JP2008038652A - Misfire detection system for internal combustion engine - Google Patents

Misfire detection system for internal combustion engine Download PDF

Info

Publication number
JP2008038652A
JP2008038652A JP2006210854A JP2006210854A JP2008038652A JP 2008038652 A JP2008038652 A JP 2008038652A JP 2006210854 A JP2006210854 A JP 2006210854A JP 2006210854 A JP2006210854 A JP 2006210854A JP 2008038652 A JP2008038652 A JP 2008038652A
Authority
JP
Japan
Prior art keywords
oxygen concentration
concentration sensor
internal combustion
combustion engine
fuel ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006210854A
Other languages
Japanese (ja)
Inventor
Hisashi Oki
久 大木
Kiyoshi Fujiwara
清 藤原
Tomoumi Yamada
智海 山田
Tsugufumi Aikawa
嗣史 藍川
Takashi Koyama
崇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2006210854A priority Critical patent/JP2008038652A/en
Publication of JP2008038652A publication Critical patent/JP2008038652A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a technology enabling accurate detection of misfire of an internal combustion engine in a system detecting misfire of the internal combustion engine by comparing measurement values of air fuel ratio sensors and/or oxygen concentration sensors arranged before and after a catalyst. <P>SOLUTION: In the misfire detection system of the internal combustion engine provided with the first oxygen concentration sensor 7 provided in an exhaust passage in the upstream of the catalyst 6, the second oxygen concentration sensor 8 arranged in the downstream of the catalyst 6, and a detection means 10 detecting misfire of the internal combustion engine by comparing the measurement value of the first oxygen concentration sensor and measurement value of the second oxygen concentration sensor 8, passage ratio of unburned fuel composition of a cover 73 of the first oxygen concentration sensor 7 is set lower as compared to that of the cover 83 of the second oxygen concentration sensor 8. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、内燃機関の失火を検出するシステムに関する。   The present invention relates to a system for detecting misfire of an internal combustion engine.

内燃機関の失火を検出する技術として、触媒前後に配置された空燃比センサの測定値の差に基づいて失火を検出する技術が知られている(例えば、特許文献1を参照)。
特開平4−370350号公報 特公平5−67766号公報 特開2001−289111号公報 特開2004−316498号公報
As a technique for detecting misfire of an internal combustion engine, a technique for detecting misfire based on a difference in measured values of air-fuel ratio sensors arranged before and after a catalyst is known (see, for example, Patent Document 1).
JP-A-4-370350 Japanese Patent Publication No. 5-67766 JP 2001-289111 A JP 2004-316498 A

ところで、近年では未燃燃料成分を酸化可能な空燃比センサや酸素濃度センサが普及してきている。このような空燃比センサ又は酸素濃度センサが触媒前後に配置された場合は、上記した従来技術により内燃機関の失火を検出することが困難となる。   Incidentally, in recent years, air-fuel ratio sensors and oxygen concentration sensors that can oxidize unburned fuel components have become widespread. When such an air-fuel ratio sensor or oxygen concentration sensor is arranged before and after the catalyst, it becomes difficult to detect misfire of the internal combustion engine by the above-described conventional technology.

本発明は、上記したような実情に鑑みてなされたものであり、その目的は、触媒前後に配置された空燃比センサおよび/または酸素濃度センサの測定値を比較することにより内燃機関の失火を検出するシステムにおいて、内燃機関の失火を精度良く検出可能な技術を提供することにある。   The present invention has been made in view of the above circumstances, and its purpose is to prevent misfire of an internal combustion engine by comparing measured values of air-fuel ratio sensors and / or oxygen concentration sensors arranged before and after the catalyst. An object of the present invention is to provide a technology capable of accurately detecting misfire of an internal combustion engine in a detection system.

本発明は、上記した課題を解決するために、触媒の上下流に配置された2つの酸素濃度センサの測定値に基づいて内燃機関の失火を検出するシステムにおいて、触媒上流の酸素濃度センサは、触媒下流の酸素濃度センサに比して、排気中の未燃燃料成分を酸化する能力が低くなるよう構成した。   In order to solve the above-described problems, the present invention is a system for detecting misfire of an internal combustion engine based on the measured values of two oxygen concentration sensors arranged upstream and downstream of a catalyst. Compared to the oxygen concentration sensor downstream of the catalyst, the ability to oxidize unburned fuel components in the exhaust gas is reduced.

詳細には、内燃機関の排気通路に配置された触媒と、触媒より上流の排気通路に配置された第1酸素濃度センサと、触媒より下流に配置された第2酸素濃度センサと、前記第1酸素濃度センサの測定値及び前記第2酸素濃度センサの測定値を比較することにより内燃機関の失火を検出する検出手段と、を備えた内燃機関の失火検出システムにおいて、前記第1酸素濃度センサの酸化能が前記第2酸素濃度センサの酸化能より低くされる。   Specifically, the catalyst disposed in the exhaust passage of the internal combustion engine, the first oxygen concentration sensor disposed in the exhaust passage upstream of the catalyst, the second oxygen concentration sensor disposed downstream of the catalyst, and the first A detection means for detecting misfiring of the internal combustion engine by comparing the measured value of the oxygen concentration sensor and the measured value of the second oxygen concentration sensor. The oxidation ability is made lower than the oxidation ability of the second oxygen concentration sensor.

尚、本発明にかかる酸素濃度センサは、空燃比センサやOセンサの何れであってもよい。また、第1及び第2酸素濃度センサの酸化能は、主として排気中の未燃燃料成分を酸化する能力である。 The oxygen concentration sensor according to the present invention may be an air-fuel ratio sensor or an O 2 sensor. The oxidizing ability of the first and second oxygen concentration sensors is mainly the ability to oxidize unburned fuel components in the exhaust.

内燃機関が失火した場合は、排気中に含まれる未燃燃料成分及び酸素の量が増加する。このため、内燃機関が失火した場合に、触媒上流の酸素濃度は、内燃機関が失火していない場合に比べ大幅に高く(リーン)なる。   When the internal combustion engine misfires, the amount of unburned fuel components and oxygen contained in the exhaust gas increases. For this reason, when the internal combustion engine is misfired, the oxygen concentration upstream of the catalyst is significantly higher (lean) than when the internal combustion engine is not misfired.

また、排気中の未燃燃料成分と酸素は触媒において酸化反応を起こすため、触媒下流の酸素濃度は内燃機関が失火した場合と失火しない場合とで殆ど差を生じない。   Further, since the unburned fuel component and oxygen in the exhaust cause an oxidation reaction in the catalyst, the oxygen concentration downstream of the catalyst hardly makes a difference between when the internal combustion engine misfires and when it does not misfire.

よって、触媒上流の酸素濃度が触媒下流の酸素濃度に対して高く(リーン)なると、内燃機関が失火したとみなすことが可能となる。   Therefore, when the oxygen concentration upstream of the catalyst is higher (lean) than the oxygen concentration downstream of the catalyst, it can be considered that the internal combustion engine has misfired.

ところで、第1及び第2酸素濃度センサが未燃燃料成分を酸化する能力を具備していると、排気中の未燃燃料成分と酸素が第1酸素濃度センサにおいて酸化反応を起こすようになる。   By the way, if the first and second oxygen concentration sensors have the ability to oxidize unburned fuel components, the unburned fuel components and oxygen in the exhaust gas cause an oxidation reaction in the first oxygen concentration sensor.

このため、内燃機関が失火した場合であっても第1酸素濃度センサの測定値が大幅に高くなることがなくなる。その結果、内燃機関が失火した場合に、第1酸素濃度センサの測定値と第2酸素濃度センサの測定値との間に明確な差が生じ難くい。   For this reason, even if the internal combustion engine is misfired, the measured value of the first oxygen concentration sensor is not significantly increased. As a result, when the internal combustion engine misfires, it is difficult for a clear difference to occur between the measured value of the first oxygen concentration sensor and the measured value of the second oxygen concentration sensor.

そこで、本発明にかかる内燃機関の失火検出システムでは、第1酸素濃度センサの酸化能を第2酸素濃度センサの酸化能より低くした。   Therefore, in the misfire detection system for an internal combustion engine according to the present invention, the oxidizing ability of the first oxygen concentration sensor is made lower than the oxidizing ability of the second oxygen concentration sensor.

かかる構成によれば、内燃機関が失火した場合に、排気中の未燃燃料成分及び酸素が第1酸素濃度センサにおいて酸化反応を起こし難くなる。このため、第1酸素濃度センサの測定値と第2酸素濃度センサの測定値との間に明確な差が生じる。その結果、検出手段は、第1及び第2酸素濃度センサの測定値を比較することによって内燃機関の失火を検出可能となる。   According to this configuration, when the internal combustion engine misfires, the unburned fuel component and oxygen in the exhaust gas hardly cause an oxidation reaction in the first oxygen concentration sensor. For this reason, a clear difference arises between the measured value of the first oxygen concentration sensor and the measured value of the second oxygen concentration sensor. As a result, the detection means can detect misfire of the internal combustion engine by comparing the measured values of the first and second oxygen concentration sensors.

尚、酸素濃度センサは、酸素濃度を検出するための検出素子と、検出素子を覆うカバーとを備えている。前記カバーの複数箇所には、該カバーの内外を連通する孔(流通孔)が設けられている。また、前記カバー内の検出素子近傍には、排気中の未燃燃料成分を酸化するための酸化触媒が設けられている。   The oxygen concentration sensor includes a detection element for detecting the oxygen concentration and a cover that covers the detection element. A plurality of holes (flow holes) communicating the inside and outside of the cover are provided at a plurality of locations of the cover. An oxidation catalyst for oxidizing the unburned fuel component in the exhaust is provided near the detection element in the cover.

このような構成の酸素濃度センサにおいて酸化能を低くする方法としては、排気中の未燃燃料成分がカバー内へ流入し難くする(未燃燃料成分の通過率を低くする)方法を例示することができる。   As a method for reducing the oxidizing ability in the oxygen concentration sensor having such a configuration, a method for making it difficult for unburned fuel components in the exhaust to flow into the cover (reducing the passage rate of unburned fuel components) is exemplified. Can do.

未燃燃料成分は、酸素に比して分子量が重いため運動方向を急速に転換することができない。そこで、流通孔が排気の流れ方向と正対しない位置に配置された場合、流通孔の数が少なくされた場合、或いは流通孔の断面積が小さくされた場合は、排気中の酸素がカバー内へ流入し易く、且つ排気中の未燃燃料成分がカバー内へ流入し難くなる。   Since the unburned fuel component has a higher molecular weight than oxygen, the direction of movement cannot be rapidly changed. Therefore, when the flow holes are arranged at positions that do not face the flow direction of the exhaust, when the number of flow holes is reduced, or when the cross-sectional area of the flow holes is reduced, oxygen in the exhaust is not contained in the cover. The unburned fuel component in the exhaust gas is less likely to flow into the cover.

従って、(1)第1酸素濃度センサにおいて排気の流れと正対する位置に配置される流通孔の数が第2酸素濃度センサより少なくされる、(2)第1酸素濃度センサの流通孔の数が第2酸素濃度センサより少なくされる、或いは(3)第1酸素濃度センサの流通孔の断面積が第2酸素濃度センサより小さくされると、第1酸素濃度センサの酸化能が第2酸素濃度センサの酸化能より低くなる。   Therefore, (1) the number of flow holes arranged in the first oxygen concentration sensor at a position facing the exhaust flow is less than that of the second oxygen concentration sensor, and (2) the number of flow holes of the first oxygen concentration sensor. Is less than that of the second oxygen concentration sensor, or (3) when the cross-sectional area of the flow hole of the first oxygen concentration sensor is made smaller than that of the second oxygen concentration sensor, the oxidizing ability of the first oxygen concentration sensor becomes the second oxygen. It becomes lower than the oxidizing ability of the concentration sensor.

また、第1酸素濃度センサの酸化能を第2酸素濃度センサの酸化能より低くする他の方法としては、第1酸素濃度センサのカバー表面にのみ、未燃燃料成分を吸着する吸着材を付加する方法を例示することができる。   As another method for lowering the oxidizing ability of the first oxygen concentration sensor than that of the second oxygen concentration sensor, an adsorbent that adsorbs unburned fuel components is added only to the cover surface of the first oxygen concentration sensor. The method of doing can be illustrated.

尚、本発明にかかる内燃機関の失火検出システムにおいて、検出手段は、第1酸素濃度センサの測定値と第2酸素濃度センサの測定値との比較に加え、触媒温度の変化量も考慮して内燃機関の失火を検出するようにしてもよい。   In the misfire detection system for an internal combustion engine according to the present invention, the detection means takes into account the amount of change in the catalyst temperature in addition to the comparison between the measurement value of the first oxygen concentration sensor and the measurement value of the second oxygen concentration sensor. You may make it detect misfire of an internal combustion engine.

内燃機関が失火した場合は、多量の未燃燃料成分が触媒において酸化されるため、触媒の温度が大幅に上昇する。よって、検出手段は、第1酸素濃度センサの測定値が第2酸素濃度センサの測定値より高く、且つ触媒温度の上昇量が多い時に、内燃機関が失火したとみなすようにしてもよい。この方法によれば、失火の検出精度を高めることができる。   When the internal combustion engine misfires, a large amount of unburned fuel components are oxidized in the catalyst, so that the temperature of the catalyst increases significantly. Therefore, the detection means may consider that the internal combustion engine has misfired when the measured value of the first oxygen concentration sensor is higher than the measured value of the second oxygen concentration sensor and the amount of increase in the catalyst temperature is large. According to this method, the misfire detection accuracy can be increased.

本発明によれば、触媒前後に配置された空燃比センサおよび/または酸素濃度センサの測定値を比較することにより内燃機関の失火を検出するシステムにおいて、内燃機関の失火を精度良く検出することが可能となる。   According to the present invention, in a system for detecting misfire of an internal combustion engine by comparing measured values of air-fuel ratio sensors and / or oxygen concentration sensors arranged before and after the catalyst, it is possible to accurately detect misfire of the internal combustion engine. It becomes possible.

以下、本発明の具体的な実施形態について図面に基づいて説明する。   Hereinafter, specific embodiments of the present invention will be described with reference to the drawings.

<実施例1>
先ず、本発明の第1の実施例について図1〜図4に基づいて説明する。図1は、本発明に係る内燃機関の失火検出システムの概略構成を示す図である。
<Example 1>
First, a first embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a diagram showing a schematic configuration of a misfire detection system for an internal combustion engine according to the present invention.

図1に示す内燃機関1は、複数の気筒2を具備した圧縮着火式の内燃機関(ディーゼルエンジン)である。内燃機関1には、吸気通路3と排気通路4が接続されている。吸気通路3と排気通路4には、遠心過給器5のコンプレッサハウジング50とタービンハウジング51が各々配置されている。   An internal combustion engine 1 shown in FIG. 1 is a compression ignition type internal combustion engine (diesel engine) having a plurality of cylinders 2. An intake passage 3 and an exhaust passage 4 are connected to the internal combustion engine 1. A compressor housing 50 and a turbine housing 51 of the centrifugal supercharger 5 are disposed in the intake passage 3 and the exhaust passage 4, respectively.

タービンハウジング51より下流の排気通路4には、排気浄化装置6が配置されている。排気浄化装置6は、ケーシング内に触媒が装填された装置である。前記した触媒としては、(1)吸蔵還元型NOx触媒、(2)酸化触媒、(3)吸蔵還元型NOx触媒が併設されたパティキュレートフィルタ、或いは(4)酸化触媒が併設されたパティキュレートフィルタ等を例示することができる。   An exhaust purification device 6 is disposed in the exhaust passage 4 downstream of the turbine housing 51. The exhaust purification device 6 is a device in which a catalyst is loaded in a casing. Examples of the catalyst include (1) an occlusion reduction type NOx catalyst, (2) an oxidation catalyst, (3) a particulate filter provided with an NOx storage reduction catalyst, or (4) a particulate filter provided with an oxidation catalyst. Etc. can be illustrated.

タービンハウジング51と排気浄化装置6との間の排気通路4には、上流側空燃比センサ7が配置されている。上流側空燃比センサ7は、本発明にかかる第1酸素濃度センサの一実施態様である。   An upstream air-fuel ratio sensor 7 is disposed in the exhaust passage 4 between the turbine housing 51 and the exhaust purification device 6. The upstream air-fuel ratio sensor 7 is an embodiment of the first oxygen concentration sensor according to the present invention.

図2は、上流側空燃比センサ7の構成を示す断面図である。上流側空燃比センサ7は、排気中の酸素量に応じた電気信号を出力する検出素子70を備えている。検出素子70の表面の一部又は全部には、排気中の未燃燃料成分を酸化する触媒層71が形成されている。   FIG. 2 is a cross-sectional view showing the configuration of the upstream air-fuel ratio sensor 7. The upstream air-fuel ratio sensor 7 includes a detection element 70 that outputs an electrical signal corresponding to the amount of oxygen in the exhaust gas. A catalyst layer 71 that oxidizes unburned fuel components in the exhaust is formed on a part or all of the surface of the detection element 70.

上記した検出素子70及び触媒層71は、二重構造のカバー72,73により覆われている(以下、2つのカバー72,73のうち、内側のカバー72を「内カバー72」と記すとともに、外側のカバー73を「外カバー73」と記す)。   The detection element 70 and the catalyst layer 71 described above are covered with double-structured covers 72 and 73 (hereinafter, the inner cover 72 of the two covers 72 and 73 is referred to as “inner cover 72”, and The outer cover 73 is referred to as an “outer cover 73”).

前記した内カバー72には、該内カバー72の内外を連通する流通孔720が複数箇所に設けられている。前記した外カバー73にも、内カバー72と同様の流通孔730が複数箇所に設けられている。   The aforementioned inner cover 72 is provided with a plurality of flow holes 720 that communicate the inside and outside of the inner cover 72. The outer cover 73 described above is also provided with a plurality of flow holes 730 similar to the inner cover 72.

ここで図1に戻り、排気浄化装置6より下流の排気通路4には、下流側空燃比センサ8と排気温度センサ9が配置されている。下流側空燃比センサ8は、本発明にかかる第2酸素濃度センサの一実施態様である。   Returning to FIG. 1, a downstream air-fuel ratio sensor 8 and an exhaust temperature sensor 9 are disposed in the exhaust passage 4 downstream of the exhaust purification device 6. The downstream air-fuel ratio sensor 8 is an embodiment of the second oxygen concentration sensor according to the present invention.

図3は、下流側空燃比センサ8の構成を示す断面図である。下流側空燃比センサ8も、上流側空燃比センサ7と同様に、検出素子80、触媒層81、内カバー82、及び外カバー83を備え、内カバー82と外カバー83には流通孔820,830が各々設けられている。   FIG. 3 is a cross-sectional view showing the configuration of the downstream air-fuel ratio sensor 8. Similarly to the upstream air-fuel ratio sensor 7, the downstream air-fuel ratio sensor 8 also includes a detection element 80, a catalyst layer 81, an inner cover 82, and an outer cover 83. The inner cover 82 and the outer cover 83 have flow holes 820, 830 is provided.

上記した上流側空燃比センサ7、下流側空燃比センサ8、及び排気温度センサ9の出力信号(測定値)は、ECU10へ入力されるようになっている。ECU10は、上流側空燃比センサ7、下流側空燃比センサ8、及び排気温度センサ9等の測定値に基づいて種々の処理や制御を行う電子制御ユニットである。   Output signals (measured values) from the upstream air-fuel ratio sensor 7, downstream air-fuel ratio sensor 8, and exhaust temperature sensor 9 are input to the ECU 10. The ECU 10 is an electronic control unit that performs various processes and controls based on measured values of the upstream air-fuel ratio sensor 7, the downstream air-fuel ratio sensor 8, the exhaust temperature sensor 9, and the like.

例えば、ECU10は、上流側空燃比センサ7の測定値と下流側空燃比センサ8の測定値とを比較することにより、内燃機関1の失火検出処理を行う。   For example, the ECU 10 performs misfire detection processing of the internal combustion engine 1 by comparing the measured value of the upstream air-fuel ratio sensor 7 with the measured value of the downstream air-fuel ratio sensor 8.

内燃機関1が失火すると、排気中の未燃燃料成分(例えば、炭化水素(HC)等)の量が増加するとともに、酸素(O)の量も増加する。 When the internal combustion engine 1 misfires, the amount of unburned fuel components (for example, hydrocarbon (HC), etc.) in the exhaust increases, and the amount of oxygen (O 2 ) also increases.

この場合、上流側空燃比センサ7は排気中の多量の酸素を検出するため、該上流側空燃比センサ7の測定値は機関空燃比(内燃機関1に供給された燃料と空気との比)に対して高い値(リーンな値)を示す(以下、この現象を「リーンずれ」と称する)。   In this case, since the upstream air-fuel ratio sensor 7 detects a large amount of oxygen in the exhaust gas, the measured value of the upstream air-fuel ratio sensor 7 is the engine air-fuel ratio (ratio of fuel to air supplied to the internal combustion engine 1). (A lean value) (hereinafter, this phenomenon is referred to as “lean deviation”).

一方、下流側空燃比センサ8の測定値は機関空燃比と略同等の値を示す。これは、排気中の未燃燃料成分と酸素が排気浄化装置6の触媒により酸化反応を起こすためである。   On the other hand, the measured value of the downstream air-fuel ratio sensor 8 is substantially equal to the engine air-fuel ratio. This is because the unburned fuel component and oxygen in the exhaust cause an oxidation reaction by the catalyst of the exhaust purification device 6.

よって、内燃機関1が失火した場合は、上流側空燃比センサ7の測定値が下流側空燃比センサ8の測定値に比して大幅にリーンな値を示すことになる。   Therefore, when the internal combustion engine 1 misfires, the measured value of the upstream air-fuel ratio sensor 7 is significantly leaner than the measured value of the downstream air-fuel ratio sensor 8.

ところで、上流側空燃比センサ7は触媒層71を備えているため、内燃機関1が失火した場合にリーンずれを起こし難い。このため、内燃機関1が失火した場合であっても上流側空燃比センサ7の測定値と下流側空燃比センサ8の測定値との差が小さくなり、ECU10が内燃機関1の失火を検出することができない可能性がある。   By the way, since the upstream air-fuel ratio sensor 7 includes the catalyst layer 71, it is difficult to cause a lean shift when the internal combustion engine 1 misfires. For this reason, even if the internal combustion engine 1 misfires, the difference between the measured value of the upstream air-fuel ratio sensor 7 and the measured value of the downstream air-fuel ratio sensor 8 becomes small, and the ECU 10 detects the misfire of the internal combustion engine 1. It may not be possible.

そこで、本実施例の内燃機関の失火検出システムは、上流側空燃比センサ7の酸化能を下流側空燃比センサ8の酸化能より低くした。   Therefore, in the misfire detection system for the internal combustion engine of this embodiment, the oxidizing ability of the upstream air-fuel ratio sensor 7 is made lower than the oxidizing ability of the downstream air-fuel ratio sensor 8.

上流側空燃比センサ7の酸化能が下流側空燃比センサ8の酸化能より低くされると、上流側空燃比センサ7がリーンずれを起こし易く且つ下流側空燃比センサ8がリーンずれを起こし難くなる。このため、排気中に含まれる未燃燃料成分の量が多くなるほど、上流側空燃比センサ7の測定値と下流側空燃比センサ8の測定値との差が大きくなる。   If the oxidizing ability of the upstream air-fuel ratio sensor 7 is made lower than the oxidizing ability of the downstream air-fuel ratio sensor 8, the upstream air-fuel ratio sensor 7 is likely to cause a lean deviation and the downstream air-fuel ratio sensor 8 is less likely to cause a lean deviation. . For this reason, as the amount of the unburned fuel component contained in the exhaust gas increases, the difference between the measured value of the upstream air-fuel ratio sensor 7 and the measured value of the downstream air-fuel ratio sensor 8 increases.

よって、内燃機関1が失火した場合に、上流側空燃比センサ7の測定値と下流側空燃比センサ8の測定値との間に明確な差が生じ、ECU10が内燃機関1の失火を精度良く検出することができる。   Therefore, when the internal combustion engine 1 misfires, a clear difference occurs between the measured value of the upstream air-fuel ratio sensor 7 and the measured value of the downstream air-fuel ratio sensor 8, and the ECU 10 accurately detects the misfire of the internal combustion engine 1. Can be detected.

以下、上流側空燃比センサ7の酸化能を下流側空燃比センサ8の酸化能より低くする方法について述べる。   Hereinafter, a method for making the oxidizing ability of the upstream air-fuel ratio sensor 7 lower than the oxidizing ability of the downstream air-fuel ratio sensor 8 will be described.

図4は、上流側空燃比センサ7及び下流側空燃比センサ8の正面図である。図4中の(a)は上流側空燃比センサ7の正面図であり、(b)は下流側空燃比センサ8の正面図である。   FIG. 4 is a front view of the upstream air-fuel ratio sensor 7 and the downstream air-fuel ratio sensor 8. 4A is a front view of the upstream air-fuel ratio sensor 7, and FIG. 4B is a front view of the downstream air-fuel ratio sensor 8.

図4において、上流側空燃比センサ7の外カバー73に設けられる流通孔730の個数は、下流側空燃比センサ8の外カバー83に設けられる流通孔830の個数より少なくされている。   In FIG. 4, the number of flow holes 730 provided in the outer cover 73 of the upstream air-fuel ratio sensor 7 is smaller than the number of flow holes 830 provided in the outer cover 83 of the downstream air-fuel ratio sensor 8.

この場合、排気中の未燃燃料成分は、上流側空燃比センサ7の外カバー73内へ流入し
難く、且つ下流側空燃比センサ8の外カバー83内へ流入し易くなる。つまり、上流側空燃比センサ7の外カバー73は、下流側空燃比センサ8の外カバー83に比して未燃燃料成分の通過率が低くなる。
In this case, the unburned fuel component in the exhaust gas hardly flows into the outer cover 73 of the upstream air-fuel ratio sensor 7 and easily flows into the outer cover 83 of the downstream air-fuel ratio sensor 8. That is, the outer cover 73 of the upstream air-fuel ratio sensor 7 has a lower passage rate of unburned fuel components than the outer cover 83 of the downstream air-fuel ratio sensor 8.

一方、排気中の酸素は未燃燃料成分に比して分子量が軽く、運動方向を急速に転換可能であるため、上流側空燃比センサ7の外カバー73と下流側空燃比センサ8の外カバー83とで酸素の通過率に大幅な差は生じない。   On the other hand, the oxygen in the exhaust gas has a lighter molecular weight than the unburned fuel component, and the direction of motion can be rapidly changed. Therefore, the outer cover 73 of the upstream air-fuel ratio sensor 7 and the outer cover of the downstream air-fuel ratio sensor 8 There is no significant difference in the oxygen passage rate between 83 and 83.

従って、内燃機関1が失火した場合に、上流側空燃比センサ7の外カバー73内には未燃燃料成分が殆ど流入せずに多量の酸素が流入するようになる。その結果、上流側空燃比センサ7の検出素子70はリーンずれを起こし易い。   Accordingly, when the internal combustion engine 1 misfires, a large amount of oxygen flows into the outer cover 73 of the upstream air-fuel ratio sensor 7 with almost no unburned fuel component flowing. As a result, the detection element 70 of the upstream air-fuel ratio sensor 7 is liable to cause a lean shift.

これに対し、下流側空燃比センサ8の外カバー83内には未燃燃料成分が流入し易いため、排気浄化装置6の触媒において酸化しきれなかった未燃燃料成分が触媒層81で酸化されるようになる。その結果、内燃機関1が失火した場合に、下流側空燃比センサ8の検出素子80はリーンずれを起こし難い。   On the other hand, since the unburned fuel component easily flows into the outer cover 83 of the downstream air-fuel ratio sensor 8, the unburned fuel component that could not be oxidized by the catalyst of the exhaust purification device 6 is oxidized by the catalyst layer 81. Become so. As a result, when the internal combustion engine 1 misfires, the detection element 80 of the downstream air-fuel ratio sensor 8 is unlikely to cause a lean shift.

このように上流側空燃比センサ7の検出素子70がリーンずれを起こし易く、且つ下流側空燃比センサ8の検出素子70がリーンずれを起こし難くなると、内燃機関1が失火した場合に上流側空燃比センサ7の測定値と下流側空燃比センサ8の測定値との差が明確になるため、ECU10が内燃機関1の失火を精度良く検出することが可能となる。   As described above, when the detection element 70 of the upstream air-fuel ratio sensor 7 is likely to cause a lean shift and the detection element 70 of the downstream air-fuel ratio sensor 8 is less likely to cause a lean shift, the upstream air Since the difference between the measured value of the fuel ratio sensor 7 and the measured value of the downstream air-fuel ratio sensor 8 becomes clear, the ECU 10 can accurately detect misfire of the internal combustion engine 1.

尚、本実施例では、上流側空燃比センサ7の外カバー73と下流側空燃比センサ8の外カバー83との未燃燃料成分の通過率を相違させる方法として、流通孔730.830の個数を相違させる方法を例示したが、これに限られないことは勿論である。   In the present embodiment, as a method of making the unburned fuel component passage rate different between the outer cover 73 of the upstream air-fuel ratio sensor 7 and the outer cover 83 of the downstream air-fuel ratio sensor 8, the number of flow holes 730.830 Although the method of making these differ was illustrated, it is needless to say that the present invention is not limited to this.

例えば、上流側空燃比センサ7の流通孔730の断面積が下流側空燃比センサ8の流通孔830の断面積より小さくされてもよい。また、排気の流れと正対する部分のみにおいて、上流側空燃比センサ7の流通孔730の個数が下流側空燃比センサ8の流通孔830の個数より少なくされるようにしてもよい。更に、上流側空燃比センサ7の流通孔730と下流側空燃比センサ8の流通孔830とで個数に加えて断面積も相違させるようにしてもよい。   For example, the cross-sectional area of the flow hole 730 of the upstream air-fuel ratio sensor 7 may be made smaller than the cross-sectional area of the flow hole 830 of the downstream air-fuel ratio sensor 8. Further, the number of the flow holes 730 of the upstream air-fuel ratio sensor 7 may be made smaller than the number of the flow holes 830 of the downstream air-fuel ratio sensor 8 only in the portion directly facing the exhaust flow. Furthermore, in addition to the number of cross-sectional areas, the cross-sectional area may be different between the flow hole 730 of the upstream air-fuel ratio sensor 7 and the flow hole 830 of the downstream air-fuel ratio sensor 8.

また、外カバー73,83の流通孔730,830の個数および/または断面積を相違させる代わりに、内カバー72,82の流通孔720,820の個数および/または断面積を相違させてもよく、外カバー73,83の流通孔730,830と内カバー72,82の流通孔720,820との相対位置を相違させるようにしてもよい。   Further, instead of making the numbers and / or cross-sectional areas of the flow holes 730 and 830 of the outer covers 73 and 83 different, the numbers and / or cross-sectional areas of the flow holes 720 and 820 of the inner covers 72 and 82 may be made different. The relative positions of the flow holes 730 and 830 of the outer covers 73 and 83 and the flow holes 720 and 820 of the inner covers 72 and 82 may be different.

<実施例2>
次に、本発明の第2の実施例について説明する。ここでは、前述した第1の実施例と異なる構成について説明し、同様の構成については説明を省略する。
<Example 2>
Next, a second embodiment of the present invention will be described. Here, a configuration different from that of the first embodiment will be described, and description of the same configuration will be omitted.

前述した第1の実施例では、上流側空燃比センサ7の酸化能を下流側空燃比センサ8の酸化能より低くする方法として、流通孔720,820,730,830の個数および/または断面積および/または相対位置を相違させる方法を例示したが、本実施例では上流側空燃比センサ7の外カバー73の表面、および/または内カバー72の表面に未燃燃料成分を吸着する吸着層を設ける例について述べる。   In the first embodiment described above, the number and / or cross-sectional area of the flow holes 720, 820, 730, and 830 are used as a method of making the oxidizing ability of the upstream air-fuel ratio sensor 7 lower than the oxidizing ability of the downstream air-fuel ratio sensor 8. In this embodiment, an adsorption layer that adsorbs unburned fuel components on the surface of the outer cover 73 and / or the surface of the inner cover 72 is illustrated. An example of providing will be described.

上流側空燃比センサ7の外カバー73の表面、および/または内カバー72の表面に未燃燃料成分を吸着する吸着層が設けられると、排気中の未燃燃料成分が上流側空燃比セン
サ7の触媒層71へ到達し難くなる。つまり、上流側空燃比センサ7の外カバー73および/または内カバー72は、下流側空燃比センサ8の外カバー83および/または内カバー82に比して未燃燃料成分の通過率が低くなる。
When an adsorption layer for adsorbing unburned fuel components is provided on the surface of the outer cover 73 and / or the surface of the inner cover 72 of the upstream air-fuel ratio sensor 7, the unburned fuel components in the exhaust are converted to the upstream air-fuel ratio sensor 7. It becomes difficult to reach the catalyst layer 71. That is, the outer cover 73 and / or inner cover 72 of the upstream air-fuel ratio sensor 7 has a lower passage rate of unburned fuel components than the outer cover 83 and / or inner cover 82 of the downstream air-fuel ratio sensor 8. .

従って、内燃機関1が失火した場合に上流側空燃比センサ7の測定値と下流側空燃比センサ8の測定値との差が明確になるため、ECU10が内燃機関1の失火を精度良く検出することが可能となる。   Therefore, when the internal combustion engine 1 misfires, the difference between the measured value of the upstream air-fuel ratio sensor 7 and the measured value of the downstream air-fuel ratio sensor 8 becomes clear, so the ECU 10 detects the misfire of the internal combustion engine 1 with high accuracy. It becomes possible.

尚、前述した第1の実施例と本実施例の構成は、可能な限り組み合わせることができる。その場合、内燃機関1が失火した際の上流側空燃比センサ7の測定値と下流側空燃比センサ8の測定値との差が一層明確になる。   The configurations of the first embodiment and the present embodiment described above can be combined as much as possible. In that case, the difference between the measured value of the upstream air-fuel ratio sensor 7 and the measured value of the downstream air-fuel ratio sensor 8 when the internal combustion engine 1 misfires is further clarified.

本発明を適用する内燃機関の概略構成を示す図である。1 is a diagram showing a schematic configuration of an internal combustion engine to which the present invention is applied. 上流側空燃比センサの構成を示す断面図である。It is sectional drawing which shows the structure of an upstream air fuel ratio sensor. 下流側空燃比センサの構成を示す断面図である。It is sectional drawing which shows the structure of a downstream air-fuel-ratio sensor. (a)は上流側空燃比センサの正面図であり、(b)は下流側空燃比センサの正面図である。(A) is a front view of an upstream air-fuel ratio sensor, (b) is a front view of a downstream air-fuel ratio sensor.

符号の説明Explanation of symbols

1・・・・・内燃機関
2・・・・・気筒
3・・・・・吸気通路
4・・・・・排気通路
5・・・・・遠心過給機(ターボチャージャ)
6・・・・・排気浄化装置(触媒)
7・・・・・上流側空燃比センサ(第1酸素濃度センサ)
8・・・・・下流側空燃比センサ(第2酸素濃度センサ)
9・・・・・排気温度センサ
10・・・・ECU(検出手段)
70・・・・検出素子
71・・・・触媒層
72・・・・内カバー
73・・・・外カバー
80・・・・検出素子
81・・・・触媒層
82・・・・内カバー
83・・・・外カバー
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Cylinder 3 ... Intake passage 4 ... Exhaust passage 5 ... Centrifugal supercharger (turbocharger)
6. Exhaust gas purification device (catalyst)
7: Upstream air-fuel ratio sensor (first oxygen concentration sensor)
8: Downstream air-fuel ratio sensor (second oxygen concentration sensor)
9 ... Exhaust temperature sensor 10 .... ECU (detection means)
70 ... Detection element 71 ... Catalyst layer 72 ... Inner cover 73 ... Outer cover 80 ... Detection element 81 ... Catalyst layer 82 ... Inner cover 83 .... Outer cover

Claims (5)

内燃機関の排気通路に配置された触媒と、
触媒より上流の排気通路に配置された第1酸素濃度センサと、
触媒より下流に配置された第2酸素濃度センサと、
前記第1酸素濃度センサの測定値及び前記第2酸素濃度センサの測定値を比較することにより内燃機関の失火を検出する検出手段と、
を備えた内燃機関の失火検出システムにおいて、
前記第1酸素濃度センサの酸化能が前記第2酸素濃度センサの酸化能より低くされることを特徴とする内燃機関の失火検出システム。
A catalyst disposed in the exhaust passage of the internal combustion engine;
A first oxygen concentration sensor disposed in an exhaust passage upstream of the catalyst;
A second oxygen concentration sensor disposed downstream of the catalyst;
Detecting means for detecting misfire of the internal combustion engine by comparing the measured value of the first oxygen concentration sensor and the measured value of the second oxygen concentration sensor;
In a misfire detection system for an internal combustion engine equipped with
A misfire detection system for an internal combustion engine, wherein an oxidizing ability of the first oxygen concentration sensor is made lower than an oxidizing ability of the second oxygen concentration sensor.
請求項1において、前記第1酸素濃度センサ及び前記第2酸素濃度センサは、酸化能が付加された検出素子と、該検出素子を覆うカバーとを具備し、
前記第1酸素濃度センサのカバーは、前記第2酸素濃度センサのカバーに比して未燃燃料成分の通過率が低いことを特徴とする内燃機関の失火検出システム。
2. The first oxygen concentration sensor and the second oxygen concentration sensor according to claim 1, each including a detection element to which an oxidizing ability is added, and a cover that covers the detection element.
The internal combustion engine misfire detection system, wherein the cover of the first oxygen concentration sensor has a lower passage rate of unburned fuel components than the cover of the second oxygen concentration sensor.
請求項2において、前記第1酸素濃度センサ及び前記第2酸素濃度センサのカバーには、該カバー内へ排気が出入りする流通孔が設けられており、
前記第1酸素濃度センサのカバーは、前記第2酸素濃度センサのカバーに比して、流通孔の数が少ないことを特徴とする内燃機関の失火検出システム。
In Claim 2, the cover of the first oxygen concentration sensor and the second oxygen concentration sensor is provided with a flow hole through which exhaust enters and exits the cover,
The cover of the first oxygen concentration sensor has a smaller number of flow holes than the cover of the second oxygen concentration sensor, and is a misfire detection system for an internal combustion engine.
請求項2において、前記第1酸素濃度センサ及び前記第2酸素濃度センサのカバーには、該カバー内へ排気が出入りする流通孔が設けられており、
前記第1酸素濃度センサのカバーは、前記第2酸素濃度センサのカバーに比して、流通孔の断面積が小さいことを特徴とする内燃機関の失火検出システム。
In Claim 2, the cover of the first oxygen concentration sensor and the second oxygen concentration sensor is provided with a flow hole through which exhaust enters and exits the cover,
The misfire detection system for an internal combustion engine, wherein the cover of the first oxygen concentration sensor has a cross-sectional area of the flow hole smaller than that of the cover of the second oxygen concentration sensor.
請求項2において、前記第1酸素濃度センサのカバーの表面には、未燃燃料成分を吸着する吸着材が付加されていることを特徴とする内燃機関の失火検出システム。   The misfire detection system for an internal combustion engine according to claim 2, wherein an adsorbent that adsorbs an unburned fuel component is added to a surface of the cover of the first oxygen concentration sensor.
JP2006210854A 2006-08-02 2006-08-02 Misfire detection system for internal combustion engine Withdrawn JP2008038652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006210854A JP2008038652A (en) 2006-08-02 2006-08-02 Misfire detection system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006210854A JP2008038652A (en) 2006-08-02 2006-08-02 Misfire detection system for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2008038652A true JP2008038652A (en) 2008-02-21

Family

ID=39173986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006210854A Withdrawn JP2008038652A (en) 2006-08-02 2006-08-02 Misfire detection system for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2008038652A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121652A (en) * 2014-12-25 2016-07-07 三菱自動車工業株式会社 Exhaust device of multicylinder internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016121652A (en) * 2014-12-25 2016-07-07 三菱自動車工業株式会社 Exhaust device of multicylinder internal combustion engine

Similar Documents

Publication Publication Date Title
EP1580412B1 (en) Method for sensing exhaust gas for on-board diagnosis
EP2037257B1 (en) Exhaust gas sensor abnormality diagnostic device
JP4915256B2 (en) Catalyst degradation diagnosis apparatus and degradation diagnosis method
JP2007032357A (en) Catalyst diagnosis device for internal combustion engine and automobile equipped with internal combustion engine including catalyst diagnosis device
KR20110021904A (en) Method and device for the diagnosis of an nox sensor for an internal combustion engine
JP4507957B2 (en) Catalyst deterioration detection device for internal combustion engine
JP5890453B2 (en) Cylinder variation abnormality detection device
JP4328439B2 (en) How to identify an abnormal cylinder in an automobile
JP7151696B2 (en) Catalyst deterioration detector
JP3316066B2 (en) Failure diagnosis device for exhaust gas purification device
CN112392615B (en) Method for controlling operation of vehicle engine and vehicle system
JP2010180717A (en) Catalyst abnormality diagnosis apparatus
JP2008038652A (en) Misfire detection system for internal combustion engine
JP2008231926A (en) Exhaust emission control device of internal combustion engine
JP2008255952A (en) Sulfur concentration detection device of internal combustion engine
JP2006307716A (en) Air-fuel ratio control device for internal combustion engine
JP4366976B2 (en) Exhaust gas sensor abnormality detection device
JP4894529B2 (en) Catalyst degradation detector
JP4411755B2 (en) Exhaust purification catalyst deterioration state diagnosis device
JP3046852B2 (en) Engine exhaust purification device
Nakagawa et al. A new diagnosis method for an air-fuel ratio cylinder imbalance
JP2019210891A (en) Exhaust gas temperature control method and exhaust gas purification device
US20240229699A9 (en) Filter abnormality determination system
US20240133332A1 (en) Filter abnormality determination system
WO2024075265A1 (en) Method and device for diagnosing deterioration of exhaust gas purification catalyst

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006