JP2008037284A - Railroad vehicle wheel measuring device - Google Patents

Railroad vehicle wheel measuring device Download PDF

Info

Publication number
JP2008037284A
JP2008037284A JP2006215192A JP2006215192A JP2008037284A JP 2008037284 A JP2008037284 A JP 2008037284A JP 2006215192 A JP2006215192 A JP 2006215192A JP 2006215192 A JP2006215192 A JP 2006215192A JP 2008037284 A JP2008037284 A JP 2008037284A
Authority
JP
Japan
Prior art keywords
wheel
distance sensor
rail
distance
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006215192A
Other languages
Japanese (ja)
Other versions
JP4913498B2 (en
Inventor
Yoshihiro Sakakibara
義宏 榊原
Fujio Tajima
富士雄 田島
Yuji Herai
裕次 戸来
Naoharu Ogawa
直春 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Technologies Ltd
Original Assignee
Hitachi Plant Technologies Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Technologies Ltd filed Critical Hitachi Plant Technologies Ltd
Priority to JP2006215192A priority Critical patent/JP4913498B2/en
Publication of JP2008037284A publication Critical patent/JP2008037284A/en
Application granted granted Critical
Publication of JP4913498B2 publication Critical patent/JP4913498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To enhance measuring accuracy by securely reflecting measurement waves toward a distance sensor in a wheel and to accurately grasp the wear state of the wheel. <P>SOLUTION: This railroad vehicle wheel measuring device is provided with a first distance sensor 2a arranged outside a rail 11 and measuring a distance to an outside flange face of a wheel 100 of a railroad vehicle 10 in the non-contact state; a second distance sensor 2b arranged inside the rail 11 and measuring a distance to an inside back face of the wheel 100 in the non-contact state; and a processing part 7 for calculating the shape of the wheel 100 based on measurement results of the respective first and second distance sensors 2a, 2b and distance data related to the installation of the first and second distance sensors 2a, 2b. Out of the first and second distance sensors 2a, 2b, at least the first distance sensor 2a is installed in the position below a tread face 11a on the rail 11 in which the irradiation direction of the measurement waves obliquely intersects with the extending direction of the rail 11 viewed from the upper direction of the rail 11. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は鉄道車両車輪計測装置に係り、特に、距離センサにより鉄道車両の車輪までの距離を非接触で計測して、車輪径,フランジ厚さ,フランジ高さなどの車輪の形状を演算で求めて、車輪のフランジや踏面の摩耗状況を正確に把握する鉄道車両車輪計測装置に関する。   The present invention relates to a railway vehicle wheel measuring device, and in particular, measures the distance to the wheel of a railway vehicle in a non-contact manner by a distance sensor and obtains the wheel shape such as wheel diameter, flange thickness, and flange height by calculation. The present invention relates to a railway vehicle wheel measuring device that accurately grasps the wear state of the flanges and treads of wheels.

鉄道車両(以下、車両と略記する)の車輪は、その内側部分のフランジに案内されてレール面(踏面)上を走行しているが、特に、曲線通過時にはフランジ外面とレール内側面との間に横圧とすべりが発生し、徐々にフランジ摩耗が生ずる。この車輪のフランジ摩耗がさらに進み、一定限界を超えると車両が脱線するという重大事故につながるので、このフランジの摩耗状態を監視しておかなければならない。   The wheel of a railway vehicle (hereinafter abbreviated as a vehicle) travels on the rail surface (tread surface) guided by the flange on the inner part of the vehicle. In particular, when passing through a curve, it is between the outer surface of the flange and the inner surface of the rail. Lateral pressure and slip are generated and flange wear gradually occurs. The wear of the flange must be monitored because it leads to a serious accident where the wheel wears further and exceeds a certain limit, causing the vehicle to derail.

また、ブレーキ作動時に車輪とレールのすべりが生じると、車輪の踏面にフラットと称する削れが生じ、車輪が回転するに従い、フラットを生じた箇所で衝撃を生じ、車両の乗り心地に悪影響を及ぼす。そこで、このフラット検出のため、車輪の踏面の摩耗状態を監視しておかなければならない。   In addition, when the wheel and the rail slip during braking, the wheel tread is scraped, which is called flat, and as the wheel rotates, an impact occurs at the location where the flat occurs, which adversely affects the riding comfort of the vehicle. Therefore, the wear state of the tread surface of the wheel must be monitored for this flat detection.

車輪の踏面の摩耗状態などを監視するにあたり、人手と労力を軽減するために、下記の特許文献に見られるように、レールの外側に設置した第1距離センサで車輪の外側のフランジ面までの距離を非接触で計測し、レールの内側に設置した第2距離センサで車輪の内側のバック面までの距離を非接触で計測し、その第1距離センサと第2距離センサのそれぞれの計測結果および第1距離センサと第2距離センサの設置に係わる距離のデータから車輪の車輪径,フランジ厚さ,フランジ高さなどの車輪の形状を演算により得る装置が提案されている。   In order to reduce the labor and labor in monitoring the wear state of the tread surface of the wheel, as seen in the following patent document, the first distance sensor installed on the outside of the rail is used to reach the flange surface outside the wheel. The distance is measured in a non-contact manner, and the distance to the back surface on the inner side of the wheel is measured in a non-contact manner with a second distance sensor installed on the inner side of the rail, and the respective measurement results of the first distance sensor and the second distance sensor In addition, there has been proposed a device that obtains the wheel shape such as the wheel diameter, the flange thickness, and the flange height from the distance data related to the installation of the first distance sensor and the second distance sensor.

特開2001−88503号公報JP 2001-88503 A

ところが、上述の従来装置では、走行してくる車両の前方に設置してある第1,第2の両距離センサは、車輪に対し真横の方向(レールに対し直交する方向)から照射光などの計測波を発しており、車輪の僅かに傾斜している踏面は距離センサの計測波とほぼ平行状態となるため、第1の距離センサから照射した計測波が車輪面で反射し第1の距離センサに戻ってこないことがあり、測定できない部分が生じるなど、車輪摩耗量の測定精度の面で問題がある。   However, in the above-described conventional apparatus, both the first and second distance sensors installed in front of the traveling vehicle are such as irradiating light from the direction right to the wheel (direction orthogonal to the rail). Since the tread surface that emits the measurement wave and is slightly inclined to the wheel is in a state substantially parallel to the measurement wave of the distance sensor, the measurement wave irradiated from the first distance sensor is reflected by the wheel surface and the first distance. There is a problem in the measurement accuracy of the amount of wear of the wheel, for example, the sensor may not return to the sensor and a portion that cannot be measured is generated.

それゆえ、本発明の目的は、計測波が車輪において距離センサに向けて確実に反射し、測定精度が高く、車輪の摩耗状況を正確に把握することができる鉄道車両車輪計測装置を提供することにある。   SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a railway vehicle wheel measuring device that reflects a measurement wave reliably toward a distance sensor at a wheel, has high measurement accuracy, and can accurately grasp the wear state of the wheel. It is in.

上記目的を達成する本発明の特徴とするところは、レールの外側に設置され、鉄道車両の車輪の外側のフランジ面までの距離を計測波の照射により非接触で計測してその計測結果を出力する第1距離センサと、レールの内側に設置され、車輪の内側のバック面までの距離を計測波の照射により非接触で計測してその計測結果を出力する第2距離センサと、その第1距離センサと第2距離センサのそれぞれの計測結果および該第1距離センサと第2距離センサの設置に係わる距離のデータから車輪の形状を演算する処理部を備えた鉄道車両車輪計測装置において、第1距離センサと第2距離センサのうち少なくとも第1距離センサは、該レールの踏面の位置より下で計測波の照射方向がレールの上方から見て該レールの延びる方向に対し斜めに交差する位置に設置され、車輪に対し斜めに計測波を照射して距離を計測することにある。   A feature of the present invention that achieves the above-described object is that it is installed outside the rail, measures the distance to the outer flange surface of the railroad vehicle wheel in a non-contact manner by measuring wave irradiation, and outputs the measurement result. A first distance sensor that is installed on the inner side of the rail, measures a distance to the back surface on the inner side of the wheel in a non-contact manner by measurement wave irradiation, and outputs the measurement result; In a railway vehicle wheel measuring device comprising a processing unit for calculating the shape of a wheel from each measurement result of the distance sensor and the second distance sensor and distance data related to the installation of the first distance sensor and the second distance sensor, At least the first distance sensor of the first distance sensor and the second distance sensor is below the position of the tread surface of the rail, and the irradiation direction of the measurement wave is oblique to the extending direction of the rail when viewed from above the rail. Is placed at a position difference is to measure a distance by irradiating a measurement wave oblique to the wheel.

また、上記目的を達成する本発明の特徴とするところは、レールの外側に設置され、鉄道車両の車輪の外側のフランジ面までの距離を計測波の照射により非接触で計測してその計測結果を出力する第1距離センサと、レールの内側に設置され、車輪の内側のバック面までの距離を計測波の照射により非接触で計測してその計測結果を出力する第2距離センサと、その第1距離センサと第2距離センサのそれぞれの計測結果および該第1距離センサと第2距離センサの設置に係わる距離のデータから車輪の形状を演算する処理部を備えた鉄道車両車輪計測装置において、第1距離センサと第2距離センサのうち少なくとも第1距離センサは、該レールの踏面の位置より下で計測波の照射方向がレールの上方から見て該レールの延びる方向に対し斜めに交差する鉄道車両の走行方向の前方の位置に設置され、車輪に対し斜めに計測波を照射し、距離を計測する第1の距離センサ群と、第1距離センサと第2距離センサのうち少なくとも第1距離センサが、該レールの踏面の位置より下で計測波の照射方向がレールの上方から見て該レールの延びる方向に対し斜めに交差する鉄道車両の走行方向の後方の位置に設置され、車輪に対し斜めに計測波を照射し、距離を計測する第2の距離センサ群とから構成されることにある。   In addition, a feature of the present invention that achieves the above-described object is that the distance between the rail wheel and the outer flange surface of the railroad vehicle is measured in a non-contact manner by measurement wave irradiation and the measurement result is obtained. A first distance sensor that outputs the measurement result, a second distance sensor that is installed on the inner side of the rail and that measures the distance to the back surface on the inner side of the wheel in a non-contact manner by irradiating a measurement wave, and outputs the measurement result; and In a railway vehicle wheel measuring apparatus including a processing unit that calculates the shape of a wheel from each measurement result of a first distance sensor and a second distance sensor and distance data related to the installation of the first distance sensor and the second distance sensor. The at least first distance sensor of the first distance sensor and the second distance sensor is below the position of the tread surface of the rail and the irradiation direction of the measurement wave is relative to the extending direction of the rail when viewed from above the rail. A first distance sensor group that is installed at a position in front of the traveling direction of the railway vehicle that intersects the vehicle, irradiates the wheels with a measurement wave obliquely, and measures a distance; and a first distance sensor and a second distance sensor Of these, at least the first distance sensor is located at a position behind the rail in the running direction of the railway vehicle where the measurement wave irradiation direction obliquely intersects the direction in which the rail extends when viewed from above the rail. There is a second distance sensor group that is installed, irradiates a measurement wave obliquely to the wheel, and measures a distance.

上記本発明によれば、距離センサから照射した計測波は車輪のフランジ面やバック面で距離センサに向けて確実に反射するので、測定できない箇所を生じることは無く、従って、測定精度は高く、車輪の摩耗状況を正確に把握することができる。   According to the present invention, the measurement wave irradiated from the distance sensor is reliably reflected toward the distance sensor on the flange surface and the back surface of the wheel, so that no portion that cannot be measured is generated, and therefore the measurement accuracy is high, It is possible to accurately grasp the wear situation of the wheel.

以下、本発明になる鉄道車両車輪計測装置の一実施形態を図面を参照して説明する。   Hereinafter, an embodiment of a railway vehicle wheel measuring device according to the present invention will be described with reference to the drawings.

図1は本発明になる鉄道車両車輪計測装置1の一実施形態を示しており、図1において、10はレール11の踏面11a上を車輪100で走行する車両である。なお、12は架線、200はパンタグラフである。   FIG. 1 shows an embodiment of a railway vehicle wheel measuring apparatus 1 according to the present invention. In FIG. 1, reference numeral 10 denotes a vehicle that travels on a tread surface 11 a of a rail 11 with wheels 100. In addition, 12 is an overhead line and 200 is a pantograph.

図2は車輪100の断面を示しており、車輪100は図において右側を外側、左側を内側(バック面側)と呼ぶ。車輪100は、外側の部分から内側の部分までの外周面の外径が徐々に大となるように形成された踏面101と内側の部分に一体に設けたフランジ102とからなる。   FIG. 2 shows a cross section of the wheel 100. In the wheel 100, the right side is referred to as the outside and the left side is referred to as the inside (back surface side). The wheel 100 includes a tread surface 101 formed so that the outer diameter of the outer peripheral surface from the outer part to the inner part gradually increases, and a flange 102 provided integrally with the inner part.

フランジ102は、外周面が踏面101から連続し、軸中心側から半径方向の外側に行くに従って肉厚が徐々に薄くなるような凸曲面をなしている。   The flange 102 has a convex curved surface whose outer peripheral surface is continuous from the tread surface 101 and whose thickness gradually decreases from the axial center side to the outer side in the radial direction.

車輪100には、内側(バック面側)に基準溝103を有しており、この直径Wsは基準で定められている。なお、車輪100の外側のフランジ面104をフランジ外面と称し、また車輪100の内側におけるフランジ内面105から車輪100の内側のバック面
106までを車輪内面107と称する。
The wheel 100 has a reference groove 103 on the inner side (back surface side), and the diameter Ws is determined by the reference. The flange surface 104 on the outer side of the wheel 100 is referred to as a flange outer surface, and the flange inner surface 105 on the inner side of the wheel 100 to the back surface 106 on the inner side of the wheel 100 is referred to as a wheel inner surface 107.

車輪100は、踏面101がレール11の踏面(レール面)11a(図1参照)上を走行する際、車輪100のフランジ外面104がレール11の内側の側面で案内される。   In the wheel 100, when the tread surface 101 travels on the tread surface (rail surface) 11 a (see FIG. 1) of the rail 11, the flange outer surface 104 of the wheel 100 is guided on the inner side surface of the rail 11.

フランジ102は、フランジ厚Fdと半径Rfで表す外径を有している。基準で定められた位置で計測する踏面101の外径Wdとフランジ102の外径(2×Rf)の差の半分をフランジ高さFh(=Wd/2−Rf),踏面101の外径Wdと基準溝103の直径Wsの差の半分をタイヤ厚Wt(=(Wd−Ws)/2)として計測する。   The flange 102 has an outer diameter represented by a flange thickness Fd and a radius Rf. Half the difference between the outer diameter Wd of the tread surface 101 measured at the position determined by the reference and the outer diameter (2 × Rf) of the flange 102 is the flange height Fh (= Wd / 2−Rf), and the outer diameter Wd of the tread surface 101. And half of the difference between the diameters Ws of the reference grooves 103 is measured as the tire thickness Wt (= (Wd−Ws) / 2).

フランジ102における摩耗状態の監視のためにフランジ厚Fdの算出が必要であり、踏面101における摩耗状態の監視のために踏面101の外径Wdやタイヤ厚Wtの算出が必要で、そのために図1に示す鉄道車両車輪計測装置1を用いる。   Calculation of the flange thickness Fd is necessary for monitoring the wear state of the flange 102, and calculation of the outer diameter Wd and the tire thickness Wt of the tread surface 101 is necessary for monitoring the wear state of the tread surface 101. The railway vehicle wheel measuring device 1 shown in FIG.

図1において、2a及び2bは一方のレール11の外側と内側に設置し、レール11上を走行して来る車両10における一方の車輪100との距離(最短距離)を測定する非接触式の第1距離センサ及び第2距離センサで、図示していない枕木などに設置されている。   In FIG. 1, 2a and 2b are installed on the outside and inside of one rail 11 to measure the distance (shortest distance) from one wheel 100 in the vehicle 10 traveling on the rail 11. The first distance sensor and the second distance sensor are installed on a sleeper (not shown).

なお、他方の車輪100については他方のレール11の外側と内側に第1距離センサ及び第2距離センサを設置してあり、構成やフランジ厚Fdなどの算出は全く同一であるので、説明の簡略化のために一方の車輪100について説明を進める。   Since the first distance sensor and the second distance sensor are installed on the outer side and the inner side of the other rail 11 for the other wheel 100 and the calculation of the configuration, the flange thickness Fd, etc. is exactly the same, the description is simplified. The description of one wheel 100 will be given for the sake of explanation.

この第1距離センサ2aはレール11の外側に設置され、車輪100の外側における踏面101やフランジ外面104までの距離L3を時系列に計測し出力するものである。また、第2距離センサ2bはレール11の内側に設置され、車輪100の内側におけるフランジ内面105やバック面106などの車輪内面107までの距離L4を計測し出力する。   The first distance sensor 2a is installed outside the rail 11, and measures and outputs the distance L3 to the tread surface 101 and the flange outer surface 104 on the outside of the wheel 100 in time series. The second distance sensor 2b is installed inside the rail 11, and measures and outputs a distance L4 to the wheel inner surface 107 such as the flange inner surface 105 and the back surface 106 inside the wheel 100.

この距離センサ2a,2bとしては、内部のコイルに高周波電流を流して高周波磁界を発生させ、その磁界内に測定対象の金属が入ってくると電磁誘導作用によって金属表面に渦電流が発生し、この渦電流の大小でセンサと対象物の距離を測定することを利用した渦電流式変位センサや、発光ダイオードや半導体レーザを用いた発光素子と光位置検出素子の組合せで構成された光学式変位センサや、超音波を測定対象物に向けて照射し、その音波が対象物から反射波として戻ってくるまでの時間を計測することでセンサと対象物の距離を測定する超音波式変位センサ等が利用できる。   As the distance sensors 2a and 2b, a high-frequency current is caused to flow through an internal coil to generate a high-frequency magnetic field. When a metal to be measured enters the magnetic field, an eddy current is generated on the metal surface by electromagnetic induction, An eddy current displacement sensor that uses the distance between the sensor and the object to measure the magnitude of the eddy current, or an optical displacement composed of a combination of a light emitting element and a light position detection element using a light emitting diode or semiconductor laser. Sensors, ultrasonic displacement sensors that measure the distance between the sensor and the object by irradiating the object with the ultrasonic wave and measuring the time it takes for the sound wave to return from the object as a reflected wave Is available.

この実施例においては各距離センサ2a,2bとして光学式変位センサを用いており、図3に示すように各距離センサ2a,2bはレール11の踏面11aの位置より距離hGだけ下で計測波(光)の照射方向がレール11の上方から見てレール11の延びる方向に対し斜めに交差する位置に設置され、車輪100に対し斜めに計測光(波)を照射している。   In this embodiment, optical displacement sensors are used as the distance sensors 2a and 2b. As shown in FIG. 3, the distance sensors 2a and 2b are measured waves at a distance hG below the position of the tread surface 11a of the rail 11 ( It is installed at a position where the irradiation direction of the light (light) obliquely intersects with the direction in which the rail 11 extends as viewed from above the rail 11, and the measurement light (wave) is irradiated obliquely to the wheel 100.

従って、これらが発せられる計測光(波)がレール11で遮られることはなく、仰ぎ角θ1,θ2及び迎え角(計測光を上方から見て、レール11と水平に交差する角度)φ1,φ2の設置角度を持っている。ここで、迎え角φ1,φ2は、計測光の照射方向をレール11の上方から見てレール11の延びる方向に対し斜めに交差する角度となっている。   Therefore, the measurement light (waves) emitted from these is not blocked by the rail 11, and the elevation angles θ1, θ2 and the angle of attack (angles that intersect the rail 11 horizontally when the measurement light is viewed from above) φ1, φ2 Have an installation angle of. Here, the angles of attack φ1 and φ2 are angles that obliquely intersect the direction in which the rail 11 extends when the irradiation direction of the measurement light is viewed from above the rail 11.

この第1距離センサ2aと第2距離センサ2bにおける仰ぎ角θ1,θ2及び迎え角
φ1,φ2は、同一であっても良いし、異なっていても良い。第2距離センサ2bは反射波をうけ易いので迎え角φ2は90度、つまり、レール11の延びる方向に対し直交する位置に第2距離センサ2bを設置してもよいが、第1距離センサ2aは図3の配置とする。
The elevation angles θ1 and θ2 and the angles of attack φ1 and φ2 in the first distance sensor 2a and the second distance sensor 2b may be the same or different. Since the second distance sensor 2b easily receives reflected waves, the angle of attack φ2 is 90 degrees, that is, the second distance sensor 2b may be installed at a position orthogonal to the direction in which the rail 11 extends, but the first distance sensor 2a Is the arrangement of FIG.

また、各距離センサ2a,2bは車両10の走行方向の前方に設置(配置)しているが、車輪100の後方から仰ぎ角θ1,θ2及び迎え角φ1,φ2の設置角度を持って設置してもよい。   The distance sensors 2a and 2b are installed (arranged) in front of the traveling direction of the vehicle 10. However, the distance sensors 2a and 2b are installed with the installation angles of the elevation angles θ1 and θ2 and the attack angles φ1 and φ2 from the rear of the wheel 100. May be.

各距離センサ2a,2bから車輪100に向けて照射した計測光は、フランジ102の内外各面や踏面101を直射して反射し各距離センサ2a,2bに戻って来て照射点P1,P2までの距離(L3,L4)を計測する。なお、照射点P1,P2は車輪100の走行に合わせて車輪100の曲面上を移動するので、計測した距離は曲面に合わせて変化する。   The measurement light emitted from the distance sensors 2a and 2b toward the wheel 100 is reflected by direct reflection on the inner and outer surfaces of the flange 102 and the tread 101 and returns to the distance sensors 2a and 2b to the irradiation points P1 and P2. The distance (L3, L4) is measured. Since the irradiation points P1 and P2 move on the curved surface of the wheel 100 in accordance with the traveling of the wheel 100, the measured distance changes according to the curved surface.

各距離センサ2a,2bでの計測結果(計測した距離)L3及びL4は、図1に示す第1増幅部3a及び第2増幅部3bで増幅し、第1A/D変換部4a及び第2A/D変換部4bで逐次A/D変換していく。   The measurement results (measured distances) L3 and L4 at the distance sensors 2a and 2b are amplified by the first amplification unit 3a and the second amplification unit 3b shown in FIG. 1, and the first A / D conversion unit 4a and the second A / A / D conversion is sequentially performed by the D conversion unit 4b.

図1において、5は第1距離センサ2a及び第2距離センサ2bによって距離L3,
L4を計測される車輪100の速度を(車両10の走行方向イに沿った車輪100の移動速度)を検出する速度検出部である。
In FIG. 1, reference numeral 5 denotes a distance L3 by the first distance sensor 2a and the second distance sensor 2b.
It is a speed detector that detects the speed of the wheel 100 for which L4 is measured (the moving speed of the wheel 100 along the traveling direction A of the vehicle 10).

この速度検出部5は、例えば距離センサ2a,2bのような渦電流式,光学式或は超音波式のもので、2個の検出部5a,5bを車両10の走行方向イにおいて車輪100が間に入るように配置している。   The speed detection unit 5 is of an eddy current type, optical type or ultrasonic type like the distance sensors 2a and 2b, for example, and the two detection units 5a and 5b are connected to the vehicle 100 in the traveling direction A. It is arranged so as to be in between.

この速度検出部5は、上記2個の検出部5a,5b間(一方の検出部5aから他方の検出部5bまでの間)を通過する車輪100の通過時間からその車輪100の速度を得るものである。   This speed detector 5 obtains the speed of the wheel 100 from the passing time of the wheel 100 passing between the two detectors 5a and 5b (between one detector 5a and the other detector 5b). It is.

また、この速度検出部5は、検査対象の車両10が2個の検出部5a,5b間を通過する時の経過時間を得るものである。   The speed detection unit 5 obtains an elapsed time when the vehicle 10 to be inspected passes between the two detection units 5a and 5b.

速度検出部5での計測結果は、距離センサ2a,2bでの計測結果とともに第1制御部6a,第2制御部6bに送られる。   The measurement result of the speed detection unit 5 is sent to the first control unit 6a and the second control unit 6b together with the measurement result of the distance sensors 2a and 2b.

この第1制御部6a及び第2制御部6bでは、第1A/D変換部3a及び第2A/D変換部3bからの計測データと上記速度検出部5からの車輪100の速度及び経過時間とを逐次取込み、内蔵の記憶部に格納させる制御を行う。また、第1制御部6a及び第2制御部6bは、速度検出部5で得られた車輪100の速度に応じて、第1A/D変換部3a及び第2変換部3bから出力されるデータをサンプリングする周期を適宜変えるように構成されている。   In the first control unit 6a and the second control unit 6b, the measurement data from the first A / D conversion unit 3a and the second A / D conversion unit 3b and the speed and elapsed time of the wheel 100 from the speed detection unit 5 are used. Sequential capture and control to store in the built-in storage. In addition, the first control unit 6a and the second control unit 6b output the data output from the first A / D conversion unit 3a and the second conversion unit 3b according to the speed of the wheel 100 obtained by the speed detection unit 5. The sampling cycle is appropriately changed.

7は処理部で、第1制御部6a及び第2制御部6bの内蔵の記憶部に格納された計測データと予め固定して設置されている第1距離センサ2a,第2距離センサ2bの間の距離L0(図3参照)と第1距離センサ2aや第2距離センサ2bの各設置角度θ1,θ2,φ1,φ2と速度検出部5で検出される車輪速度から後述する数式によって、逐次車輪
100のフランジ102の厚さFd,フランジ102の高さFh,車輪100の直径Wd(図2参照)などを演算し、車輪の形状を求める。
Reference numeral 7 denotes a processing unit between the first distance sensor 2a and the second distance sensor 2b fixedly installed in advance and the measurement data stored in the built-in storage unit of the first control unit 6a and the second control unit 6b. Of the first distance sensor 2a and the second distance sensor 2b and the wheel speeds detected by the speed detection unit 5 in accordance with a formula described later. The thickness Fd of the flange 102 of 100, the height Fh of the flange 102, the diameter Wd of the wheel 100 (see FIG. 2), and the like are calculated to obtain the shape of the wheel.

また、処理部7は、上記のようにして得られる車輪100における車輪の形状に係るデータを車輪100の測定順番と共に内蔵の記憶部に格納する。さらに、速度検出部5で得られた車輪100の速度と経過時間と上記のようにして得られる車輪100における車輪の形状に係るデータから車輪100における各部の3次元的な位置を演算して形状を再現し、出力画面表示部8で表示させたり図示していない出力印字部でハードコピーを得るようにする。   Moreover, the process part 7 stores the data which concern on the shape of the wheel in the wheel 100 obtained as mentioned above with the measurement order of the wheel 100 in a built-in memory | storage part. Furthermore, the three-dimensional position of each part in the wheel 100 is calculated by calculating the three-dimensional position of each part in the wheel 100 from the speed and elapsed time of the wheel 100 obtained by the speed detection unit 5 and the data relating to the shape of the wheel in the wheel 100 obtained as described above. Is reproduced and displayed on the output screen display unit 8 or a hard copy is obtained by an output printing unit (not shown).

なお、図1において、9は処理部7における内蔵の記憶部に第1距離センサ2aと第2距離センサ2bの間の距離L0(図3参照)などを格納したり各種の処理指令を入力するキーボードである。   In FIG. 1, 9 stores the distance L0 (see FIG. 3) between the first distance sensor 2a and the second distance sensor 2b in a built-in storage unit in the processing unit 7, and inputs various processing commands. Keyboard.

以下、鉄道車両車輪計測装置1の動作について説明する。
先ず、図1に示すように、車両10をレール11上を矢印の方向に走行させ、先頭の車輪100から順次速度検出部5の2個の検出部5a,5b間を通過させ、さらに第1距離センサ2aと第2距離センサ2bとの間を走行させる。
Hereinafter, the operation of the railway vehicle wheel measuring apparatus 1 will be described.
First, as shown in FIG. 1, the vehicle 10 travels on the rail 11 in the direction of the arrow, and sequentially passes between the two detection units 5 a and 5 b of the speed detection unit 5 from the head wheel 100, and the first It travels between the distance sensor 2a and the second distance sensor 2b.

すると、図3に示すように、第1距離センサ2aから発した計測光の計測点P1はフランジ外面104から踏面101にかけてそれらの面上を車両10の走行に従って推移し、踏面101やフランジ外面104までの距離L3を計測し、第2距離センサ2bは同様に車輪内面107までの距離L4を計測する。   Then, as shown in FIG. 3, the measurement point P <b> 1 of the measurement light emitted from the first distance sensor 2 a transitions on those surfaces from the flange outer surface 104 to the tread surface 101 as the vehicle 10 travels, and the tread surface 101 and the flange outer surface 104. The second distance sensor 2b similarly measures the distance L4 to the wheel inner surface 107.

この時、第1距離センサ2aから発した計測光の計測点P1は、図4(a)に2点鎖線で示す位置PP1を車両10の走行に従って推移し、車輪100のフランジ外面104のa−b間の部分,車輪100の踏面101のb−c間の部分,車輪100の外側の面のc−d間の部分,車輪100の踏面101のd−e間の部分,及びフランジ外面104のe−f間の部分までの距離L3を計測し、第1距離センサ2aからの出力(計測結果)は、速度検出部5で得てある車両10の速度とサンプリング周期とサンプリング数を参照して描くと、図4(b)に示すような形となる。   At this time, the measurement point P1 of the measurement light emitted from the first distance sensor 2a changes at a position PP1 indicated by a two-dot chain line in FIG. 4A according to the traveling of the vehicle 10, and a− of the flange outer surface 104 of the wheel 100 a portion between b, a portion between bc of the tread surface 101 of the wheel 100, a portion between cd on the outer surface of the wheel 100, a portion between de of the tread surface 101 of the wheel 100, and the flange outer surface 104. The distance L3 to the part between ef is measured, and the output (measurement result) from the first distance sensor 2a is obtained by referring to the speed, sampling period, and sampling number of the vehicle 10 obtained by the speed detection unit 5. When drawn, the shape is as shown in FIG.

同様に、第2距離センサ2bから発した計測光の計測点P2は、図5(a)に2点鎖線で示す位置PP2を車両10の走行に従って推移し、第2距離センサ2bは、図5(a)に示す車輪100における内側のフランジ内面105のa−b間の部分,バック面106のb−e間の部分及びフランジ内面105のe−f間の部分までの距離L4を計測し、第2距離センサからの出力(計測結果)は、速度検出部5で得てある車両10の速度とサンプリング周期とサンプリング数を参照して描くと、図4(b)に示すような形となる。   Similarly, the measurement point P2 of the measurement light emitted from the second distance sensor 2b changes according to the traveling of the vehicle 10 at a position PP2 indicated by a two-dot chain line in FIG. 5A, and the second distance sensor 2b The distance L4 to the part between ab of the inner flange inner surface 105 in the wheel 100 shown to (a), the part between be of the back surface 106, and the part between ef of the flange inner surface 105 is measured, When the output (measurement result) from the second distance sensor is drawn with reference to the speed, sampling period, and number of samples of the vehicle 10 obtained by the speed detection unit 5, it has a form as shown in FIG. .

なお、図5(b)に示したc,dの箇所は、第2距離センサ2bから発した計測光の計測点P2が基準溝103を横切った箇所になる。   Note that the positions c and d shown in FIG. 5B are positions where the measurement point P2 of the measurement light emitted from the second distance sensor 2b crosses the reference groove 103.

次に、上記第1距離センサ2a及び第2距離センサ2bの出力(計測結果)は第1増幅部3a及び第2増幅部3bで増幅されてから第1A/D変換部4a及び第2A/D変換部4bでA/D変換され、第1制御部6a及び第2制御部6bの制御によって内蔵の記憶部に格納される。   Next, the outputs (measurement results) of the first distance sensor 2a and the second distance sensor 2b are amplified by the first amplification unit 3a and the second amplification unit 3b, and then the first A / D conversion unit 4a and the second A / D. A / D conversion is performed by the conversion unit 4b, and the converted data is stored in a built-in storage unit under the control of the first control unit 6a and the second control unit 6b.

一方、速度検出部5で得られた速度は、経過時間と共に両制御部6a,6bの制御によって内蔵の記憶部に格納される。   On the other hand, the speed obtained by the speed detection unit 5 is stored in the built-in storage unit under the control of both the control units 6a and 6b together with the elapsed time.

それから、処理部7において、両制御部6a,6bの各内蔵の記憶部に格納されたデータ及び第1距離センサ2aと第2距離センサ2b間の設置距離L0(図3参照)及び第1,第2各距離センサ2a,2bの諸設置角度θ1,θ2,φ1,φ2と第1,第2各距離センサ2a,2b設置高さhG(図3参照)と速度検出部5で得られた速度から下式によってフランジ102のフランジ厚Fd及びフランジ高さFhや車輪100の踏面101の外径Wdが演算され、演算で得られた諸データは、車輪100の測定順番と共に記憶部に格納される。   Then, in the processing unit 7, the data stored in the built-in storage units of both the control units 6a and 6b, the installation distance L0 (see FIG. 3) between the first distance sensor 2a and the second distance sensor 2b, and the first, The various installation angles θ1, θ2, φ1, φ2 of the second distance sensors 2a, 2b, the installation height hG (see FIG. 3) of the first and second distance sensors 2a, 2b, and the speed obtained by the speed detector 5. From the following equation, the flange thickness Fd and flange height Fh of the flange 102 and the outer diameter Wd of the tread surface 101 of the wheel 100 are calculated, and various data obtained by the calculation are stored in the storage unit together with the measurement order of the wheel 100. .

そして、必要に応じて出力画面表示部8によって、その演算結果が画面に表示されたり、または図示していない出力印字部によって、その演算結果が印字出力されたりする。   Then, if necessary, the calculation result is displayed on the screen by the output screen display unit 8, or the calculation result is printed out by an output printing unit (not shown).

図3に示すように、第1,第2両距離センサ2a,2bは予め距離L0及び設置角度
θ1,φ1,θ2,φ2及び設置高さhGに設置されているので、第1距離センサ2a及び第2距離センサ2bで計測した距離L3及び距離L4から、車輪100のフランジ厚さFdは数式1〜3で算出できる。
As shown in FIG. 3, since the first and second distance sensors 2a, 2b are previously installed at the distance L0, the installation angles θ1, φ1, θ2, φ2, and the installation height hG, the first distance sensor 2a and From the distance L3 and the distance L4 measured by the second distance sensor 2b, the flange thickness Fd of the wheel 100 can be calculated by Formulas 1-3.

Figure 2008037284
Figure 2008037284

Figure 2008037284
Figure 2008037284

Figure 2008037284
また、図5(b)で示す第2距離センサ2bの出力波形において、第2距離センサ2bから照射した計測光の計測点P2(図3参照)が車輪100の基準溝103を横断する距離Lsを図上のc点からd点までの経過時間と車輪速度から求め、既知である基準溝103の直径Ws及び第2距離センサ2bで計測した距離L4と設置角度θ2とその設置高さ
hGより、タイヤ厚Wtと踏面101の外径Wdを数式4〜7で算出できる。
Figure 2008037284
Further, in the output waveform of the second distance sensor 2b shown in FIG. 5B, the distance Ls that the measurement point P2 (see FIG. 3) of the measurement light emitted from the second distance sensor 2b crosses the reference groove 103 of the wheel 100. Is obtained from the elapsed time from the point c to the point d on the figure and the wheel speed, and is based on the known diameter Ws of the reference groove 103, the distance L4 measured by the second distance sensor 2b, the installation angle θ2, and the installation height hG. The tire thickness Wt and the outer diameter Wd of the tread surface 101 can be calculated by Formulas 4-7.

Figure 2008037284
Figure 2008037284

Figure 2008037284
Figure 2008037284

Figure 2008037284
Figure 2008037284

Figure 2008037284
Figure 2008037284

さらに図4(b)で示す第1距離センサ2aの出力波形において、第1距離センサ2aから照射した計測光の計測点P1(図3参照)が車輪100を横断する距離Lfを図上のa点からf点までの経過時間と車輪速度などから求め、数4や数7で得た諸データを利用してフランジ102の外径(2×Rf)及びフランジ高さFhを数式8,9で算出できる。   Further, in the output waveform of the first distance sensor 2a shown in FIG. 4 (b), the distance Lf that the measurement point P1 (see FIG. 3) of the measurement light emitted from the first distance sensor 2a crosses the wheel 100 is shown as a in FIG. The outer diameter (2 × Rf) and the flange height Fh of the flange 102 are obtained from Equations 8 and 9 using various data obtained from Equation 4 and Equation 7 from the elapsed time from the point to the point f and the wheel speed. It can be calculated.

Figure 2008037284
Figure 2008037284

Figure 2008037284
Figure 2008037284

さらにまた、図4(b)や図5(b)で示す両距離センサ2a,2bによる計測結果について図3の水平成分距離L1,L2に変換した波形を背中同士で重ね合わせると、図2に示す車輪100の形状に関する図形(車軸を通る中心線で車輪100を切断した断面図形状)を得ることができ、図形の持つ諸数値が数1〜数9で得た諸データと一致していることを確認できる。   Furthermore, when the waveforms converted into the horizontal component distances L1 and L2 in FIG. 3 are superimposed on the backs of the measurement results by the distance sensors 2a and 2b shown in FIG. 4B and FIG. 5B, FIG. The figure regarding the shape of the wheel 100 to be shown (cross-sectional shape obtained by cutting the wheel 100 along the center line passing through the axle) can be obtained, and the numerical values of the figure coincide with the various data obtained in Equations 1 to 9. I can confirm that.

ここで、第1距離センサ2aの迎え角φ1の最適値を求める方法について述べる。
図6(a)は迎え角(計測光がレール11と水平に交差する角度)φ1を持つ第1距離センサ2aから照射する計測光とその計測点における車輪面の法線となす角αの採り方を示している。また、図6(b)は横軸に迎え角φ1、縦軸に車輪面の法線となす角αを採り、図6(a)に示す踏面101の先端位置イ,中央位置ロ及びフランジ102の根元位置ハについて、迎え角φ1を変えると法線となす角αがどのように変化するかを示している。
Here, a method for obtaining the optimum value of the angle of attack φ1 of the first distance sensor 2a will be described.
FIG. 6A shows the measurement light emitted from the first distance sensor 2a having the angle of attack (the angle at which the measurement light intersects the rail 11 horizontally) φ1 and the angle α formed by the normal of the wheel surface at the measurement point. Shows the direction. FIG. 6B shows the angle of attack φ1 on the horizontal axis and the angle α formed with the normal of the wheel surface on the vertical axis, and the tip position a, the center position b, and the flange 102 of the tread surface 101 shown in FIG. This shows how the angle α formed with the normal changes when the angle of attack φ1 is changed.

この法線とのなす角αが小さいほど、距離センサへ戻る反射光の量が増えるため、最も小さくなる点のφ1を採用することが精度,計測範囲の向上に有効である。   Since the amount of reflected light returning to the distance sensor increases as the angle α formed with the normal line decreases, it is effective to improve the accuracy and measurement range by adopting the smallest point φ1.

3本の線のうち、踏面101の先端位置イでの距離センサへ戻る反射光の量の変化が極端で、この位置イへの計測光の照射が一番厳しい条件であるため、先端位置イでの距離センサへ戻る反射光量の変化を示す曲線で角度最小値を示す場合における迎え角φ1mを迎え角φ1として取る様に第1距離センサ2aを配置することが有効である。   Of the three lines, the change in the amount of reflected light returning to the distance sensor at the tip position a of the tread 101 is extreme, and the irradiation of the measurement light to this position is the most severe condition. It is effective to dispose the first distance sensor 2a so that the angle of attack φ1m is taken as the angle of attack φ1 when the minimum angle is indicated by a curve indicating the change in the amount of reflected light returning to the distance sensor.

この場合、迎え角φ1を大きく取るほど、踏面101の幅方向の測定範囲が狭くなることを考慮し、迎え角φ1の最も大きくなる位置に第1距離センサ2aを設置することが有効である。   In this case, it is effective to install the first distance sensor 2a at the position where the angle of attack φ1 is the largest, considering that the larger the angle of attack φ1 is, the narrower the measurement range in the width direction of the tread 101 is.

適度な迎え角φ1とするとサンプリング回数が多くなり、その分精度よく車輪100の形状を得ることができる。   When the angle of attack φ1 is appropriate, the number of samplings increases, and the shape of the wheel 100 can be obtained with high accuracy.

なお、第2距離センサ2bについては、車輪内面107がレール11とほぼ平行になるから、迎え角φ2を90度、つまり、第2距離センサ2bの計測光を上方から見たときにレール11と直交するように設置しても構わないが、第2距離センサ2bについても図6(b)のごとき計測データを得て最適な設置を行うことが望ましい。   As for the second distance sensor 2b, since the wheel inner surface 107 is substantially parallel to the rail 11, the angle of attack φ2 is 90 degrees, that is, when the measurement light of the second distance sensor 2b is viewed from above, Although it may be installed so as to be orthogonal, it is desirable that the second distance sensor 2b is also optimally installed by obtaining measurement data as shown in FIG. 6B.

第1距離センサ2aによる計測において、迎え角φ1が大きくなると、車輪100の後側、即ち、図4(b)で示す車輪100の踏面101のd−e間の部分及びフランジ外面104のe−f間の部分に対する計測が困難になる。   In the measurement by the first distance sensor 2a, when the angle of attack φ1 increases, the rear side of the wheel 100, that is, the portion between the de of the tread surface 101 of the wheel 100 and the e− of the flange outer surface 104 shown in FIG. It becomes difficult to measure the portion between f.

しかしながら、車輪100での摩耗はフラットを除けばほぼ均等に生じることやフランジ外面104のa−b間の部分と踏面101のb−c間の部分での計測を正確に実施できることに基づいて、フランジ外面104のa−b間の部分と踏面101のb−c間の部分での計測結果を車輪100の外側の面のc−d間の部分を基準として、フランジ外面104のe−f間の部分及び踏面101のd−e間の部分にそれぞれ形状パターンを鏡面対照的に反転させて利用すれば、図4(b)の波形を得ることができる。   However, based on the fact that the wear on the wheel 100 occurs almost evenly except for the flat, and that the measurement at the portion between the ab of the flange outer surface 104 and the portion between bc of the tread surface 101 can be accurately performed. The measurement results at the portion between the ab of the flange outer surface 104 and the portion between the bc of the tread surface 101 are based on the portion between cd of the outer surface of the wheel 100 between ef of the flange outer surface 104 4B and the portion between the points de of the tread surface 101 can be used by inverting the shape pattern in a mirror-contrast manner to obtain the waveform of FIG. 4B.

迎え角φ1が大きくなると、車輪100の後側で踏面101までの距離を計測し難くなる。
そこで、図7により走行する車両10における車輪100の前側も後側で踏面101までの距離を正確に計測することができる鉄道車両車輪計測装置1について説明する。
When the angle of attack φ1 increases, it becomes difficult to measure the distance to the tread surface 101 on the rear side of the wheel 100.
Therefore, the railway vehicle wheel measuring apparatus 1 that can accurately measure the distance to the tread surface 101 on the front side and the rear side of the wheel 100 in the vehicle 10 that travels will be described with reference to FIG.

図7において、図1に示したものと同一物には同一符号を付けている。
図7に示す鉄道車両車輪計測装置1において、車両10の進行方向について車輪100の前側に設置した第1距離センサ2aと第2距離センサ2bは図1に示した実施形態のものと同じであるが、車両10の進行方向について車輪100の後側となる位置に第1距離センサ2cと第2距離センサ2dを、図3に示すような位置関係で設置してある。
7, the same components as those shown in FIG.
In the railway vehicle wheel measuring apparatus 1 shown in FIG. 7, the first distance sensor 2a and the second distance sensor 2b installed on the front side of the wheel 100 in the traveling direction of the vehicle 10 are the same as those in the embodiment shown in FIG. However, the 1st distance sensor 2c and the 2nd distance sensor 2d are installed in the position which becomes the back side of the wheel 100 with respect to the advancing direction of the vehicle 10 by the positional relationship as shown in FIG.

第1距離センサ2cは第1距離センサ2aと同様にレール11の外側で踏面11aの位置より下で計測波の照射方向がレール11の上方から見てレール11の延びる方向に対し斜めに交差する位置に設置し、第2距離センサ2dは第2距離センサ2bと同様にレール11の内側で踏面11aの位置より下で計測波の照射方向がレール11の上方から見てレール11の延びる方向に対し斜めに交差する位置に設置してある。この場合、迎え角φ1,φ2は、計測光を上方から見てレール10と水平に交差する見送り角と呼ぶべき角度である。   Similarly to the first distance sensor 2a, the first distance sensor 2c has an irradiation direction of the measurement wave obliquely intersecting with the extending direction of the rail 11 when viewed from above the rail 11 on the outer side of the rail 11 and below the position of the tread 11a. Like the second distance sensor 2b, the second distance sensor 2d is located on the inner side of the rail 11 and below the position of the tread 11a so that the irradiation direction of the measurement wave is the direction in which the rail 11 extends when viewed from above the rail 11. It is installed at a position that crosses diagonally. In this case, the angles of attack φ1 and φ2 are angles that should be called see-off angles that intersect the rail 10 horizontally when the measurement light is viewed from above.

第2距離センサ2dは、第2距離センサ2bと同様に、計測波の照射方向がレール11の上方から見てレール11の延びる方向に対し直交する位置に設置してもよい。   Similarly to the second distance sensor 2 b, the second distance sensor 2 d may be installed at a position where the measurement wave irradiation direction is orthogonal to the direction in which the rail 11 extends when viewed from above the rail 11.

車両10の進行方向について車輪100の前側に設置した第1距離センサ2aと第2距離センサ2bを第1の距離センサ群とすれば、車両10の進行方向について車輪100の後側に設置した第1距離センサ2cと第2距離センサ2dは第2の距離センサ群となる。   If the first distance sensor 2a and the second distance sensor 2b installed on the front side of the wheel 100 in the traveling direction of the vehicle 10 are a first distance sensor group, the first distance sensor 2a installed on the rear side of the wheel 100 in the traveling direction of the vehicle 10 is used. The first distance sensor 2c and the second distance sensor 2d form a second distance sensor group.

第1距離センサ2cと第2距離センサ2dで得た計測データは第1増幅部3c及び第2増幅部3dで増幅し、第1A/D変換部4c及び第2A/D変換部4dで逐次A/D変換し、速度検出部5での計測結果とともに第1制御部6c,第2制御部6dに送る。   The measurement data obtained by the first distance sensor 2c and the second distance sensor 2d are amplified by the first amplifying unit 3c and the second amplifying unit 3d, and sequentially A by the first A / D converting unit 4c and the second A / D converting unit 4d. / D conversion and sent to the first control unit 6 c and the second control unit 6 d together with the measurement result in the speed detection unit 5.

この第1制御部6c及び第2制御部6dでは、第1A/D変換部3c及び第2A/D変換部3dからの計測データと上記速度検出部5からの車輪100の速度及び経過時間とを逐次取込み、内蔵の記憶部に格納させる制御を行う。また、第1制御部6c及び第2制御部6dは、速度検出部5で得られた車輪100の速度に応じて、第1A/D変換部3c及び第2変換部3dから出力されるデータをサンプリングする周期を適宜変えるように構成されている。   In the first control unit 6c and the second control unit 6d, the measurement data from the first A / D conversion unit 3c and the second A / D conversion unit 3d and the speed and elapsed time of the wheel 100 from the speed detection unit 5 are used. Sequential capture and control to store in the built-in storage. In addition, the first control unit 6c and the second control unit 6d output the data output from the first A / D conversion unit 3c and the second conversion unit 3d according to the speed of the wheel 100 obtained by the speed detection unit 5. The sampling cycle is appropriately changed.

処理部7では、第1制御部6c及び第2制御部6dの内蔵の記憶部に格納された計測データと予め固定して設置されている第1距離センサ2c,第2距離センサ2dの間の距離L0(図3参照)と第1距離センサ2cや第2距離センサ2dの各設置角度θ1,θ2,φ1,φ2(図3参照)と速度検出部5で検出される車輪速度から、前述した数式によって逐次車輪100のフランジ102の厚さFd,フランジ102の高さFh,車輪100の直径Wd(図2参照)などを演算し、車輪100の形状を求める。   In the processing unit 7, the measurement data stored in the built-in storage unit of the first control unit 6c and the second control unit 6d and the first distance sensor 2c and the second distance sensor 2d fixedly installed in advance are arranged. From the distance L0 (see FIG. 3), the installation angles θ1, θ2, φ1, φ2 (see FIG. 3) of the first distance sensor 2c and the second distance sensor 2d and the wheel speed detected by the speed detector 5, the above-described The shape of the wheel 100 is obtained by sequentially calculating the thickness Fd of the flange 102 of the wheel 100, the height Fh of the flange 102, the diameter Wd of the wheel 100 (see FIG. 2), and the like.

即ち、第1の距離センサ群の第1距離センサ2aで、図8(b)に示す計測結果を得、第2の距離センサ群の第1距離センサ2cで、図8(c)に示す計測結果を得て、車輪
100の外側の面のc−d間の部分を基準として計測結果を接続して合成すると、図8
(d)の計測結果を得ることができる。
That is, the measurement result shown in FIG. 8B is obtained by the first distance sensor 2a of the first distance sensor group, and the measurement shown in FIG. 8C is obtained by the first distance sensor 2c of the second distance sensor group. When the results are obtained and the measurement results are connected and synthesized with reference to the portion between cd on the outer surface of the wheel 100, FIG.
The measurement result of (d) can be obtained.

また、第1の距離センサ群の第1距離センサ2bで、図9(b)に示す計測結果を得、第2の距離センサ群の第1距離センサ2dで、図9(c)に示す計測結果を得て、車輪
100の内側の面のc−d間の部分を基準として、各計測結果を接続して合成すると、図9(d)の計測結果を得ることができる。
9B is obtained by the first distance sensor 2b of the first distance sensor group, and the measurement shown in FIG. 9C is obtained by the first distance sensor 2d of the second distance sensor group. When the results are obtained and the respective measurement results are connected and synthesized with reference to the portion between cd on the inner surface of the wheel 100, the measurement results of FIG. 9D can be obtained.

図8(d)と図9(d)の各計測結果は、車輪100のフランジ外面から踏面に掛けての前方側と後方側、及び車輪100における車輪内面107前方側と後方側の形状をそれぞれきわめて正確に計測した結果を示しており、前述の数式1〜数式9に基づいて、車輪100の形状を精度よく求めることができる。   8D and 9D show the shapes of the front and rear sides of the wheel 100 from the flange outer surface to the tread surface, and the front and rear sides of the wheel inner surface 107 of the wheel 100, respectively. The result of extremely accurate measurement is shown, and the shape of the wheel 100 can be obtained with high accuracy based on the above-described Equations 1 to 9.

以上説明した各実施形態によれば、非接触状態で車輪100のフランジ厚さFd,踏面101の外径Wd,タイヤ厚Wt,フランジ102の外径(2×Rf)及び車輪フランジ高さFhなどを算出でき、各距離センサ2a,2b,2c,2dを車両10の前方または後方から車輪100に対し迎え角や見送り角と仰ぎ角を持つように斜めに設置していることにより、車輪面の法線に対し各距離センサから照射する計測波が直角から離れる方向になり、計測精度の向上と計測範囲の拡大をすることができる。   According to each embodiment described above, the flange thickness Fd of the wheel 100, the outer diameter Wd of the tread surface 101, the tire thickness Wt, the outer diameter of the flange 102 (2 × Rf), the wheel flange height Fh, etc. in a non-contact state. Since each distance sensor 2a, 2b, 2c, 2d is installed obliquely so as to have an angle of attack, a see-off angle, and an elevation angle with respect to the wheel 100 from the front or rear of the vehicle 10, The measurement wave emitted from each distance sensor with respect to the normal is in a direction away from a right angle, so that the measurement accuracy can be improved and the measurement range can be expanded.

そして、速度検出部5で得られ逐次制御部6a,6bまたは6a〜6dに内蔵の記憶部に格納された車輪100の速度と経過時間とから車輪100の各部位を演算し、車輪100の形状を出力画面表示部8によって再現表示し、車輪100の摩耗の判定をより確実にすることができる。   Then, each part of the wheel 100 is calculated from the speed and elapsed time of the wheel 100 obtained by the speed detection unit 5 and stored in the storage unit built in the sequential control unit 6a, 6b or 6a to 6d. Can be reproduced and displayed on the output screen display unit 8 to make the determination of the wear of the wheel 100 more reliable.

また、A/D変換されたデータ量は、車輪100の速度が低速の場合は膨大なものとなるため、制御部6a,6bで入力された車輪100の速度に応じてA/D変換されたデータL3,L4をサンプリングする周期を適宜に変えて記憶部に格納するようにしても良い。   Further, since the data amount subjected to A / D conversion becomes enormous when the speed of the wheel 100 is low, the data amount is A / D converted in accordance with the speed of the wheel 100 input by the control units 6a and 6b. The sampling period of the data L3 and L4 may be changed as appropriate and stored in the storage unit.

さらに、上述の実施例では片側の車輪100における摩耗について説明したが、車両
10は車軸(図示せず)で結合された2個の車輪を備えており、レール11の曲がりや積載状況によって車輪のフランジに掛かる横圧に差が生じ、摩耗の程度に差がある。そこで、両側のレール11について鉄道車両車輪計測装置を設置し、両輪についてフランジ及び車輪の径の摩耗状況を計測することもできる。
Further, in the above-described embodiment, the wear on the wheel 100 on one side has been described. However, the vehicle 10 includes two wheels connected by an axle (not shown), and the wheel is bent depending on the bending of the rail 11 and the loading state. A difference occurs in the lateral pressure applied to the flange, and there is a difference in the degree of wear. Therefore, it is also possible to install a railway vehicle wheel measuring device for the rails 11 on both sides and measure the wear state of the flange and wheel diameter for both wheels.

さらに、本発明の鉄道車両車輪計測装置によれば、非接触で車輪のフランジ及び踏面の摩耗状況を正確に把握するために装置の耐久性が向上し、装置の保守による人手と労力を軽減できる。   Furthermore, according to the railway vehicle wheel measuring device of the present invention, the durability of the device is improved in order to accurately grasp the wear state of the wheel flange and the tread surface in a non-contact manner, and the labor and labor required for maintenance of the device can be reduced. .

本発明になる鉄道車両車輪計測装置の一実施形態を示す図である。It is a figure which shows one Embodiment of the rail vehicle wheel measuring device which becomes this invention. 鉄道車両における車輪の断面図である。It is sectional drawing of the wheel in a railway vehicle. 図1の鉄道車両車輪計測装置における距離センサの設置について説明する図である。It is a figure explaining installation of the distance sensor in the railway vehicle wheel measuring device of FIG. 図1の鉄道車両車輪計測装置における第1距離センサで車輪までの距離を計測する状況を説明する図である。It is a figure explaining the condition which measures the distance to a wheel with the 1st distance sensor in the railway vehicle wheel measuring device of FIG. 図1の鉄道車両車輪計測装置における第2距離センサで車輪までの距離を計測する状況を説明する図である。It is a figure explaining the condition which measures the distance to a wheel with the 2nd distance sensor in the railway vehicle wheel measuring device of FIG. 図1の鉄道車両車輪計測装置における距離センサの最適な設置について説明する図である。It is a figure explaining the optimal installation of the distance sensor in the rail vehicle wheel measuring device of FIG. 本発明になる鉄道車両車輪計測装置の他の実施形態を示す図である。It is a figure which shows other embodiment of the rail vehicle wheel measuring device which becomes this invention. 図7の鉄道車両車輪計測装置における2個の第1距離センサで車輪までの距離を計測する状況を説明する図である。It is a figure explaining the condition which measures the distance to a wheel with two 1st distance sensors in the railway vehicle wheel measuring device of FIG. 図7の鉄道車両車輪計測装置における2個の第2距離センサで車輪までの距離を計測する状況を説明する図である。It is a figure explaining the condition which measures the distance to a wheel with two 2nd distance sensors in the railway vehicle wheel measuring device of FIG.

符号の説明Explanation of symbols

2a,2b…距離センサ、5…速度検出部、6a,6b…制御部、7…処理部、8…出力画面表示部、10…車両、11…レール、11a…レールの踏面、100…車輪。
2a, 2b ... distance sensor, 5 ... speed detection unit, 6a, 6b ... control unit, 7 ... processing unit, 8 ... output screen display unit, 10 ... vehicle, 11 ... rail, 11a ... tread of rail, 100 ... wheel.

Claims (5)

レールの外側に設置され、鉄道車両の車輪の外側のフランジ面までの距離を計測波の照射により非接触で計測してその計測結果を出力する第1距離センサと、レールの内側に設置され、車輪の内側のバック面までの距離を計測波の照射により非接触で計測してその計測結果を出力する第2距離センサと、その第1距離センサと第2距離センサのそれぞれの計測結果および該第1距離センサと第2距離センサの設置に係わる距離のデータから車輪の形状を演算する処理部を備えた鉄道車両車輪計測装置において、
第1距離センサと第2距離センサのうち少なくとも第1距離センサは、該レールの踏面の位置より下で計測波の照射方向がレールの上方から見て該レールの延びる方向に対し斜めに交差する位置に設置され、車輪に対し斜めに計測波を照射して距離を計測するものであることを特徴とする鉄道車両車輪計測装置。
A first distance sensor installed outside the rail, measuring the distance to the outer flange surface of the wheel of the railway vehicle in a non-contact manner by measuring wave irradiation, and outputting the measurement result; and installed inside the rail; A second distance sensor that measures the distance to the back surface inside the wheel in a non-contact manner by irradiating a measurement wave, and outputs the measurement result; the respective measurement results of the first distance sensor and the second distance sensor; and In the railway vehicle wheel measuring device including a processing unit that calculates the shape of the wheel from the distance data related to the installation of the first distance sensor and the second distance sensor,
At least the first distance sensor of the first distance sensor and the second distance sensor has an irradiation direction of the measurement wave obliquely intersecting with the extending direction of the rail when viewed from above the rail below the position of the tread surface of the rail. A railway vehicle wheel measuring device that is installed at a position and measures a distance by irradiating a measurement wave obliquely to the wheel.
上記請求項1の鉄道車両車輪計測装置において、
第2距離センサは該レールの踏面の位置より下で計測波の照射方向がレールの上方から見て該レールの延びる方向に対し直交する位置に設置されていることを特徴とする鉄道車両車輪計測装置。
In the railway vehicle wheel measuring device according to claim 1,
The second distance sensor is installed at a position below the position of the tread of the rail and at a position where the irradiation direction of the measurement wave is orthogonal to the direction in which the rail extends when viewed from above the rail. apparatus.
レールの外側に設置され、鉄道車両の車輪の外側のフランジ面までの距離を計測波の照射により非接触で計測してその計測結果を出力する第1距離センサと、レールの内側に設置され、車輪の内側のバック面までの距離を計測波の照射により非接触で計測してその計測結果を出力する第2距離センサと、その第1距離センサと第2距離センサのそれぞれの計測結果および該第1距離センサと第2距離センサの設置に係わる距離のデータから車輪の形状を演算する処理部を備えた鉄道車両車輪計測装置において、
第1距離センサと第2距離センサのうち少なくとも第1距離センサは、該レールの踏面の位置より下で計測波の照射方向がレールの上方から見て該レールの延びる方向に対し斜めに交差する鉄道車両の走行方向の前方の位置に設置され、車輪に対し斜めに計測波を照射し、距離を計測する第1の距離センサ群と、
第1距離センサと第2距離センサのうち少なくとも第1距離センサが、該レールの踏面の位置より下で計測波の照射方向がレールの上方から見て該レールの延びる方向に対し斜めに交差する鉄道車両の走行方向の後方の位置に設置され、車輪に対し斜めに計測波を照射し、距離を計測する第2の距離センサ群とから構成されることを特徴とする鉄道車両車輪計測装置。
A first distance sensor installed outside the rail, measuring the distance to the outer flange surface of the wheel of the railway vehicle in a non-contact manner by measuring wave irradiation, and outputting the measurement result; and installed inside the rail; A second distance sensor that measures the distance to the back surface inside the wheel in a non-contact manner by irradiating a measurement wave, and outputs the measurement result; the respective measurement results of the first distance sensor and the second distance sensor; and In the railway vehicle wheel measuring device including a processing unit that calculates the shape of the wheel from the distance data related to the installation of the first distance sensor and the second distance sensor,
At least the first distance sensor of the first distance sensor and the second distance sensor has an irradiation direction of the measurement wave obliquely intersecting with the extending direction of the rail when viewed from above the rail below the position of the tread surface of the rail. A first distance sensor group installed at a position in front of the traveling direction of the railway vehicle, irradiating a measurement wave obliquely to the wheel, and measuring a distance;
At least the first distance sensor of the first distance sensor and the second distance sensor has a measurement wave irradiation direction obliquely intersecting a direction in which the rail extends when viewed from above the rail below the position of the tread surface of the rail. A railway vehicle wheel measuring device, comprising: a second distance sensor group which is installed at a position rearward in the traveling direction of the railway vehicle, irradiates a measurement wave obliquely to the wheel, and measures a distance.
上記請求項3の鉄道車両車輪計測装置において、
第1の距離センサ群と第2の距離センサ群における各第2距離センサは、該レールの踏面の位置より下で計測波の照射方向がレールの上方から見て該レールの延びる方向に対し直交する位置にそれぞれ設置されていることを特徴とする鉄道車両車輪計測装置。
In the railway vehicle wheel measuring device according to claim 3,
Each of the second distance sensors in the first distance sensor group and the second distance sensor group is below the position of the tread surface of the rail, and the irradiation direction of the measurement wave is orthogonal to the extending direction of the rail when viewed from above the rail. A railway vehicle wheel measuring device, characterized in that each is installed at a position to be operated.
上記請求項1及び上記請求項3のいずれかの鉄道車両車輪計測装置において、
さらに、車輪の速度を検出する速度検出部を備え、該処理部は該速度検出部で得られた検査対象の車輪の速度と経過時間とから車輪におけるフランジの各部位の位置を演算して車輪のフランジの形状を再現することができるものであり、前記処理部で得られた車輪の形状を表示する手段とを備えたことを特徴とする鉄道車両車輪計測装置。

In the railway vehicle wheel measuring device according to any one of claims 1 and 3,
Furthermore, a speed detection unit for detecting the speed of the wheel is provided, and the processing unit calculates the position of each part of the flange in the wheel from the speed and elapsed time of the wheel to be inspected obtained by the speed detection unit. A railway vehicle wheel measuring device comprising: means for displaying the shape of the wheel obtained by the processing unit.

JP2006215192A 2006-08-08 2006-08-08 Railway vehicle wheel measuring device Active JP4913498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006215192A JP4913498B2 (en) 2006-08-08 2006-08-08 Railway vehicle wheel measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006215192A JP4913498B2 (en) 2006-08-08 2006-08-08 Railway vehicle wheel measuring device

Publications (2)

Publication Number Publication Date
JP2008037284A true JP2008037284A (en) 2008-02-21
JP4913498B2 JP4913498B2 (en) 2012-04-11

Family

ID=39172802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006215192A Active JP4913498B2 (en) 2006-08-08 2006-08-08 Railway vehicle wheel measuring device

Country Status (1)

Country Link
JP (1) JP4913498B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001164B1 (en) 2008-12-30 2010-12-21 주식회사 우진산전 Inspecting apparatus of phased array supersonic wave for axile of train
EP2336712A1 (en) 2009-12-04 2011-06-22 NextSense Mess- und Prüfsysteme GmbH Method and device for measuring wheel diameters
CN102350996A (en) * 2011-07-22 2012-02-15 西南交通大学 Ground monitoring method for dangerous condition in heavy-load train operation

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126686A (en) * 1991-11-08 1993-05-21 Railway Technical Res Inst Vehicle inspecting device
JPH0743137A (en) * 1993-07-27 1995-02-10 Nikon Corp Wheel flat detector
JPH07243845A (en) * 1994-03-02 1995-09-19 Hitachi Techno Eng Co Ltd Railroad vehicle running wheel inspection device
JPH11118435A (en) * 1997-10-14 1999-04-30 Mitsubishi Electric Corp Wheel measuring device
JP2001088503A (en) * 1999-09-27 2001-04-03 Hitachi Techno Eng Co Ltd Rolling stock traveling wheel inspecting device
JP2001227924A (en) * 2000-02-14 2001-08-24 Mitsubishi Electric Corp Wheel measuring apparatus
JP2004258007A (en) * 2003-02-28 2004-09-16 Hitachi Industries Co Ltd Wheel form measuring method
JP2006153602A (en) * 2004-11-29 2006-06-15 Hitachi Industries Co Ltd Wheel shape measuring system
JP2007292473A (en) * 2006-04-21 2007-11-08 Hitachi Plant Technologies Ltd Railroad vehicle running wheel measuring instrument

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05126686A (en) * 1991-11-08 1993-05-21 Railway Technical Res Inst Vehicle inspecting device
JPH0743137A (en) * 1993-07-27 1995-02-10 Nikon Corp Wheel flat detector
JPH07243845A (en) * 1994-03-02 1995-09-19 Hitachi Techno Eng Co Ltd Railroad vehicle running wheel inspection device
JPH11118435A (en) * 1997-10-14 1999-04-30 Mitsubishi Electric Corp Wheel measuring device
JP2001088503A (en) * 1999-09-27 2001-04-03 Hitachi Techno Eng Co Ltd Rolling stock traveling wheel inspecting device
JP2001227924A (en) * 2000-02-14 2001-08-24 Mitsubishi Electric Corp Wheel measuring apparatus
JP2004258007A (en) * 2003-02-28 2004-09-16 Hitachi Industries Co Ltd Wheel form measuring method
JP2006153602A (en) * 2004-11-29 2006-06-15 Hitachi Industries Co Ltd Wheel shape measuring system
JP2007292473A (en) * 2006-04-21 2007-11-08 Hitachi Plant Technologies Ltd Railroad vehicle running wheel measuring instrument

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101001164B1 (en) 2008-12-30 2010-12-21 주식회사 우진산전 Inspecting apparatus of phased array supersonic wave for axile of train
EP2336712A1 (en) 2009-12-04 2011-06-22 NextSense Mess- und Prüfsysteme GmbH Method and device for measuring wheel diameters
CN102350996A (en) * 2011-07-22 2012-02-15 西南交通大学 Ground monitoring method for dangerous condition in heavy-load train operation

Also Published As

Publication number Publication date
JP4913498B2 (en) 2012-04-11

Similar Documents

Publication Publication Date Title
JP6610557B2 (en) Flange wear measurement method for railway vehicle wheels
US20240042805A1 (en) Tread depth measurement
JP5498633B2 (en) Inspection method and apparatus
CN106662483A (en) Detection of anomalies in rail wheelsets
US20170212142A1 (en) Method And Device For Determining Absolute Speed Of A Rail Vehicle
JP4913498B2 (en) Railway vehicle wheel measuring device
JP2008297845A (en) Method for diagnosing laid position of derailment preventing guard for railroad vehicle
JP2008051571A (en) Wheel shape measuring device of rolling stock
JP2011068242A (en) Profile measuring device and profile measuring method for wheel of railroad vehicle
JP6317621B2 (en) Method for measuring three-dimensional shape of wheel mounted on vehicle and three-dimensional shape measuring device for wheel mounted on vehicle
JP4319606B2 (en) Wheel shape measuring device
JP2019095228A (en) Wheel shape measurement method
KR102040025B1 (en) Method for measuring the shape of wheel for railway vehicles
EP1324005A3 (en) Device and process for measuring ovalization, buckling, planes and rolling parameters of railway wheels
JP5749496B2 (en) Railway vehicle attack angle measuring apparatus and method
JP2008139178A (en) Method of measuring railroad construction limit and its measuring device
JP6396647B2 (en) Obstacle detection device and obstacle detection method
JP2005178697A (en) Tire failure sensing device
JP5253968B2 (en) Method for judging running stability of railway vehicles
JP2004258007A (en) Wheel form measuring method
JP2006038755A (en) Device for detecting object around vehicle
JP4319614B2 (en) Wheel shape measuring device
JP4198838B2 (en) Rail vehicle running wheel inspection device
JP3107341B2 (en) Railcar traveling wheel inspection device
JP7430622B2 (en) Wear diagnosis system and method for wheel flanges of railway vehicles

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080818

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20080818

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120119

R150 Certificate of patent or registration of utility model

Ref document number: 4913498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150127

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250