JP2008037797A - Adipocyte differentiation inhibitor - Google Patents
Adipocyte differentiation inhibitor Download PDFInfo
- Publication number
- JP2008037797A JP2008037797A JP2006214370A JP2006214370A JP2008037797A JP 2008037797 A JP2008037797 A JP 2008037797A JP 2006214370 A JP2006214370 A JP 2006214370A JP 2006214370 A JP2006214370 A JP 2006214370A JP 2008037797 A JP2008037797 A JP 2008037797A
- Authority
- JP
- Japan
- Prior art keywords
- oligosaccharide
- xylooligosaccharide
- xylo
- adipocyte differentiation
- acidic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
本発明は、脂肪細胞分化抑制剤に関し、更に詳しくは、脂肪細胞分化抑制作用に優れ、かつ、人及び動物に対して安全性の高い脂肪細胞分化抑制剤に関する。 The present invention relates to an adipocyte differentiation inhibitor, and more particularly, to an adipocyte differentiation inhibitor that has an excellent adipocyte differentiation inhibitory action and is highly safe for humans and animals.
近年、食生活の欧米化に伴い、脂肪や糖の過剰摂取が原因となり、糖尿病、動脈硬化などの疾病が増加している。脂肪や糖の過剰摂取により体内に存在する前駆脂肪細胞が脂肪細胞に分化し、脂肪細胞内に脂肪が蓄積される。脂肪細胞への脂肪の蓄積が進行すると脂肪細胞が肥大化する(肥大化脂肪細胞)。脂肪細胞では脂肪が正常に分解されるが、肥大化脂肪細胞では細胞内に蓄積された脂肪の分解が異常になり、糖尿病、動脈硬化等の疾病を引き起こす。
従って、前駆脂肪細胞から脂肪細胞への分化を抑制することができれば、糖尿病、動脈硬化等の予防が可能となると考えられる。
In recent years, with the Westernization of eating habits, diseases such as diabetes and arteriosclerosis are increasing due to excessive intake of fat and sugar. Preadipocytes present in the body are differentiated into fat cells by excessive intake of fat and sugar, and fat is accumulated in the fat cells. As fat accumulates in fat cells, fat cells become enlarged (hypertrophic fat cells). Fat is normally decomposed in fat cells, but in fat cells, fat accumulated in the cells is abnormally decomposed, causing diseases such as diabetes and arteriosclerosis.
Therefore, if differentiation from preadipocytes to adipocytes can be suppressed, it is considered possible to prevent diabetes, arteriosclerosis and the like.
現在までに、脂肪細胞の分化抑制に関与する成分として環状ペプチド、イネ科植物抽出成分が報告されているが(特許文献1及び特許文献2参照)、一般に充分な効果を期待できる量を動物やヒトが摂取する場合、アレルギー等の副作用が懸念されたり、臭いや味が原因で摂取が困難等の問題がある。従って、人体に対して安全性が高く、無味・無臭の脂肪細胞分化抑制剤が求められている。 To date, cyclic peptides and gramineous plant extract components have been reported as components involved in the suppression of adipocyte differentiation (see Patent Literature 1 and Patent Literature 2). When ingested by humans, there are concerns such as side effects such as allergies and difficulty in ingestion due to odor and taste. Accordingly, there is a need for an adipocyte differentiation inhibitor that is highly safe to the human body and tasteless and odorless.
なお、本出願人らは、酸性キシロオリゴ糖の製造方法、及び腸内環境改善剤、アトピー性皮膚炎改善剤等の酸性キシロオリゴ糖の生理作用について報告している(特許文献3、特許文献4及び特許文献5参照)。しかし、酸性キシロオリゴ糖の脂肪細胞分化抑制作用に関する報告はない。
本発明の課題は、脂肪細胞分化抑制作用に優れ、かつ、安全性及び安定性の高い脂肪細胞分化抑制剤を提供することである。 The subject of this invention is providing the adipocyte differentiation inhibitor which is excellent in the adipocyte differentiation inhibitory effect, and has high safety | security and stability.
本発明者らは、前記課題を解決する為、鋭意研究した結果、ウロン酸残基が付加した酸性キシロオリゴ糖組成物が優れた脂肪細胞分化抑制作用を持つこと見出した。
上記課題を解決するため、以下の構成を採用する。
即ち、本発明の第1は、「キシロオリゴ糖分子中にウロン酸残基を有する酸性キシロオリゴ糖を有効成分とすることを特徴とする脂肪細胞分化抑制剤」である。
本発明の第2は、前記第1発明において、「該酸性キシロオリゴ糖はキシロースの重合度が異なるオリゴ糖の混合組成物であり、平均重合度が2.0〜15.0であることを特徴とする脂肪細胞分化抑制剤」である。
本発明の第3は、前記第1または第2の発明において、「前記酸性キシロオリゴ糖が、「リグノセルロース材料を酵素的及び/又は物理化学的に処理してキシロオリゴ糖成分とリグニン成分の複合体を得、次いで該複合体を酸加水分解処理してキシロオリゴ糖混合物を得、得られるキシロオリゴ糖混合物から、1分子中に少なくとも1つ以上のウロン酸残基を側鎖として有するキシロオリゴ糖を分解して得たものであること特徴とする脂肪細胞分化抑制剤」である。
本発明の第4は、前記第1〜第3の発明において、「ウロン酸がグルクロン酸もしくは4−O−メチル-グルクロン酸であることを特徴とする脂肪細胞分化抑制剤」である。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that an acidic xylo-oligosaccharide composition to which a uronic acid residue is added has an excellent adipocyte differentiation inhibitory action.
In order to solve the above problems, the following configuration is adopted.
That is, the first of the present invention is an “adipocyte differentiation inhibitor characterized by comprising an acidic xylo-oligosaccharide having a uronic acid residue in the xylo-oligosaccharide molecule as an active ingredient”.
According to a second aspect of the present invention, in the first aspect, the acidic xylo-oligosaccharide is a mixed composition of oligosaccharides having different degrees of xylose polymerization, and the average degree of polymerization is 2.0 to 15.0. An adipocyte differentiation inhibitor ”.
A third aspect of the present invention is the composite of the xylooligosaccharide component and the lignin component obtained by subjecting the lignocellulose material to enzymatic and / or physicochemical treatment in the first or second invention. Then, the complex is subjected to an acid hydrolysis treatment to obtain a xylo-oligosaccharide mixture, and from the resulting xylo-oligosaccharide mixture, xylo-oligosaccharide having at least one uronic acid residue as a side chain in one molecule is decomposed. An adipocyte differentiation inhibitor characterized by being obtained in the above ".
A fourth aspect of the present invention is the “adipocyte differentiation inhibitor characterized in that uronic acid is glucuronic acid or 4-O-methyl-glucuronic acid” in the first to third aspects of the present invention.
本発明により、脂肪細胞分化抑制作用に優れ、かつ、安全性及び安定性の高い脂肪細胞分化抑制剤が提供される。 According to the present invention, an adipocyte differentiation inhibitor having an excellent adipocyte differentiation inhibitory action and high safety and stability is provided.
以下、本発明の構成について詳述するが、本発明はこれにより限定されるものではない。キシロオリゴ糖とは、キシロースの2量体であるキシロビオース、3量体であるキシロトリオース、あるいは4量体〜20量体程度のキシロースの重合体を言う。本発明で使用する酸性キシロオリゴ糖とは、キシロオリゴ糖1分子中に少なくとも1つ以上のウロン酸残基を有するものを言う。 Hereinafter, although the structure of this invention is explained in full detail, this invention is not limited by this. The xylooligosaccharide refers to a xylose polymer that is a dimer of xylose, a xylotriose that is a trimer, or a tetramer to a 20-mer polymer of xylose. The acidic xylo-oligosaccharide used in the present invention means one having at least one uronic acid residue in one molecule of xylo-oligosaccharide.
また、キシロースの重合度が異なるオリゴ糖の混合組成物であっても良い。一般的には、天然物から製造するために、このような組成物として得られることが多く、以下、主として酸性キシロオリゴ糖組成物について説明する。 Moreover, the mixed composition of the oligosaccharide from which the polymerization degree of xylose differs may be sufficient. Generally, it is often obtained as such a composition in order to produce it from a natural product. Hereinafter, an acidic xylo-oligosaccharide composition will be mainly described.
該組成物は、平均重合度で示す数値は正規分布をとる酸性キシロオリゴ糖のキシロース鎖長の平均値で、2.0〜15.0が好ましく、2.0〜11.0がより好ましい。キシロース鎖長の上限と下限との差は20以下が好ましく、10以下がより好ましい。ウロン酸は天然では、ペクチン、ペクチン酸、アルギン酸、ヒアルロン酸、ヘパリン、コンドロイチン硫酸、デルタマン硫酸等の種々の生理活性を持つ多糖の構成成分として知られている。本発明におけるウロン酸としては特に限定されないが、グルクロン酸もしくは4−O−メチル−グルクロン酸が好ましい。 In the composition, the numerical value represented by the average degree of polymerization is an average value of the xylose chain length of the acidic xylooligosaccharide having a normal distribution, preferably 2.0 to 15.0, and more preferably 2.0 to 11.0. The difference between the upper limit and the lower limit of the xylose chain length is preferably 20 or less, and more preferably 10 or less. Uronic acid is known in nature as a component of a polysaccharide having various physiological activities such as pectin, pectinic acid, alginic acid, hyaluronic acid, heparin, chondroitin sulfate, and deltaman sulfate. The uronic acid in the present invention is not particularly limited, but glucuronic acid or 4-O-methyl-glucuronic acid is preferable.
上記のような酸性キシロオリゴ糖組成物を得ることが出来れば、その製法は特に限定されないが、(1)木材からキシランを抽出し、それを酵素的に分解する方法(セルラーゼ研究会発行、セルラーゼ研究会報第16巻、2001年6月14日発行、p17−26)と、(2)リグノセルロース材料を酵素的及び/又は物理化学的に処理してキシロオリゴ糖成分とリグニン成分の複合体を得、次いで該複合体を酸加水分解処理してキシロオリゴ糖混合物を得、得られるキシロオリゴ糖混合物から、1分子中に少なくとも1つ以上のウロン酸残基を側鎖として有するキシロオリゴ糖を分離する方法が挙げられる。
特に、(2)の方法が5〜10量体のように比較的高い重合度のものを大量に安価に製造することが可能である点で好ましく、以下にその概要を示す。
If the acidic xylo-oligosaccharide composition as described above can be obtained, its production method is not particularly limited. (1) A method of extracting xylan from wood and enzymatically decomposing it (cellulase research group published, Cellulase Research) Newsletter Volume 16, issued on June 14, 2001, p17-26), (2) Lignocellulose material is treated enzymatically and / or physicochemically to obtain a complex of xylooligosaccharide component and lignin component, Then, the complex is subjected to an acid hydrolysis treatment to obtain a xylooligosaccharide mixture, and a method for separating xylooligosaccharide having at least one uronic acid residue as a side chain in one molecule from the obtained xylooligosaccharide mixture is mentioned. It is done.
In particular, the method (2) is preferable because it can produce a large amount of a polymer having a relatively high degree of polymerization, such as a 5-10 mer, at a low cost.
酸性オリゴ糖組成物は、化学パルプ由来のリグノセルロース材料を原料とし、加水分解工程、濃縮工程、希酸処理工程、精製工程を経て得ることができる。加水分解工程では、希酸処理、高温高圧の水蒸気(蒸煮・爆砕)処理もしくは、ヘミセルラーゼによってリグノセルロース中のキシランを選択的に加水分解し、キシロオリゴ糖とリグニンからなる高分子量の複合体を中間体として得る。濃縮工程では逆浸透膜等により、キシロオリゴ糖−リグニン様物質複合体が濃縮され、低重合度のオリゴ糖や低分子の夾雑物などを除去することができる。濃縮工程は逆浸透膜を用いることが好ましいが、限外濾過膜、塩析、透析などでも可能である。得られた濃縮液の希酸処理工程により、複合体からリグニン様物質が遊離し、酸性キシロオリゴ糖と中性キシロオリゴ糖を含む希酸処理液を得ることができる。この時、複合体から切り離されたリグニン様物質は酸性下で縮合し沈殿するのでセラミックフィルターや濾紙などを用いた濾過等により除去することができる。希酸処理工程では、酸による加水分解を用いることが好ましいが、リグニン分解酵素などを用いた酵素分解などでも可能である。 The acidic oligosaccharide composition can be obtained through a hydrolysis process, a concentration process, a dilute acid treatment process, and a purification process using a lignocellulosic material derived from chemical pulp as a raw material. In the hydrolysis process, xylan in lignocellulose is selectively hydrolyzed with dilute acid treatment, high-temperature and high-pressure steam (cooking / explosion) treatment, or hemicellulase, and a high molecular weight complex composed of xylooligosaccharide and lignin is intermediated. Get as a body. In the concentration step, the xylooligosaccharide-lignin-like substance complex is concentrated by a reverse osmosis membrane or the like, and oligosaccharides having a low polymerization degree, low-molecular impurities, and the like can be removed. In the concentration step, a reverse osmosis membrane is preferably used, but ultrafiltration membrane, salting out, dialysis and the like are also possible. A lignin-like substance is released from the complex by the diluted acid treatment step of the obtained concentrated liquid, and a diluted acid-treated liquid containing acidic xylo-oligosaccharides and neutral xylo-oligosaccharides can be obtained. At this time, the lignin-like substance separated from the complex condenses and precipitates under acidic conditions, and can be removed by filtration using a ceramic filter or filter paper. In the dilute acid treatment step, acid hydrolysis is preferably used, but enzymatic degradation using lignin degrading enzyme or the like is also possible.
精製工程は、限外濾過工程、脱色工程、吸着工程からなる。一部のリグニン様物質は可溶性高分子として溶液中に残存するが、限外濾過工程で除去され、着色物質等の夾雑物は活性炭を用いた脱色工程によってそのほとんどが取り除かれる。限外濾過工程は限外濾過膜を用いることが好ましいが、逆浸透膜、塩析、透析などでも可能である。こうして得られた糖液中には酸性キシロオリゴ糖と中性キシロオリゴ糖が溶解している。イオン交換樹脂を用いた吸着工程により、この糖液から酸性キシロオリゴ糖のみを取り出すことができる。糖液をまず強陽イオン交換樹脂にて処理し、糖液中の金属イオンを除去する。次いで強陰イオン交換樹脂を用いて糖液中の硫酸イオンなどを除去する。この工程では、硫酸イオンの除去と同時に弱酸である有機酸の一部と着色成分の除去も同時に行っている。強陰イオン交換樹脂で処理された糖液はもう一度強陽イオン交換樹脂で処理し更に金属イオンを除去する。最後に弱陰イオン交換樹脂で処理し、酸性キシロオリゴ糖を樹脂に吸着させる。 The purification process includes an ultrafiltration process, a decolorization process, and an adsorption process. Some lignin-like substances remain in the solution as soluble polymers, but are removed by an ultrafiltration process, and most of impurities such as coloring substances are removed by a decolorization process using activated carbon. In the ultrafiltration step, an ultrafiltration membrane is preferably used, but reverse osmosis membrane, salting out, dialysis and the like are also possible. Acid xylo-oligosaccharides and neutral xylo-oligosaccharides are dissolved in the sugar solution thus obtained. Only an acidic xylo-oligosaccharide can be extracted from this sugar solution by an adsorption process using an ion exchange resin. First, the sugar solution is treated with a strong cation exchange resin to remove metal ions in the sugar solution. Next, sulfate ions and the like in the sugar solution are removed using a strong anion exchange resin. In this step, simultaneously with the removal of sulfate ions, a part of the organic acid, which is a weak acid, and the colored component are simultaneously removed. The sugar solution treated with the strong anion exchange resin is treated again with the strong cation exchange resin to further remove metal ions. Finally, it is treated with a weak anion exchange resin to adsorb acidic xylo-oligosaccharides to the resin.
樹脂に吸着した酸性キシロオリゴ糖を、低濃度の塩(NaCl、CaCl2、KCl、MgCl2など)によって溶出させることにより、夾雑物を含まない酸性キシロオリゴ糖溶液を得ることができる。この溶液を、例えば、スプレードライや凍結乾燥処理により、白色の酸性キシロオリゴ糖組成物の粉末を得ることができる。 By eluting the acidic xylo-oligosaccharide adsorbed on the resin with a low-concentration salt (NaCl, CaCl 2 , KCl, MgCl 2, etc.), an acidic xylo-oligosaccharide solution free from impurities can be obtained. From this solution, for example, a powder of a white acidic xylo-oligosaccharide composition can be obtained by spray drying or freeze-drying treatment.
化学パルプ由来のリグノセルロースを原料とし、キシロオリゴ糖とリグニンからなる高分子量の複合体を中間体とした酸性キシロオリゴ糖組成物の上記製造法のメリットは、経済性とキシロースの平均重合度の高い酸性キシロオリゴ糖組成物が容易に得られる点にある。平均重合度は、例えば、希酸処理条件を調節するか、再度ヘミセルラーゼで処理することによって変えることが可能である。また、弱陰イオン交換樹脂溶出時に用いる溶出液の塩濃度を変化させることによって、1分子あたりに結合するウロン酸残基の数が異なる酸性キシロオリゴ糖組成物を得ることもできる。さらに、適当なキシラナーゼ、ヘミセルラーゼを作用させることによってウロン酸結合部位が末端に限定された酸性キシロオリゴ糖組成物を得ることも可能である。 The merit of the above-mentioned production method of acidic xylooligosaccharide composition using chemical pulp-derived lignocellulose as a raw material and high molecular weight complex consisting of xylooligosaccharide and lignin as an intermediate is economical and acidic with high average polymerization degree of xylose. The xylo-oligosaccharide composition is easily obtained. The average degree of polymerization can be changed, for example, by adjusting dilute acid treatment conditions or treating with hemicellulase again. In addition, by changing the salt concentration of the eluate used for elution of the weak anion exchange resin, acidic xylo-oligosaccharide compositions having different numbers of uronic acid residues bound per molecule can be obtained. Furthermore, it is also possible to obtain an acidic xylo-oligosaccharide composition in which the uronic acid binding site is limited to the terminal by acting an appropriate xylanase or hemicellulase.
本発明の酸性キシロオリゴ糖を配合した脂肪細胞分化抑制剤の摂取形態としては直接摂取しても良いが、飲料に添加したり食品に添加したりすることが出来る。直接摂取する場合は、粉体化しても良いし、打錠により錠剤化しても良い。 Although the intake form of the adipocyte differentiation inhibitor containing the acidic xylo-oligosaccharide of the present invention may be taken directly, it can be added to beverages or added to foods. When ingested directly, it may be pulverized or tableted by tableting.
以下、本発明を実施例により詳細に説明するが、本発明はこれにより限定されるものではない。まず、各測定法の概要、本発明で有効成分として含有させた酸性キシロオリゴ糖(UX10、UX5、UX2)の調製例1〜3を示す。
<測定法の概要>
(1) 全糖量の定量
全糖量は検量線をD−キシロース(和光純薬工業(株)製)を用いて作製し、フェノール硫酸法(還元糖の定量法、学会出版センター発行)にて定量した。
(2) 還元糖量の定量
還元糖量は検量線をD−キシロース(和光純薬工業(株)製)を用いて作製、ソモジ−ネルソン法(還元糖の定量法、学会出版センター発行)にて定量した。
(3) ウロン酸量の定量
ウロン酸は検量線をD−グルクロン酸(和光純薬工業(株)製)を用いて作製、カルバゾール硫酸法(還元糖の定量法、学会出版センター発行)にて定量した。
(4) 平均重合度の決定法
サンプル糖液を50℃に保ち、15,000rpmにて15分遠心分離し不溶物を除去し、上清液の全糖量を還元糖量(共にキシロース換算)で割って平均重合度を求めた。
(5) 酸性キシロオリゴ糖の分析方法:
オリゴ糖鎖の分布は、イオンクロマトグラフ(ダイオネクス社製、分析用カラム:Carbo Pac PA−10)を用いて分析した。分離溶媒には100mMのNaOH溶液を用い、溶出溶媒には前述の分離溶媒に酢酸ナトリウムを500mMとなるように添加し、溶液比で、分離溶媒:溶出溶媒=10:0〜4:6となるような直線勾配を組み分離した。得られたクロマトグラムより、キシロース鎖長の上限と下限との差を求めた。
(6) オリゴ糖1分子あたりのウロン酸残基数の決定法
サンプル糖液を50℃に保ち、15,000rpmにて15分遠心分離し不溶物を除去し、上清液のウロン酸量(D−グルクロン酸換算)を還元糖量(キシロース換算)で割ってオリゴ糖1分子あたりのウロン酸残基数を求めた。
(7) 酵素力価の定義
酵素として用いたキシラナーゼの活性測定にはカバキシラン(シグマ社製)を用いた。酵素力価の定義は、キシラナーゼがキシランを分解することで得られる還元糖の還元力をDNS法(還元糖の定量法、学会出版センター発行)を用いて測定し、1分間に1マイクロモルのキシロースに相当する還元力を生成させる酵素量を1ユニットとした。
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited by this. First, an outline of each measurement method and Preparation Examples 1 to 3 of acidic xylo-oligosaccharides (UX10, UX5, UX2) contained as active ingredients in the present invention are shown.
<Outline of measurement method>
(1) Quantification of total sugar amount The total sugar amount is prepared using D-xylose (manufactured by Wako Pure Chemical Industries, Ltd.) with a calibration curve, and the phenol-sulfuric acid method (quantitative method for reducing sugar, published by Academic Publishing Center). And quantified.
(2) Quantification of reducing sugar amount The reducing sugar amount was prepared by using D-xylose (manufactured by Wako Pure Chemical Industries, Ltd.) as a calibration curve, and the Sommoji-Nelson method (quantitative method for reducing sugar, published by Academic Publishing Center). And quantified.
(3) Determination of the amount of uronic acid The uronic acid was prepared using a calibration curve using D-glucuronic acid (manufactured by Wako Pure Chemical Industries, Ltd.), with the carbazole sulfate method (quantitative method for reducing sugar, published by the Academic Publishing Center). Quantified.
(4) Determining the average degree of polymerization Keep the sample sugar solution at 50 ° C., centrifuge at 15,000 rpm for 15 minutes to remove insoluble matter, and use the total sugar amount in the supernatant solution as the reducing sugar amount (both converted to xylose) The average degree of polymerization was determined by dividing by.
(5) Method for analysis of acidic xylooligosaccharides:
The oligosaccharide chain distribution was analyzed using an ion chromatograph (Dionex, analytical column: Carbo Pac PA-10). A 100 mM NaOH solution is used as a separation solvent, and sodium acetate is added to the above-mentioned separation solvent so as to have a concentration of 500 mM as an elution solvent, so that the separation ratio: elution solvent = 10: 0 to 4: 6 in the solution ratio. These linear gradients were combined and separated. From the obtained chromatogram, the difference between the upper limit and the lower limit of the xylose chain length was determined.
(6) Determination of the number of uronic acid residues per molecule of oligosaccharide Keep the sample sugar solution at 50 ° C., centrifuge at 15,000 rpm for 15 minutes to remove insoluble matter, and the amount of uronic acid in the supernatant ( The number of uronic acid residues per oligosaccharide molecule was determined by dividing (D-glucuronic acid equivalent) by the reducing sugar amount (xylose equivalent).
(7) Definition of enzyme titer Kaxylan (manufactured by Sigma) was used for measuring the activity of xylanase used as an enzyme. Enzyme titer is defined by measuring the reducing power of reducing sugar obtained by xylanase degrading xylan using the DNS method (quantitative method for reducing sugar, published by Academic Publishing Center). The amount of enzyme that generates a reducing power corresponding to xylose was 1 unit.
<調整例:酸性キシロオリゴ糖の調製例>
<調製例1>
混合広葉樹チップ(国内産広葉樹70%、ユーカリ30%)を原料として、クラフト蒸解及び酸素脱リグニン工程により、酸素脱リグニンパルプスラリー(カッパー価9.6、パルプ粘度25.1cps)を得た。スラリーからパルプを濾別、洗浄した後、パルプ濃度10%、pH8に調製したパルプスラリーを用いて以下のキシラナーゼによる酵素処理を行った。
バチルスsp.S−2113株(独立行政法人産業技術総合研究所特許微生物寄託センター、寄託菌株FERM BP-5264)の生産するキシラナーゼを1単位/パルプgとなるように添加した後、60℃で120分間処理した。その後、濾過によりパルプ残渣を除去し、酵素処理液1050Lを得た。
次に、得られた酵素処理液を濃縮工程、希酸処理工程、精製工程の順に供した。
濃縮工程では、逆浸透膜(日東電工(株)製、RO NTR−7410)を用いて濃縮液(40倍濃縮)を調製した。希酸処理工程では、得られた濃縮液のpHを3.5に調整した後、121℃で60分間加熱処理し、リグニンなどの高分子夾雑物の沈殿を形成させた。さらに、この沈殿をセラミックフィルター濾過で取り除くことにより、希酸処理溶液を得た。
精製工程では、限外濾過・脱色工程、吸着工程の順に供した。限外濾過・脱色工程では、希酸処理溶液を限外濾過膜(オスモニクス社製、分画分子量8000)を通過させた後、活性炭(和光純薬(株)製)770gの添加及びセラミックフィルター濾過により脱色処理液を得た。吸着工程では、脱色処理液を強陽イオン交換樹脂(三菱化学(株)製PK218)、強陰イオン交換樹脂(三菱化学(株)製PA408)、強陽イオン交換樹脂(三菱化学(株)製PK218)各100kgを充填したカラムに順次通過させた後、弱陰イオン交換樹脂(三菱化学(株)製WA30)100kgを充填したカラムに供した。この弱陰イオン交換樹脂充填カラムから75mMのNaCl溶液によって溶出した溶液をスプレードライ処理することによって、酸性キシロオリゴ糖の粉末(全糖量353g、回収率13.1%)を得た。以下、この酸性キシロオリゴ糖をUX10とする。前述の測定方法により、UX10は平均重合度10.3、キシロース鎖長の上限と下限との差は10、酸性キシロオリゴ糖1分子あたりウロン酸残基を1つ含む糖組成化合物であった。
<調製例2>
調整例1と同様にして得られた希酸処理液1160mlに、スミチームX(新日本化学工業(株)製のキシラナーゼ)28mgを添加し、40℃で20時間の反応させた。加熱処理(70℃、1時間)により酵素を失活させた後、スミチームX処理液を調整例1と同様の精製工程を経て、酸性キシロオリゴ糖粉末(全糖量21.3g、回収率22.2%)を得た。以下、この酸性キシロオリゴ糖をUX5とする。前述の測定方法により、UX5は平均重合度4.8、キシロース鎖長の上限と下限との差は9、酸性キシロオリゴ糖1分子あたりウロン酸残基を1つ含む糖組成化合物であった。
<調製例3>
調整例1より得られたUX10の10%水溶液100mlに、スミチームX(新日本化学工業(株)製のキシラナーゼ)50mgを添加し、60℃、20時間反応後、弱アニオン交換樹脂(WA30)10gを充填したカラムに供した。カラムを水洗した後、75mMのNaCl溶液によって溶出した溶液を凍結乾燥することによって、酸性キシロオリゴ糖粉末(全糖量2.1g、回収率21%)を得た。以下、この酸性キシロオリゴ糖をUX2とする。前述の測定方法により、UX2は平均重合度2.3、キシロース鎖長の上限と下限との差は2、酸性キシロオリゴ糖1分子あたりウロン酸残基を1つ含む糖組成化合物であった。
<Preparation Example: Preparation Example of Acidic Xylooligosaccharide>
<Preparation Example 1>
Oxygen delignified pulp slurry (kappa number 9.6, pulp viscosity 25.1 cps) was obtained from mixed hardwood chips (domestic hardwood 70%, eucalyptus 30%) as a raw material through kraft cooking and oxygen delignification processes. After the pulp was filtered and washed from the slurry, the following enzyme treatment with xylanase was performed using a pulp slurry adjusted to a pulp concentration of 10% and pH 8.
After adding xylanase produced by Bacillus sp. S-2113 strain (National Institute of Advanced Industrial Science and Technology, Patent Microorganism Deposit Center, Deposited Strain FERM BP-5264) to 1 unit / g of pulp, 120 at 60 ° C. Treated for minutes. Thereafter, the pulp residue was removed by filtration to obtain 1050 L of an enzyme treatment liquid.
Next, the obtained enzyme treatment solution was subjected to a concentration step, a dilute acid treatment step, and a purification step in this order.
In the concentration step, a concentrated solution (40-fold concentration) was prepared using a reverse osmosis membrane (Nonto Denko Corporation, RONTR-7410). In the dilute acid treatment step, the pH of the obtained concentrated solution was adjusted to 3.5 and then heat-treated at 121 ° C. for 60 minutes to form precipitates of polymer contaminants such as lignin. Further, the precipitate was removed by ceramic filter filtration to obtain a diluted acid treatment solution.
In the purification process, the ultrafiltration / decolorization process and the adsorption process were performed in this order. In the ultrafiltration / decolorization step, after passing the dilute acid treatment solution through an ultrafiltration membrane (Osmonics, molecular weight cut off 8000), addition of 770 g of activated carbon (Wako Pure Chemical Industries, Ltd.) and ceramic filter filtration To obtain a decolorization treatment solution. In the adsorption process, the decolorization treatment liquid is a strong cation exchange resin (PK218 manufactured by Mitsubishi Chemical Corporation), a strong anion exchange resin (PA408 manufactured by Mitsubishi Chemical Corporation), and a strong cation exchange resin (manufactured by Mitsubishi Chemical Corporation). PK218) Each was sequentially passed through a column packed with 100 kg, and then applied to a column packed with 100 kg of a weak anion exchange resin (WA30 manufactured by Mitsubishi Chemical Corporation). The solution eluted from the weak anion exchange resin-packed column with a 75 mM NaCl solution was spray-dried to obtain acidic xylooligosaccharide powder (total sugar amount 353 g, recovery rate 13.1%). Hereinafter, this acidic xylo-oligosaccharide is referred to as UX10. According to the measurement method described above, UX10 was a sugar composition compound having an average degree of polymerization of 10.3, a difference between the upper limit and the lower limit of the xylose chain length of 10, and one uronic acid residue per molecule of acidic xylooligosaccharide.
<Preparation Example 2>
To 1160 ml of the diluted acid treatment solution obtained in the same manner as in Preparation Example 1, 28 mg of Sumiteam X (Xylanase manufactured by Shin Nippon Chemical Industry Co., Ltd.) was added and reacted at 40 ° C. for 20 hours. After inactivating the enzyme by heat treatment (70 ° C., 1 hour), the Sumiteam X treatment solution was subjected to the same purification step as in Preparation Example 1 to produce acid xylo-oligosaccharide powder (total sugar amount 21.3 g, recovery rate 22. 2%). Hereinafter, this acidic xylo-oligosaccharide is referred to as UX5. According to the measurement method described above, UX5 was a sugar composition compound having an average degree of polymerization of 4.8, a difference between the upper limit and the lower limit of the xylose chain length of 9, and one uronic acid residue per molecule of acidic xylooligosaccharide.
<Preparation Example 3>
To 100 ml of 10% aqueous solution of UX10 obtained from Preparation Example 1, 50 mg of Sumiteam X (Xylanase manufactured by Shin Nippon Chemical Industry Co., Ltd.) was added, reacted at 60 ° C. for 20 hours, and then 10 g of weak anion exchange resin (WA30). To a column packed with After the column was washed with water, the solution eluted with 75 mM NaCl solution was freeze-dried to obtain acidic xylooligosaccharide powder (total sugar amount 2.1 g, recovery rate 21%). Hereinafter, this acidic xylo-oligosaccharide is referred to as UX2. According to the measurement method described above, UX2 was a saccharide composition compound having an average degree of polymerization of 2.3, a difference between the upper limit and the lower limit of the xylose chain length of 2, and one uronic acid residue per molecule of acidic xylooligosaccharide.
<実施例1>
上記の調整例により得られた平均重合度の異なる3種の酸性キシロオリゴ糖(UX2、UX5、UX10)を含有する水溶液を作成した。この酸性キシロオリゴ糖水溶液を用いて下記の方法により脂肪細胞分化抑制作用を測定した。
継代培養したマウス由来前駆脂肪細胞(3T3−L1)をDME培地(10%コウシ血清含有)に懸濁後(細胞密度4×104/ml)、96ウエルプレートの各ウエルに200μl添加し37℃、5%CO2の条件下で培養した。培養開始から2日後、デキサメタゾン(0.5mM)、メチルイソブチルキサンチン(1μM)、インスリン(10μg/ml)を含むDME培地(10%コウシ血清含有)に置き換え上記と同様の条件で培養した。培養開始から4日後、インシュリン(10μg/ml)を含むDME培地(10%コウシ血清含有)に置き換え上記と同様の条件で2日毎に培地交換を行い培養した。培養開始から12日後、培地を取り除き細胞にオイルレッドを添加し、中性脂肪を染色した。染色された色素を細胞より抽出し、吸光度(520nm)を測定した。尚、培養開始から2日後から培養終了まで酸性糖(UX2、UX5、UX10)の最終濃度が1%、0.1%、0.01%となるように培地に添加した。コントロールとして蒸留水を培地に添加した。又、酸性糖(UX2、UX5、UX10)がマウス由来前駆脂肪細胞(3T3−L1)に対して細胞毒性のないことをMTTアッセイキット(R&D SYSTEM社)を用いてあらかじめ確認した。結果を表1に示す。
<Example 1>
An aqueous solution containing three types of acidic xylo-oligosaccharides (UX2, UX5, UX10) having different average polymerization degrees obtained by the above-described adjustment examples was prepared. Using this acidic xylooligosaccharide aqueous solution, the adipocyte differentiation inhibitory action was measured by the following method.
Subcultured mouse-derived preadipocytes (3T3-L1) were suspended in DME medium (containing 10% calf serum) (cell density 4 × 10 4 / ml), and 200 μl was added to each well of a 96-well plate. ° C., and cultured under the conditions of 5% CO 2. Two days after the start of the culture, the medium was replaced with a DME medium (containing 10% calf serum) containing dexamethasone (0.5 mM), methylisobutylxanthine (1 μM) and insulin (10 μg / ml), and cultured under the same conditions as described above. Four days after the start of the culture, the medium was replaced with a DME medium (containing 10% calf serum) containing insulin (10 μg / ml) and the medium was changed every two days under the same conditions as described above. Twelve days after the start of the culture, the medium was removed, oil red was added to the cells, and neutral fat was stained. The stained dye was extracted from the cells and the absorbance (520 nm) was measured. In addition, it added to the culture medium so that the final concentration of acidic sugar (UX2, UX5, UX10) might be 1%, 0.1%, and 0.01% from 2 days after the start of the culture until the end of the culture. Distilled water was added to the medium as a control. In addition, it was confirmed in advance using an MTT assay kit (R & D SYSTEM) that acidic sugars (UX2, UX5, UX10) were not cytotoxic to mouse-derived preadipocytes (3T3-L1). The results are shown in Table 1.
酸性キシロオリゴ糖(UX2、UX5、UX10)を添加した試験区では、コントロールと比較し、細胞内の中性脂肪含量が低かった。 In the test group to which acidic xylo-oligosaccharide (UX2, UX5, UX10) was added, the intracellular triglyceride content was lower than that in the control.
<実施例2>
<安全性試験>
酸性キシロオリゴ糖の安全性試験として、皮膚刺激性試験、急性経口毒性試験を実施した。
<Example 2>
<Safety test>
As a safety test for acidic xylooligosaccharides, a skin irritation test and an acute oral toxicity test were conducted.
<皮膚刺激性試験>
2質量%の酸性キシロオリゴ糖(UX2、UX5、UX10)水溶液100μlを、各々、除毛後のC3Hマウス(雄、6週齢、日本チャールズリバー(株)製)の背皮に、約1ヶ月間、連続塗布した(1回/日、各群10匹)。塗布期間及び塗布終了後の2週間、マウス背皮において、紅斑、浮腫、炎症等の異常は特に観察されなかった。また、ブランク(水塗布群)と比較し、体重推移においても有意差(P<0.05)が認められなかった。
<Skin irritation test>
100 μl of 2% by weight acidic xylo-oligosaccharide (UX2, UX5, UX10) aqueous solution was applied to the back skin of C3H mice (male, 6 weeks old, manufactured by Charles River Japan) after hair removal for about 1 month. , Was applied continuously (once / day, 10 animals per group). Abnormalities such as erythema, edema, and inflammation were not particularly observed in the mouse back skin during the application period and 2 weeks after the application was completed. In addition, compared with the blank (water application group), no significant difference (P <0.05) was observed in the body weight transition.
<急性経口毒性試験>
60質量%の酸性キシロオリゴ糖(UX2、UX5、UX10)水溶液を、各々、ICR系マウス(雄、6週齢、日本チャールズリバー(株)製)に胃ゾンデを用いて、経口投与した(投与量:5g/マウス体重1kg、各群10匹)。投与してから2週間後まで、死亡例はなかった。又、体重推移においてもブランク(水投与群)と比較し、有意差(P<0.05)が認められなかった。
<Acute oral toxicity test>
A 60% by mass acidic xylo-oligosaccharide (UX2, UX5, UX10) aqueous solution was orally administered to each ICR mouse (male, 6 weeks old, manufactured by Charles River Japan Co., Ltd.) using a stomach tube (dosage amount). : 5 g / mouse body weight 1 kg, 10 in each group). There were no deaths until 2 weeks after administration. In addition, there was no significant difference (P <0.05) in weight transition compared to the blank (water administration group).
<実施例3>
<安定性試験>
60質量%の酸性キシロオリゴ糖(UX2、UX5、UX10)水溶液を調整後、室温で保存した。調製直後、及び、1ヶ月保存後の酸性キシロオリゴ糖水溶液をイオンクロマトグラムで分析した。1ヶ月保存後のサンプルのクロマトグラムのパターンは、調製直後のサンプルと比較して変化はなかった。又、クロマトグラムの各ピークの面積の差は、1ヶ月保存後のサンプルと調製直後のサンプルの間で、5%未満であった。
<Example 3>
<Stability test>
A 60% by mass aqueous acid xylo-oligosaccharide (UX2, UX5, UX10) aqueous solution was prepared and stored at room temperature. The acid xylooligosaccharide aqueous solution immediately after preparation and after storage for 1 month was analyzed by ion chromatogram. The chromatogram pattern of the sample after storage for 1 month did not change compared to the sample immediately after preparation. Moreover, the difference in the area of each peak in the chromatogram was less than 5% between the sample after storage for 1 month and the sample immediately after preparation.
本発明の脂肪細胞分化抑制剤は、経腸栄養剤、或いは医薬品と混合して医療用食品として使用することが出来る。また、一般的に医薬部外品や医薬品に使用される成分と混合し、医薬部外品や医薬品としても提供することも出来る。なお、食品、医療用食品及び医薬品の対象としては、ヒトだけではなく、犬や猫のペット用の食品や機能性食品としても用いることが可能である。
The adipocyte differentiation inhibitor of the present invention can be mixed with enteral nutrients or pharmaceuticals and used as medical foods. It can also be provided as a quasi-drug or pharmaceutical by mixing with ingredients generally used in quasi-drugs or pharmaceuticals. Note that food, medical foods and pharmaceuticals can be used not only as humans but also as foods for dogs and cats and functional foods.
Claims (4)
The adipocyte differentiation inhibitor according to any one of claims 1 to 3, wherein the uronic acid is glucuronic acid or 4-O-methyl-glucuronic acid.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006214370A JP2008037797A (en) | 2006-08-07 | 2006-08-07 | Adipocyte differentiation inhibitor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006214370A JP2008037797A (en) | 2006-08-07 | 2006-08-07 | Adipocyte differentiation inhibitor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2008037797A true JP2008037797A (en) | 2008-02-21 |
Family
ID=39173233
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006214370A Pending JP2008037797A (en) | 2006-08-07 | 2006-08-07 | Adipocyte differentiation inhibitor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2008037797A (en) |
-
2006
- 2006-08-07 JP JP2006214370A patent/JP2008037797A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review | |
Wang et al. | Simulated digestion and fermentation in vitro with human gut microbiota of polysaccharides from Coralline pilulifera | |
Hsu et al. | Separation, purification, and α-glucosidase inhibition of polysaccharides from Coriolus versicolor LH1 mycelia | |
Zeng et al. | Structure and immunomodulatory activity of polysaccharides from Fusarium solani DO7 by solid-state fermentation | |
JP2008163233A (en) | Antiemetic agent | |
JP4073661B2 (en) | Method for producing acidic xylooligosaccharide composition | |
CN102492667A (en) | Enzyme preparation, and application of same in extraction of phellodendron berberine and method thereof | |
Ahmed | In vitro hypoglycemic effects of molokhia leaves (Corchorus olitorius L.) | |
JP3772749B2 (en) | Melanin production inhibitor | |
JP2003221339A (en) | Anti-inflammatory agent | |
JP2003048901A (en) | Long-chain xylooligosaccharide composition and method for producing the same | |
JP2008037797A (en) | Adipocyte differentiation inhibitor | |
JP2007022968A (en) | Diarrhea ameliorating agent and diarrhea preventive | |
JP4222012B2 (en) | Antihyperlipidemic agent | |
JP2009013088A (en) | Agent for inhibiting differentiation of fat cell | |
Guo et al. | Effects of enzymatic hydrolysis technology on the physicochemical properties and biological activities of American ginseng beverages | |
KR100520007B1 (en) | Method for Producing a Chitosan Containing Salt Having a Function of Lowering Blood Pressure | |
JP4232461B2 (en) | Atopic dermatitis improving agent | |
JP4224998B2 (en) | Hyaluronic acid production promoter | |
JP2009023987A (en) | Infectious disease inhibitor | |
JP2008301780A (en) | Food for ameliorating atopic dermatitis | |
JP2007022954A (en) | Viral rhinitis-improving agent for animal | |
JP2009057387A (en) | Method for producing anti-inflammatory agent for external use | |
JP2007023018A (en) | Allergic rhinitis-improving agent | |
JP4792845B2 (en) | Stomatitis improving agent |