piston 116 reciprocates in the compression chamber 114 via the connecting rod 117 by the rotational movement of the eccentric portion 112. Do.

ピストン116の往復運動により圧縮室114にて吸入・圧縮・吐出の行程を繰り返すことで圧縮作用をなしており、冷媒ガスは、冷凍サイクルの低圧側(図示せず)から、吸入管106、密閉容器101内の空間101aを経て吸入マフラー132の吸入口132aから膨張空間131を通り弁座板120の吸入孔123から吸入され、圧縮室114内で圧縮された後、吐出管(図示せず)を通って密閉容器101に接続された冷凍サイクルの高圧側(図示せず)へと吐出される。   The compression operation is performed by repeating the steps of suction, compression, and discharge in the compression chamber 114 by the reciprocating motion of the piston 116, and the refrigerant gas is sealed from the low-pressure side (not shown) of the refrigeration cycle. After passing through the space 101a in the container 101 and from the suction port 132a of the suction muffler 132 through the expansion space 131 and sucked from the suction hole 123 of the valve seat plate 120 and compressed in the compression chamber 114, a discharge pipe (not shown) And is discharged to the high-pressure side (not shown) of the refrigeration cycle connected to the sealed container 101.

また、密閉容器101の底部に貯留されたオイル107は、給油機構(図示せず)により圧縮要素105の摺動部を潤滑すると共に、圧縮室114内のピストン116のシール部や、吸入リード弁122と弁座121のシール部をシールしている。   The oil 107 stored at the bottom of the sealed container 101 lubricates the sliding portion of the compression element 105 by an oil supply mechanism (not shown), and also seals the piston 116 in the compression chamber 114 and the suction reed valve. The sealing part 122 and the valve seat 121 are sealed.

このとき、吸入行程において吸入リード弁122は、圧縮室114の圧力低下に伴って圧縮室114と吸入孔123の圧力差と弁座121の内周部面積の積で求まる差圧荷重を受け、この差圧荷重が吸入リード弁122と弁座121のオイル107の粘性による密着力より大きくなると吸入リード弁122が開き始める。従って、圧力条件が同じであれば、弁座121の内周部面積が大きいほど吸入リード弁122の開き始めを早期化でき、吸入効率を向上することができる。   At this time, in the suction stroke, the suction reed valve 122 receives a differential pressure load determined by the product of the pressure difference between the compression chamber 114 and the suction hole 123 and the inner peripheral area of the valve seat 121 as the pressure in the compression chamber 114 decreases. When this differential pressure load becomes larger than the contact force due to the viscosity of the oil 107 of the suction reed valve 122 and the valve seat 121, the suction reed valve 122 starts to open. Therefore, if the pressure conditions are the same, the larger the inner peripheral area of the valve seat 121, the earlier the opening of the suction reed valve 122 can be accelerated, and the suction efficiency can be improved.

一方、圧縮行程においては、圧縮室114の圧力上昇に伴って吸入リード弁122と弁座121のシール部がシールされると供に円周応力が吸入リード弁122に作用する。吸入リード弁122に作用する円周応力は、吸入と吐出圧力の差圧が大きいほど、すなわち差圧荷重による吸入リード弁122の変形量が大きいほど増大する。また、圧力条件が同じであれば弁座121の内径が大きいほど吸入リード弁122の変形量が大きくなり、円周応力も増大して、吸入リード弁122の信頼性に悪影響を及ぼす可能性がある。   On the other hand, in the compression stroke, circumferential stress acts on the suction reed valve 122 as the sealing portion of the suction reed valve 122 and the valve seat 121 is sealed as the pressure in the compression chamber 114 increases. The circumferential stress acting on the suction reed valve 122 increases as the differential pressure between the suction and discharge pressure increases, that is, as the amount of deformation of the suction reed valve 122 due to the differential pressure load increases. In addition, if the pressure conditions are the same, the larger the inner diameter of the valve seat 121, the larger the deformation amount of the suction reed valve 122 and the greater the circumferential stress, which may adversely affect the reliability of the suction reed valve 122. is there.

ここで、本実施の形態においては、弁座121の円形部124の内径を増大しているが、弁座121の内周部に補助弁座126a,126b,126cを備えているため、吸入リード弁122の吐出圧力作用時の変形が規制されて変形量が低減でき、よって作用する最大応力を低減できる。   Here, in the present embodiment, the inner diameter of the circular portion 124 of the valve seat 121 is increased, but since the auxiliary valve seats 126a, 126b, and 126c are provided on the inner peripheral portion of the valve seat 121, the suction lead is provided. The deformation of the valve 122 when the discharge pressure is applied is restricted, so that the amount of deformation can be reduced, so that the maximum stress acting can be reduced.

従って、弁座121の円形部124の内径をより大きくすることにより、吸入行程時の差圧荷重を増加させることができ、その結果、吸入リード弁122の開き始めを早期化して吸入効率を向上できる。   Therefore, by increasing the inner diameter of the circular portion 124 of the valve seat 121, the differential pressure load during the suction stroke can be increased, and as a result, the opening of the suction reed valve 122 can be started earlier and the suction efficiency can be improved. it can.

従って、高い信頼性を維持しつつ高い効率の圧縮機を提供できる。   Therefore, it is possible to provide a highly efficient compressor while maintaining high reliability.

また、補助弁座126a、126b、126cは弁座121と一体に形成されたものであり、弁座121と一体に形成されることで弁座121内周部の薄肉部125の剛性を増大できる。よって、圧縮行程時に高い圧力が作用する条件においても弁座121シール面の変形を低減できる。   Further, the auxiliary valve seats 126a, 126b, and 126c are formed integrally with the valve seat 121, and the rigidity of the thin portion 125 of the inner peripheral portion of the valve seat 121 can be increased by being formed integrally with the valve seat 121. . Therefore, deformation of the seal surface of the valve seat 121 can be reduced even under a condition where high pressure acts during the compression stroke.

従って、弁座121シール面の変形に起因する信頼性やシール性の悪化を防止でき、高い信頼性を維持しつつ、高い効率の圧縮機を提供することができる。   Accordingly, it is possible to prevent deterioration of reliability and sealing performance due to deformation of the sealing surface of the valve seat 121, and it is possible to provide a highly efficient compressor while maintaining high reliability.

また、補助弁座126a,126b,126cは、内周部が弁座121の円形部124と同心円の形状をなすものであり、吸入リード弁122の吐出圧力作用時に弁座121との間で作用する円周応力は、弁座121の円形部124と同心円状の応力分布を示し、変形も同様に円形部と同心円状の変形形状を示す。   The auxiliary valve seats 126a, 126b, and 126c are concentric with the circular portion 124 of the valve seat 121 at the inner periphery, and act between the valve seat 121 and the discharge reed valve 122 when the discharge pressure is applied. The circumferential stress is concentric with the circular portion 124 of the valve seat 121, and the deformation is similarly concentric with the circular portion.

ここで、弁座121の内周部に設けられた補助弁座126a,126b,126cが、応力分布及び変形形状に沿った同心円形状をなしているため、吸入リード弁122の吐出圧力による変形部の変形曲率が極端に増大することなく最大変形量を低減することができる。   Here, since the auxiliary valve seats 126a, 126b, and 126c provided on the inner peripheral portion of the valve seat 121 have a concentric shape along the stress distribution and the deformed shape, the deformed portion due to the discharge pressure of the suction reed valve 122 is formed. The maximum deformation amount can be reduced without extremely increasing the deformation curvature.

すなわち、変形の曲率増大による応力集中を回避しつつ最大応力を低減することができる。   That is, the maximum stress can be reduced while avoiding stress concentration due to an increase in the curvature of deformation.

従って、高い信頼性を維持しつつ、高い効率の圧縮機を提供することができる。   Therefore, it is possible to provide a highly efficient compressor while maintaining high reliability.

また、弁座板120は焼結材料で成型されたものであり、弁座板120に設けられた弁座121の形状が単純な円形でなく、円形部124に補助弁座126a、126b、126cのような複雑な形状をなしたものであっても、金属粉末を型に封入後、加圧、加熱して成型するという焼結材料で成型される弁座板120の加工工数はほとんど変わらないため、生産性がほとんど低下しない。   Further, the valve seat plate 120 is formed of a sintered material, and the shape of the valve seat 121 provided on the valve seat plate 120 is not a simple circle, and the auxiliary valve seats 126a, 126b, 126c are formed in the circular portion 124. Even if it has a complicated shape like the above, the processing man-hours of the valve seat plate 120 molded with a sintered material in which metal powder is sealed in a mold and then molded by pressurization and heating are almost the same. Therefore, productivity hardly decreases.

従って、弁座板120の生産性の低下を抑制することができる。   Therefore, it is possible to suppress a decrease in productivity of the valve seat plate 120.

また、密閉容器101の底部に貯留されたオイル107は、給油機構(図示せず)により圧縮要素105の摺動部を潤滑すると共に、圧縮室114内のピストン116のシール部や、吸入リード弁122と弁座121のシール部をシールしている。一方で、オイル107が粘性を有することで吸入リード弁122と弁座121との間に粘着力が働き、吸入リード弁122が弁座121からはがれ難くなる。   The oil 107 stored at the bottom of the sealed container 101 lubricates the sliding portion of the compression element 105 by an oil supply mechanism (not shown), and also seals the piston 116 in the compression chamber 114 and the suction reed valve. The sealing part 122 and the valve seat 121 are sealed. On the other hand, since the oil 107 is viscous, an adhesive force acts between the suction reed valve 122 and the valve seat 121, and the suction reed valve 122 is difficult to peel off from the valve seat 121.

しかしながら本実施の形態においては、吸入リード弁122の中心線122bと弁座121の円形部124の中心位置124aが一致しないため、吸入行程時の圧縮室114の圧力低下に伴って吸入リード弁122は、圧縮室114と吸入孔123の圧力差による差圧荷重を受け、差圧荷重の作用点が吸入リード弁122の中心線122bと一致しないため、吸入リード弁122が、吸入リード弁122の中心線122bを軸に捩りのモーメント力を受け、捩り変形を生じて開き始めるため、吸入リード弁122と弁座121のシール部が引き剥がされ易くなり、吸入リード弁122の開き始めを早期化して吸入効率を高めることができる。   However, in the present embodiment, since the center line 122b of the suction reed valve 122 and the center position 124a of the circular portion 124 of the valve seat 121 do not coincide with each other, the suction reed valve 122 is reduced with the pressure drop in the compression chamber 114 during the suction stroke. Receives the differential pressure load due to the pressure difference between the compression chamber 114 and the suction hole 123, and the point of action of the differential pressure load does not coincide with the center line 122b of the suction reed valve 122. Since it receives a torsional moment force about the center line 122b and starts torsional deformation, the seal between the suction reed valve 122 and the valve seat 121 is easily peeled off, and the opening of the suction reed valve 122 starts earlier. Inhalation efficiency.

従って、吸入行程時における吸入リード弁122の開き遅れに起因する吸入損失を低減することができ、高効率の圧縮機を提供できる。   Accordingly, it is possible to reduce the suction loss due to the delay in opening the suction reed valve 122 during the suction stroke, and it is possible to provide a highly efficient compressor.

また、電動要素104は複数の運転周波数でインバータ駆動されるものであり、特に冷媒循環量の小さい低速運転時において、吸入行程時の圧縮室114の圧力低下速度も遅いため吸入リード弁122の開き遅れが生じ易いが、低速運転時であっても弁座121の内周部面積が拡大しているため吸入リード弁122に作用する差圧荷重が増加し、吸入リード弁122の開き始めを早期化して吸入効率を高めることができる。   In addition, the electric element 104 is inverter-driven at a plurality of operating frequencies. In particular, during low-speed operation with a small amount of refrigerant circulation, the pressure reduction rate of the compression chamber 114 during the intake stroke is slow, so the suction reed valve 122 is opened. Although a delay is likely to occur, the differential pressure load acting on the suction reed valve 122 increases because the inner peripheral area of the valve seat 121 is enlarged even during low-speed operation, and the opening of the suction reed valve 122 starts early. Inhalation efficiency.

従って、インバータ駆動による低速運転時においても吸入行程時における吸入リード弁122の開き遅れに起因する吸入損失を低減することができ、高効率の圧縮機を提供できる。   Therefore, even during low-speed operation by inverter driving, the suction loss due to the delay in opening the suction reed valve 122 during the suction stroke can be reduced, and a highly efficient compressor can be provided.

また、圧縮媒体はハイドロカーボン冷媒であり、ハイドロカーボン冷媒は圧力が低いため、吸入行程時の圧縮室114の圧力低下に伴って吸入リード弁122に作用する圧縮室114と吸入孔123の圧力差による差圧荷重が小さいが、弁座121の内周部面積が拡大するため、吸入リード弁122に作用する差圧荷重が増加し吸入リード弁122の開き始めを早期化して吸入効率を高めることができる。   Further, since the compression medium is a hydrocarbon refrigerant and the pressure of the hydrocarbon refrigerant is low, the pressure difference between the compression chamber 114 and the suction hole 123 acting on the suction reed valve 122 as the pressure of the compression chamber 114 decreases during the suction stroke. Although the differential pressure load due to the pressure is small, the inner peripheral area of the valve seat 121 is increased, so that the differential pressure load acting on the suction reed valve 122 is increased and the opening of the suction reed valve 122 is started earlier to increase the suction efficiency. Can do.

これより、本実施の形態における効率(COP)向上効果は、R600a冷媒を使用した冷蔵庫用圧縮機の標準運転条件において、吸入損失低減により入力が1%低減して冷凍性能が1%増大することで、COPは2%向上するとの効果を確認した。   Thus, the efficiency (COP) improvement effect in the present embodiment is that the input is reduced by 1% and the refrigeration performance is increased by 1% by reducing the suction loss in the standard operating condition of the refrigerator compressor using the R600a refrigerant. The effect of COP improvement by 2% was confirmed.

従って、圧縮媒体が圧力の低いハイドロカーボン冷媒である場合においても吸入行程時における吸入リード弁122の開き遅れに起因する吸入損失を低減することができ、高効率の圧縮機を提供できる。   Therefore, even when the compression medium is a low-pressure hydrocarbon refrigerant, the suction loss due to the delay in opening the suction reed valve 122 during the suction stroke can be reduced, and a highly efficient compressor can be provided.

なお、本実施の形態において、3箇所の補助弁座を例示して説明したが、1箇所以上であれば同様の作用、効果が得られることはいうまでもない。   In the present embodiment, three auxiliary valve seats have been illustrated and described, but it goes without saying that the same action and effect can be obtained if there are one or more.

(実施の形態2)
図5は、本発明の実施の形態2における圧縮機の断面図、図6は、同実施の形態における圧縮機の要部断面図、図7は、同実施の形態における圧縮機の弁座板平面図、図8は、同実施の形態における圧縮機の吸入リード弁平面図である。
(Embodiment 2)
5 is a cross-sectional view of the compressor according to the second embodiment of the present invention, FIG. 6 is a cross-sectional view of the main part of the compressor according to the same embodiment, and FIG. 7 is a valve seat plate of the compressor according to the same embodiment. FIG. 8 is a plan view of a suction reed valve of the compressor according to the embodiment.

図5から図8において、密閉容器201は、固定子202と回転子203からなり複数の運転周波数でインバータ駆動される電動要素204と、電動要素204によって駆動される圧縮要素205を収容する。吸入管206は、密閉容器201に固定されると共に冷凍サイクルの低圧側(図示せず)に接続され、吐出管(図示せず)は密閉容器201に固定されると共に冷凍サイクルの高圧側(図示せず)に接続されている。また、密閉容器201の底部にはオイル207が貯留されている。   5 to 8, the sealed container 201 accommodates an electric element 204 that includes a stator 202 and a rotor 203 and is inverter-driven at a plurality of operating frequencies, and a compression element 205 that is driven by the electric element 204. The suction pipe 206 is fixed to the sealed container 201 and connected to the low pressure side (not shown) of the refrigeration cycle, and the discharge pipe (not shown) is fixed to the sealed container 201 and the high pressure side of the refrigeration cycle (shown). (Not shown). In addition, oil 207 is stored at the bottom of the sealed container 201.

密閉容器201に封入される冷媒は、炭化水素系のR600aで、オイル107は鉱油あるいはアルキルベンゼンである。   The refrigerant sealed in the hermetic container 201 is hydrocarbon R600a, and the oil 107 is mineral oil or alkylbenzene.

次に圧縮要素205について説明する。   Next, the compression element 205 will be described.

クランクシャフト210は、回転子203を圧入固定した主軸部211および主軸部211に対して偏心して形成された偏心部212を有する。シリンダ213は、略円筒形の圧縮室214を形成すると共に主軸部211を軸支する軸受部215を備えている。ピストン216は、圧縮室214に往復摺動自在に挿入され、偏心部212との間をコンロッド217によって連結されている。   The crankshaft 210 has a main shaft portion 211 in which the rotor 203 is press-fitted and fixed, and an eccentric portion 212 formed eccentric to the main shaft portion 211. The cylinder 213 includes a bearing portion 215 that forms a substantially cylindrical compression chamber 214 and supports the main shaft portion 211. The piston 216 is inserted into the compression chamber 214 so as to be slidable back and forth, and is connected to the eccentric portion 212 by a connecting rod 217.

圧縮室214の開口端面を封止する弁座板220は、鉄系焼結材で成型されており、圧縮室214に開口する吸入孔223が穿設されている。弁座板220の圧縮室214の開口端面側面には吸入孔223を囲むように弁座221が形成されている。   The valve seat plate 220 that seals the opening end face of the compression chamber 214 is formed of an iron-based sintered material, and a suction hole 223 that opens into the compression chamber 214 is formed. A valve seat 221 is formed on the side surface of the opening end surface of the compression chamber 214 of the valve seat plate 220 so as to surround the suction hole 223.

弁座221は、円形に設けられた円形部224を備え、円形部224の内周側には複数の補助弁座226a、226b、226cが円形部224と別体に形成されている。弁座221の円形部224の内径は従来の弁座21の内径より大きく形成されており、また、補助弁座226a、226b、226cの内周部は弁座221の円形部224と同心円状の円弧をなしている。   The valve seat 221 includes a circular portion 224 provided in a circular shape, and a plurality of auxiliary valve seats 226 a, 226 b, and 226 c are formed separately from the circular portion 224 on the inner peripheral side of the circular portion 224. The inner diameter of the circular portion 224 of the valve seat 221 is formed larger than the inner diameter of the conventional valve seat 21, and the inner peripheral portions of the auxiliary valve seats 226 a, 226 b, and 226 c are concentric with the circular portion 224 of the valve seat 221. It has an arc.

弁座221および複数の補助弁座226a、226b、226cを開閉する吸入リード弁222は、疲労強度の高いフラッパーバルブスチール材で形成されている。   The suction reed valve 222 that opens and closes the valve seat 221 and the plurality of auxiliary valve seats 226a, 226b, and 226c is formed of a flapper valve steel material having high fatigue strength.

円形部224の中心位置224aは吸入リード弁222の中心線222b位置に対してオフセットされている。   The center position 224 a of the circular portion 224 is offset with respect to the position of the center line 222 b of the suction reed valve 222.

高圧室を形成するシリンダヘッド230は、弁座板220を介して圧縮室214の反対側に固定されている。   The cylinder head 230 forming the high pressure chamber is fixed to the opposite side of the compression chamber 214 via the valve seat plate 220.

合成樹脂で形成されて膨張空間231を有する吸入マフラー232は、弁座板220とシリンダヘッド230の間に吸入孔223と連通して挟持固定されている。   A suction muffler 232 formed of a synthetic resin and having an expansion space 231 communicates with the suction hole 223 and is fixed between the valve seat plate 220 and the cylinder head 230.

吸入マフラー232の吸入口232aは、密閉容器201の空間201a内に開口している。また、図7に示す二点鎖線は、ボア内径の仮想線240及び吸入リード弁の仮想線241である。   The suction port 232 a of the suction muffler 232 opens into the space 201 a of the sealed container 201. The two-dot chain line shown in FIG. 7 is a virtual line 240 of the bore inner diameter and a virtual line 241 of the suction reed valve.

以上のように構成された圧縮機について、以下その動作を説明する。   The operation of the compressor configured as described above will be described below.

電動要素204に通電がなされると、回転子203と回転子203に固着されたクランクシャフト210が回転し、偏心部212の回転運動でコンロッド217を介してピストン216が圧縮室214で往復運動を行う。   When the electric element 204 is energized, the rotor 203 and the crankshaft 210 fixed to the rotor 203 rotate, and the piston 216 reciprocates in the compression chamber 214 via the connecting rod 217 by the rotational movement of the eccentric portion 212. Do.

ピストン216の往復運動により圧縮室214にて吸入・圧縮・吐出の行程を繰り返すことで圧縮作用をなしており、冷媒ガスは、冷凍サイクルの低圧側(図示せず)から、吸入管206、密閉容器201内の空間201aを経て吸入マフラー232の吸入口232aから膨張空間231を通り弁座板220の吸入孔223から吸入され、圧縮室214内で圧縮された後、吐出管(図示せず)を通って密閉容器201に接続された冷凍サイクルの高圧側(図示せず)へと吐出される。   The reciprocating motion of the piston 216 repeats the suction, compression, and discharge strokes in the compression chamber 214, and the refrigerant gas is compressed from the low pressure side (not shown) of the refrigeration cycle. After passing through the space 201 a in the container 201 and from the suction port 232 a of the suction muffler 232 through the expansion space 231 and sucked from the suction hole 223 of the valve seat plate 220 and compressed in the compression chamber 214, a discharge pipe (not shown) And is discharged to the high-pressure side (not shown) of the refrigeration cycle connected to the sealed container 201.

また、密閉容器201の底部に貯留されたオイル207は、給油機構(図示せず)により圧縮要素205の摺動部を潤滑すると共に、圧縮室214内のピストン216のシール部や、吸入リード弁222と弁座221のシール部をシールしている。   The oil 207 stored in the bottom of the sealed container 201 lubricates the sliding portion of the compression element 205 by an oil supply mechanism (not shown), and also seals the piston 216 in the compression chamber 214 and the suction reed valve. The seal part between 222 and the valve seat 221 is sealed.

このとき、吸入行程において吸入リード弁222は、圧縮室214の圧力低下に伴って圧縮室214と吸入孔223の圧力差と弁座221の内周部面積の積で求まる差圧荷重を受け、この差圧荷重が吸入リード弁222と弁座221のオイル207の粘性による密着力より大きくなると吸入リード弁222が開き始める。従って、圧力条件が同じであれば、弁座221の内周部面積が大きいほど吸入リード弁222の開き始めを早期化でき、吸入効率を向上することができる。   At this time, in the suction stroke, the suction reed valve 222 receives a differential pressure load determined by the product of the pressure difference between the compression chamber 214 and the suction hole 223 and the inner peripheral area of the valve seat 221 as the pressure in the compression chamber 214 decreases. When this differential pressure load becomes larger than the contact force due to the viscosity of the oil 207 in the suction reed valve 222 and the valve seat 221, the suction reed valve 222 starts to open. Therefore, if the pressure conditions are the same, the larger the inner peripheral area of the valve seat 221, the earlier the opening of the suction reed valve 222 can be accelerated, and the suction efficiency can be improved.

一方、圧縮行程においては、圧縮室214の圧力上昇に伴って吸入リード弁222と弁座221のシール部がシールされると供に円周応力が吸入リード弁222に作用する。吸入リード弁222に作用する円周応力は、吸入と吐出圧力の差圧が大きいほど、すなわち差圧荷重による吸入リード弁222の変形量が大きいほど増大する。また、圧力条件が同じであれば弁座221の内径が大きいほど吸入リード弁222の変形量が大きくなり、円周応力も増大して、吸入リード弁222の信頼性に悪影響を及ぼす可能性がある。   On the other hand, in the compression stroke, circumferential stress acts on the suction reed valve 222 when the sealing portion of the suction reed valve 222 and the valve seat 221 is sealed as the pressure in the compression chamber 214 increases. The circumferential stress acting on the suction reed valve 222 increases as the differential pressure between the suction and discharge pressure increases, that is, as the amount of deformation of the suction reed valve 222 due to the differential pressure load increases. Further, if the pressure conditions are the same, the larger the inner diameter of the valve seat 221, the larger the deformation amount of the suction reed valve 222, and the circumferential stress increases, which may adversely affect the reliability of the suction reed valve 222. is there.

ここで、本実施の形態においては、弁座221の円形部224の内径を増大しているが、弁座221の内周部に補助弁座226a、226b、226cを備えているため、吸入リード弁222の吐出圧力作用時の変形が規制されて変形量が低減でき、よって作用する最大応力を低減できる。   Here, in the present embodiment, the inner diameter of the circular portion 224 of the valve seat 221 is increased. However, since the auxiliary valve seats 226a, 226b, and 226c are provided on the inner peripheral portion of the valve seat 221, the suction lead is provided. The deformation of the valve 222 when the discharge pressure is applied is restricted, and the amount of deformation can be reduced, so that the maximum stress acting can be reduced.

従って、弁座221の円形部224の内径をより大きくすることにより、吸入行程時の差圧荷重を増加させることができ、その結果、吸入リード弁222の開き始めを早期化して吸入効率を向上できる。   Therefore, by increasing the inner diameter of the circular portion 224 of the valve seat 221, the differential pressure load during the intake stroke can be increased, and as a result, the opening of the intake reed valve 222 is started earlier and the intake efficiency is improved. it can.

従って、高い信頼性を維持しつつ高い効率の圧縮機を提供できる。   Therefore, it is possible to provide a highly efficient compressor while maintaining high reliability.

また、補助弁座226a、226b、226cは弁座221と別体に形成されたものであり、弁座221内周部の薄肉部225の剛性を増大できると共に、補助弁座226a、226b、226cが別体のためシール面の半径方向シール距離が短く、シール面積の増加量を低減できるので吸入リード弁222が開き始める時の密着力の増加を低減できる。   Further, the auxiliary valve seats 226a, 226b, and 226c are formed separately from the valve seat 221, and the rigidity of the thin portion 225 of the inner peripheral portion of the valve seat 221 can be increased, and the auxiliary valve seats 226a, 226b, and 226c can be increased. However, since the sealing distance in the radial direction of the seal surface is short and the amount of increase in the seal area can be reduced, an increase in the adhesion force when the suction reed valve 222 starts to open can be reduced.

従って、弁座221シール面の変形に起因する信頼性やシール性の悪化および密着力の大幅な増大を防止でき、高い信頼性を維持しつつ、高い効率の圧縮機を提供することができる。   Therefore, it is possible to prevent the deterioration of the reliability and the sealing performance due to the deformation of the sealing surface of the valve seat 221 and the significant increase in the adhesion force, and it is possible to provide a highly efficient compressor while maintaining the high reliability.

また、補助弁座226a、226b、226cは、内周部が弁座221の円形部224と同心円の形状をなすものであり、吸入リード弁222の吐出圧力作用時に弁座221との間で作用する円周応力は、弁座221の円形部224と同心円状の応力分布を示し、変形も同様に円形部と同心円状の変形形状を示す。   The auxiliary valve seats 226a, 226b, and 226c have an inner circumference that is concentric with the circular portion 224 of the valve seat 221. The auxiliary valve seats 226a, 226b, and 226c act between the valve seat 221 when the suction reed valve 222 operates on the discharge pressure. The circumferential stress is concentric with the circular portion 224 of the valve seat 221, and the deformation is similarly concentric with the circular portion.

ここで、弁座221の内周部に設けられた補助弁座226a、226b、226cが、応力分布及び変形形状に沿った同心円形状をなしているため、吸入リード弁222の吐出圧力による変形部の変形曲率が極端に増大することなく最大変形量を低減することができる。   Here, since the auxiliary valve seats 226a, 226b, and 226c provided on the inner peripheral portion of the valve seat 221 have a concentric shape along the stress distribution and the deformed shape, the deformed portion due to the discharge pressure of the suction reed valve 222. The maximum deformation amount can be reduced without extremely increasing the deformation curvature.

すなわち、変形の曲率増大による応力集中を回避しつつ最大応力を低減することができる。   That is, the maximum stress can be reduced while avoiding stress concentration due to an increase in the curvature of deformation.

従って、高い信頼性を維持しつつ、高い効率の圧縮機を提供することができる。   Therefore, it is possible to provide a highly efficient compressor while maintaining high reliability.

また、弁座板220は焼結材料で成型されたものであり、弁座板220に設けられた弁座221の形状が単純な円形でなく、円形部224に補助弁座226a、226b、226cのような複雑な形状をなしたものであっても、金属粉末を型に封入後、加圧、加熱して成型するという焼結材料で成型される弁座板220の加工工数はほとんど変わらないため、生産性がほとんど低下しない。   Further, the valve seat plate 220 is formed of a sintered material, and the shape of the valve seat 221 provided on the valve seat plate 220 is not a simple circle, and the auxiliary valve seats 226a, 226b, 226c are formed in the circular portion 224. Even if it has a complicated shape as described above, the processing man-hours of the valve seat plate 220 molded with a sintered material in which metal powder is encapsulated in a mold and then molded by pressurization and heating are almost unchanged. Therefore, productivity hardly decreases.

従って、弁座板220の生産性の低下を抑制することができる。   Therefore, a decrease in productivity of the valve seat plate 220 can be suppressed.

また、密閉容器201の底部に貯留されたオイル207は、給油機構(図示せず)により圧縮要素205の摺動部を潤滑すると共に、圧縮室214内のピストン216のシール部や、吸入リード弁222と弁座221のシール部をシールしている。一方で、オイル207が粘性を有することで吸入リード弁222と弁座221との間に粘着力が働き、吸入リード弁222が弁座221からはがれ難くなる。   The oil 207 stored in the bottom of the sealed container 201 lubricates the sliding portion of the compression element 205 by an oil supply mechanism (not shown), and also seals the piston 216 in the compression chamber 214 and the suction reed valve. The seal part between 222 and the valve seat 221 is sealed. On the other hand, since the oil 207 is viscous, an adhesive force acts between the suction reed valve 222 and the valve seat 221, and the suction reed valve 222 is difficult to peel off from the valve seat 221.

しかしながら本実施の形態においては、吸入リード弁222の中心線222bと弁座221の円形部224の中心位置224aが一致しないため、吸入行程時の圧縮室214の圧力低下に伴って吸入リード弁222は、圧縮室214と吸入孔223の圧力差による差圧荷重を受け、差圧荷重の作用点が吸入リード弁222の中心線222bと一致しないため、吸入リード弁222が、吸入リード弁222の中心線222bを軸に捩りのモーメント力を受け、捩り変形を生じて開き始めるため、吸入リード弁222と弁座221のシール部が引き剥がされ易くなり、吸入リード弁222の開き始めを早期化して吸入効率を高めることができる。   However, in the present embodiment, since the center line 222b of the suction reed valve 222 and the center position 224a of the circular portion 224 of the valve seat 221 do not coincide with each other, the suction reed valve 222 is reduced as the pressure in the compression chamber 214 decreases during the suction stroke. Receives the differential pressure load due to the pressure difference between the compression chamber 214 and the suction hole 223, and the point of action of the differential pressure load does not coincide with the center line 222b of the suction reed valve 222. Since the torsional moment force is received about the center line 222b and the torsional deformation starts to open, the seal portion between the suction reed valve 222 and the valve seat 221 is easily peeled off, and the opening of the suction reed valve 222 starts earlier. Inhalation efficiency.

従って、吸入行程時における吸入リード弁222の開き遅れに起因する吸入損失を低減することができ、高効率の圧縮機を提供できる。   Therefore, it is possible to reduce the suction loss due to the delay in opening the suction reed valve 222 during the suction stroke, and it is possible to provide a highly efficient compressor.

また、電動要素204は複数の運転周波数でインバータ駆動されるものであり、特に冷媒循環量の小さい低速運転時において、吸入行程時の圧縮室214の圧力低下速度も遅いため吸入リード弁222の開き遅れが生じ易いが、低速運転時であっても弁座221の内周部面積が拡大しているため吸入リード弁222に作用する差圧荷重が増加し、吸入リード弁222の開き始めを早期化して吸入効率を高めることができる。   In addition, the electric element 204 is inverter-driven at a plurality of operating frequencies. In particular, during low-speed operation with a small amount of refrigerant circulation, the pressure reduction rate of the compression chamber 214 during the intake stroke is slow, so the suction reed valve 222 opens. Although a delay is likely to occur, the differential pressure load acting on the suction reed valve 222 increases because the area of the inner periphery of the valve seat 221 is enlarged even during low speed operation, and the opening of the suction reed valve 222 starts early. Inhalation efficiency.

従って、インバータ駆動による低速運転時においても吸入行程時における吸入リード弁222の開き遅れに起因する吸入損失を低減することができ、高効率の圧縮機を提供できる。   Therefore, even during low-speed operation by inverter driving, the suction loss due to the delay in opening the suction reed valve 222 during the suction stroke can be reduced, and a highly efficient compressor can be provided.

また、圧縮媒体はハイドロカーボン冷媒であり、ハイドロカーボン冷媒は圧力が低いため、吸入行程時の圧縮室214の圧力低下に伴って吸入リード弁222に作用する圧縮室214と吸入孔223の圧力差による差圧荷重が小さいが、弁座221の内周部面積が拡大するため、吸入リード弁222に作用する差圧荷重が増加し吸入リード弁222の開き始めを早期化して吸入効率を高めることができる。   Further, since the compression medium is a hydrocarbon refrigerant, and the pressure of the hydrocarbon refrigerant is low, the pressure difference between the compression chamber 214 and the suction hole 223 acting on the suction reed valve 222 as the pressure in the compression chamber 214 decreases during the suction stroke. Although the differential pressure load due to the pressure is small, the inner peripheral area of the valve seat 221 is enlarged, so that the differential pressure load acting on the suction reed valve 222 is increased, and the opening of the suction reed valve 222 is accelerated to increase the suction efficiency. Can do.

これより、本実施の形態における効率(COP)向上効果は、R600a冷媒を使用した冷蔵庫用圧縮機の標準運転条件において、吸入損失低減により入力が1%低減して冷凍性能が1%増大することで、COPは2%向上するとの効果を確認した。   Thus, the efficiency (COP) improvement effect in the present embodiment is that the input is reduced by 1% and the refrigeration performance is increased by 1% by reducing the suction loss in the standard operating condition of the refrigerator compressor using the R600a refrigerant. The effect of COP improvement by 2% was confirmed.

従って、圧縮媒体が圧力の低いハイドロカーボン冷媒である場合においても吸入行程時における吸入リード弁222の開き遅れに起因する吸入損失を低減することができ、高効率の圧縮機を提供できる。   Therefore, even when the compression medium is a low-pressure hydrocarbon refrigerant, the suction loss due to the delay in opening the suction reed valve 222 during the suction stroke can be reduced, and a highly efficient compressor can be provided.

なお、本実施の形態において、3箇所の補助弁座を例示して説明したが、1箇所以上であれば同様の作用、効果が得られることはいうまでもない。   In the present embodiment, three auxiliary valve seats have been illustrated and described, but it goes without saying that the same action and effect can be obtained if there are one or more.

以上のように、本発明にかかる圧縮機は、吸入リード弁に作用する応力の増大を防止しつつ吸入行程時における吸入リード弁の開き始めの早期化による吸入効率を向上でき、高い信頼性を維持しつつ高効率化を図ることが可能となるので、自販機、冷凍ショーケース、除湿機などの用途にも適用できる。   As described above, the compressor according to the present invention can improve the suction efficiency by early opening of the suction reed valve during the suction stroke while preventing an increase in the stress acting on the suction reed valve, and has high reliability. Since it becomes possible to achieve high efficiency while maintaining, it can also be applied to applications such as vending machines, refrigeration showcases, and dehumidifiers.

本発明の実施の形態1における圧縮機の断面図Sectional drawing of the compressor in Embodiment 1 of this invention 同実施の形態における圧縮機の要部断面図Sectional drawing of the principal part of the compressor in the embodiment 同実施の形態における圧縮機の弁座板平面図Valve seat plate plan view of the compressor in the same embodiment 同実施の形態における圧縮機の吸入リード弁平面図Compressor suction reed valve plan view of the same embodiment 本発明の実施の形態2における圧縮機の断面図Sectional drawing of the compressor in Embodiment 2 of this invention 同実施の形態における圧縮機の要部断面図Sectional drawing of the principal part of the compressor in the embodiment 同実施の形態における圧縮機の弁座板平面図Valve seat plate plan view of the compressor in the same embodiment 同実施の形態における圧縮機の吸入リード弁平面図Compressor suction reed valve plan view of the same embodiment 従来の圧縮機の断面図Cross section of a conventional compressor 従来の圧縮機の吸入リード弁部の断面図Sectional view of the suction reed valve part of a conventional compressor 従来の圧縮機の弁座板平面図Plan view of valve seat plate of conventional compressor 従来の圧縮機の吸入リード弁平面図Conventional compressor intake reed valve top view

符号の説明Explanation of symbols

104,204 電動要素
113,213 シリンダ
116,216 ピストン
120,220 弁座板
121,221 弁座
122,222 吸入リード弁
122b,222b 中心線
123,223 吸入孔
124,224 円形部
124a,224a 中心位置
126a,126b,126c,226a,226b,226c 補助弁座
104, 204 Electric element 113, 213 Cylinder 116, 216 Piston 120, 220 Valve seat plate 121, 221 Valve seat 122, 222 Suction reed valve 122b, 222b Center line 123, 223 Suction hole 124, 224 Circular portion 124a, 224a Center position 126a, 126b, 126c, 226a, 226b, 226c Auxiliary valve seat

Claims (8)

往復動するピストンを収納するシリンダと、前記シリンダの開口端に配設され吸入孔を穿設した弁座板と、前記弁座板の前記シリンダの開口端側に前記吸入孔を囲うように設けた弁座と、前記開口端と前記弁座板の間に備えられ前記弁座を開閉する吸入リード弁とを備え、前記弁座の内周部に補助弁座を備えた圧縮機。   A cylinder that houses a reciprocating piston, a valve seat plate that is disposed at the opening end of the cylinder and that has a suction hole, and is provided on the opening end side of the cylinder of the valve seat plate so as to surround the suction hole And a suction reed valve provided between the open end and the valve seat plate for opening and closing the valve seat, and having an auxiliary valve seat on the inner periphery of the valve seat. 補助弁座は弁座と一体に形成された請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the auxiliary valve seat is formed integrally with the valve seat. 補助弁座は弁座と別体に形成された請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the auxiliary valve seat is formed separately from the valve seat. 補助弁座は弁座の円形部と同心円の形状をなす請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the auxiliary valve seat has a concentric shape with a circular portion of the valve seat. 弁座板は焼結材料で成型された請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the valve seat plate is formed of a sintered material. 吸入リード弁の中心線と弁座の円形部の中心位置が一致しない請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the center line of the suction reed valve and the center position of the circular part of the valve seat do not coincide. 電動要素は複数の運転周波数でインバータ駆動される請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the electric element is inverter-driven at a plurality of operating frequencies. 圧縮媒体はハイドロカーボン冷媒である請求項1に記載の圧縮機。   The compressor according to claim 1, wherein the compression medium is a hydrocarbon refrigerant.
JP2006212028A 2006-08-03 2006-08-03 Compressor Expired - Fee Related JP4692434B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006212028A JP4692434B2 (en) 2006-08-03 2006-08-03 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006212028A JP4692434B2 (en) 2006-08-03 2006-08-03 Compressor

Publications (2)

Publication Number Publication Date
JP2008038694A true JP2008038694A (en) 2008-02-21
JP4692434B2 JP4692434B2 (en) 2011-06-01

Family

ID=39174026

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006212028A Expired - Fee Related JP4692434B2 (en) 2006-08-03 2006-08-03 Compressor

Country Status (1)

Country Link
JP (1) JP4692434B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012145812A2 (en) 2011-04-28 2012-11-01 Whirlpool S.A. Valve arrangement for hermetic compressors
CN103452811A (en) * 2013-09-05 2013-12-18 广州万宝集团压缩机有限公司 Quick opening suction valve plate of refrigeration compressor
CN108105091A (en) * 2018-02-02 2018-06-01 广东美芝制冷设备有限公司 Compression mechanism and with its compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104105U (en) * 1976-02-05 1977-08-08
JPH0828449A (en) * 1994-07-13 1996-01-30 Toyota Autom Loom Works Ltd Valve system of compressor
JPH09126133A (en) * 1995-11-08 1997-05-13 Sanyo Electric Co Ltd Coolant compressor
JP2000045949A (en) * 1998-07-24 2000-02-15 Sanyo Electric Co Ltd Refrigerant compressor
JP2005307799A (en) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd Refrigerant compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52104105U (en) * 1976-02-05 1977-08-08
JPH0828449A (en) * 1994-07-13 1996-01-30 Toyota Autom Loom Works Ltd Valve system of compressor
JPH09126133A (en) * 1995-11-08 1997-05-13 Sanyo Electric Co Ltd Coolant compressor
JP2000045949A (en) * 1998-07-24 2000-02-15 Sanyo Electric Co Ltd Refrigerant compressor
JP2005307799A (en) * 2004-04-20 2005-11-04 Matsushita Electric Ind Co Ltd Refrigerant compressor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012145812A2 (en) 2011-04-28 2012-11-01 Whirlpool S.A. Valve arrangement for hermetic compressors
CN103452811A (en) * 2013-09-05 2013-12-18 广州万宝集团压缩机有限公司 Quick opening suction valve plate of refrigeration compressor
CN108105091A (en) * 2018-02-02 2018-06-01 广东美芝制冷设备有限公司 Compression mechanism and with its compressor
CN108105091B (en) * 2018-02-02 2023-11-24 广东美芝制冷设备有限公司 Compression mechanism and compressor with same

Also Published As

Publication number Publication date
JP4692434B2 (en) 2011-06-01

Similar Documents

Publication Publication Date Title
JP2007092539A (en) Hermetic compressor
JP4692434B2 (en) Compressor
JP2014238012A (en) Compressor
KR100624818B1 (en) Linear compressor
KR20040022787A (en) Apparatus for sucking gas in reciprocating compressor
JP2008002370A (en) Compressor
KR101510698B1 (en) rotary compressor
WO2010050141A1 (en) Sealed compressor
KR100486566B1 (en) Discharge apparatus of reciprocating compressor
JP2004108313A (en) Closed type compressor
JP2007132262A (en) Compressor
JP2002089450A (en) Refrigerant compressor
JP2006152960A (en) Rocking type compressor
JP6321400B2 (en) Hermetic compressor
JP2013139725A (en) Oscillating piston type compressor
JP2010090705A (en) Refrigerant compressor
US10968911B2 (en) Oscillating piston-type compressor
JP4978461B2 (en) Rotary compressor
KR20190075028A (en) Compressor
WO2011093086A1 (en) Fluid machinery
JP4017853B2 (en) Hermetic reciprocating compressor
JP5810273B2 (en) Hermetic compressor and refrigeration system
JP4900151B2 (en) Refrigerant compressor
JP6945128B2 (en) Compressor
KR20070051064A (en) Hermetic type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081121

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091127

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100921

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110125

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110207

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees