JP2008038593A - Bore-increasing excavation method and bore-increasing excavation system - Google Patents

Bore-increasing excavation method and bore-increasing excavation system Download PDF

Info

Publication number
JP2008038593A
JP2008038593A JP2007181631A JP2007181631A JP2008038593A JP 2008038593 A JP2008038593 A JP 2008038593A JP 2007181631 A JP2007181631 A JP 2007181631A JP 2007181631 A JP2007181631 A JP 2007181631A JP 2008038593 A JP2008038593 A JP 2008038593A
Authority
JP
Japan
Prior art keywords
excavation
diameter
steel pipe
blade
drilling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007181631A
Other languages
Japanese (ja)
Other versions
JP4344762B2 (en
Inventor
Masaki Makino
昌己 牧野
Yoshiyuki Hamada
良幸 濱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kato Construction Co Ltd
Original Assignee
Kato Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kato Construction Co Ltd filed Critical Kato Construction Co Ltd
Priority to JP2007181631A priority Critical patent/JP4344762B2/en
Publication of JP2008038593A publication Critical patent/JP2008038593A/en
Application granted granted Critical
Publication of JP4344762B2 publication Critical patent/JP4344762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a bore-increasing excavation system wherein at least earth and soil produced by excavation can be taken into a casing or the bottom section of a preceding excavation hole, on the assumption of a construction method comprising a preceding excavation process and a bore-increasing excavation process of increasing the bore of the preceding hole to finish a shaft of a desired diameter. <P>SOLUTION: A preceding excavation hole H1 of a diameter D2 is drilled by turning a preceding excavation casing 1 to penetrate the ground. The bore-increasing excavation process succeeding the preceding excavation process comprises the step of turning bore-increasing excavating machine 5 to penetrate the preceding hole H1 for increasing the bore of the hole H1 to the diameter D3. A bore-increased excavation hole H2 thus obtained is used as a shaft. A gap A is positively kept between the diameter D1 of the casing 7 of the excavating machine 5 and the diameter D2 of the excavation hole H1 so that the earth and sand produced by bore-increasing excavation easily fall and can be taken into the bottom section side of the hole H1. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、地盤における拡径掘削方法と拡径掘削システムに関し、特にケーソン(PCウエルを含む)の圧入沈設による立て坑の構築に際して、そのケーソンの刃先下を拡底または拡径するような形態で掘削するのに好適な拡径掘削方法と拡径掘削システムに関するものである。   TECHNICAL FIELD The present invention relates to a method for expanding a diameter and a diameter expanding excavation system in the ground, and in particular, in the form of expanding the bottom or diameter of a caisson's cutting edge when constructing a shaft by press-fitting and sinking a caisson (including a PC well). The present invention relates to a diameter expansion drilling method and a diameter expansion drilling system suitable for excavation.

大深度地下の有効利用を目的に国土交通省にて「大深度地下の公共的使用に関する特別措置法」が平成13年4月1日より施行されている。   The Ministry of Land, Infrastructure, Transport and Tourism has been enacting the Act on Special Measures for Public Use of Deep Underground on April 1, 2001 for the purpose of effective use of deep underground.

上記特別措置法における大深度地下とは少なくとも40メートル以深の地下のことを指しており、そのために大深度地下空間と地上とを連絡させる立て坑の構築ニーズが増大し、より大きい径にて、より深く、且つ安全に構築できる技術を目標に各種の工法が開発されている。これらの立て坑の構築にはケーソン沈設工法により構築されるケースが多い。   The deep underground in the Special Measures Law refers to the underground at least 40 meters deep, which increases the need for construction of a vertical shaft that connects the deep underground space and the ground. Various construction methods have been developed with the goal of technology that can be built deeper and more safely. In many cases, these shafts are constructed by the caisson construction method.

その一方、硬質地盤(軟岩、中硬岩を指す)を掘削しながらケーソンを圧入・沈設しようとする場合において、ハンマーグラブ等の既存設備による掘削ではケーソンの刃先下の掘削ができず、そのために例えば特許文献1〜4に記載のようにケーソン刃先下の掘削を可能とする各種拡径掘削装置が提案されている。   On the other hand, when trying to inject and sink caisson while excavating hard ground (pointed to soft rock and medium hard rock), excavation under the cutting edge of caisson is not possible with excavation with existing equipment such as hammer grabs. For example, as described in Patent Documents 1 to 4, various diameter expanding excavators that enable excavation under the caisson edge have been proposed.

これらの掘削装置は、ケーシングパイプの外周に掘削翼を取り付けた拡径掘削装置となっていて、掘削翼で掘削した土砂をケーシングパイプ内に取り込んだ上でグラブバケット等により排土するようにしている。   These drilling devices are large-diameter drilling devices in which drilling blades are attached to the outer periphery of the casing pipe, and the earth and sand excavated by the drilling blades are taken into the casing pipe and then discharged by a grab bucket or the like. Yes.

より具体的には、上記特許文献1〜4に記載に代表されるような従来の技術では、ケーシングを把持してこれを回転させながら地中に押し込む回転押し込み装置と、上記ケーシングに装着された拡径掘削翼とを備えているとともに、その拡径掘削翼には掘削刃が植設されていて、上記回転押し込み装置にてケーシングを回転させながら押し込むことにより硬質地盤の掘削を可能としている。この場合、掘削された土砂はケーシングの周囲に開口形成した土砂取り込み口からケーシング内部に取り込まれるようになっていて、ケーシング内に取り込んだ土砂をハンマーグラブまたはグラブバケット等にて掴んで排土している。
特許第2674731号公報 特許第3031876号公報 特開2005−98048号公報 特開2004−176530号公報
More specifically, in the conventional techniques represented by the above-described Patent Documents 1 to 4, a rotary push-in device that holds the casing and pushes it into the ground while rotating the casing, and the casing are attached to the casing. A drilling blade is provided on the expanded drilling blade, and a hard ground can be drilled by pushing the casing while rotating the casing with the rotary pushing device. In this case, the excavated earth and sand is taken into the casing from the earth and sand intake opening formed around the casing, and the earth and sand taken in the casing is grabbed with a hammer grab or a grab bucket and discharged. ing.
Japanese Patent No. 2674731 Japanese Patent No. 3031876 Japanese Patent Laid-Open No. 2005-98048 JP 2004-176530 A

しかしながら、上記のような各種の従来の技術では、掘削対象地盤が硬質地盤であってその地質が粘性質土系の場合には、掘削された後に土砂と水が掘削翼にてかき混ぜ合わされることにより、粘着性の高い泥土へと変化する(いわゆるヘドロ化現象)。ヘドロ化した土砂は、拡径掘削翼とケーシングの交点付近(ケーシングに対する拡径掘削翼の根元付近)にて滞留したり、あるいはその滞留により再度締め固め状態となって掘削翼全体に付着することになる。その結果、ケーシング内への掘削土砂の取り込み効率が悪くなるともに、掘削翼に付着した土砂重量の増加に伴いケーシングを把持している回転押し込み装置の把持能力が限界に達し、様々な二次的不具合の発生が余儀なくされる。   However, in the various conventional techniques as described above, when the ground to be excavated is hard ground and the geology is a viscous soil system, soil and water are agitated by the excavating blade after excavation. It changes to mud with high tackiness (so-called sludge phenomenon). The sludged sediment will stay near the intersection of the enlarged digging blade and casing (near the root of the enlarged digging blade relative to the casing), or it will become compacted and adhere to the entire drill wing due to the retention. become. As a result, the efficiency of taking excavated sediment into the casing deteriorates, and the gripping capacity of the rotary pusher that grips the casing reaches the limit as the weight of sediment adhering to the excavator blades increases. A failure is forced to occur.

その一方、ケーシングの周囲に開口形成してある土砂取り込み口の拡大化はケーシングそのものの強度の上で自ずと限界があり、そのために掘削土砂のケーシング内への取り込み効率向上のために拡径掘削翼をケーシングとともに間歇的に上下動させることも一部で行われているが、この場合には掘削効率を犠牲にすることで初めて成り立つ手法であり、工期の延長やコストアップを招く要因となって好ましくない。   On the other hand, the enlargement of the earth and sand intake opening formed around the casing is naturally limited in terms of the strength of the casing itself. In some cases, it is also possible to move up and down intermittently with the casing, but this is the first method that can only be realized at the expense of excavation efficiency. It is not preferable.

このようなことから、掘削土砂をスムーズにケーシング内に取り込むことにより、掘削工程あるいは工期の短縮を可能とし、コストダウンに繋がるような掘削土砂の効率的な取り込み方法についての開発要請があった。   For this reason, there has been a request for development of an efficient method for capturing excavated sediment that enables the excavation process or work period to be shortened by smoothly incorporating the excavated sediment into the casing, leading to cost reduction.

本発明はこのような課題に着目してなされたものであり、とりわけ先行掘削孔を拡径するようにして所定口径の立て坑に仕上げる拡径掘削工程を含んでなる工法を前提として、少なくとも拡径掘削によって発生した土砂を先行掘削孔の底部あるいはケーシング内に取り込み易くした拡径掘削方法と拡径掘削システムを提供するものである。   The present invention has been made paying attention to such problems, and at least on the premise of a construction method including a diameter expanding excavation process for finishing a shaft having a predetermined diameter so as to expand the preceding excavation hole. It is an object of the present invention to provide a diameter expansion excavation method and a diameter expansion excavation system in which earth and sand generated by diameter excavation can be easily taken into the bottom of a preceding excavation hole or a casing.

請求項1に記載の発明は、地盤に先行掘削された孔を拡径するように掘削して立て坑とする拡径掘削工程を含んでいて、この拡径掘削工程では、先行掘削孔よりも小径の円筒状の鋼管の外周に拡径掘削翼を設けてなる拡径掘削手段にて上記先行掘削孔を拡径するように掘削するとともに、拡径掘削によって発生した土砂を先行掘削孔と鋼管との隙間を通して先行掘削孔の底部に溜めた上で鋼管内より排土することを特徴とする。   The invention according to claim 1 includes a diameter expanding excavation process in which a hole drilled in the ground is expanded so as to expand the diameter of the hole, and in the diameter expanding excavation process, the diameter of the drilled hole is larger than that of the preceding excavation hole. The diameter of the preceding excavation hole is increased by a diameter expansion excavation means in which an expansion excavation blade is provided on the outer periphery of a small-diameter cylindrical steel pipe, and the sediment generated by the diameter expansion excavation is removed from the previous excavation hole and the steel pipe. It is characterized in that the soil is discharged from the steel pipe after being accumulated at the bottom of the preceding excavation hole through the gap.

より具体的には、請求項2に記載のように、先行掘削手段にて地盤に先行掘削孔を掘削する先行掘削工程を含んでいて、この先行掘削工程では、上記鋼管の直径よりも大径で且つ拡径掘削径よりも小径の先行掘削孔を掘削するものとする。   More specifically, as described in claim 2, it includes a preceding excavation step of excavating a prior excavation hole in the ground by the prior excavation means, and in this prior excavation step, the diameter is larger than the diameter of the steel pipe. In addition, a preceding excavation hole having a diameter smaller than the expanded excavation diameter is excavated.

したがって、少なくとも請求項1に記載の発明では、拡径掘削の際に先行掘削孔と鋼管との間に常に所定の隙間が確保されることから、拡径掘削によって発生した土砂は、従来のように拡径掘削翼の根元部に滞留することなく、上記隙間を通って落下して先行掘削孔の底部に溜まることになる。そして、先行掘削孔の底部に溜まった土砂は鋼管内を昇降するハンマーグラブ等の排土手段にて掴み取ることが可能であることから、この排土手段にて鋼管外に排土されることになる。   Therefore, in at least the invention described in claim 1, since a predetermined gap is always secured between the preceding excavation hole and the steel pipe at the time of the diameter expansion excavation, the earth and sand generated by the diameter expansion excavation is the same as the conventional one. Without staying at the base of the diameter-extended excavation blade, it falls through the gap and accumulates at the bottom of the preceding excavation hole. And since the sediment accumulated at the bottom of the preceding excavation hole can be grabbed by a soil removal means such as a hammer grab that moves up and down in the steel pipe, it is discharged to the outside of the steel pipe by this soil removal means. become.

請求項3に記載の発明は、請求項2に記載の方法を前提として、先行掘削と拡径掘削とを同時並行的に行うことを明確化したものであり、拡径掘削手段と先行掘削手段とを兼用化させて、先行掘削手段による先行掘削と拡径掘削手段による拡径掘削とを並行して行うことを特徴とする。   The invention according to claim 3 clarifies that the preceding excavation and the diameter expansion excavation are performed in parallel on the premise of the method according to claim 2. In combination, the prior excavation by the prior excavation means and the diameter expansion excavation by the diameter expansion excavation means are performed in parallel.

より具体的には、請求項4に記載のように、上記先行掘削は、鋼管のうち拡径掘削翼よりも下方位置に設けた先行掘削手段にて行うものとする。   More specifically, as described in claim 4, the preceding excavation is performed by an advanced excavating means provided in a position below the diameter-extended excavating blade in the steel pipe.

したがって、請求項3,4に記載の発明では、先行掘削が拡径掘削に先行するように両者が同時並行的に行われることから、先行掘削手段の一部としても機能することになる鋼管の先端部が同時に先行掘削孔の底部となる。そのため、拡径掘削によって発生した土砂は先行掘削によって発生した土砂とともに先行掘削孔の底部すなわち鋼管内に集められた上で、排土手段にて外部に排土されることになる。   Therefore, in the inventions according to claims 3 and 4, since both are performed simultaneously so that the preceding excavation precedes the diameter expansion excavation, the steel pipe that also functions as a part of the preceding excavation means The tip portion simultaneously becomes the bottom of the preceding excavation hole. Therefore, the earth and sand generated by the diameter expansion excavation are collected together with the earth and sand generated by the preceding excavation in the bottom part of the preceding excavation hole, that is, in the steel pipe, and then discharged to the outside by the earth discharging means.

逆に請求項5に記載の発明は、請求項2に記載の方法を前提として、先行掘削手段による先行掘削と拡径掘削手段による拡径掘削とを相互に独立して行うことを明確化したものであり、先行掘削手段にて先行掘削孔を先行掘削した後、その先行掘削手段に代えて拡径掘削手段にて拡径掘削を行うことを特徴とする。   On the contrary, the invention described in claim 5 clarifies that the pre-excavation by the pre-excavation means and the diameter-expansion excavation by the large-diameter excavation means are independently performed on the premise of the method according to claim 2. According to the present invention, after the preceding excavation hole has been excavated by the preceding excavation means, the diameter-expanded excavation means is used instead of the preceding excavation means.

この場合において、請求項6に記載のように、上記拡径掘削手段にて拡径掘削を行うにあたり、拡径掘削翼の下方位置に先行掘削孔とほぼ同径またはそれ以下の外径を有する誘導手段を設けておき、この誘導手段を先行掘削孔に内接させることにより、先行掘削孔に対する拡径掘削手段の芯出しがなされるように誘導することが望ましい。   In this case, as described in claim 6, when performing the diameter expansion excavation by the diameter expansion excavation means, the lower position of the diameter expansion excavation blade has an outer diameter substantially equal to or less than the preceding excavation hole. It is desirable to guide so that the diameter-extended drilling means is centered with respect to the preceding excavation hole by providing the guiding means and inscribing the guiding means to the preceding excavation hole.

したがって、少なくとも請求項5に記載の発明では、拡径掘削を行う際には既に拡径掘削手段の鋼管と先行掘削孔との間に所定の隙間が確保されているため、拡径掘削によって発生した土砂は、従来のように拡径掘削翼の根元部に滞留することなく、上記隙間を通って落下して先行掘削孔の底部に溜まることになる。そして、先行掘削孔の底部に溜まった土砂は鋼管内を昇降するハンマーグラブ等の排土手段にて掴み取ることが可能であることから、この排土手段にて鋼管外に排土されることになる。   Therefore, in at least the invention described in claim 5, when the diameter expansion excavation is performed, a predetermined gap is already secured between the steel pipe of the diameter expansion excavation means and the preceding excavation hole. The earth and sand fall through the gap and collect at the bottom of the preceding excavation hole without staying at the root of the enlarged diameter excavation blade as in the prior art. And since the sediment accumulated at the bottom of the preceding excavation hole can be grabbed by a soil removal means such as a hammer grab that moves up and down in the steel pipe, it is discharged to the outside of the steel pipe by this soil removal means. become.

ここで、上記先行掘削は、請求項7に記載のように、拡径掘削手段側の鋼管とほぼ同径の先行掘削用ケーシングチューブの外周に先行掘削翼を設けてなる先行掘削手段にて行うものとする。   Here, as described in claim 7, the preceding excavation is performed by the preceding excavation means in which the preceding excavation blade is provided on the outer periphery of the preceding excavation casing tube having substantially the same diameter as the steel pipe on the diameter expansion excavation means side. Shall.

また、上記先行掘削の際には、請求項8に記載のように、先行掘削用ケーシングチューブのうち先行掘削翼よりも掘削方向前方側に開口形成した土砂取り込み口から先行掘削用ケーシングチューブ内に掘削土砂を取り込むものとする。   Further, in the preceding excavation, as described in claim 8, the sediment excavation opening formed on the front side in the excavation direction from the preceding excavation blade in the preceding excavation casing tube into the preceding excavation casing tube. The excavated soil will be taken in.

上記先行掘削は、請求項7に記載のものに代えて、請求項9に記載のように、拡径掘削手段側の鋼管とほぼ同径の先行掘削用ケーシングチューブに先行掘削孔径とほぼ同径の円筒状の第2の鋼管を装着してあり、且つその第2の鋼管の先端に掘削刃を装着してなる先行掘削手段にて行うこともできるほか、請求項10に記載のように、拡径掘削手段側の鋼管よりも大径で且つ拡径掘削径よりも小径の円筒状の第3の鋼管の先端に掘削刃を装着してなる先行掘削手段にて行うこともできる。   In the preceding excavation, instead of the one described in claim 7, as described in claim 9, the diameter of the preceding excavation casing tube is substantially the same as the diameter of the preceding excavation hole. In addition to the above-described cylindrical second steel pipe, and can be performed by a prior excavation means in which a excavation blade is attached to the tip of the second steel pipe, It can also be carried out by preceding excavation means in which an excavation blade is attached to the tip of a cylindrical third steel pipe having a diameter larger than that of the steel pipe on the diameter expansion excavation means side and smaller than the diameter of the expanded excavation diameter.

上記のようないくつかの工法においては、請求項11に記載のように、拡径掘削翼として拡縮径可能なものを用いることが望ましい。   In some of the construction methods as described above, as described in claim 11, it is desirable to use a diameter-expanded excavating blade capable of expanding and contracting.

また、請求項12に記載のように、拡径掘削手段を形成している鋼管のうち拡径掘削翼の下方位置に螺旋状の補助翼を設けておき、上記拡径掘削翼で掘削した土砂を、その拡径掘削翼の掘削回転に伴い補助翼にて先行掘削孔内に押し込むことが掘削土砂の効率的集約化の上で望ましい。その結果、拡径掘削によって発生して土砂を積極的に先行掘削孔の底部側ひいては鋼管内に取り込むことが可能となる。   In addition, according to claim 12, a spiral auxiliary wing is provided at a position below the enlarged diameter excavating blade in the steel pipe forming the enlarged diameter excavating means, and the earth and sand excavated by the enlarged diameter excavating blade It is desirable for efficient consolidation of excavated soil and sand to be pushed into the preceding excavation hole by the auxiliary wing along with the excavation rotation of the enlarged diameter excavating blade. As a result, it is possible to positively take in the earth and sand generated by the diameter expansion excavation into the bottom side of the preceding excavation hole and thus into the steel pipe.

もちろん、上記の各工法は、請求項13に記載のように、ケーソンの内部またはケーソンの刃先下の掘削に用いることが可能である。   Of course, each of the above-described construction methods can be used for excavation inside the caisson or under the cutting edge of the caisson.

ここで、予め定められた深さの立て坑を構築するにあたり、その立て坑の深さの全長にわたって請求項3または4に記載の方法にて掘削を行うことができるほか、その立て坑の深さの途中まで掘削が進行したならば、その途中段階から以深の掘削を請求項3または4に記載の方法にて行うこともでき、請求項14,15に記載の発明はこれらのことを明確化している。   Here, in constructing a shaft having a predetermined depth, excavation can be performed by the method according to claim 3 or 4 over the entire length of the shaft, and the depth of the shaft If the excavation has progressed to the middle of the depth, deeper excavation can be performed from the middle stage by the method according to claim 3 or 4, and the inventions according to claims 14 and 15 clearly indicate these facts. It has become.

同様に、予め定められた深さの立て坑を構築するにあたり、その立て坑の深さの全長にわたって請求項5に記載の方法にて掘削を行うことができるほか、その立て坑の深さの途中まで掘削が進行したならば、その途中段階から以深の掘削を請求項5に記載の方法にて行うこともでき、請求項16,17に記載の発明はこれらのことを明確化している。   Similarly, in the construction of a shaft with a predetermined depth, excavation can be performed by the method according to claim 5 over the entire length of the shaft, and the depth of the shaft can be determined. If excavation has progressed to the middle, deeper excavation can be carried out from the middle stage by the method according to claim 5, and the inventions according to claims 16 and 17 clarify these things.

請求項18に記載の発明は、請求項3または4に記載の技術を拡径掘削システムとして捉えたものであって、先行掘削孔よりも小径の円筒状の鋼管の外周に拡径掘削翼を設けてなる拡径掘削手段と、上記鋼管のうち拡径掘削翼よりも下方位置に設けられ、当該鋼管よりも大径で且つ拡径掘削径よりも小径の先行掘削孔の掘削が可能な先行掘削手段と、上記鋼管を把持した上でその鋼管を拡径掘削翼や先行掘削手段とともに回転させながら地中に押し込む回転押し込み手段と、上記鋼管内を昇降動作してその鋼管内の土砂を掴んだ上で鋼管外に排土する排土手段とを備えたことを特徴とする。   The invention described in claim 18 captures the technique described in claim 3 or 4 as a diameter-expanded excavation system, and has a diameter-excavated blade on the outer periphery of a cylindrical steel pipe having a diameter smaller than that of the preceding excavation hole. An expanded diameter drilling means provided, and a preceding one that is provided at a position lower than the expanded diameter drilling blade of the steel pipe and capable of drilling a preceding drilled hole having a diameter larger than the steel pipe and smaller than the expanded diameter drilling diameter. Excavation means, rotary push-in means for pushing the steel pipe into the ground while rotating the steel pipe together with the enlarged diameter excavation blade and the preceding excavation means, and moving up and down in the steel pipe to grasp the earth and sand in the steel pipe Furthermore, it is characterized by having a soil removal means for soiling outside the steel pipe.

請求項19に記載の発明は、請求項5または6に記載の技術を拡径掘削システムとして捉えたものであって、先行掘削孔よりも小径の円筒状の鋼管の外周に拡径掘削翼を設けてなる拡径掘削手段と、上記鋼管よりも大径で且つ拡径掘削径よりも小径の先行掘削孔の掘削が可能な先行掘削手段と、上記鋼管を把持した上でその鋼管を拡径掘削翼とともに回転させながら地中に押し込む回転押し込み手段と、上記鋼管内を昇降動作してその鋼管内の土砂を掴んだ上で鋼管外に排土する排土手段とを備えたことを特徴とする。   The invention described in claim 19 captures the technique described in claim 5 or 6 as a diameter-expanded drilling system, and has a diameter-excavated blade on the outer periphery of a cylindrical steel pipe having a diameter smaller than that of the preceding drilled hole. Expanded drilling means provided, preceding drilling means capable of drilling a preceding drilling hole having a diameter larger than that of the steel pipe and smaller than the expanded drilling diameter, and holding the steel pipe and expanding the steel pipe Rotating and pushing means for pushing into the ground while rotating together with the excavating blades, and earth removing means for moving up and down in the steel pipe to grab the earth and sand in the steel pipe and discharging it outside the steel pipe To do.

さらに、請求項20に記載の発明は、請求項6に記載の技術を拡径掘削システムとして捉えたものであって、先行掘削孔よりも小径の円筒状の鋼管の外周に拡径掘削翼を設けてなる拡径掘削手段と、上記鋼管よりも大径で且つ拡径掘削径よりも小径の先行掘削孔の掘削が可能な先行掘削手段と、上記鋼管を把持した上でその鋼管を拡径掘削翼とともに回転させながら地中に押し込む回転押し込み手段と、上記鋼管のうち拡径掘削翼よりも下方位置に設けられるとともに先行掘削孔とほぼ同径またはそれ以下の外径を有し、拡径掘削時に先行掘削孔に内接することにより先行掘削孔に対する拡径掘削手段の芯出しがなされるように誘導する誘導手段と、上記鋼管内を昇降動作してその鋼管内の土砂を掴んだ上で鋼管外に排土する排土手段とを備えたことを特徴とする。   Furthermore, the invention described in claim 20 captures the technique described in claim 6 as a diameter-expanded excavation system, and has a diameter-excavated blade on the outer periphery of a cylindrical steel pipe having a diameter smaller than that of the preceding excavation hole. Expanded drilling means provided, preceding drilling means capable of drilling a preceding drilling hole having a diameter larger than that of the steel pipe and smaller than the expanded drilling diameter, and holding the steel pipe and expanding the steel pipe Rotating push-in means for pushing into the ground while rotating together with the excavating blade, and provided at a position lower than the enlarged-diameter excavating blade in the steel pipe and having an outer diameter substantially equal to or less than that of the preceding excavation hole, Inducting means for guiding the diameter-expanded drilling means to be centered with respect to the preceding drilling hole by inscribed in the preceding drilling hole at the time of excavation, and moving up and down in the steel pipe to grasp the earth and sand in the steel pipe Equipped with soil removal means for soil removal outside the steel pipe Characterized in that was.

請求項1,2に記載の発明によれば、少なくとも拡径掘削手段にて拡径掘削を行う際には、拡径掘削手段の鋼管と先行掘削孔との間に常に所定の隙間が確保されることになるため、拡径掘削によって発生した土砂が従来のように拡径掘削翼の根元部等に滞留してしまうことがなく、確実に先行掘削孔の底部ひいては鋼管内に取り込まれることになって、土砂の取り込み効率が大幅に向上する。   According to the first and second aspects of the present invention, at least when the diameter expansion excavation means performs the diameter expansion excavation means, a predetermined gap is always ensured between the steel pipe of the diameter expansion excavation means and the preceding excavation hole. Therefore, the earth and sand generated by the diameter expansion excavation does not stay at the base of the diameter expansion excavation blade as in the conventional case, and is surely taken into the bottom of the preceding excavation hole and then into the steel pipe. As a result, the earth and sand intake efficiency is greatly improved.

特に請求項3,4に記載の発明によれば、先行掘削と拡径掘削とが同時並行的に行われるため、請求項1に記載の発明と同様の効果に加えて作業性が向上し、掘削工程もしくは工期の大幅な短縮が可能となる。   In particular, according to the invention described in claims 3 and 4, since the preceding excavation and the diameter expansion excavation are performed in parallel, workability is improved in addition to the same effects as the invention described in claim 1, The excavation process or construction period can be greatly shortened.

請求項5に記載の発明によれば、先行掘削と拡径掘削とが相互に独立して行われて、拡径掘削の際には拡径掘削手段の鋼管と先行掘削孔との間に常に所定の隙間が確保されているため、拡径掘削で発生した土砂は上記隙間を通して確実に先行掘削孔の底部に溜まり、その後に鋼管内を昇降する排土手段にて排土されることになるので、請求項1に記載の発明と同様に土砂の取り込み効率が大幅に向上する。   According to the invention described in claim 5, the preceding excavation and the diameter expansion excavation are performed independently of each other, and the diameter expansion excavation is always performed between the steel pipe of the diameter expansion excavation means and the preceding excavation hole. Since the predetermined gap is secured, the earth and sand generated in the diameter expansion excavation is surely collected at the bottom of the preceding excavation hole through the gap and then discharged by the earth removing means that moves up and down in the steel pipe. Therefore, as in the case of the first aspect of the invention, the earth and sand intake efficiency is greatly improved.

請求項6に記載の発明によれば、誘導手段があることよって、先行掘削孔に対する拡径掘削手段の芯出しがなされるようにその拡径掘削手段が誘導されるため、先行掘削孔と拡径掘削孔との同心精度が向上するとともに、拡径掘削の際により効率的な掘削を行える。   According to the sixth aspect of the present invention, the presence of the guiding means guides the enlarged drilling means so that the enlarged drilling means is centered with respect to the preceding drilling hole. The concentric accuracy with the diameter excavation hole is improved, and more efficient excavation can be performed during the diameter expansion excavation.

請求項8に記載の発明によれば、先行掘削用ケーシングチューブに開口形成した土砂取り込み口からその先行掘削用ケーシングチューブ内に積極的に掘削土砂を取り込むことができるので、土砂取り込み効率が一段と向上する。   According to the eighth aspect of the present invention, since the excavated sediment can be actively taken into the preceding excavation casing tube from the sediment intake port formed in the preceding excavation casing tube, the sediment intake efficiency is further improved. To do.

請求項12に記載の発明によれば、螺旋状の補助翼のはたらきにより、拡径掘削で発生した土砂の先行掘削孔側への押し込み効果が期待できるため、その先行掘削孔側への土砂の取り込み効率が飛躍的に向上する。   According to the twelfth aspect of the present invention, the effect of pushing the sediment generated in the diameter-expanded excavation to the preceding excavation hole side can be expected by the function of the spiral auxiliary wing. Capture efficiency is dramatically improved.

請求項13に記載の発明によれば、上記各工法にてケーソンの内部またはケーソンの刃先下の掘削を行うものであるため、土砂の取り込み効率の向上に伴いケーソンの圧入沈設作業も効率良く行える。   According to the invention described in claim 13, since the excavation is performed inside the caisson or under the edge of the caisson by the above-described methods, the caisson press-fitting and setting work can be efficiently performed along with the improvement of the sediment intake efficiency. .

図1は本発明に係る拡径掘削方法および拡径掘削システムの第1の実施の形態としてその基本概念を示す説明図である。なお、この実施の形態は、請求項1,2,5に記載の発明のほか、請求項10,11および請求項16,19に記載の発明にそれぞれ対応している。   FIG. 1 is an explanatory view showing the basic concept of a first embodiment of a diameter expansion excavation method and a diameter expansion excavation system according to the present invention. This embodiment corresponds to the inventions described in claims 10, 11 and 16, 19 in addition to the inventions described in claims 1, 2 and 5, respectively.

この第1の実施の形態では、図1の(B)に示す直径D3の所定深度の立て坑H2を構築するにあたり、同図(A)に示すように直径D2の先行掘削孔H1を先行掘削する先行掘削工程と、同図(B)に示すようにその先行掘削孔H1を直径D3まで拡径しながら同径の立て坑H2に仕上げる拡径掘削工程とに分けて施工を行うものとする。   In the first embodiment, when constructing a shaft H2 having a predetermined depth with a diameter D3 shown in FIG. 1B, as shown in FIG. 1A, a preceding excavation hole H1 with a diameter D2 is advanced. The construction is divided into the preceding excavation process and the enlarged excavation process in which the preceding excavation hole H1 is expanded to the diameter D3 and finished to the same diameter shaft H2 as shown in FIG. .

図1の(A)の先行掘削工程では、掘削すべき先行掘削孔H1の直径D2と同等の直径の先行掘削手段としてのパイプ状の先行掘削用ケーシングチューブ1と、この先行掘削用ケーシングチューブ1の駆動装置として機能する回転押し込み装置2と、排土手段であるハンマーグラブ3を併用して施工を行うものであり、先行掘削用ケーシングチューブ1の先端には複数の掘削刃4を植設してある。上記回転押し込み装置2は全旋回式オールケーシング掘削機の駆動部と同等の機能を有するものであり、先行掘削用ケーシングチューブ1をチャッキング(把持)した上でこれを回転駆動させる機能と、その先行掘用ケーシングチューブ1の回転駆動と並行して先行掘削用ケーシングチューブ1に推力を付与して地中に圧入する機能とを有している。なお、上記先行掘削用ケーシングチューブ1は、請求項9等に言うところの「円筒状の第3の鋼管」に相当している。   In the preceding excavation step of FIG. 1A, a pipe-shaped preceding excavation casing tube 1 as an advance excavating means having a diameter equivalent to the diameter D2 of the preceding excavation hole H1 to be excavated, and the preceding excavation casing tube 1 The rotary push-in device 2 that functions as a driving device for the machine and the hammer grab 3 as the earthing means are used in combination, and a plurality of excavating blades 4 are implanted at the tip of the preceding excavation casing tube 1. It is. The rotary push-in device 2 has a function equivalent to that of the drive unit of the all-swivel all-casing excavator, and has the function of rotating and driving the preceding excavation casing tube 1 after chucking (gripping) it. In parallel with the rotational drive of the digging casing tube 1, the digging casing tube 1 has a function of applying thrust to the preceding excavation casing tube 1 and press-fitting it into the ground. The preceding excavation casing tube 1 corresponds to a “cylindrical third steel pipe” according to claim 9 or the like.

したがって、図1の(A)の先行掘削工程では、先に述べたように回転押し込み装置2のチャック部でチャッキングした先行掘削用ケーシングチューブ1を回転駆動しながら地中に圧入し、それと並行して先行掘削用ケーシングチューブ1内においてハンマーグラブ3を昇降動作させて、掘削中の先行掘削孔H1の底部に相当する先行掘削用ケーシングチューブ1内の土砂、すなわち先行掘削用ケーシングチューブ1の先端部が切り出した土砂をハンマーグラブ3で掘削しつつ掴んでは先行掘削用ケーシングチューブ1外に排土する。   Therefore, in the preceding excavation step of FIG. 1A, as described above, the preceding excavation casing tube 1 chucked by the chuck portion of the rotary push-in device 2 is pressed into the ground while being rotationally driven, and in parallel therewith. Then, the hammer grab 3 is moved up and down in the preceding excavation casing tube 1 so as to correspond to the bottom of the preceding excavation hole H1 being excavated, that is, the tip of the preceding excavation casing tube 1. The earth and sand cut out by the portion is excavated by the hammer grab 3 and is then taken out of the preceding excavation casing tube 1.

なお、掘削深度の増大に伴い、その先行掘削用ケーシングチューブ1を構成しているところの単位要素であるケーシングピース1aを既設の先行掘削用ケーシングチューブ1の上端に順次継ぎ足しながら施工を行うものとする。そして、所定深度に達したならば先行掘削用ケーシングチューブ1を抜き上げることにより、上記先行掘削用ケーシングチューブ1の径D2と同等径の先行掘削孔H1が形成されることになる。   As the excavation depth increases, the casing piece 1a, which is a unit element constituting the preceding excavation casing tube 1, is constructed while being sequentially added to the upper end of the existing excavation casing tube 1. To do. When the predetermined depth is reached, the preceding excavation casing tube 1 is pulled up to form the preceding excavation hole H1 having the same diameter as the diameter D2 of the preceding excavation casing tube 1.

この先行掘削に続く図1の(B)の拡径掘削工程では、拡径掘削手段としての拡径掘削機5と、同図(A)に示したものと同様の回転押し込み装置2Aと、排土手段であるハンマーグラブ6を併用して施工を行うものとする。   In the diameter expansion excavation process of FIG. 1B following the preceding excavation, the diameter expansion excavator 5 as the diameter expansion excavation means, the rotary push-in apparatus 2A similar to that shown in FIG. It is assumed that construction is performed using a hammer grab 6 which is a soil means.

拡径掘削機5は、同図(B)のほか図2に示すように、図1の(A)の先行掘削用ケーシングチューブ1よりも小径のパイプ状のケーシング7の周囲に例えば3組の略ブレード状の拡径掘削翼8を等ピッチで装着したものであり、これらの拡径掘削翼8の先端である最大直径部が描く軌跡の直径は先の構築すべき立て坑H2の直径D3と同じ大きさに設定されている。これにより、上記ケーシング7の直径D1と先行掘削孔H1の直径D2および立て坑H2の直径D3との相互関係は、D1<D2<D3となるように予め設定されている。なお、上記ケーシング7は請求項1等に言うところの「円筒状の鋼管」に相当している。   As shown in FIG. 2 in addition to FIG. 2B, the enlarged diameter excavator 5 includes, for example, three sets of pipes around a casing 7 having a smaller diameter than the preceding excavation casing tube 1 in FIG. The substantially blade-shaped expanded drilling blades 8 are mounted at an equal pitch, and the diameter of the locus drawn by the maximum diameter portion at the tip of these expanded drilling blades 8 is the diameter D3 of the shaft H2 to be constructed earlier. Is set to the same size. Thereby, the correlation between the diameter D1 of the casing 7, the diameter D2 of the preceding excavation hole H1, and the diameter D3 of the shaft H2 is set in advance such that D1 <D2 <D3. The casing 7 corresponds to the “cylindrical steel pipe” described in claim 1 and the like.

また、ケーシング7のうち拡径掘削翼8の下側根元部と同等高さ位置であってあって且つそれらの拡径掘削翼8と干渉しない位置には、ケーシング7の内外を連通するべく略矩形状の土砂取り込み口9を開口形成してあるとともに、拡径掘削翼8の下面、および拡径掘削翼8よりも下側に残されたケーシング7の一般部の先端には、先行掘削用ケーシングチューブ1と同様に複数の掘削刃4を植設してある。そして、各拡径掘削翼8の下面はテーパ状に形成してあり、したがって拡径掘削翼8の下面がその回転によって描く軌跡は略円錐形状のものとなるように設定してある。   Further, in the casing 7, a position that is at the same height as the lower base portion of the enlarged diameter excavating blade 8 and that does not interfere with the enlarged diameter excavating blade 8 is simplified so as to communicate the inside and outside of the casing 7. A rectangular earth-and-sand intake port 9 is formed as an opening, and the lower surface of the enlarged-diameter excavation blade 8 and the tip of the general portion of the casing 7 left below the enlarged-diameter excavation blade 8 are for leading excavation. A plurality of excavating blades 4 are implanted in the same manner as the casing tube 1. The lower surface of each of the enlarged diameter excavating blades 8 is formed in a taper shape, and therefore, the locus drawn by the lower surface of the enlarged diameter excavating blade 8 by its rotation is set to be substantially conical.

なお、上記の各拡径掘削翼8は、図11に示すように固定翼8aとこれに重合するように配置された可動翼8bとで形成されていて、直動型アクチュエータ等により可動翼8bを固定翼8aに沿ってスライド変位させることで拡縮径可能となっているものであるが、この構造の詳細については後述する。   Each of the above-mentioned enlarged diameter excavation blades 8 is formed by a fixed blade 8a and a movable blade 8b arranged so as to overlap therewith as shown in FIG. The diameter can be expanded and contracted by sliding displacement along the fixed wing 8a. The details of this structure will be described later.

したがって、図1の(B)に示した拡径掘削工程では、回転押し込み装置2Aが把持したケーシング7の先端部を先行掘削孔H1の内部に同心状に挿入する一方、そのケーシング7に付帯してる拡径掘削翼8を拡径状態とした上でケーシング7とともに回転駆動しながら地中に圧入して、先行掘削孔H1を拡径するように掘削して所定口径D3の立て坑H2に仕上げることになる。これと並行して、ケーシング7内においてハンマーグラブ6を昇降動作させて、上方から順に拡径されることになる先行掘削孔H1の底部に相当する位置に溜まった土砂をハンマーグラブ6で掘削しつつ掴んではケーシング7外に排土する。   Therefore, in the diameter expanding excavation step shown in FIG. 1B, the tip end portion of the casing 7 gripped by the rotary push-in device 2A is concentrically inserted into the preceding excavation hole H1, while being attached to the casing 7. The diameter-extended excavation blade 8 is in an expanded state, and is pressed into the ground while being rotationally driven together with the casing 7, and excavated so as to expand the preceding excavation hole H1, and finished to a shaft H2 having a predetermined diameter D3. It will be. In parallel with this, the hammer grab 6 is moved up and down in the casing 7, and the sand and sand accumulated at the position corresponding to the bottom of the preceding excavation hole H <b> 1 that is to be expanded in diameter from the top is excavated with the hammer grab 6. Grabbing it while holding it out removes it from the casing 7.

この拡径掘削の過程においては、先行掘削孔H1の直径D2とケーシング7の直径D1とがD1<D2の関係にあるため、ケーシング7と先行掘削孔H1の内周面との間にはD1とD2との差に相当する隙間Aが常時確保されていることになる。そのため、拡径掘削翼8によって掘削された土砂はその拡径掘削翼8の回転に伴いケーシング7に近い部分、すなわちケーシング7に対する拡径掘削翼8の根元部近くに集められた上で上記隙間Aを通って先行掘削孔H1の底部に集められることになる。同時に、一部の土砂はケーシング7に開口形成されている土砂取り込み口9からケーシング7内に取り込まれた上で先行掘削孔H1の底部に落下することになる。   In the process of this diameter expansion excavation, since the diameter D2 of the preceding excavation hole H1 and the diameter D1 of the casing 7 have a relationship of D1 <D2, there is D1 between the casing 7 and the inner peripheral surface of the preceding excavation hole H1. A gap A corresponding to the difference between D2 and D2 is always secured. Therefore, the earth and sand excavated by the enlarged diameter excavating blade 8 are gathered near the casing 7 with the rotation of the enlarged diameter excavating blade 8, that is, near the root portion of the enlarged diameter excavating blade 8 with respect to the casing 7. A will be collected at the bottom of the preceding excavation hole H1 through A. At the same time, part of the earth and sand is taken into the casing 7 from the earth and sand taking-in opening 9 formed in the casing 7 and then falls to the bottom of the preceding excavation hole H1.

したがって、拡径掘削によって発生した土砂が従来のように拡径掘削翼8の根元部付近に滞留したり、あるいはその滞留により再度締め固め状態となって拡径掘削翼8全体に付着することもなくなり、先行掘削孔H1の底部側への掘削土砂の取り込み効率がきわめて良好なものとなる。そして、先行掘削孔H1の底部に集められた土砂は先に述べたようにケーシング7内を昇降動作するハンマーグラブ6にて排土されることになる。   Therefore, the earth and sand generated by the diameter expansion excavation may stay in the vicinity of the root portion of the diameter expansion excavation blade 8 as in the prior art, or may stay in the compacted state due to the retention and adhere to the entire diameter expansion excavation blade 8. The excavation earth and sand taking-in efficiency to the bottom side of the preceding excavation hole H1 is very good. Then, the earth and sand collected at the bottom of the preceding excavation hole H1 is discharged by the hammer grab 6 that moves up and down in the casing 7 as described above.

ここで、先行掘削用ケーシングチューブ1の直径すなわち先行掘削孔H1の直径D2とケーシング7の直径D1との差に基づいて両者の間に積極的に隙間Aを確保し、その隙間Aを利用して拡径掘削時に発生した土砂の落下ひいてはその取り込みの効率化を図るものであるから、上記先行掘削孔H1の直径D2はケーシング7の直径D1の少なくとも1.1倍以上とすることが望ましい。   Here, based on the difference between the diameter of the preceding excavation casing tube 1, that is, the diameter D2 of the preceding excavation hole H1 and the diameter D1 of the casing 7, a gap A is positively secured between them, and the gap A is used. Therefore, it is desirable that the diameter D2 of the preceding excavation hole H1 is at least 1.1 times the diameter D1 of the casing 7 because the falling of the earth and sand generated during the diameter expansion excavation and the efficiency of the intake thereof are to be improved.

図3,4は本発明の第2の実施の形態を示す図で、先の第1の実施の形態と共通する部分には同一符号を付してある。なお、この実施の形態は、請求項1〜4に記載の発明のほか、請求項7,8,および請求項11,14,18に記載の発明にそれぞれ対応している。   3 and 4 are diagrams showing a second embodiment of the present invention, and the same reference numerals are given to the parts common to the first embodiment. This embodiment corresponds to the inventions described in claims 7, 8, and 11, 14, 18 in addition to the inventions described in claims 1-4.

この第2の実施の形態では、直径D2の先行掘削孔H1の掘削を目的とした先行掘削と、その先行掘削孔H1を拡径させて所定口径D3の立て坑H2に仕上げる拡径掘削とを実質的に同時並行的に行うようにしたものであり、後述するように拡径掘削手段である拡径掘削機5の一部が実質的に先行掘削手段を兼ねていることになる。   In the second embodiment, the preceding excavation for the purpose of excavating the preceding excavation hole H1 having the diameter D2 and the diameter-expanding excavation for expanding the preceding excavation hole H1 to finish the shaft H2 having the predetermined diameter D3. A part of the diameter-expanding excavator 5 which is a diameter-expanding excavating means substantially serves as a preceding excavating means as will be described later.

図3に示すように、拡径掘削手段の主要素である直径D1のケーシング7の先端にはそのケーシング7の一部を形成することになるほぼ同径の先行掘削翼用ケーシングアタッチメント10が着脱可能に装着されていて、そのケーシングアタッチメント10の外周には図4に示すように平面視にて略くの字状に屈曲した例えば3枚の先行掘削翼11が装着されている。   As shown in FIG. 3, a casing attachment 10 for a leading excavating blade having substantially the same diameter, which forms a part of the casing 7, is attached to and detached from the tip of the casing 7 having a diameter D <b> 1 that is a main element of the diameter expanding excavation means. For example, three preceding excavation blades 11 are attached to the outer periphery of the casing attachment 10 as shown in FIG.

この先行掘削翼11は、図5に拡大して示すように、平面視にて略くの字状に屈曲したブレード12の下端に複数の掘削刃13を植設するとともに、背面側を補強プレート14にて補強したものであり、同時にケーシングアタッチメント10の円筒胴部には各先行掘削翼11に近接するようにして、すなわち同先行掘削翼11と同等高さ位置であって且つ先行掘削翼11よりも掘削方向前方側に矩形状の土砂取り込み口15を開口形成してある。そして、各先行掘削翼11の先端(最大直径部)が描く軌跡の直径は掘削すべき先行掘削孔H1の直径D2と同等寸法に設定してある。また、ケーシングアタッチメント10の下端には図1に示したものと同様に複数の掘削刃4を植設してあり、したがって、ケーシングアタッチメント10はケーシング7の一部でありながらも先行掘削翼11とともに先行掘削手段を形成している。   As shown in an enlarged view in FIG. 5, the preceding excavation blade 11 has a plurality of excavation blades 13 planted at the lower end of a blade 12 bent in a substantially U shape in plan view, and the back side is a reinforcing plate. 14, and at the same time, the cylindrical body portion of the casing attachment 10 is close to each preceding excavation blade 11, that is, at the same height as the preceding excavation blade 11 and the preceding excavation blade 11. Further, a rectangular soil intake port 15 is formed at the front side in the excavation direction. And the diameter of the locus which the tip (maximum diameter part) of each preceding excavation blade 11 draws is set to the same size as diameter D2 of preceding excavation hole H1 which should be excavated. In addition, a plurality of excavating blades 4 are implanted at the lower end of the casing attachment 10 in the same manner as shown in FIG. 1. Therefore, the casing attachment 10 is a part of the casing 7 but also with the preceding excavating blade 11. Forms a pre-drilling means.

したがって、この第2の実施の形態によれば、回転押し込み装置2Aで把持したケーシング7を回転駆動させながら地中に圧入することにより、先行掘削翼11による直径D2の先行掘削孔H1の先行掘削と、その先行掘削孔H1を拡径掘削翼8にて拡径するようにして直径D3の立て坑H2に仕上げる拡径掘削とが同時並行的に行われることになる。   Therefore, according to the second embodiment, the casing 7 gripped by the rotary push-in device 2A is press-fitted into the ground while being rotationally driven, whereby the leading excavation hole H1 having the diameter D2 by the leading excavation blade 11 is advanced. And the diameter expansion excavation which finishes the preceding excavation hole H1 with the diameter expansion excavation blade 8 and finishes it into the shaft H2 of the diameter D3 is performed simultaneously.

この場合、同時回転する先行掘削翼11と拡径掘削翼8との上下方向での位置関係は常に不変であり、先行掘削翼11にて掘削されたばかりの先行掘削孔H1のその上方から追いかけるようにして拡径掘削翼8にて拡径掘削することになる。   In this case, the positional relationship in the vertical direction between the preceding excavating blade 11 and the diameter-expanded excavating blade 8 that rotate at the same time is always unchanged, so that the preceding excavating hole H1 just excavated by the preceding excavating blade 11 is chased from above. Thus, the diameter-expanded excavation blade 8 performs diameter-expanded excavation.

そして、拡径掘削翼8の下方には常に所定深さの先行掘削孔H1が確保されていることから、拡径掘削孔H2の掘削に伴って発生した土砂は、その一部がケーシング7側の土砂取り込み口9からケーシング7内に取り込まれて先行掘削孔H1の最深部(ケーシングアタッチメント10の先端が位置している部分)に集められる一方、拡径掘削によって発生した多くの土砂は直ちに先行掘削孔H1とケーシング7との隙間Aを通してその下方に落下して、先行掘削翼11が位置している先行掘削孔H1の底部に溜まることになる。この先行掘削翼11のレベル位置に溜まった土砂は、先行掘削翼11自体にて掘削された土砂とともにケーシングアタッチメント10の土砂取り込み口15からケーシングアタッチメント10の内部、すなわち上記と同様に先行掘削孔H1の最深部(ケーシングアタッチメント10の先端が位置している部分)に集められることになる。   Since the preceding excavation hole H1 having a predetermined depth is always ensured below the enlarged diameter excavation blade 8, a part of the earth and sand generated by the excavation of the enlarged diameter excavation hole H2 is on the casing 7 side. While being taken into the casing 7 from the earth and sand intake port 9 and collected in the deepest part of the preceding excavation hole H1 (the part where the tip of the casing attachment 10 is located), much of the earth and sand generated by the diameter expansion excavation immediately precedes it. It falls down through the gap A between the excavation hole H1 and the casing 7 and accumulates at the bottom of the preceding excavation hole H1 where the preceding excavation blade 11 is located. The sediment accumulated at the level position of the preceding excavation blade 11 is transferred to the interior of the casing attachment 10 from the sediment intake port 15 of the casing attachment 10 together with the sediment excavated by the prior excavation blade 11 itself, that is, the preceding excavation hole H1 as described above. Are collected in the deepest part (the part where the tip of the casing attachment 10 is located).

その後、こうしてケーシングアタッチメント10の内部に取り込まれた土砂は、先の実施の形態と同様にケーシング7内を昇降動作するハンマーグラブ6にて排土されることになる。   Thereafter, the earth and sand thus taken into the casing attachment 10 is discharged by the hammer grab 6 that moves up and down in the casing 7 as in the previous embodiment.

図6は本発明の第3の実施の形態を示し、この実施の形態では先に図3,5に示した先行掘削翼11の構造を図1の(A)に示したものと同様の先行掘削用ケーシングチューブ16に適用したものである。なお、この実施の形態は、請求項1,2,5に記載の発明のほか、請求項7,8および請求項11,16,19に記載の発明にそれぞれ対応している。   FIG. 6 shows a third embodiment of the present invention. In this embodiment, the structure of the preceding excavation blade 11 shown in FIGS. 3 and 5 is the same as that shown in FIG. This is applied to the casing tube 16 for excavation. This embodiment corresponds to the inventions described in claims 7, 8 and 11, 16, 19 in addition to the inventions described in claims 1, 2 and 5, respectively.

図6の(A)および図7に示すように、直径D1の先行掘削用ケーシングチューブ16の下端に図5に示した直径D1の先行掘削翼用ケーシングアタッチメント10を接続し、そのケーシングアタッチメント10に直径D2(D2>D1)の先端軌跡を描くことになる複数の先行掘削翼11を装着してある。また、ケーシングアタッチメント10には図5に示したように先行掘削翼11に近接して土砂取り込み口15が開口形成されている。   As shown in FIG. 6 (A) and FIG. 7, the preceding excavation blade casing attachment 10 having the diameter D1 shown in FIG. 5 is connected to the lower end of the preceding excavation casing tube 16 having the diameter D1, and the casing attachment 10 is connected to the casing attachment 10. A plurality of preceding excavation blades 11 that draw a tip locus of diameter D2 (D2> D1) are mounted. Further, as shown in FIG. 5, the casing attachment 10 is formed with an earth and sand intake port 15 adjacent to the preceding excavation blade 11.

したがって、この第3の実施の形態によれば、図6の(A)に示すように、ケーシングアタッチメント10を先行掘削用ケーシングチューブ16とともに回転押し込み装置2Aにて回転駆動させながら地中に貫入すると、先行掘削用ケーシングチューブ16の直径はD1であっても、ケーシングアタッチメント10に付帯する先行掘削翼11の先端が描く軌跡の直径がD2であるため、結果として直径D2の先行掘削孔H1が掘削されることになる。そして、先行掘削によって発生した土砂は土砂取り込み口15からケーシングアタッチメント10の内部に取り込まれ、先行掘削用ケーシングチューブ16内を昇降するハンマーグラブ6にて排土されることになる。   Therefore, according to the third embodiment, as shown in FIG. 6A, when the casing attachment 10 is driven into the ground while being rotationally driven by the rotary push-in device 2A together with the preceding excavation casing tube 16, Even if the diameter of the preceding excavation casing tube 16 is D1, since the diameter of the locus drawn by the tip of the preceding excavation blade 11 attached to the casing attachment 10 is D2, as a result, the preceding excavation hole H1 having the diameter D2 is excavated. Will be. The earth and sand generated by the preceding excavation are taken into the casing attachment 10 from the earth and sand intake port 15 and discharged by the hammer grab 6 that moves up and down in the preceding excavation casing tube 16.

この先行掘削に続く図6の(B)の拡径掘削は図1の(B)に示したものと全く同様であり、直径D2の先行掘削孔H1を拡径掘削翼8にて拡径するようにして直径D3の拡径掘削孔、すなわち立て坑H2に仕上げられることになる。   6 (B) following the preceding excavation is exactly the same as that shown in FIG. 1 (B), and the diameter of the preceding excavation hole H1 having the diameter D2 is expanded by the enlarged excavation blade 8. In this way, the enlarged diameter excavation hole having the diameter D3, that is, the shaft H2 is finished.

この場合、図1に示した第1の実施の形態と同様に、拡径掘削翼8が装着されているケーシング7の直径がD1であるのに対して先行掘削孔H1の直径はD2であり、両者の間には直径D2とD1の差分の隙間Aが確保されているため、拡径掘削翼8による拡径掘削によって生じた土砂はその隙間Aを通ってスムーズに落下して、先行掘削孔H1の底部に集められることになる。また、一部の土砂はケーシング7の土砂取り込み口9から一旦ケーシング7内を通過した上で上記と同様に先行掘削孔H1の底部に集められることになる。   In this case, as in the first embodiment shown in FIG. 1, the diameter of the casing 7 on which the diameter-extended excavation blade 8 is mounted is D1, whereas the diameter of the preceding excavation hole H1 is D2. Since a gap A of the difference between the diameters D2 and D1 is secured between the two, the earth and sand generated by the diameter expansion excavation by the diameter expansion excavation blade 8 smoothly falls through the gap A, and the preceding excavation It will be collected at the bottom of the hole H1. A part of the earth and sand passes through the inside of the casing 7 from the earth and sand intake port 9 of the casing 7 and is collected at the bottom of the preceding excavation hole H1 in the same manner as described above.

したがって、この第3の実施の形態においても、拡径掘削によって発生した土砂が従来のように拡径掘削翼8の根元部付近に滞留したり、あるいはその滞留により再度締め固め状態となって拡径掘削翼8全体に付着することもなくなり、先行掘削孔H1の底部側への掘削土砂の取り込み効率がきわめて良好なものとなる。そして、先行掘削孔H1の底部に集められた土砂は先に述べたようにケーシング7内を昇降動作するハンマーグラブ6にて排土されることになる。   Therefore, also in the third embodiment, the earth and sand generated by the diameter expansion excavation stays near the root portion of the diameter expansion excavation blade 8 as in the prior art, or becomes a compacted state again due to the retention and expands. It will not adhere to the entire diameter excavation blade 8, and the efficiency of taking excavated soil into the bottom side of the preceding excavation hole H1 will be extremely good. Then, the earth and sand collected at the bottom of the preceding excavation hole H1 is discharged by the hammer grab 6 that moves up and down in the casing 7 as described above.

図8〜15は図3,6に示した上記拡径掘削翼8の要部の詳細を示しており、図8,9に示すように、複数のケーシングアタッチメントを接続してなるケーシング7の先端部には、上段から順にケーシング7と同径の拡径掘削翼用ケーシングタッチメント17および先行掘削翼用ケーシングアタッチメント10を図示外のボルト・ナット等にて順次着脱可能に直列にて連結してあり、これらの各ケーシングアタッチメント10,17もまたケーシング7の一部を形成している。そして、拡径掘削翼用ケーシングアタッチメント17には後述するように固定翼8aと可動翼8bとからなるそれ自体で拡縮径可能な複数の拡径掘削翼8を装着してある。なお、先行掘削翼用ケーシングアタッチメント10は、図5に示したように複数の先行掘削翼11を有しているものである。   8 to 15 show the details of the main part of the above-mentioned enlarged diameter excavation blade 8 shown in FIGS. 3 and 6, and as shown in FIGS. 8 and 9, the tip of the casing 7 formed by connecting a plurality of casing attachments. In this section, a casing attachment 17 for an enlarged excavation blade and a casing attachment 10 for a preceding excavation blade having the same diameter as that of the casing 7 are sequentially connected in series from the upper stage so as to be detachable in series with bolts and nuts not shown. Each of these casing attachments 10 and 17 also forms part of the casing 7. Further, as will be described later, a plurality of diameter-enlarged excavation blades 8 each having a fixed wing 8a and a movable wing 8b, which can be expanded and contracted, are mounted on the casing attachment 17 for the diameter-extended excavation blades. In addition, the casing attachment 10 for leading excavation blades has the some leading excavation blade 11 as shown in FIG.

上記拡径掘削翼用ケーシングアタッチメント17には、図10に示すように、円筒外周面の三等分位置に後述する拡径掘削翼8の着座面19aを有する偏平ボックス状のブラケット19を固定してある。このブラケット19は着座面19aが拡径掘削翼用ケーシングアタッチメント17の接線方向と平行となるように設定してあり、その着座面19aには多数の取付穴20を規則性をもって形成してある。   As shown in FIG. 10, a flat box-shaped bracket 19 having a seating surface 19a for the enlarged-diameter excavating blade 8 described later is fixed to the casing attachment 17 for the enlarged-excavating blade as shown in FIG. It is. The bracket 19 is set so that the seating surface 19a is parallel to the tangential direction of the casing attachment 17 for the enlarged diameter excavating blade, and a number of mounting holes 20 are regularly formed in the seating surface 19a.

一方、図11,12に示すように、拡径掘削翼8は平板状の固定翼8aとこれよりも小さな平板状の可動翼8bとをスライド可能に重ね合わせることで形成してあり、その固定翼8aには先に述べた拡径掘削翼用ケーシングアタッチメント17側のブラケット19と同様に多数の取付穴22を規則性をもって形成してある。そして、同図から明らかなように、固定翼8aをブラケット19の着座面19aに着座させつつブラケット19側と固定翼8a側のそれぞれ複数の取付穴20,22同士を合致させた上で、ボルト・ナット29により拡径掘削翼8をブラケット19に対して着脱可能に固定してある。つまり、拡径掘削翼8は、平面視にてケーシング7の接線方向もしくはそれと平行な方向に大きく張り出すようにブラケット19に着脱可能に固定してある。   On the other hand, as shown in FIGS. 11 and 12, the diameter-excavated excavation blade 8 is formed by slidably overlapping a flat plate-shaped fixed blade 8a and a flat plate-shaped movable blade 8b smaller than the fixed blade 8a. A large number of mounting holes 22 are regularly formed in the blade 8a in the same manner as the bracket 19 on the casing attachment 17 side for the enlarged diameter excavating blade described above. As is clear from the figure, the fixed wing 8a is seated on the seating surface 19a of the bracket 19, and the mounting holes 20, 22 on the bracket 19 side and the fixed wing 8a side are matched with each other, The diameter-extended excavation blade 8 is detachably fixed to the bracket 19 with a nut 29. That is, the diameter-extended excavation blade 8 is detachably fixed to the bracket 19 so as to largely protrude in a tangential direction of the casing 7 or a direction parallel thereto in a plan view.

ここで、上記のようにブラケット19および固定翼8aに形成してある多数の取付穴20,22はその全てが同時使用されるものではなく、拡径掘削翼8の長手方向において取付穴20,22同士の合致位置を変えることにより、図11,12に示すように拡径掘削翼用ケーシングアタッチメント17の中心から可動翼8bの先端までの距離a、すなわち拡径掘削翼8の回転半径を適宜段階的に調整可能となっている。   Here, not all of the numerous mounting holes 20 and 22 formed in the bracket 19 and the fixed blade 8a as described above are used at the same time. 11 and 12, the distance a from the center of the enlarged-diameter excavating blade casing attachment 17 to the tip of the movable vane 8b, that is, the rotational radius of the enlarged-excavated vane 8 is appropriately changed. It can be adjusted in stages.

拡径掘削翼8は、図11,12のほか図13,14に示すように、その回転方向を時計回り方向とした場合に、固定翼8aの回転方向側の面に可動翼8bを重ね合わせるように配置してあり、可動翼8bは固定翼8aに沿って動くように該固定翼8aに設けた翼ガイド23にスライド可能に案内支持させてある。また、回転方向に向かって固定翼8aの背面側すなわち固定翼8aの反回転方向側の面にはブラケット24を介して直動型のアクチュエータとして拡縮径用シリンダ(油圧シリンダ)25を装着してある。この拡縮径用シリンダ25のピストンロッド26は同じく固定翼8aの反回転方向側に位置するスライダ27の一端に連結してあるととともに、さらにスライダ27の他端は固定翼8aをはさんで反対側の可動翼8bに連結してあり、結果として拡縮径用シリンダ25は固定翼8aと可動翼8bにまたがるように架橋的に配置してある。したがって、拡縮径用シリンダ25を伸縮作動させることによりその拡縮径用シリンダ25のストローク分だけ可動翼8bが固定翼8aに対してスライドし、結果としてケーシング7の接線方向もしくはそれと平行な方向で拡径掘削翼8が拡縮径可能な構造となっている。   As shown in FIGS. 13 and 14 in addition to FIGS. 11 and 12, the enlarged diameter excavating blade 8 has the movable blade 8b superimposed on the surface of the fixed blade 8a on the rotational direction side when the rotational direction is the clockwise direction. The movable blade 8b is slidably guided and supported by a blade guide 23 provided on the fixed blade 8a so as to move along the fixed blade 8a. In addition, an expansion / contraction diameter cylinder (hydraulic cylinder) 25 is mounted as a direct acting actuator on the back side of the fixed wing 8a toward the rotation direction, that is, the surface opposite to the rotation direction of the fixed wing 8a. is there. The piston rod 26 of the expansion / contraction diameter cylinder 25 is connected to one end of a slider 27 located on the opposite side of the fixed wing 8a, and the other end of the slider 27 is opposite to the fixed wing 8a. As a result, the expansion / contraction diameter cylinder 25 is disposed in a bridging manner so as to straddle the fixed wing 8a and the movable wing 8b. Therefore, by operating the expansion / contraction diameter cylinder 25 to expand and contract, the movable blade 8b slides relative to the fixed blade 8a by the stroke of the expansion / contraction diameter cylinder 25, and as a result, expands in the tangential direction of the casing 7 or in a direction parallel thereto. The diameter excavation blade 8 has a structure capable of expanding and contracting.

なお、拡径掘削翼8を形成している固定翼8aおよび可動翼8bの下端には、複数の掘削刃(ビット)4を装着してある。   A plurality of excavating blades (bits) 4 are attached to the lower ends of the fixed wing 8a and the movable wing 8b forming the diameter-extended excavating wing 8.

ここで、拡縮径用シリンダ25を固定翼8aの反回転方向側の面に装着してあるのは、掘削時に拡径掘削翼8が向かっていくことになる土砂や岩盤等から拡縮径用シリンダ25を保護するためである。また、図12と図15を比較すると明らかなように、可動翼8bの拡径スライド方向に対して拡縮径用シリンダ25の伸長方向を逆向きとなるように設定し、もって拡縮径用シリンダ25の収縮状態において拡径掘削翼8が拡径状態となり、逆に拡縮径用シリンダ25の伸長状態において拡径掘削翼8が縮径状態となるように設定してある。   Here, the expansion / contraction diameter cylinder 25 is mounted on the surface on the counter-rotation direction side of the fixed wing 8a because the expansion / contraction diameter cylinder 25 is moved from the earth, sand, rock, or the like to which the diameter expansion wing 8 is directed during excavation. This is to protect 25. 12 and 15, the expansion / contraction diameter cylinder 25 is set so that the expansion direction of the expansion / contraction diameter cylinder 25 is opposite to the diameter expansion / sliding direction of the movable blade 8b. The diameter-expanded excavating blade 8 is set in the expanded state in the contracted state, and conversely, the diameter-extended excavating blade 8 is set in the contracted state in the expanded state of the expansion / contraction diameter cylinder 25.

また、図11,13に示すように、拡径掘削翼用ケーシングアタッチメント17のうち隣り合うブラケット19,19同士の間には、それぞれに略矩形状の土砂取り込み口9を開口形成してある。これよって、拡径掘削翼8が拡径状態にあるか縮径状態にあるかにかかわらずその拡径掘削翼8にて掘削した土砂の一部を土砂取り込み口9を通してケーシング7(拡径掘削翼用ケーシングアタッチメント17)の内部に取り込むことが可能となっている。   Further, as shown in FIGS. 11 and 13, between the adjacent brackets 19 and 19 of the casing attachment 17 for a large-diameter excavating blade, a substantially rectangular earth and sand intake port 9 is formed as an opening. As a result, regardless of whether the expanded diameter excavating blade 8 is in the expanded state or the reduced diameter state, a part of the earth and sand excavated by the expanded diameter excavating blade 8 passes through the sediment intake port 9 and the casing 7 (expanded diameter excavation). It can be taken into the wing casing attachment 17).

なお、拡径掘削翼8が拡径状態にあるか縮径状態にあるかにかかわらず、拡縮径用シリンダシリンダ25の油圧供給経路をいわゆる油圧的にロックすることで、その拡径または縮径状態が自己保持されることになる。   Regardless of whether the expanded diameter excavating blade 8 is in an expanded state or a reduced diameter state, the hydraulic pressure supply path of the expanded / reduced diameter cylinder cylinder 25 is hydraulically locked to increase or decrease the diameter. The state will be self-maintained.

図16〜20は本発明の第4の実施の形態を示し、この第4の実施の形態では、ケーソン30の圧入沈設に際して図3と同様の回転押し込み装置2Aおよび先行掘削翼11を有する拡径掘削機5をもってケーソン30のいわゆる刃先(刃口)下を掘削する場合の例を示している。なお、この実施の形態は、請求項1〜4に記載の発明のほか、請求項11,13および請求項14,18に記載の発明にそれぞれ対応している。   FIGS. 16 to 20 show a fourth embodiment of the present invention. In this fourth embodiment, the caisson 30 is press-fitted and provided with a rotary push-in device 2A similar to FIG. The example in the case of excavating under the so-called cutting edge (blade edge) of the caisson 30 with the excavator 5 is shown. This embodiment corresponds to the inventions described in claims 11, 13 and 14, 18 in addition to the inventions described in claims 1-4.

上記ケーソン30の圧入沈設は、周知のように先行圧入した既設ケーソン30の内部の土砂を掘削しながらその圧入と掘削とを繰り返す一方、既設ケーソン30の上にはいわゆる輪切り状のセグメント(リフトと呼ばれる)30aを継ぎ足しながら圧入沈設を行うことになる。   While the caisson 30 is press-fitted and submerged, the press-fitting and excavation are repeated while excavating the earth and sand inside the existing caisson 30 that has been pre-fitted as is well known. The press-in set-up is performed while adding 30a.

ここでは、例えば硬質地盤内に内径5.0m、外径6.0mの立て坑を地下40m程度まで構築する場合を想定し、地面から地下30m程度までは普通土であるのに対して、地下30m付近以深では例えば5000〜7000kN/m2程度の強度を有する泥岩等の硬質地盤で地盤構成されているものとする。 Here, for example, it is assumed that a shaft with an inner diameter of 5.0 m and an outer diameter of 6.0 m is built up to about 40 m underground in the hard ground. It is assumed that the ground is composed of hard ground such as mudstone having a strength of about 5000 to 7000 kN / m 2 at a depth of about 30 m or more.

また、拡径掘削機5におけるケーシング7の直径は2m、拡径掘削翼8を最も縮径させたときの固定翼8aによる掘削径を4.5m、拡径掘削翼8を最も拡径させたときの掘削径を6m、先行掘削翼11による掘削径を3mとする。   Further, the diameter of the casing 7 in the diameter-excavated excavator 5 is 2 m, the diameter of the excavated diameter by the fixed wing 8 a when the diameter-extended digging blade 8 is most contracted is 4.5 m, and the diameter-extended digging blade 8 is expanded most. The excavation diameter at that time is 6 m, and the excavation diameter by the preceding excavation blade 11 is 3 m.

図17以下の図面は図16に示した拡径掘削機5による施工手順を示しており、ケーソン30の刃先が硬質地盤に到達する深度(上記の例では地下30m付近)までは、図17の(A)〜(B)に示すようにケーソン30の組立構築と油圧ジャッキ等の圧入沈設装置31による圧入沈設、およびクラムシェル等のバケット系掘削手段32による掘削とを繰り返しながら行う。   FIG. 17 and subsequent drawings show a construction procedure by the diameter expanding excavator 5 shown in FIG. 16, and the depth of the caisson 30 cutting edge reaching the hard ground (around 30 m underground in the above example) is shown in FIG. 17. As shown in (A) to (B), the assembly and construction of the caisson 30, the press-fitting and sinking by the press-fitting and sinking device 31 such as a hydraulic jack, and the excavation by the bucket system excavating means 32 such as a clamshell are repeated.

上記硬質地盤に届くまでケーソン30を圧入沈設したならば、図17の(C)に示すようにケーソン30の自沈防止のために仮受け台33を設置する。さらに、同図(D)に示すように、ケーソン30の上部に先に述べた回転押し込み装置2のほか先行掘削翼11を備えた拡径掘削機5をセットする。この時、固定翼8aと可動翼8bとからなる拡径掘削翼8は縮径状態とし、当該拡径掘削翼8の縮径状態での掘削径は4.5mにセットされているものとする。   When the caisson 30 is press-fitted and settled until it reaches the hard ground, a temporary cradle 33 is installed to prevent the caisson 30 from self-sinking as shown in FIG. Further, as shown in FIG. 4D, the diameter-extended excavator 5 provided with the preceding excavation blade 11 in addition to the rotary push-in device 2 described above is set on the upper part of the caisson 30. At this time, it is assumed that the diameter-excavated wing 8 composed of the fixed wing 8a and the movable wing 8b is in a reduced diameter state, and the diameter of the diameter-extended digging wing 8 is set to 4.5 m. .

そして、図18の(A),(B)に示すように、一次掘削として先行掘削翼11による先行掘削と拡径掘削翼8の縮径状態での掘削とを同時並行的に行い、拡径掘削翼8がケーソン30の刃先下相当部に達するようになったならば同図(C)に示すように拡径掘削翼8を拡径させて(拡径掘削翼8の拡径状態の掘削径は6mにセットされているものとする)、以深部分の掘削、すなわち同図(D)に示すように深度40m程度まで一気に掘削を行って拡径掘削孔H3とする。この時、先行掘削翼11にて直径3mの先行掘削翼H1が掘削された後に、拡径掘削翼8にて先行掘削孔H1を直径4.5mあるいは6mまで拡径するようにして掘削が行われるほか、先行掘削孔H1の先端部では先行掘削翼11が装着されているケーシングアタッチメント10と先行掘削翼11との径差のために常に段付き状のものとなる。また、拡径掘削翼8が縮径状態から完全なる拡径状態になるまでの過渡状態では、拡径掘削翼8による掘削径が漸次拡大変化することになる。   Then, as shown in FIGS. 18A and 18B, as the primary excavation, the preceding excavation by the preceding excavation blade 11 and the excavation in the reduced diameter state of the diameter-expanded excavation blade 8 are performed simultaneously in parallel. When the excavating blade 8 reaches the portion below the cutting edge of the caisson 30, the diameter-expanding excavating blade 8 is expanded as shown in FIG. The diameter is assumed to be set to 6 m), and deeper excavation, that is, excavation at a depth of about 40 m as shown in FIG. At this time, after the preceding excavating blade H1 having a diameter of 3 m has been excavated by the preceding excavating blade 11, the drilling is performed so that the diameter of the preceding excavating hole H1 is increased to 4.5 m or 6 m. In addition, the tip of the leading excavation hole H1 always has a stepped shape due to the difference in diameter between the casing attachment 10 to which the leading excavation blade 11 is attached and the leading excavation blade 11. Moreover, in the transient state until the diameter-expanded excavation blade 8 changes from the reduced diameter state to the complete diameter-expanded state, the excavation diameter by the diameter-extended excavation blade 8 gradually increases and changes.

加えて、図18の(D)に示した状態に至るまでの一次掘削の過程では、並行してケーシング7内をハンマーグラブ6が昇降動作して、先行掘削孔H1の底部の溜まった土砂、すなわちケーシングアタッチメント10内に溜まった土砂が排土される。この場合、図16に示すように、拡径掘削翼8にて掘削された土砂はその一部がケーシング7に開口形成された土砂取り込み口9からケーシング7内取り込まれるほか、多くの土砂は先行掘削孔H1とケーシング7との隙間を通して先行掘削翼11の高さ位置まで自重落下してその先行掘削孔H1の底部付近に集められ、先行掘削翼11にて掘削された土砂とともにケーシングアタッチメント10に開口形成された土砂取り込み口15からそのケーシングアタッチメント10内に取り込まれることになる。   In addition, in the process of primary excavation up to the state shown in FIG. 18D, the hammer grab 6 moves up and down in the casing 7 in parallel, and the accumulated sediment at the bottom of the preceding excavation hole H1, That is, the earth and sand accumulated in the casing attachment 10 is discharged. In this case, as shown in FIG. 16, part of the earth and sand excavated by the enlarged diameter excavating blade 8 is taken into the casing 7 from the earth and sand intake port 9 formed in the casing 7, and a lot of earth and sand is preceded. The dead weight falls to the height of the preceding excavation blade 11 through the gap between the excavation hole H1 and the casing 7 and is collected near the bottom of the preceding excavation hole H1 and is put on the casing attachment 10 together with the earth and sand excavated by the preceding excavation blade 11. It will be taken in into the casing attachment 10 from the earth-and-sand taking-in opening 15 formed with opening.

図18の(D)に示すように所定深度までの掘削および排土を終えたならば、19図の(A)に示すように回転押し込み装置2や拡径掘削機5を撤去した上で、ケーソン30の上部から良質土Gを投入して、先に掘削した拡径掘削孔H3のうちケーソン30の刃先下部分まで埋め戻しを行う。   When excavation and soil removal to a predetermined depth are completed as shown in FIG. 18D, after removing the rotary push-in device 2 and the diameter expansion excavator 5 as shown in FIG. The high quality soil G is introduced from the upper part of the caisson 30 and back filling is performed up to the lower part of the caisson 30 in the enlarged diameter drilling hole H3 excavated earlier.

こうして埋め戻しが完了したならば、ケーソン仮受け台33とケーソン30との連結を解除し、ケーソン仮受け台33を撤去する。この際、ケーソン30が自沈しないことを確認しながらケーソン仮受け台33とケーソン30との連結を解除するものとし、万が一ケーソン30が自沈するようであれば先の良質土Gによる埋め戻し量を多くする。   When the backfilling is completed in this manner, the connection between the caisson temporary support base 33 and the caisson 30 is released, and the caisson temporary support base 33 is removed. At this time, the caisson provisional cradle 33 and the caisson 30 are disconnected while confirming that the caisson 30 does not self-sink. Do more.

この後、図19の(B)〜(D)に示すようにケーソン30の構築(セグメントの継ぎ足し)とそのケーソン30の圧入沈設、およびクラムシェル32によるケーソン30内部の掘削を繰り返して、所定深度までケーソン30の圧入沈設を行うものとする。   After that, as shown in FIGS. 19B to 19D, the caisson 30 is constructed (addition of segments), the caisson 30 is press-fitted and the inside of the caisson 30 is excavated by the clamshell 32, and a predetermined depth is obtained. It is assumed that the caisson 30 is press-fitted and installed.

こうしてケーソン30を所定深度まで圧入沈設したならば、図20の(A),(B)に示すように拡径掘削孔H3の底盤部に堆積したスライムを処理した後に底盤コンクリートCを打設する。これにより、ケーソン30をもって所定の立て坑が構築されたことになる。   When the caisson 30 is press-fitted and submerged to a predetermined depth in this way, as shown in FIGS. 20 (A) and 20 (B), after the slime deposited on the bottom plate portion of the enlarged diameter drilling hole H3 is processed, the bottom concrete C is placed. . Thus, a predetermined shaft is constructed with the caisson 30.

ここで、上記実施の形態では拡径掘削孔H3の直径をケーソン30の外径寸法と同じ6.0mとしているが、その拡径掘削孔H3の直径をケーソン30の内径(5.0m)以上であって且つ6.0m未満に設定して、ケーソン30の刃先下にケーソン30の自重に耐え得る未掘削部を残すようにすれば、図19の(A)に示したような良質土Gによる埋め戻し作業は必ずしも必要でなくなり、廃止することが可能である。   Here, in the above embodiment, the diameter of the enlarged diameter drilling hole H3 is 6.0 m, which is the same as the outer diameter of the caisson 30, but the diameter of the expanded diameter drilling hole H3 is equal to or larger than the inner diameter (5.0 m) of the caisson 30. If the unexcavated portion that can withstand the weight of the caisson 30 is left under the cutting edge of the caisson 30 by setting it to less than 6.0 m, the high-quality soil G as shown in FIG. The backfilling work by is no longer necessary and can be abolished.

すなわち、図21の(A)〜(D)は図18の(A)〜(D)と同じ状態を示しているものの、その拡径掘削孔H3の直径を例えばケーソン30の内径(5.0m)以上であって且つケーソン30の外径の6.0m未満に設定してある点で図18と異なっている。   That is, although FIGS. 21A to 21D show the same state as FIGS. 18A to 18D, the diameter of the expanded drilling hole H3 is, for example, the inner diameter of the caisson 30 (5.0 m). ) And different from FIG. 18 in that the outer diameter of the caisson 30 is set to be less than 6.0 m.

そして、図22の(A)に示すように、所定深度の拡径掘削孔H3が形成されたならば、続いて同図(B),(C)に示すように良質土にて埋め戻しをすることなくケーソン30の圧入沈設を行う一方、ケーソン30の圧入深度が大きくなったならば、同図(C),(D)に示すようにクラムシェル32等にて適宜拡径掘削孔H3の底部に溜まった土砂Mの掘削および排土を行うものとする。   Then, as shown in FIG. 22 (A), if the diameter-expanded excavation hole H3 having a predetermined depth is formed, then backfilling with high-quality soil is performed as shown in FIGS. (B) and (C). When the caisson 30 is pressed and submerged without increasing the depth of the caisson 30, the depth of the drilling hole H3 is appropriately increased by the clam shell 32 or the like as shown in FIGS. It is assumed that the earth and sand M accumulated at the bottom is excavated and discharged.

図23の(A),(B)は図20の(A),(B)と同じ状態であり、図23の(A),(B)に示すように拡径掘削孔H3の底盤部に堆積したスライムを処理した後に底盤コンクリートCを打設する。これにより、ケーソン30をもって所定の立て坑が構築されたことになる。   FIGS. 23A and 23B are in the same state as FIGS. 20A and 20B. As shown in FIGS. 23A and 23B, the bottom plate portion of the enlarged diameter drilling hole H3 is formed. After processing the accumulated slime, the bottom base concrete C is placed. Thus, a predetermined shaft is constructed with the caisson 30.

ここで、図21〜23では、硬質地盤に所定深度の拡径掘削孔H3を形成した以降はもっぱらケーソン30の圧入を行う場合の例を示しているが、上記硬質地盤においても後述する図25〜27のほか図35〜37および図38〜40と同様に、拡径掘削孔H3の掘削を所定量ずつ進めながらその都度ケーソン30の圧入を行い、これらの拡径掘削孔H3の掘削とケーソン30の圧入とを交互に繰り返しながら行う工法とすることももちろん可能である。   Here, FIGS. 21 to 23 show an example of the case where the caisson 30 is press-fitted exclusively after the diameter-expanded excavation hole H3 having a predetermined depth is formed in the hard ground, but FIG. 25 described later also in the hard ground. In addition to ˜27, as in FIGS. 35 to 37 and FIGS. 38 to 40, the caisson 30 is press-fitted each time the digging of the enlarged digging hole H3 is advanced by a predetermined amount. Of course, it is possible to adopt a construction method in which 30 press-fittings are alternately repeated.

図24は本発明の第5の実施の形態を示し、先に第2の実施の形態として図3示した部分と共通する部分には同一符号を付してある。なお、この実施の形態は、請求項1〜4に記載の発明のほか,請求項11,12および請求項14,18に記載の発明にそれぞれ対応している。   FIG. 24 shows a fifth embodiment of the present invention, and the same reference numerals are given to the parts common to the parts shown in FIG. 3 as the second embodiment. This embodiment corresponds to the inventions described in claims 11 and 12 and claims 14 and 18 in addition to the inventions described in claims 1 to 4, respectively.

この第5の実施の形態では、図24に示すように、拡径掘削翼8が装着されるケーシング7の一部であって、且つ拡径掘削翼8と先行掘削翼11との間に相当する位置には所定の捻れ角を有する単一且つ螺旋状の補助翼40を装着してある。そして、ケーシング7が例えば右ねじの締め込み方向と同様の時計回り方向に回転駆動されると仮定した場合に、補助翼40には左ねじと同等の捻れ角を持たせてあるとともに、その直径は先行掘削孔H1の直径D2よりも小さく設定されている。この補助翼40は、共通のケーシング7に装着されている先行掘削翼11および拡径掘削翼8が共に時計回り方向の回転をもって掘削回転した際に同方向に回転して、少なくとも先行掘削翼11による先行掘削で発生した土砂をその補助翼40よりも下側に押し込める機能を有する。   In the fifth embodiment, as shown in FIG. 24, it is a part of the casing 7 to which the enlarged diameter excavating blade 8 is mounted, and corresponds to between the enlarged diameter excavating blade 8 and the preceding excavated blade 11. A single and spiral auxiliary wing 40 having a predetermined twist angle is mounted at a position to be mounted. Then, assuming that the casing 7 is driven to rotate in the clockwise direction similar to the tightening direction of the right screw, for example, the auxiliary wing 40 has a twist angle equivalent to that of the left screw and its diameter Is set smaller than the diameter D2 of the preceding excavation hole H1. The auxiliary wing 40 rotates in the same direction when both the leading excavation blade 11 and the enlarged diameter excavation blade 8 mounted on the common casing 7 are excavated and rotated in the clockwise direction, and at least the leading excavation blade 11 is rotated. It has a function to push the earth and sand generated in the preceding excavation by the lower side than the auxiliary wing 40.

この第5の実施の形態によれば、先行掘削翼11による先行掘削と拡径掘削翼8による拡径掘削とが同時並行的に行われる場合に、補助翼40はその上方の土砂が当該補助翼40よりも下側に落下するのを許容する一方で、補助翼40よりも下側にある土砂がその補助翼40によって下方に押し込められることから、この土砂の押し込みは先行掘削翼用ケーシングアタッチメント10に開口形成された土砂取り込み口15からその内部への積極的な土砂の取り込みを促進することとなり、土砂の取り込み効率が一段と良好なものとなる。   According to the fifth embodiment, when the pre-excavation by the pre-excavation blade 11 and the diameter expansion excavation by the large-diameter excavation blade 8 are performed in parallel, the auxiliary wing 40 has the earth and sand above it as the auxiliary While allowing the earth and sand to fall below the wing 40, the earth and sand below the auxiliary wing 40 is pushed downward by the auxiliary wing 40. As a result, positive soil uptake from the soil uptake opening 15 formed in the opening 10 to the inside is promoted, and the soil uptake efficiency is further improved.

図25〜27は本発明の第6の実施の形態を示し、この第6の実施の形態では、ケーソン30の圧入沈設に際して図24と同様の回転押し込み装置2Aおよび先行掘削翼11を有する拡径掘削機5をもってケーソン30の内部のほかそのケーソン30のいわゆる刃先(刃口)下を掘削する場合の例を示している。なお、この実施の形態は、請求項1〜4に記載の発明のほか、請求項11,13および請求項14,18に記載の発明にそれぞれ対応している。   FIGS. 25 to 27 show a sixth embodiment of the present invention. In this sixth embodiment, the causson 30 is press-fitted and provided with a rotary pushing device 2A similar to FIG. An example in which the excavator 5 excavates the inside of the caisson 30 and below the so-called cutting edge (blade edge) of the caisson 30 is shown. This embodiment corresponds to the inventions described in claims 11, 13 and 14, 18 in addition to the inventions described in claims 1-4.

この実施の形態では、ケーソン30を圧入するのに先立つそのケーソン30の内部の掘削のほか、圧入したケーソン30の刃先下の掘削までの全ての掘削、すなわちケーソン30の圧入沈設に必要な全ての掘削を図24に示した回転押し込み装置2Aおよび先行掘削翼11を有する拡径掘削機5をもって行うもので、上記ケーソン30の圧入沈設は、先にも述べたように先行圧入した既設ケーソン30の内部の土砂を掘削しながらその圧入と掘削とを繰り返す一方、既設ケーソン30の上にはいわゆる輪切り状のセグメント30aを継ぎ足しながら圧入沈設を行うことになる。   In this embodiment, in addition to excavation of the inside of the caisson 30 prior to press-fitting the caisson 30, all excavation up to excavation under the cutting edge of the caisson 30 that has been press-fitted, that is, all necessary for press-fitting the caisson 30 is performed. Excavation is performed by the rotary pusher 2A shown in FIG. 24 and the diameter expanding excavator 5 having the preceding excavating blade 11. The press fitting of the caisson 30 is performed as described above with respect to the existing caisson 30 that has been preceded by press fitting. While the press-fitting and excavation are repeated while excavating the earth and sand, press-fitting and sinking is performed while adding a so-called circular segment 30a on the existing caisson 30.

図25の(A)に示すように、ケーソン30や油圧ジャッキ等の圧入沈設装置31のほか、回転押し込み装置2Aおよび拡径掘削機5等を地上にセットしたならば、同図(B)に示すようにケーシング7を回転駆動しながら地中に押し込み、先行掘削翼11と拡径掘削翼8とを併用してケーソン30の内部を掘削する。なお、この段階では拡径掘削翼8は縮径状態にある。   As shown in (A) of FIG. 25, if the rotary push-in device 2A, the enlarged diameter excavator 5 and the like are set on the ground in addition to the press-fitting and sinking device 31 such as the caisson 30 and the hydraulic jack, the same figure (B) is obtained. As shown, the casing 7 is pushed into the ground while being rotationally driven, and the caisson 30 is excavated by using the preceding excavating blade 11 and the enlarged diameter excavating blade 8 together. At this stage, the enlarged diameter excavating blade 8 is in a reduced diameter state.

拡径掘削翼8がケーソン30の刃先下に到達したならば、同図(C)に示すように拡径掘削翼8を拡径させた上で、同図(D)に示すように先行掘削翼11および拡径掘削翼8による掘削と圧入沈設装置31によるケーソン30の圧入とを繰り返す。そして、一段目のケーソン30(セグメント30a)が所定深度まで圧入されたならば、図26の(A)に示すようなケーソン30(セグメント30a)の継ぎ足しと、同図(B)に示すような先行掘削翼11および拡径掘削翼8による掘削、同図(C)に示すような圧入沈設装置31によるケーソン30の圧入、および同図(D)に示すようなケーソン30(セグメント30a)と継ぎ足しのほか、図27の(A)に示すような先行掘削翼11および拡径掘削翼8によるさらなる掘削、同図(B)に示すような圧入沈設装置31によるケーソン30の圧入をそれぞれ繰り返すことでケーソン30を圧入沈設することが可能となる。   When the diameter-extended excavation blade 8 reaches below the cutting edge of the caisson 30, the diameter-expanded excavation blade 8 is expanded as shown in the same figure (C) and then advanced excavation as shown in the same figure (D). The excavation by the blade 11 and the enlarged diameter excavation blade 8 and the press-fitting of the caisson 30 by the press-fitting and setting device 31 are repeated. When the first-stage caisson 30 (segment 30a) is press-fitted to a predetermined depth, the caisson 30 (segment 30a) is added as shown in FIG. 26A, and as shown in FIG. Excavation by the leading excavation blade 11 and the diameter expansion excavation blade 8, press-fitting of the caisson 30 by the press-fitting and sinking device 31 as shown in FIG. 10C, and addition with the caisson 30 (segment 30a) as shown in FIG. In addition to the above, further excavation by the leading excavation blade 11 and the diameter-expanding excavation blade 8 as shown in FIG. 27A and press-fitting of the caisson 30 by the press-fitting and sinking device 31 as shown in FIG. It becomes possible to press-fit the caisson 30.

ケーソン30を圧入沈設完了後には、拡径掘削翼8を縮径状態とした上で先行掘削翼11を含む拡径掘削機5をケーシング7とともに地上に抜き上げる。これにより、ケーソン30をもって所定深度の立て坑が構築されたことになる。なお、必要に応じ図20と同様に底盤コンクリートCを打設することは言うまでもない。   After the caisson 30 has been press-fitted and settled, the diameter-extended excavating blade 8 is reduced, and the diameter-excavating machine 5 including the preceding excavating blade 11 is pulled out together with the casing 7 to the ground. As a result, a shaft with a predetermined depth is constructed with the caisson 30. Needless to say, the bottom base concrete C is placed as necessary as in FIG.

図28〜30は本発明の第7の実施の形態として拡径掘削工程の別の例を示し、先に第3の実施の形態として図6の(B)に示した部分と共通する部分には同一符号を付してある。なお、この実施の形態は、請求項1,2,5,6に記載の発明のほか,請求項9,11,12および請求項16,19,20に記載の発明にそれぞれ対応している。   28 to 30 show another example of the diameter expanding excavation process as the seventh embodiment of the present invention. In the third embodiment, the part common to the part shown in FIG. Are given the same reference numerals. This embodiment corresponds to the inventions described in claims 9, 11, 12 and claims 16, 19, 20 in addition to the inventions described in claims 1, 2, 5 and 6, respectively.

この第7の実施の形態においては、図28のほか図29に示すように、拡径掘削翼8とともに拡径掘削手段を形成しているケーシング7の一部、すなわちそのケーシング7の一部である拡径掘削翼用ケーシングアタッチメント17のうち拡径掘削翼8よりも下方位置には誘導手段としてのスタビライザ50を設けてある。   In the seventh embodiment, as shown in FIG. 29 in addition to FIG. 28, a part of the casing 7 that forms the diameter expansion excavation means together with the diameter expansion excavation blade 8, that is, a part of the casing 7. A stabilizer 50 as a guiding means is provided at a position lower than the diameter-extended excavation blade 8 in a casing attachment 17 for an enlarged diameter excavation blade.

このスタビライザ50は、図29,30に示すように拡径掘削翼用ケーシングアタッチメント17の外周に、放射状の3本のサポートアーム52を介してリング状のガイドリング51を同心状に配置したものであり、そのガイドリング51の外径は、先行掘削孔H1と同径またはそれよりもわずかに小径となるように設定されている。   29 and 30, the stabilizer 50 has a ring-shaped guide ring 51 disposed concentrically on the outer periphery of the casing attachment 17 for a large-diameter excavating blade via three radial support arms 52. As shown in FIG. The outer diameter of the guide ring 51 is set to be the same diameter as the preceding excavation hole H1 or slightly smaller than that.

したがって、この第7の実施の形態によれば、図28に示すように拡径掘削翼8にて拡径掘削を行う際には、その拡径掘削翼8よりも下方に位置しているスタビライザ50のガイドリング51が先行掘削孔H1に内接することになるので、いわゆる拡径掘削翼8の振止め効果が発揮されて、先行掘削孔H1に対する拡径掘削翼8の芯出し(センタリング)がなされるようにその拡径掘削翼8が自律的に誘導されることになる。そのため、先行掘削孔H1とそれを拡径することで形成されることになる拡径掘削孔H2との同芯精度が向上するほか、図6の(B)と比較すると明らかなように拡径掘削翼用ケーシングアタッチメント17のうち拡径掘削翼8よりも下方側への突出長さを小さくできる利点がある。   Therefore, according to the seventh embodiment, when performing diameter expansion excavation with the diameter expansion excavation blade 8 as shown in FIG. 28, the stabilizer positioned below the diameter expansion excavation blade 8. Since 50 guide rings 51 are inscribed in the preceding excavation hole H1, a so-called anti-vibration effect of the diameter-expanded excavation blade 8 is exhibited, and centering of the diameter-expanded excavation blade 8 with respect to the preceding excavation hole H1 is achieved. As is done, the enlarged diameter excavation blade 8 is autonomously guided. Therefore, the concentric accuracy of the preceding excavation hole H1 and the enlarged diameter excavation hole H2 to be formed by expanding the diameter is improved, and the diameter expansion is obvious as compared with FIG. 6B. In the casing attachment 17 for excavation blades, there is an advantage that the protruding length downward from the diameter-excavated excavation blade 8 can be reduced.

なお、この第7の実施の形態においては、排土手段であるハンマーグラブ6Aが昇降動作する際に拡径掘削翼用ケーシングアタッチメント17の下端部と干渉しないように配慮し、図28,29に示すようにハンマーグラブ6Aとして外形状が滑らかなものを採用する一方、拡径掘削翼用ケーシングアタッチメント17の下端にテーパ形状または末広がり形状としたスカート部17aを形成しておくことが望ましい。   In the seventh embodiment, when the hammer grab 6A as the earth removing means is moved up and down, it is considered not to interfere with the lower end portion of the casing attachment 17 for the enlarged diameter excavation blade. As shown, it is desirable to use a hammer grab 6A having a smooth outer shape, and to form a skirt portion 17a having a tapered shape or a diverging shape at the lower end of the casing attachment 17 for the enlarged diameter excavating blade.

図31〜34は本発明の第8の実施の形態を示し、先に第3の実施の形態として図6に示した部分と共通する部分には同一符号を付してある。なお、この実施の形態は、請求項1,2,5に記載の発明のほか,請求項9,11,12および請求項16,19に記載の発明にそれぞれ対応している。   31 to 34 show an eighth embodiment of the present invention, and the same reference numerals are given to the portions common to the portions shown in FIG. 6 as the third embodiment. This embodiment corresponds to the inventions of claims 9, 11, 12 and claims 16, 19 in addition to the inventions of claims 1, 2, 5, respectively.

この第8の実施の形態においては、図31の(B)に示す拡径掘削工程は先に第3の実施の形態として図6の(B)に示したものと全く同様であって、図31の(A)の先行掘削工程のみが異なっている。   In the eighth embodiment, the diameter expanding excavation step shown in FIG. 31 (B) is exactly the same as that shown in FIG. 6 (B) as the third embodiment. Only the preceding excavation process 31 (A) is different.

図31の(A)および図32に示すように、直径D1の先行掘削用ケーシングチューブ16の下端に、それよりも大径で且つ最大径が先行掘削孔H1の孔径と同等径の直径D2のケーシングアタッチメント60を接続してある。なお、このケーシングアタッチメント60は請求項9に言う「第2の鋼管」に相当していて、その直径D2はD3>D2>D1の関係にある。   As shown in FIG. 31A and FIG. 32, a diameter D2 having a diameter larger than that of the preceding excavation casing tube 16 having a diameter D1 and a maximum diameter equal to the diameter of the preceding excavation hole H1 is provided at the lower end of the casing tube 16 having the diameter D1. A casing attachment 60 is connected. The casing attachment 60 corresponds to a “second steel pipe” according to claim 9, and the diameter D2 is in a relationship of D3> D2> D1.

このケーシングアタッチメント60は、図32のほか図33,34に示すようにいわゆる円筒状の二重筒構造となっていて、内側チューブ61と外側チューブ62とは互いに同心状となるように放射状の3枚のブリッジプレート63にて連結されているとともに、外側チューブ62は内側チューブ61の最下端位置よりも下方位置まで延びている。なお、外側チューブ62の外径が先に述べた先行掘削孔H1の孔径と同等径の直径D2に設定されている。また、内側チューブ61と外側チューブ62との間にはブリッジプレート63とは別に同じく放射状の3枚のブレード64が配設されていて、これらのブレード64は外側チューブ62の下端位置と同じ高さ位置まで延びている。そして、外側チューブ62の下端のほか各ブレード64の下端には複数の掘削刃4を植設してある。   This casing attachment 60 has a so-called cylindrical double tube structure as shown in FIGS. 33 and 34 in addition to FIG. 32, and the inner tube 61 and the outer tube 62 are arranged in a radial shape so that they are concentric with each other. The outer tube 62 extends to a position below the lowermost position of the inner tube 61 while being connected by a single bridge plate 63. The outer diameter of the outer tube 62 is set to a diameter D2 that is equivalent to the diameter of the preceding excavation hole H1 described above. In addition to the bridge plate 63, three radial blades 64 are disposed between the inner tube 61 and the outer tube 62, and these blades 64 have the same height as the lower end position of the outer tube 62. Extends to position. In addition to the lower end of the outer tube 62, a plurality of excavation blades 4 are implanted at the lower end of each blade 64.

したがって、この第8の実施の形態によれば、図31の(A)に示すように、ケーシングアタッチメント60を先行掘削用ケーシングチューブ16とともに回転押し込み装置2Aにて回転駆動させながら地中に貫入すると、先行掘削用ケーシングチューブ16の直径はD1であっても、ケーシングアタッチメント60の最大直径がD2であるため、結果として直径D2の先行掘削孔H1が掘削されることになる。そして、先行掘削によって発生した土砂は、図32に矢印で示すようにケーシングアタッチメント60のうちでも特に内側チューブ61の直下位置に徐々に集められて、先行掘削用ケーシングチューブ16内を昇降するハンマーグラブ6にて排土されることになる。   Therefore, according to the eighth embodiment, as shown in FIG. 31A, when the casing attachment 60 is driven to rotate into the ground together with the preceding excavation casing tube 16 by the rotary push-in device 2A. Even if the diameter of the preceding excavation casing tube 16 is D1, the maximum diameter of the casing attachment 60 is D2, and as a result, the preceding excavation hole H1 having the diameter D2 is excavated. Then, as shown by the arrow in FIG. 32, the earth and sand generated by the preceding excavation are gradually gathered in the casing attachment 60, particularly at a position directly below the inner tube 61, and are moved up and down in the preceding excavation casing tube 16. 6 will be dumped.

この先行掘削に続く図31の(B)の拡径掘削は図6の(B)に示したものと全く同様であり、直径D2の先行掘削孔H1を拡径掘削翼8にて拡径するようにして直径D3の立て坑H2に仕上げられることになる。   31 (B) following the preceding excavation is exactly the same as that shown in FIG. 6 (B), and the preceding excavation hole H1 having the diameter D2 is expanded by the enlarged excavation blade 8. In this way, the shaft H2 having a diameter D3 is finished.

なお、図31の(B)に示すように、拡径掘削翼8とともに拡径掘削手段として機能するケーシング7には図24と同様の螺旋状の補助翼40が装着されている。   As shown in FIG. 31 (B), a spiral auxiliary wing 40 similar to that in FIG.

そして、この第8の実施の形態においても、拡径掘削翼8が装着されているケーシング7の直径がD1であるのに対して先行掘削孔H1の直径はD2であり、両者の間には直径D2とD1の差分の隙間Aが確保されているため、拡径掘削翼8による拡径掘削によって生じた土砂はその隙間Aを通ってスムーズに落下して、先行掘削孔H1の底部に集められることになる。また、一部の土砂はケーシング7の土砂取り込み口9から一旦ケーシング7内を通過した上で上記と同様に先行掘削孔H1の底部に集められることになる。   Also in this eighth embodiment, the diameter of the casing 7 on which the diameter-extended excavation blade 8 is mounted is D1, whereas the diameter of the preceding excavation hole H1 is D2, and between them, Since the gap A of the difference between the diameters D2 and D1 is secured, the earth and sand generated by the diameter expansion excavation by the diameter expansion excavation blade 8 smoothly falls through the gap A and collects at the bottom of the preceding excavation hole H1. Will be. A part of the earth and sand passes through the inside of the casing 7 from the earth and sand intake port 9 of the casing 7 and is collected at the bottom of the preceding excavation hole H1 in the same manner as described above.

すなわち、この第8の実施の形態においても、拡径掘削によって発生した土砂が従来のように拡径掘削翼8の根元部付近に滞留したり、あるいはその滞留により再度締め固め状態となって拡径掘削翼8全体に付着することもなくなり、先行掘削孔H1の底部側への掘削土砂の取り込み効率がきわめて良好なものとなる。そして、先行掘削孔H1の底部に集められた土砂は先に述べたようにケーシング7内を昇降動作するハンマーグラブ6にて排土されることになる。   That is, also in the eighth embodiment, the earth and sand generated by the diameter expansion excavation stays in the vicinity of the root portion of the diameter expansion excavation blade 8 as in the prior art, or becomes a compacted state again due to the retention and expands. It will not adhere to the entire diameter excavation blade 8, and the efficiency of taking excavated soil into the bottom side of the preceding excavation hole H1 will be extremely good. Then, the earth and sand collected at the bottom of the preceding excavation hole H1 is discharged by the hammer grab 6 that moves up and down in the casing 7 as described above.

図35〜37は本発明の第9の実施の形態を示す図で、先に第7の実施の形態として図28に示した拡径掘削工程と、同じく先に第8の実施の形態として図31の(A)に示した先行掘削工程とを併用した場合の拡径掘削方法の例を示している。   FIGS. 35 to 37 are views showing a ninth embodiment of the present invention. The diameter expansion excavation step shown in FIG. 28 as the seventh embodiment is the same as the eighth embodiment. The example of the diameter expansion excavation method at the time of using together with the preceding excavation process shown to (A) of 31 is shown.

すなわち、この第9の実施の形態では、ケーソン30の圧入沈設に際して、図31の(A)の先行掘削と図28の拡径掘削とを併用することで、ケーソン30の内部のほかそのケーソン30のいわゆる刃先(刃口)下を掘削する場合の例を示している。なお、この実施の形態は、請求項1,2,5,6に記載の発明のほか、請求項9,11,13および請求項16,19,20に記載の発明にそれぞれ対応している。   That is, in the ninth embodiment, when the caisson 30 is press-fitted and set, the preceding excavation shown in FIG. 31A and the enlarged diameter excavation shown in FIG. The example in the case of excavating under what is called a blade edge (blade edge) is shown. This embodiment corresponds to the inventions described in claims 9, 11, 13 and claims 16, 19, 20 in addition to the inventions described in claims 1, 2, 5 and 6, respectively.

この実施の形態では、図35に示すように、ケーソン30を圧入するのに先立つそのケーソン30の内部の掘削のほか、圧入したケーソン30の刃先下の掘削までの全ての掘削、すなわちケーソン30の圧入沈設に必要な全ての掘削を図31の(A)の先行掘削と図28の拡径掘削とを併用して行うもので、上記ケーソン30の圧入沈設は、先にも述べたように先行圧入した既設ケーソン30の内部の土砂を掘削しながらその圧入と掘削とを繰り返す一方、既設ケーソン30の上にはいわゆる輪切り状のセグメント30aを継ぎ足しながら圧入沈設を行うことになる(図36参照)。   In this embodiment, as shown in FIG. 35, in addition to excavation inside the caisson 30 prior to press-fitting the caisson 30, all excavation up to excavation under the cutting edge of the caisson 30 that has been press-fitted, that is, the caisson 30 All excavation necessary for the press-in subsidence is performed by using both the pre-excavation shown in FIG. 31A and the diameter-extended excavation shown in FIG. 28. The press-in subsidence of the caisson 30 is advanced as described above. While the press-fitting and excavation are repeated while excavating the earth and sand inside the existing caisson 30 that has been press-fitted, press-fitting and sinking is performed on the existing caisson 30 while adding a so-called ring-cut segment 30a (see FIG. 36). .

図35の(A)および(B)は先行掘削工程であり、同図(A)に示すように、ケーソン30や油圧ジャッキ等の圧入沈設装置31のほか、回転押し込み装置2Aおよび先行掘削用ケーシングチューブ16等を地上にセットしたならば、同図(B)に示すように先行掘削用ケーシングチューブ16を回転駆動しながら地中に押し込み、所定深度まで先行掘削孔H1を掘削する。   (A) and (B) in FIG. 35 are the preceding excavation process, and as shown in FIG. 35 (A), in addition to the press-fitting and setting device 31 such as the caisson 30 and the hydraulic jack, the rotary push-in device 2A and the preceding excavation casing. When the tube 16 and the like are set on the ground, the preceding excavation hole H1 is excavated to a predetermined depth by pushing it into the ground while rotating the preceding excavation casing tube 16 as shown in FIG.

先行掘削孔H1の掘削を終えたならば、同図(C)に示すように先行掘削用ケーシングチューブ16に代えて拡径掘削機5を有するケーシング7をセットする。そして、同図(D)に示すようにケーシング7を回転駆動しながら地中に押し込み、先の先行掘削孔H1を拡径しながらケーソン30の内部を掘削し、これと並行してケーソン30を圧入する。なお、この段階では拡径掘削翼8は縮径状態にある。   When the excavation of the preceding excavation hole H1 is completed, the casing 7 having the diameter expanding excavator 5 is set instead of the preceding excavation casing tube 16 as shown in FIG. Then, as shown in FIG. 4D, the casing 7 is pushed into the ground while being rotationally driven, the inside of the caisson 30 is excavated while expanding the preceding preceding excavation hole H1, and the caisson 30 is Press fit. At this stage, the enlarged diameter excavating blade 8 is in a reduced diameter state.

一段目のケーソン30がある程度地中に圧入されたならば、図36の(A)に示すように以降は拡径掘削翼8を拡径状態とした上で、同図(B)に示すようなケーソン30(セグメント30a)の継ぎ足しと、同図(C)に示すような拡径掘削翼8による掘削および圧入沈設装置31によるケーソン30の圧入のほか、同図(D)に示すようなケーソン30(セグメント30a)のさらなる継ぎ足し、ならびに図37の(A)に示すような拡径掘削翼8による掘削および圧入沈設装置31によるケーソン30の圧入をそれぞれ繰り返すことで、同図(B)に示すように所定深度までケーソン30を圧入沈設することが可能となる。   If the first-stage caisson 30 is pressed into the ground to some extent, as shown in FIG. 36 (A), after the diameter-extended excavation blade 8 is in an expanded state, as shown in FIG. In addition to the addition of a large caisson 30 (segment 30a), excavation by the enlarged diameter excavating blade 8 as shown in FIG. 30 (segment 30a), and the caisson 30 press-fitting by the diameter-expanded excavating blade 8 and the press-fitting and sinking device 31 as shown in FIG. Thus, the caisson 30 can be press-fitted and set to a predetermined depth.

ケーソン30の圧入沈設完了後には、拡径掘削翼8を縮径状態とした上で拡径掘削機5をケーシング7とともに地上に抜き上げる。これにより、ケーソン30をもって所定深度の立て坑が構築されたことになる。   After the caisson 30 is press-fitted and settled, the diameter-extended excavator 8 is pulled down to the ground together with the casing 7 after the diameter-excavated blade 8 is reduced in diameter. As a result, a shaft with a predetermined depth is constructed with the caisson 30.

図38〜40は本発明の第10の実施の形態を示す図で、先に第9の実施の形態として図35〜37に示したものと共通する部分には同一符号を付してある。   38 to 40 show a tenth embodiment of the present invention. The same reference numerals are given to the parts common to those shown in FIGS. 35 to 37 as the ninth embodiment.

この第10の実施の形態では、一段目のケーソン30(セグメント30a)を圧入沈設装置31にて圧入するまでは、そのケーソン30の内部をクラムシェル等のバケット系掘削手段32にて掘削するものとし、それ以降の掘削を図35〜37と同様の手順で行うようにしたものである。   In the tenth embodiment, the caisson 30 is excavated by a bucket excavating means 32 such as a clamshell until the first-stage caisson 30 (segment 30a) is press-fitted by the press-fitting and setting device 31. The excavation thereafter is performed in the same procedure as in FIGS.

すなわち、図38の(A),(B)に示すように、バケット系掘削手段32にて地盤を掘削しながら一段目のケーソン30(セグメント30a)を圧入沈設装置31にて圧入し、同図(C)に示すように二段目のケーソン30(セグメント30a)を継ぎ足した上で、同図(D)に示すように回転押し込み装置2Aや先行掘削用ケーシングチューブ16をセットする。   That is, as shown in FIGS. 38A and 38B, the caisson 30 (segment 30a) of the first stage is press-fitted by the press-fitting and sinking device 31 while excavating the ground by the bucket excavation means 32, and FIG. After adding the second-stage caisson 30 (segment 30a) as shown in (C), the rotary push-in device 2A and the preceding excavation casing tube 16 are set as shown in FIG.

そして、図39の(A)に示すように、先行掘削用ケーシングチューブ16を回転駆動しながら地中に押し込み、先行掘削孔H1を所定深度まで掘削する。   Then, as shown in FIG. 39A, the preceding excavation casing tube 16 is pushed into the ground while being rotationally driven, and the preceding excavation hole H1 is excavated to a predetermined depth.

この後、図39の(B)に示すように、先行掘削用ケーシングチューブ16に代えて拡径掘削機5を有するケーシング7をセットし、以降は図35〜37と同様にして図39の(C),(D)および図40の(A),(B)の手順で拡径掘削機5よる拡径掘削と圧入沈設装置31によるケーソン30の圧入とを繰り替えすことでケーソン30を圧入沈設することが可能となる。   Thereafter, as shown in FIG. 39 (B), a casing 7 having an enlarged excavator 5 is set in place of the preceding excavation casing tube 16, and thereafter the same as FIG. The caisson 30 is press-fitted and submerged by repeating the diameter-expanded excavation by the diameter-expanding excavator 5 and the press-fitting of the caisson 30 by the press-fitting and substituting device 31 according to the procedures of C), (D) and FIGS. It becomes possible to do.

ケーソン30の圧入沈設完了後には、先の第9の実施の形態と同様に、拡径掘削翼8を縮径状態とした上で拡径掘削機5をケーシング7とともに地上に抜き上げる。これにより、ケーソン30をもって所定深度の立て坑が構築されたことになる。   After the caisson 30 has been press-fitted and settled, the diameter-extended excavator 5 is pulled out to the ground together with the casing 7 after the diameter-extended excavation blade 8 is reduced in diameter, as in the ninth embodiment. As a result, a shaft with a predetermined depth is constructed with the caisson 30.

ここで、上記各実施の形態においては、拡径掘削翼8として先に述べたように固定翼8aと可動翼8bとを重合配置し、固定翼8aに対して可動翼8bをスライド変位させることで拡縮径させるタイプのものを採用しているが、本発明は特に拡径掘削翼の形式に拘泥するものではないから、先の実施の形態の拡径掘削翼に代えて、例えば先に述べた特許文献2〜4に記載のようなタイプの拡径掘削翼を採用することももちろん可能である。   Here, in each of the above-described embodiments, the fixed blade 8a and the movable blade 8b are superposed and arranged as the diameter-excavated excavating blade 8, and the movable blade 8b is slid with respect to the fixed blade 8a. However, since the present invention is not particularly limited to the type of the diameter-expanded drilling blade, instead of the diameter-expanded drilling blade of the previous embodiment, for example, as described above. Of course, it is also possible to employ a diameter-excavated blade of the type described in Patent Documents 2 to 4.

本発明に係る拡径掘削システムの第1の実施の形態を示す図で、(A)は先行掘削の説明図、(B)は同図(A)の先行掘削に続く拡径掘削の説明図。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows 1st Embodiment of the diameter expansion excavation system which concerns on this invention, (A) is explanatory drawing of preceding excavation, (B) is explanatory drawing of diameter expanding excavation following the prior excavation of the same figure (A). . 図1の(B)に示す拡径掘削機の拡大平面説明図。Explanatory drawing of an expansion plane of the diameter expansion excavator shown to (B) of FIG. 本発明に係る拡径掘削システムの第2の実施の形態を示す説明図。Explanatory drawing which shows 2nd Embodiment of the diameter expansion excavation system which concerns on this invention. 図3における拡径掘削機の拡大平面説明図。Explanatory drawing of an expansion plane of the diameter-excavation machine in FIG. 図3における先行掘削翼の詳細を示す図で、(A)は先行掘削翼用ケーシングアタッチメントの拡大正面図、(B)は同図(A)の平面説明図。It is a figure which shows the detail of the preceding excavation blade in FIG. 3, (A) is an enlarged front view of the casing attachment for preceding excavation blades, (B) is plane explanatory drawing of the figure (A). 本発明に係る拡径掘削システムの第3の実施の形態を示す図で、(A)は先行掘削の説明図、(B)は同図(A)の先行掘削に続く拡径掘削の説明図。It is a figure which shows 3rd Embodiment of the diameter expansion excavation system which concerns on this invention, (A) is explanatory drawing of preceding excavation, (B) is explanatory drawing of diameter expanding excavation following the prior excavation of the figure (A). . 図6の(A)に示す先行掘削翼の拡大平面説明図。FIG. 7 is an enlarged plan view of the preceding excavation blade shown in FIG. 図3に示す拡径掘削機の要部分解図。The principal part exploded view of the diameter-expansion excavator shown in FIG. 図8に示した拡径掘削機の平面説明図。Plane | planar explanatory drawing of the diameter expansion excavator shown in FIG. 図8における拡径掘削翼用ケーシングアタッチメント単体での詳細を示す図で、(A)はその平面説明図、(B)は正面説明図。It is a figure which shows the detail in the casing attachment for diameter-enlarged excavation blades in FIG. 8, (A) is the plane explanatory drawing, (B) is front explanatory drawing. 図8における拡径掘削翼の拡大説明図。FIG. 9 is an enlarged explanatory view of the diameter-excavated excavating blade in FIG. 図11の要部平面図。The principal part top view of FIG. 図11の左側面図。The left view of FIG. 図11に示す拡径掘削翼の背面図。The rear view of the diameter expansion excavation blade shown in FIG. 図12の拡径掘削翼を縮径状態とした図で、(A)はその平面説明図、(B)は正面説明図。It is the figure which made the diameter expansion excavation blade of FIG. 12 the diameter reduction state, (A) is the plane explanatory drawing, (B) is front explanatory drawing. 本発明に係る拡径掘削システムの第4の実施の形態を示す説明図。Explanatory drawing which shows 4th Embodiment of the diameter expansion excavation system which concerns on this invention. 図16のシステムでの施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure in the system of FIG. 図17に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 図18に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 図19に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 図17〜20に示した施工手順の変形例を示す工程説明図。Process explanatory drawing which shows the modification of the construction procedure shown to FIGS. 図21に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 図22に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 本発明に係る拡径掘削システムの第5の実施の形態を示す説明図。Explanatory drawing which shows 5th Embodiment of the diameter expansion excavation system which concerns on this invention. 本発明の第6の実施の形態として図24のシステムでのケーソン構築の施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure of the caisson construction in the system of FIG. 24 as the 6th Embodiment of this invention. 図25に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 図26に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 本発明に係る拡径掘削システムの第7の実施の形態として拡径掘削工程を示す説明図。Explanatory drawing which shows a diameter expansion excavation process as 7th Embodiment of the diameter expansion excavation system which concerns on this invention. 図28の要部拡大説明図。The principal part expansion explanatory drawing of FIG. 図29の下面図。The bottom view of FIG. 本発明に係る拡径掘削システムの第8の実施の形態を示す説明図。Explanatory drawing which shows 8th Embodiment of the diameter expansion excavation system which concerns on this invention. 図31の(A)の要部拡大図。The principal part enlarged view of (A) of FIG. 図32のE−E線に沿う断面説明図。Cross-sectional explanatory drawing which follows the EE line | wire of FIG. 図32のF−F線に沿う断面説明図。Cross-sectional explanatory drawing which follows the FF line of FIG. 本発明の第9の実施の形態としてケーソン構築の別の施工手順を示す工程説明図。Process explanatory drawing which shows another construction procedure of caisson construction as the 9th Embodiment of this invention. 図35に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 図36に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 本発明の第10の実施の形態としてケーソン構築のさらに別の施工手順を示す工程説明図。Process explanatory drawing which shows another construction procedure of caisson construction as 10th Embodiment of this invention. 図38に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG. 図39に続く施工手順を示す工程説明図。Process explanatory drawing which shows the construction procedure following FIG.

符号の説明Explanation of symbols

1…第3の鋼管としての先行掘削用ケーシングチューブ(先行掘削手段)
2,2A…回転押し込み装置
3…ハンマーグラブ(排土手段)
5…拡径掘削機(拡径掘削手段)
6,6A…ハンマーグラブ(排土手段)
7…円筒状の鋼管としてのケーシング(拡径掘削手段)
8…拡径掘削翼(拡径掘削手段)
9…土砂取り込み口
10…先行掘削用ケーシングアタッチメント(先行掘削手段)
11…先行掘削翼(先行掘削手段)
15…土砂取り込み口
16…先行掘削用ケーシングチューブ(先行掘削手段)
30…ケーソン
40…螺旋状の補助翼
50…誘導手段としてのスタビライザ
51…ガイドリング
60…第2の鋼管としてのケーシングアタッチメント
H1…先行掘削孔
H2…拡径掘削孔(立て坑)
H3…拡径掘削孔
1 ... Casing tube for preceding excavation as third steel pipe (advanced excavating means)
2, 2A ... Rotary push-in device 3 ... Hammer grab (soil removal means)
5 ... Expansion drilling machine (expanding drilling means)
6, 6A ... Hammer grab (soil removal means)
7: Casing as a cylindrical steel pipe (expansion drilling means)
8 ... Diameter drilling blade (Diameter drilling means)
9 ... Sediment uptake port 10 ... Casing attachment for advanced excavation (advanced excavation means)
11 ... Advance excavation blade (advance excavation means)
15 ... Sediment intake port 16 ... Casting tube for advanced excavation (advanced excavation means)
DESCRIPTION OF SYMBOLS 30 ... Caisson 40 ... Spiral auxiliary wing 50 ... Stabilizer as guide means 51 ... Guide ring 60 ... Casing attachment as 2nd steel pipe H1 ... Precise excavation hole H2 ... Expanded excavation hole (stand shaft)
H3 ... Diameter drilling hole

Claims (20)

地盤に先行掘削された孔を拡径するように掘削して立て坑とする拡径掘削工程を含んでいて、
この拡径掘削工程では、
先行掘削孔よりも小径の円筒状の鋼管の外周に拡径掘削翼を設けてなる拡径掘削手段にて上記先行掘削孔を拡径するように掘削するとともに、拡径掘削によって発生した土砂を先行掘削孔と鋼管との隙間を通して先行掘削孔の底部に溜めた上で鋼管内より排土することを特徴とする拡径掘削方法。
Including a diameter expanding excavation step for excavating and drilling so as to expand the diameter of the hole excavated in advance in the ground;
In this diameter expansion drilling process,
Drilling to expand the preceding drilling hole with a diameter expanding drilling means provided with a diameter expanding drilling blade on the outer periphery of a cylindrical steel pipe having a diameter smaller than that of the preceding drilling hole. A diameter-expanding excavation method characterized in that the soil is discharged from the steel pipe after being accumulated at the bottom of the preceding excavation hole through a gap between the preceding excavation hole and the steel pipe.
先行掘削手段にて地盤に先行掘削孔を掘削する先行掘削工程を含んでいて、
この先行掘削工程では、
上記鋼管の直径よりも大径で且つ拡径掘削径よりも小径の先行掘削孔を掘削することを特徴とする請求項1に記載の拡径掘削方法。
Including a preceding excavation step of excavating a preceding excavation hole in the ground with an advance excavation means;
In this advanced excavation process,
The diameter-expanded excavation method according to claim 1, wherein a preceding excavation hole having a diameter larger than the diameter of the steel pipe and smaller than the diameter of the expanded excavation is excavated.
上記拡径掘削手段と先行掘削手段とを兼用化させて、先行掘削手段による先行掘削と拡径掘削手段による拡径掘削とを並行して行うことを特徴とする請求項2に記載の拡径掘削方法。   3. The diameter expansion according to claim 2, wherein the diameter excavation means and the preceding excavation means are combined to perform the preceding excavation by the preceding excavation means and the diameter expansion excavation by the diameter expansion excavation means in parallel. Drilling method. 上記先行掘削は、
鋼管のうち拡径掘削翼よりも下方位置に設けた先行掘削手段にて行うものであることを特徴とする請求項3に記載の拡径掘削方法。
The preceding excavation is
The diameter expansion excavation method according to claim 3, wherein the drilling is performed by a prior excavation means provided below a diameter expansion excavation blade in the steel pipe.
先行掘削手段にて先行掘削孔を先行掘削した後、その先行掘削手段に代えて拡径掘削手段にて拡径掘削を行うことを特徴とする請求項2に記載の拡径掘削方法。   3. The diameter expansion drilling method according to claim 2, wherein after the preceding excavation hole is excavated by the preceding excavation means, the diameter expansion excavation is performed by the diameter expansion excavation means instead of the preceding excavation means. 上記拡径掘削手段にて拡径掘削を行うにあたり、
拡径掘削翼の下方位置に先行掘削孔とほぼ同径またはそれ以下の外径を有する誘導手段を設けておき、
この誘導手段を先行掘削孔に内接させることにより、先行掘削孔に対する拡径掘削手段の芯出しがなされるように誘導することを特徴とする請求項5に記載の拡径掘削方法。
In performing the diameter expansion excavation by the diameter expansion excavation means,
A guide means having an outer diameter substantially equal to or smaller than that of the preceding excavation hole is provided at a position below the enlarged diameter excavation blade,
6. The diameter expanding excavation method according to claim 5, wherein the guiding means is inscribed in the preceding excavation hole so that the diameter expanding excavation means is centered with respect to the preceding excavation hole.
上記先行掘削は、
拡径掘削手段側の鋼管とほぼ同径の先行掘削用ケーシングチューブの外周に先行掘削翼を設けてなる先行掘削手段にて行うものであることを特徴とする請求項1,2および請求項5,6のうちのいずれか一つに記載の拡径掘削方法。
The preceding excavation is
6. The first and second excavating means, wherein a preceding excavating blade is provided on the outer periphery of a casing tube for preceding excavation having the same diameter as that of the steel pipe on the diameter expanding excavating means side. , 6 The diameter expansion excavation method as described in any one of these.
上記先行掘削の際に、先行掘削用ケーシングチューブのうち先行掘削翼よりも掘削方向前方側に開口形成した土砂取り込み口から先行掘削用ケーシングチューブ内に掘削土砂を取り込むことを特徴とする請求項7に記載の拡径掘削方法。   8. The excavation sediment is taken into the preceding excavation casing tube from the sediment intake port formed in the excavation direction front side of the preceding excavation blade in the preceding excavation blade during the preceding excavation. The diameter-expanding excavation method described in 2. 上記先行掘削は、
拡径掘削手段側の鋼管とほぼ同径の先行掘削用ケーシングチューブに先行掘削孔径とほぼ同径の円筒状の第2の鋼管を装着してあり、且つその第2の鋼管の先端に掘削刃を装着してなる先行掘削手段にて行うものであることを特徴とする請求項1,2および請求項5,6のうちのいずれか一つに記載の拡径掘削方法。
The preceding excavation is
A cylindrical second steel pipe having a diameter substantially the same as the diameter of the preceding drilling hole is mounted on the casing tube for the previous drilling having the same diameter as that of the steel pipe on the side of the expanded drilling means, and a drilling blade is provided at the tip of the second steel pipe. The diameter-expanding excavation method according to any one of claims 1 and 2 and claim 5 and 6, wherein the excavation means is performed by preceding excavation means.
上記先行掘削は、
拡径掘削手段側の鋼管よりも大径で且つ拡径掘削径よりも小径の円筒状の第3の鋼管の先端に掘削刃を装着してなる先行掘削手段にて行うものであることを特徴とする請求項1,2および請求項5,6のうちのいずれか一つに記載の拡径掘削方法。
The preceding excavation is
It is characterized in that it is carried out by a preceding excavation means in which a drilling blade is attached to the tip of a cylindrical third steel pipe having a diameter larger than that of the steel pipe on the enlarged diameter excavation means side and smaller than the expanded excavation diameter. The diameter expansion excavation method according to any one of claims 1 and 2, and claims 5 and 6.
上記拡径掘削翼として拡縮径可能なものを用いることを特徴とする請求項1〜10のうちのいずれか一つに記載の拡径掘削方法。   The diameter expansion excavation method according to claim 1, wherein the diameter expansion excavation blade is capable of expanding and contracting. 拡径掘削手段を形成している鋼管のうち拡径掘削翼の下方位置に螺旋状の補助翼を設けておき、
上記拡径掘削翼で掘削した土砂を、その拡径掘削翼の掘削回転に伴い補助翼にて先行掘削孔内に押し込むことを特徴とする請求項1〜11のうちのいずれか一つに記載の拡径掘削方法。
A spiral auxiliary wing is provided at a position below the expanded diameter drilling blade among the steel pipes forming the expanded diameter drilling means,
The earth and sand excavated by the enlarged diameter excavating blade is pushed into a preceding excavation hole by an auxiliary wing in accordance with excavation rotation of the enlarged diameter excavating blade. Diameter drilling method.
ケーソンの内部またはケーソンの刃先下の掘削を行うものであることを特徴とする請求項1〜12のうちのいずれか一つに記載の拡径掘削方法。   The diameter expansion excavation method according to any one of claims 1 to 12, wherein excavation is performed inside the caisson or under the cutting edge of the caisson. 予め定められた深さの立て坑を構築するにあたり、
その立て坑の深さの全長にわたって請求項3または4に記載の方法にて掘削を行うことを特徴とする拡径掘削方法。
In constructing a shaft with a predetermined depth,
A diameter expansion excavation method, wherein excavation is performed by the method according to claim 3 or 4 over the entire length of the depth of the shaft.
予め定められた深さの立て坑を構築するにあたり、
その立て坑の深さの途中まで掘削が進行したならば、その途中段階から以深の掘削を請求項3または4に記載の方法にて行うことを特徴とする拡径掘削方法。
In constructing a shaft with a predetermined depth,
5. A diameter-expanding excavation method characterized in that if excavation progresses to the middle of the depth of the shaft, further excavation is carried out by the method according to claim 3 or 4.
予め定められた深さの立て坑を構築するにあたり、
その立て坑の深さの全長にわたって請求項5に記載の方法にて掘削を行うことを特徴とする拡径掘削方法。
In constructing a shaft with a predetermined depth,
A diameter-expanding excavation method, wherein excavation is performed by the method according to claim 5 over the entire length of the depth of the shaft.
予め定められた深さの立て坑を構築するにあたり、
その立て坑の深さの途中まで掘削が進行したならば、その途中段階から以深の掘削を請求項5に記載の方法にて行うことを特徴とする拡径掘削方法。
In constructing a shaft with a predetermined depth,
6. A diameter expanding excavation method according to claim 5, wherein if excavation has progressed halfway through the depth of the shaft, deeper excavation is carried out by the method according to claim 5.
請求項3または4に記載の拡径掘削方法に用いる拡径掘削システムであって、
先行掘削孔よりも小径の円筒状の鋼管の外周に拡径掘削翼を設けてなる拡径掘削手段と、
上記鋼管のうち拡径掘削翼よりも下方位置に設けられ、当該鋼管よりも大径で且つ拡径掘削径よりも小径の先行掘削孔の掘削が可能な先行掘削手段と、
上記鋼管を把持した上でその鋼管を拡径掘削翼や先行掘削手段とともに回転させながら地中に押し込む回転押し込み手段と、
上記鋼管内を昇降動作してその鋼管内の土砂を掴んだ上で鋼管外に排土する排土手段と、
を備えたことを特徴とする拡径掘削システム。
A diameter expansion excavation system used in the diameter expansion excavation method according to claim 3 or 4,
A diameter-expanding drilling means comprising a diameter-expanded excavating blade on the outer periphery of a cylindrical steel pipe having a smaller diameter than the preceding excavation hole;
A pre-excavation means provided in a position below the diameter-extended excavation blade of the steel pipe, capable of excavating a pre-excavation hole having a diameter larger than that of the steel pipe and smaller than the expanded excavation diameter;
Rotating push means for pushing the steel pipe into the ground while rotating the steel pipe together with the enlarged diameter drilling blade and the preceding excavation means,
A soil removal means for moving up and down in the steel pipe and grabbing the earth and sand in the steel pipe, and then discharging it outside the steel pipe;
An enlarged diameter drilling system characterized by comprising:
請求項5または6に記載の拡径掘削方法に用いる拡径掘削システムであって、
先行掘削孔よりも小径の円筒状の鋼管の外周に拡径掘削翼を設けてなる拡径掘削手段と、
上記鋼管よりも大径で且つ拡径掘削径よりも小径の先行掘削孔の掘削が可能な先行掘削手段と、
上記鋼管を把持した上でその鋼管を拡径掘削翼とともに回転させながら地中に押し込む回転押し込み手段と、
上記鋼管内を昇降動作してその鋼管内の土砂を掴んだ上で鋼管外に排土する排土手段と、
を備えたことを特徴とする拡径掘削システム。
A diameter expansion excavation system used in the diameter expansion excavation method according to claim 5 or 6,
A diameter-expanding drilling means comprising a diameter-expanded excavating blade on the outer periphery of a cylindrical steel pipe having a smaller diameter than the preceding excavation hole;
A preceding excavation means capable of excavating a preceding excavation hole having a diameter larger than that of the steel pipe and smaller than an expanded excavation diameter;
Rotating push-in means for pushing the steel pipe into the ground while rotating the steel pipe together with the enlarged diameter excavating blade after gripping the steel pipe,
A soil removal means for moving up and down in the steel pipe and grabbing the earth and sand in the steel pipe, and then discharging it outside the steel pipe;
An enlarged diameter drilling system characterized by comprising:
請求項6に記載の拡径掘削方法に用いる拡径掘削システムであって、
先行掘削孔よりも小径の円筒状の鋼管の外周に拡径掘削翼を設けてなる拡径掘削手段と、
上記鋼管よりも大径で且つ拡径掘削径よりも小径の先行掘削孔の掘削が可能な先行掘削手段と、
上記鋼管を把持した上でその鋼管を拡径掘削翼とともに回転させながら地中に押し込む回転押し込み手段と、
上記鋼管のうち拡径掘削翼よりも下方位置に設けられるとともに先行掘削孔とほぼ同径またはそれ以下の外径を有し、拡径掘削時に先行掘削孔に内接することにより先行掘削孔に対する拡径掘削手段の芯出しがなされるように誘導する誘導手段と、
上記鋼管内を昇降動作してその鋼管内の土砂を掴んだ上で鋼管外に排土する排土手段と、
を備えたことを特徴とする拡径掘削システム。
A diameter expansion excavation system used for the diameter expansion excavation method according to claim 6,
A diameter-expanding drilling means comprising a diameter-expanded excavating blade on the outer periphery of a cylindrical steel pipe having a smaller diameter than the preceding excavation hole;
A preceding excavation means capable of excavating a preceding excavation hole having a diameter larger than that of the steel pipe and smaller than an expanded excavation diameter;
Rotating push-in means for pushing the steel pipe into the ground while rotating the steel pipe together with the enlarged diameter excavating blade after gripping the steel pipe,
The steel pipe is provided at a position lower than the enlarged drilling blade and has an outer diameter that is substantially the same as or smaller than that of the preceding drilling hole. Guiding means for guiding the diameter excavating means to be centered;
A soil removal means for moving up and down in the steel pipe and grabbing the earth and sand in the steel pipe, and then discharging it outside the steel pipe;
An enlarged diameter drilling system characterized by comprising:
JP2007181631A 2006-07-12 2007-07-11 Drilling method and drilling device Active JP4344762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007181631A JP4344762B2 (en) 2006-07-12 2007-07-11 Drilling method and drilling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006191528 2006-07-12
JP2007181631A JP4344762B2 (en) 2006-07-12 2007-07-11 Drilling method and drilling device

Publications (2)

Publication Number Publication Date
JP2008038593A true JP2008038593A (en) 2008-02-21
JP4344762B2 JP4344762B2 (en) 2009-10-14

Family

ID=39173941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007181631A Active JP4344762B2 (en) 2006-07-12 2007-07-11 Drilling method and drilling device

Country Status (1)

Country Link
JP (1) JP4344762B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104196442A (en) * 2014-04-11 2014-12-10 中国水利水电第十一工程局有限公司 Method for carrying out construction in vertical shaft or inclined shaft through raise boring machine
JP2015212501A (en) * 2014-05-07 2015-11-26 システム計測株式会社 Excavation bucket
JP2018135683A (en) * 2017-02-21 2018-08-30 株式会社三誠 Ground improvement device and ground improvement method
CN109630123A (en) * 2018-07-23 2019-04-16 中国铁建重工集团有限公司 Deep shaft rock ripper

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104196442A (en) * 2014-04-11 2014-12-10 中国水利水电第十一工程局有限公司 Method for carrying out construction in vertical shaft or inclined shaft through raise boring machine
JP2015212501A (en) * 2014-05-07 2015-11-26 システム計測株式会社 Excavation bucket
JP2018135683A (en) * 2017-02-21 2018-08-30 株式会社三誠 Ground improvement device and ground improvement method
CN109630123A (en) * 2018-07-23 2019-04-16 中国铁建重工集团有限公司 Deep shaft rock ripper
CN109630123B (en) * 2018-07-23 2024-02-02 中国铁建重工集团股份有限公司 Rock tunneller for deep shaft

Also Published As

Publication number Publication date
JP4344762B2 (en) 2009-10-14

Similar Documents

Publication Publication Date Title
CN104775433B (en) A kind of method of pile pulling construction
JP2006241919A (en) Pile construction machine and pile construction method
JP4344762B2 (en) Drilling method and drilling device
CN110644551B (en) Pile driver and construction method thereof
JP5078511B2 (en) Embedded pile method using earth drill machine
JP2007332559A (en) Removal method for existing underground pile
JP2010019046A (en) Pit excavating apparatus and pit excavating construction method
CN104141455A (en) Drilling machine device and drilling method of drilling machine
JP4775737B2 (en) Drilling drill detachable drilling hole forming method and apparatus therefor
JP6077986B2 (en) Obstacle ground pile placing device and method of placing a steel pipe pile on the obstacle ground
JP2007285064A (en) Construction method of foundation pile
JP6729902B1 (en) Construction method of soil cement continuous wall
JP2012140787A (en) Construction method of pile body and casing pipe used for the same, and foundation structure constructed thereby
JP5763740B2 (en) How to start the excavator
CN109653266B (en) Scraper chain type grooving machine
JP3343501B2 (en) Excavation method
JPS61221413A (en) Skew pile driving work
JP6945329B2 (en) Underground obstacle removal method
JP4137165B2 (en) Excavation and earthing method, caisson press-fitting method and diameter-excavating device
JP4731464B2 (en) Tunnel excavator and tunnel excavation method
KR100919729B1 (en) A method for horizontally drilling filtrate intake well and apparatus for clogging front tip of well
JP2017166160A (en) Connection structure between bucket and connection casing, and excavated hole backfill method
JP6206895B1 (en) Renovation method for small-diameter wells and excavation equipment used therefor
JP2006125000A (en) Auxiliary equipment for penetration of cutting edge of caisson, and caisson construction method using it
JP2005098048A (en) Bedrock drilling unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080827

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20080827

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20080924

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090310

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090331

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090707

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090713

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4344762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120717

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150717

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250