JP2008036816A - Method for producing non-ferromagnetic substance molding and non-ferromagnetic substance molding - Google Patents

Method for producing non-ferromagnetic substance molding and non-ferromagnetic substance molding Download PDF

Info

Publication number
JP2008036816A
JP2008036816A JP2004306404A JP2004306404A JP2008036816A JP 2008036816 A JP2008036816 A JP 2008036816A JP 2004306404 A JP2004306404 A JP 2004306404A JP 2004306404 A JP2004306404 A JP 2004306404A JP 2008036816 A JP2008036816 A JP 2008036816A
Authority
JP
Japan
Prior art keywords
orientation
axis
magnetic field
crystal
ferromagnetic material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004306404A
Other languages
Japanese (ja)
Inventor
Masahiko Kimura
雅彦 木村
Akira Ando
陽 安藤
Kosuke Shiratsuyu
幸祐 白露
Tatsu Suzuki
達 鈴木
Yoshio Sakka
義雄 目
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
National Institute for Materials Science
Original Assignee
Murata Manufacturing Co Ltd
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd, National Institute for Materials Science filed Critical Murata Manufacturing Co Ltd
Priority to JP2004306404A priority Critical patent/JP2008036816A/en
Priority to PCT/JP2005/018201 priority patent/WO2006043407A1/en
Publication of JP2008036816A publication Critical patent/JP2008036816A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To orient not only a crystal axis having the greatest magnetic susceptibility but also other crystal axes. <P>SOLUTION: In a slurry production process 1, slurry containing a non-ferromagnetic material having anisotropic magnetic susceptibility such as a bismuth layer compound as a main component is produced. In the first orientation process 2, a magnetic field is applied in the first direction to the slurry in a slip-casting apparatus, and an axis (a) or an axis (b) having the substantially greatest magnetic susceptibility is oriented. In the second orientation process 3, while the magnetic susceptibility of the axis (a) or the axis (b) is maintained, the slip-casting apparatus is rotated by 90° in the horizontal direction, a magnetic field is applied in the second direction perpendicular to the first direction, and an axis (c), which is a crystal axis not oriented in the first orientation process 2, is oriented. In an orientation fixing process 4, the orientation of each crystal axis oriented in the first or second orientation processes 2 or 3 is fixed, and a molding is obtained. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は非強磁性物質成形体の製造方法に関し、より詳しくは結晶軸方位の配向性が制御された磁化率に異方性を有する非強磁性物質成形体の製造方法、及び非強磁性物質成形体に関する。   The present invention relates to a method for producing a non-ferromagnetic material molded body, and more particularly, a method for producing a non-ferromagnetic material molded body having anisotropy in magnetic susceptibility with controlled orientation of crystal axis orientation, and non-ferromagnetic material It relates to a molded body.

電子部品の素材に広く使用されているセラミック材料は、結晶軸方位の配向性が電子部品の諸特性向上に寄与することが知られており、近年、結晶軸方位の配向性制御に関する研究・開発が盛んに行われている。特に、圧電部品の分野では、従来よりチタン酸ジルコン酸鉛(PZT)等の鉛系圧電セラミック材料が使用されているが、環境面への配慮から鉛を含有しない非鉛系圧電セラミック材料の開発が求められており、結晶軸の配向性を制御することにより、電気機械結合係数等の圧電特性が改善できれば鉛系圧電セラミック材料の代替品として有望である。   Ceramic materials that are widely used as materials for electronic components are known to have crystal axis orientation orientation that contributes to improving the properties of electronic components. In recent years, research and development on crystal axis orientation control Has been actively conducted. In particular, in the field of piezoelectric components, lead-based piezoelectric ceramic materials such as lead zirconate titanate (PZT) have been used in the past, but development of lead-free piezoelectric ceramic materials that do not contain lead for environmental considerations Therefore, if piezoelectric characteristics such as electromechanical coupling coefficient can be improved by controlling the orientation of crystal axes, it is promising as a substitute for lead-based piezoelectric ceramic materials.

そして、従来より、セラミック原料粉末としてビスマス層状化合物を90重量%以上含む粉末に溶媒を添加したスラリーを作製し、該スラリーに対して一方向に1T(テスラ)以上の磁場を印加して前記ビスマス層状化合物粉末をc面と垂直な結晶面に配向させつつ前記スラリーを固化した後、焼成するようにしたビスマス層状化合物焼結体の製造方法が既に提案されている(特許文献1)。   Conventionally, a slurry is prepared by adding a solvent to a powder containing 90% by weight or more of a bismuth layered compound as a ceramic raw material powder, and a magnetic field of 1 T (Tesla) or more is applied to the slurry in one direction to apply the bismuth. There has already been proposed a method for producing a bismuth layered compound sintered body in which the slurry is solidified while the layered compound powder is oriented in a crystal plane perpendicular to the c-plane (Patent Document 1).

特許文献1では、ビスマス層状化合物が磁化率に異方性を有する非強磁性物質であることに着目し、一方向に磁場を印加しながらスラリーに成形処理を施すことによって磁化率の大きな結晶軸を磁場方向に配向させ、これにより煩雑な製造工程を要することなく容易に成形体を得ることが可能となる。   Patent Document 1 focuses on the fact that a bismuth layered compound is a non-ferromagnetic material having anisotropy in magnetic susceptibility, and a crystal axis having a high magnetic susceptibility is obtained by applying a molding process to a slurry while applying a magnetic field in one direction. Thus, it becomes possible to easily obtain a molded body without requiring a complicated manufacturing process.

特許文献1の製造方法は、従来の所謂シート工法に比べ、成形体の厚みの自由度も大きく、また、磁化率に異方性を有する非強磁性物質であれば結晶配向させることができるため、多くの物質にも応用できると考えられる。   The manufacturing method of Patent Document 1 has a greater degree of freedom in the thickness of the molded body than the conventional so-called sheet method, and can be crystal-oriented if it is a non-ferromagnetic material having anisotropy in magnetic susceptibility. It can be applied to many substances.

また、他の従来技術としては、非磁性セラミック粒子を含有したセラミックスラリーをベースフィルム上に塗工して所定厚さの未配向シートを作製し、この未配向シートをベースフィルム上で支持した状態のまま磁場印加装置に送り込んで所定方向の磁場を印加し未配向シート内の非磁性セラミック粒子を磁場の方向に配向させて配向処理シートを作製し、この配向処理シート内の少なくとも一部の非磁性セラミック粒子の配向を固定して配向固定シートを得るようにした圧電セラミック部品の製造方法が提案されている(特許文献2)。   As another conventional technique, a ceramic slurry containing nonmagnetic ceramic particles is coated on a base film to produce an unoriented sheet of a predetermined thickness, and the unoriented sheet is supported on the base film. As it is sent to the magnetic field application device, a magnetic field in a predetermined direction is applied, and the nonmagnetic ceramic particles in the unoriented sheet are oriented in the direction of the magnetic field to produce an oriented sheet. There has been proposed a method for manufacturing a piezoelectric ceramic component in which an orientation fixing sheet is obtained by fixing the orientation of magnetic ceramic particles (Patent Document 2).

この特許文献2には、図7に示すように、未配向のセラミックグリーンシート101をベースフィルム102で支持された状態で矢印a方向に間欠走行させ、第1の磁場印加領域103で前記セラミックグリーンシート101に所定方向の磁場を印加すると共に、第1の磁場印加領域103の終端近傍で透光部104aが貫設されたマスク104を介して上方から紫外線を照射し、これによりマトリックス状の第1の配向固定部105を形成した後、第2の磁場印加領域106で前記第1の磁場印加領域103の印加方向とは異なる方向に磁場を印加し、さらに第2の磁場印加領域106の終端近傍107で上方から紫外線を照射して前記配向固定部105以外の部分の配向を固定し、第2の配向固定部108を得る方法が開示されている。   In this Patent Document 2, as shown in FIG. 7, an unoriented ceramic green sheet 101 is intermittently run in the direction of arrow a while being supported by a base film 102, and the ceramic green sheet 101 is moved in a first magnetic field application region 103. A magnetic field in a predetermined direction is applied to the sheet 101, and ultraviolet rays are irradiated from above through a mask 104 in which a translucent portion 104a is provided in the vicinity of the terminal end of the first magnetic field application region 103. After forming one orientation fixing portion 105, a magnetic field is applied in a direction different from the application direction of the first magnetic field application region 103 in the second magnetic field application region 106, and the end of the second magnetic field application region 106 is further applied. A method is disclosed in which the second alignment fixing portion 108 is obtained by irradiating ultraviolet rays from above in the vicinity 107 to fix the alignment of portions other than the alignment fixing portion 105.

特開2002−121069号公報JP 2002-121069 A 特開2004−6704号公報JP 2004-6704 A

しかしながら、特許文献1では、磁化率が最も大きな結晶軸方位を配向させることができるものの、その他の結晶軸方位を配向させることができず、例えばビスマス層状化合物のようにa軸とb軸との磁化率が略同等でc軸の磁化率はa軸及びb軸の磁化率よりも低い場合は、c軸に配向性を付与することができないため、c軸の配向が求められる用途には使用することができなかった。   However, in Patent Document 1, although the crystal axis orientation with the highest magnetic susceptibility can be oriented, other crystal axis orientations cannot be oriented. For example, the a-axis and b-axis can be different from each other like a bismuth layered compound. When the magnetic susceptibility is approximately the same and the magnetic susceptibility of the c-axis is lower than the magnetic susceptibility of the a-axis and the b-axis, the c-axis cannot be oriented. I couldn't.

すなわち、特許文献1では、a軸又はb軸には配向性を付与することができるものの、c軸は任意の方向に向いて一定の方向に揃えることができず、したがって、特許文献1からは、このようにc軸の配向が求められる用途には使用することができなかった。   That is, in Patent Document 1, orientation can be imparted to the a-axis or b-axis, but the c-axis cannot be aligned in a certain direction toward an arbitrary direction. Thus, it could not be used for applications requiring c-axis orientation.

また、特許文献2は、上述したようにセラミックグリーンシート101に対し第1及び第2の磁場印加領域103、106で互いに異なる方向から2回の磁場印加を行っているが、この方法では磁化率の大きな結晶軸(ビスマス層状化合物でいえばa軸及びb軸)について、第1の配向固定部105では例えば鉛直方向に配向し、第2の配向固定部108では例えば水平方向に配向させたものであり、a軸及びb軸よりも磁化率の小さいc軸を磁場方向に配向させておらず、c軸を一定方向に配向することは意図していない。   In Patent Document 2, as described above, the magnetic field is applied twice to the ceramic green sheet 101 from different directions in the first and second magnetic field application regions 103 and 106. In this method, the magnetic susceptibility is applied. With respect to a large crystal axis (a-axis and b-axis in the case of a bismuth layered compound), the first orientation fixing portion 105 is oriented in the vertical direction, for example, and the second orientation fixing portion 108 is oriented in the horizontal direction, for example. The c-axis, which has a lower magnetic susceptibility than the a-axis and b-axis, is not oriented in the magnetic field direction, and it is not intended to orient the c-axis in a certain direction.

本発明はこのような事情に鑑みなされたものであって、磁場に対する磁化率が実質的に最大の結晶軸のみならず、その他の結晶軸にも配向性を付与することができる非強磁性物質成形体の製造方法、及び非強磁性物質成形体を提供することを目的とする。   The present invention has been made in view of such circumstances, and is a non-ferromagnetic material capable of imparting orientation not only to the crystal axis having a substantially maximum magnetic susceptibility but also to other crystal axes. It aims at providing the manufacturing method of a molded object, and a nonferromagnetic substance molded object.

本発明者らは、上記目的を達成するために鋭意研究したところ、セラミックスラリーに所定方向から磁場を印加して磁化率が最大の結晶軸に配向性を付与し、その配向性を維持した状態で前記所定方向に対し略垂直な方向から再度磁場を印加することにより、磁場に対する磁化率が実質的に最大である結晶軸以外の結晶軸にも配向性を付与することができるという知見を得た。   The inventors of the present invention have made extensive studies to achieve the above object, and applied a magnetic field from a predetermined direction to the ceramic slurry to impart orientation to the crystal axis with the maximum magnetic susceptibility and maintain the orientation. In other words, by applying a magnetic field again from a direction substantially perpendicular to the predetermined direction, it has been found that the orientation can be imparted to crystal axes other than the crystal axis having the maximum magnetic susceptibility to the magnetic field. It was.

本発明はこのような知見に基づきなされたものであって、本発明に係る非強磁性物質成形体の製造方法は、磁化率に異方性を有する非強磁性材料を含むスラリーに磁場を印加しながら成形処理を施して成形体を形成する非強磁性物質成形体の製造方法であって、前記非強磁性材料を主成分としたスラリーを作製するスラリー作製工程と、前記スラリーに対し第1の方向に磁場を印加し、磁場に対する結晶軸の磁化率が実質的に最大である第1の結晶軸に配向性を付与する第1の配向性付与工程と、前記第1の結晶軸の配向性を維持した状態で前記第1の方向に対し略垂直な第2の方向に磁場を印加し、前記第1の結晶軸以外の結晶軸に配向性を付与する第2の配向性付与工程と、前記第1及び第2の配向性付与工程で付与された各結晶軸の配向性を固定する配向性固定工程とを含むことを特徴としている。   The present invention has been made based on such knowledge, and the method for producing a non-ferromagnetic material molded body according to the present invention applies a magnetic field to a slurry containing a non-ferromagnetic material having anisotropy in magnetic susceptibility. A method for producing a non-ferromagnetic substance molded body that forms a molded body by performing a molding process while producing a slurry containing the non-ferromagnetic material as a main component; Applying a magnetic field in the direction of, and imparting orientation to the first crystal axis in which the magnetic susceptibility of the crystal axis with respect to the magnetic field is substantially maximum, and orientation of the first crystal axis A second orientation imparting step in which a magnetic field is applied in a second direction substantially perpendicular to the first direction while maintaining the orientation, and orientation is imparted to crystal axes other than the first crystal axis; The alignment of each crystal axis given in the first and second orientation imparting steps It is characterized in that it comprises a orientation fixing step of fixing the sex.

尚、「磁場に対する磁化率が実質的に最大の結晶軸」とは、例えば、真の磁化率が最大の結晶軸よりも、磁化率が低く、正確には磁化率が最大でないとしても、磁場に対する挙動においては、真の磁化率が最大の結晶軸と区別できないような結晶軸をいう。   Note that “the crystal axis with the maximum magnetic susceptibility” means, for example, that the magnetic susceptibility is lower than the crystal axis with the maximum true susceptibility, and the magnetic susceptibility is not the maximum. In terms of the behavior, the crystal axis is such that the true magnetic susceptibility cannot be distinguished from the maximum crystal axis.

また、本発明者らが更に鋭意研究を行ったところ、上述した第1の配向性付与工程と前記第2の配向性付与工程とを時間的に間隔を設けることなく連続的に行った場合は、時間的に間隔を設けて行った場合に比べ、第1の結晶軸以外の結晶軸の配向性を向上させることのできることが分かった。   In addition, when the present inventors conducted further earnest studies, when the first orientation imparting step and the second orientation imparting step described above were continuously performed without providing a time interval, It has been found that the orientation of crystal axes other than the first crystal axis can be improved as compared with the case where the time interval is set.

すなわち、本発明の非強磁性物質成形体の製造方法は、前記第1の配向性付与工程と前記第2の配向性付与工程とを連続的に行うことを特徴としている。   That is, the method for producing a non-ferromagnetic material molded body of the present invention is characterized in that the first orientation imparting step and the second orientation imparting step are continuously performed.

さらに、本発明者らが鋭意研究を重ねたところ、スラリーの粘性率を30〜200mPa・sに制御することにより、磁場に対する磁化率が実質的に最大となる結晶軸以外の結晶軸の配向性を効果的に向上させ得ることが分かった。   Furthermore, as a result of extensive research by the present inventors, by controlling the viscosity of the slurry to 30 to 200 mPa · s, the orientation of the crystal axes other than the crystal axes at which the magnetic susceptibility to the magnetic field is substantially maximized. It was found that can be improved effectively.

そこで、本発明の非強磁性物質成形体の製造方法は、前記スラリー作製工程で作製されたスラリーの粘性率が、30〜200mPa・sであることを特徴としている。   Therefore, the method for producing a non-ferromagnetic material molded body of the present invention is characterized in that the viscosity of the slurry produced in the slurry production step is 30 to 200 mPa · s.

また、本発明は、結晶軸のa軸及びb軸と、c軸との磁化率の差が大きいビスマス層状化合物において特に顕著な作用効果を奏することができる。   In addition, the present invention can exhibit particularly remarkable effects in a bismuth layered compound having a large difference in magnetic susceptibility between the a-axis and b-axis of the crystal axis and the c-axis.

そこで、本発明の非強磁性物質成形体の製造方法は、前記非強磁性材料が、ビスマス層状化合物を主成分としたセラミック材料であることを特徴としている。   Therefore, the method for producing a non-ferromagnetic material molded body of the present invention is characterized in that the non-ferromagnetic material is a ceramic material mainly composed of a bismuth layered compound.

また、本発明の非強磁性物質成形体の製造方法を用いることによって、本発明の非強磁性物質成形体が得られる。すなわち、本発明の非強磁性物質成形体は、磁化率に異方性を有する非強磁性材料を含むスラリーに、磁場を印加しながら成形処理を施して得られる非強磁性物質成形体であって、磁場に対する結晶軸の磁化率が実質的に最大である第1の結晶軸以外の結晶軸に配向性が付与されていることを特徴としている。   Moreover, the non-ferromagnetic substance molded body of the present invention can be obtained by using the method for producing a non-ferromagnetic substance molded body of the present invention. That is, the non-ferromagnetic material molded body of the present invention is a non-ferromagnetic material molded body obtained by subjecting a slurry containing a non-ferromagnetic material having anisotropy in magnetic susceptibility to a molding process while applying a magnetic field. Thus, an orientation is imparted to crystal axes other than the first crystal axis in which the magnetic susceptibility of the crystal axis with respect to the magnetic field is substantially maximum.

また、本発明は、結晶軸のa軸及びb軸と、c軸との磁化率の差が大きいビスマス層状化合物において特に顕著な作用効果を奏することができる。そこで、本発明の非強磁性物質成形体は、非強磁性材料がビスマス層状化合物を主成分とするセラミック材料であり、第1の結晶軸以外の結晶軸がc軸であることを特徴としている。   In addition, the present invention can exhibit particularly remarkable effects in a bismuth layered compound having a large difference in magnetic susceptibility between the a-axis and b-axis of the crystal axis and the c-axis. Thus, the non-ferromagnetic material molded body of the present invention is characterized in that the non-ferromagnetic material is a ceramic material mainly composed of a bismuth layered compound, and the crystal axis other than the first crystal axis is the c-axis. .

本発明の非強磁性物質成形体の製造方法によれば、磁化率に異方性を有する非強磁性材料を主成分としたスラリーを作製するスラリー作製工程と、前記スラリーに対し第1の方向に磁場を印加し、磁場に対する結晶軸の磁化率が実質的に最大である第1の結晶軸に配向性を付与する第1の配向性付与工程と、前記第1の結晶軸の配向性を維持した状態で前記第1の方向に対し略垂直な第2の方向に磁場を印加し、前記第1の結晶軸以外の結晶軸に配向性を付与する第2の配向性付与工程と、前記第1及び第2の配向性付与工程で付与された各結晶軸の配向性を固定する配向性固定工程とを含むので、磁場に対する磁化率が実質的に最大である第1の結晶軸のみならず、その他の結晶軸も配向固定することができ、したがって、第1の方向への配向状態を維持したまま更に高次の配向性が付与されることとなり、電気特性が良好で厚みの厚いブロック状の電子部品用成形体を容易に製造することができる。   According to the method for producing a non-ferromagnetic material molded body of the present invention, a slurry production step of producing a slurry mainly composed of a non-ferromagnetic material having anisotropy in magnetic susceptibility, and a first direction with respect to the slurry Applying a magnetic field to the first crystal axis, wherein the first crystal axis has a substantially maximum magnetic susceptibility with respect to the magnetic field, and imparts orientation to the first crystal axis; A second orientation imparting step of applying a magnetic field in a second direction substantially perpendicular to the first direction in a maintained state to impart orientation to a crystal axis other than the first crystal axis; Orientation fixing step of fixing the orientation of each crystal axis given in the first and second orientation imparting steps, so that only the first crystal axis having a magnetic susceptibility to the magnetic field is substantially maximum. The other crystal axes can also be fixed in the orientation, and therefore in the first direction Further while maintaining the direction state becomes the orientation of the higher order is given, the electrical characteristics can be easily produced a thick block-like electronic component molded article having good thickness.

また、前記第1の配向性付与工程と前記第2の配向性付与工程とを連続的に行うので、特に第1の結晶軸以外の結晶軸の配向性をより一層向上させることが可能となる。   In addition, since the first orientation imparting step and the second orientation imparting step are continuously performed, the orientation of crystal axes other than the first crystal axis can be further improved. .

また、前記スラリー作製工程で作製されたスラリーの粘性率が、30〜200mPa・sであるので、磁場に対する磁化率が実質的に最大となる結晶軸のみならず、その他の結晶軸の配向性をも良好なものとすることができる。   In addition, since the viscosity of the slurry prepared in the slurry preparation step is 30 to 200 mPa · s, not only the crystal axis with which the magnetic susceptibility to the magnetic field is substantially maximized but also the orientation of other crystal axes. Can also be good.

本発明の製造方法は、前記非強磁性材料がビスマス層状化合物を主成分とするセラミック材料であるので、磁化率が略同等のa軸及びb軸だけではなく結晶軸の最も小さいc軸にまで結晶軸に配向性が付与することができ、圧電セラミック材料に鉛を含んでいなくとも、圧電特性に優れた各種圧電部品の実現が可能となる。   In the manufacturing method of the present invention, since the non-ferromagnetic material is a ceramic material containing a bismuth layered compound as a main component, not only the a-axis and b-axis having substantially the same susceptibility but also the c-axis having the smallest crystal axis. Orientation can be imparted to the crystal axis, and various piezoelectric parts having excellent piezoelectric characteristics can be realized even if the piezoelectric ceramic material does not contain lead.

また、本発明の非強磁性物質成形体は、磁化率に異方性を有する非強磁性材料を含むスラリーに、磁場を印加しながら成形処理を施して得られる非強磁性物質成形体であっても、磁場に対する結晶軸の磁化率が実質的に最大である第1の結晶軸に配向性が付与されるだけでなく、第1の結晶軸以外の結晶軸にも配向性が付与されているため、第1の結晶軸以外の結晶軸での配向性が必要となる用途において有用に用いることができる。   The non-ferromagnetic material molded body of the present invention is a non-ferromagnetic material molded body obtained by subjecting a slurry containing a non-ferromagnetic material having anisotropy in magnetic susceptibility to a molding process while applying a magnetic field. However, not only is the orientation given to the first crystal axis where the magnetic susceptibility of the crystal axis with respect to the magnetic field is substantially maximum, but the orientation is also given to crystal axes other than the first crystal axis. Therefore, it can be usefully used in applications that require orientation in a crystal axis other than the first crystal axis.

また、本発明の非強磁性物質成形体は、前記非強磁性材料がビスマス層状化合物を主成分とするセラミック材料であって、磁化率が略同等のa軸及びb軸だけではなく、磁化率が最も小さいc軸にまで配向性を付与されている。ビスマス層状化合物の結晶軸中で最も長軸であるc軸の配向性が高い非強磁性物質成形体が得られ、電界印加時の圧電特性に優れた各種圧電部品が得られる。   In the non-ferromagnetic material molded body of the present invention, the non-ferromagnetic material is a ceramic material whose main component is a bismuth layered compound, and the magnetic susceptibility is not limited to the substantially equivalent a-axis and b-axis. The orientation is given to the c-axis with the smallest. A non-ferromagnetic material molded body having a high orientation of the c-axis, which is the longest axis among the crystal axes of the bismuth layered compound, can be obtained, and various piezoelectric parts having excellent piezoelectric characteristics when an electric field is applied can be obtained.

次に、本発明の実施の形態を詳説する。   Next, an embodiment of the present invention will be described in detail.

図1は本発明に係る非強磁性物質の製造方法を示す製造工程図である。   FIG. 1 is a manufacturing process diagram showing a method for manufacturing a non-ferromagnetic material according to the present invention.

スラリー作製工程1では、磁化率に異方性を有する非強磁性材料を主成分としたスラリーを作製する。   In the slurry preparation step 1, a slurry mainly containing a non-ferromagnetic material having anisotropy in magnetic susceptibility is prepared.

「磁化率に異方性を有する非強磁性材料」としては、具体的には、CaBiTi15、BaBiTi15、BaBiTa、BaBiNb等のビスマス層状化合物、Sr1.9Ca0.1NaNb15、SrNb、BaNb等のタングステンブロンズ型化合物、HoTi、DyTi等のパイクロア化合物、ZnO等のセラミック材料が電子部品向け用途としては実用的ではあり、特に、結晶の異方性が極めて大きいビスマス層状化合物が好適に使用されるが、金属間化合物、高分子材料も使用することができる。 Specific examples of the “non-ferromagnetic material having anisotropy in magnetic susceptibility” include CaBi 4 Ti 4 O 15 , BaBi 4 Ti 4 O 15 , BaBi 2 Ta 2 O 9 , BaBi 2 Nb 2 O 9 and the like. bismuth layer compound, Sr 1.9 Ca 0.1 NaNb 5 O 15, SrNb 2 O 6, BaNb tungsten bronze type compound such as 2 O 6, Ho 2 Ti 2 O 7, Dy pyrochlore compounds such as 2 Ti 2 O 7, ZnO, etc. This ceramic material is practical for use in electronic parts, and in particular, a bismuth layered compound having extremely large crystal anisotropy is preferably used, but intermetallic compounds and polymer materials can also be used.

次に、非強磁性材料のスラリー作製方法を具体的に説明する。   Next, a method for preparing a slurry of a non-ferromagnetic material will be specifically described.

まず、出発原料として、CaCO、BaCO、Bi、Nb、Ta、TiO等の素原料を用意する。 First, raw materials such as CaCO 3 , BaCO 3 , Bi 2 O 3 , Nb 2 O 5 , Ta 2 O 5 , and TiO 2 are prepared as starting materials.

次に、これら出発原料を所定量秤量し、さらに必要に応じて所望の添加物を秤量し、該秤量物を部分安定化ジルコニア(PSZ)等の粉砕媒体が内有されたボールミルに投入して十分に湿式で混合粉砕し、次いで乾燥処理を施した後、所定時間仮焼処理を施し、得られた仮焼物を解砕して仮焼粉末を作製する。   Next, a predetermined amount of these starting materials are weighed, and a desired additive is weighed as necessary. The weighed material is put into a ball mill containing a grinding medium such as partially stabilized zirconia (PSZ). The mixture is sufficiently mixed and pulverized in a wet state, and then subjected to a drying treatment, followed by a calcining treatment for a predetermined time, and the obtained calcined material is crushed to produce a calcined powder.

次いで、この仮焼粉末を再度ボールミルに投入して十分に湿式粉砕し、非強磁性物質を主成分とする原料粉末を作製する。そして、この原料粉末に適量の分散剤、水、及び有機バインダを混合してスラリーを作製する。   Next, this calcined powder is again put into a ball mill and sufficiently wet pulverized to produce a raw material powder mainly composed of a non-ferromagnetic substance. An appropriate amount of a dispersant, water, and an organic binder are mixed with the raw material powder to prepare a slurry.

ここで、スラリーの粘性率は、上記原料粉末と水との配合比率を調整することにより、30〜200mPa・sに制御される。   Here, the viscosity of the slurry is controlled to 30 to 200 mPa · s by adjusting the blending ratio of the raw material powder and water.

すなわち、スラリーの粘性率が30mPa・s未満になると、スラリーの流動性が増加し、後述する第1の配向性付与工程で付与された配向性を維持することが困難となり、配向性の低下を招くおそれがある。一方、スラリーの粘性率が200mPa・sを超えた場合は、スラリーの粘性が高くなるため、磁化率の大小に関わらず結晶軸を配向させることが困難となり、この場合も配向性の低下を招くおそれがある。   That is, when the viscosity of the slurry is less than 30 mPa · s, the fluidity of the slurry increases, and it becomes difficult to maintain the orientation imparted in the first orientation imparting step, which will be described later. There is a risk of inviting. On the other hand, when the viscosity of the slurry exceeds 200 mPa · s, the viscosity of the slurry increases, so that it becomes difficult to orient the crystal axes regardless of the magnitude of the magnetic susceptibility. There is a fear.

そこで、本実施の形態では、スラリーの粘性率が、30〜200mPa・s、好ましくは60〜110mPa・sとなるように制御されている。   Therefore, in the present embodiment, the viscosity of the slurry is controlled to be 30 to 200 mPa · s, preferably 60 to 110 mPa · s.

次に、第1の配向性付与工程2では、泥漿鋳込み装置(成形装置)内に収容された前記スラリーに対し水平方向に第1回目の磁場を印加し、磁場に対する磁化率が実質的に最大である第1の結晶軸を前記磁場の印加方向に配向させる。   Next, in the first orientation imparting step 2, a first magnetic field is applied to the slurry accommodated in the slurry casting apparatus (molding apparatus) in the horizontal direction, and the magnetic susceptibility to the magnetic field is substantially maximized. The first crystal axis is oriented in the magnetic field application direction.

すなわち、まず、図2に示すような超伝導磁石を用意する。   That is, first, a superconducting magnet as shown in FIG. 2 is prepared.

この超伝導磁石5は空洞部6を有する円筒形状に形成されており、コイル7が螺旋状に埋設されている。そして、該超伝導磁石5に電圧を印加して通電すると矢印X方向(長手方向)に磁場が発生するようになっている。尚、本実施の形態では超伝導磁石5を使用したが通常の電磁石を使用することもできる。   The superconducting magnet 5 is formed in a cylindrical shape having a hollow portion 6, and a coil 7 is embedded in a spiral shape. When a voltage is applied to the superconducting magnet 5 and energized, a magnetic field is generated in the arrow X direction (longitudinal direction). Although the superconducting magnet 5 is used in the present embodiment, a normal electromagnet can also be used.

次に、泥漿鋳込み装置を空洞部6内に配し、磁場中で成形処理を行う。   Next, a slurry casting apparatus is disposed in the cavity 6 and a molding process is performed in a magnetic field.

図3は泥漿鋳込み装置の模式図であって、図中、8は鋳型、9は多孔質吸収板である。   FIG. 3 is a schematic view of a slurry casting apparatus, in which 8 is a mold and 9 is a porous absorbent plate.

すなわち、泥漿鋳込み装置を超伝導磁石5の空洞部6に配し、該超伝導磁石5に通電して矢印X方向に磁場を発生させ、この状態で鋳型8の上方に設けられた孔(不図示)からスラリー10を流し込み、該スラリー10を多孔質吸収板9に吸収させて成形処理を施す。   That is, a mud casting apparatus is arranged in the cavity 6 of the superconducting magnet 5, and the superconducting magnet 5 is energized to generate a magnetic field in the direction of the arrow X. The slurry 10 is poured from (shown), and the slurry 10 is absorbed by the porous absorbent plate 9 to perform a forming process.

このとき、スラリー10には矢印X方向に磁場が印加されているため、スラリーの結晶粒子は、磁化率が実質的に最大である第1の結晶軸が磁場の印加方向に配向し、その他の結晶軸はランダムに任意の方向に向く。   At this time, since the magnetic field is applied to the slurry 10 in the direction of the arrow X, the crystal grains of the slurry have the first crystal axis whose magnetic susceptibility is substantially maximum oriented in the direction in which the magnetic field is applied. Crystal axes are randomly oriented in any direction.

例えば、結晶軸の磁化率がa軸>b軸>c軸である場合、矢印X方向に磁場が印加され磁場が発生すると、a軸の磁化率がb軸やc軸の磁化率に比べて大きいため、a軸が第1の結晶軸となって磁場の印加方向である矢印X方向に配向する。このときb軸とc軸は矢印X方向に対し垂直な面内でランダムに任意の方向を向く。   For example, if the magnetic susceptibility of the crystal axis is a-axis> b-axis> c-axis, when a magnetic field is applied in the direction of the arrow X and the magnetic field is generated, the a-axis susceptibility is compared with the susceptibility of the b-axis or c-axis Since it is large, the a-axis becomes the first crystal axis and is oriented in the direction of arrow X, which is the direction of application of the magnetic field. At this time, the b-axis and the c-axis are randomly oriented in a plane perpendicular to the arrow X direction.

次に、第2の配向性付与工程3では、まず、スラリー10に振動を与えないようにして泥漿鋳込み装置を水平方向に90°回転させる。そして、この状態で再度超伝導磁石5に通電して第2回目の磁場印加を行い、矢印X方向に磁場を発生させる。これによりスラリー10は第1の配向性付与工程2における印加方向とは垂直な方向に印加されることとなり、しかも第1回目の配向性が維持されているので磁化率が最大である第1の結晶軸以外の結晶軸が配向する。   Next, in the second orientation imparting step 3, first, the slurry casting apparatus is rotated 90 ° in the horizontal direction so as not to give vibration to the slurry 10. In this state, the superconducting magnet 5 is energized again and a second magnetic field application is performed to generate a magnetic field in the direction of the arrow X. As a result, the slurry 10 is applied in a direction perpendicular to the direction of application in the first orientation imparting step 2, and since the first orientation is maintained, the first magnetic susceptibility is maximum. Crystal axes other than the crystal axes are oriented.

すなわち、先の例でいえば、第1の配向性付与工程2で配向性が付与されたa軸(第1の結晶軸)は、第2回目の磁場の印加方向とは垂直な方向を向いた状態で配向性が維持されると共に、b軸はc軸よりも磁化率が大きいためb軸が矢印X方向に配向する。そしてその結果、c軸は第1回目及び第2回目の印加方向に垂直な第3の方向に配向される。   That is, in the previous example, the a-axis (first crystal axis) to which the orientation is imparted in the first orientation imparting step 2 is oriented in a direction perpendicular to the second magnetic field application direction. In this state, the orientation is maintained, and the b-axis has a higher magnetic susceptibility than the c-axis, so that the b-axis is oriented in the arrow X direction. As a result, the c-axis is oriented in a third direction perpendicular to the first and second application directions.

次いで、配向性固定工程4ではスラリーを所定時間乾燥させ、これにより非強磁性成形体が製造される。   Next, in the orientation fixing step 4, the slurry is dried for a predetermined time, whereby a non-ferromagnetic molded body is manufactured.

このようにスラリー作製工程1で作製されたスラリーを印加方向が互いに垂直となるように2回の磁場を発生させ、磁場中で成形処理を行なうことにより、磁化率が最大である第1の結晶軸以外の結晶軸に対しても配向性を付与することができ、これにより磁場に対する磁化率が実質的に最大である結晶軸以外の結晶軸にも配向性が付与された非強磁性物質成形体を製造することができる。   The first crystal having the maximum magnetic susceptibility is generated by generating the magnetic field twice so that the application directions are perpendicular to each other, and performing the forming process in the magnetic field. Non-ferromagnetic material molding in which orientation can be imparted to crystal axes other than the axis, and thereby orientation is imparted to crystal axes other than the crystal axis that has a substantially maximum magnetic susceptibility to a magnetic field. The body can be manufactured.

尚、本実施の形態では第2の配向性付与工程3と配向性固定工程4とを別々に行なっているが、第2の配向性付与工程3において、第2回目の磁場を印加しながら、乾燥を開始してもよく、第2の配向性付与工程3と配向性固定工程4とを同時に行ってもよい。   In the present embodiment, the second orientation imparting step 3 and the orientation fixing step 4 are performed separately. In the second orientation imparting step 3, while applying the second magnetic field, Drying may be started, and the second orientation imparting step 3 and the orientation fixing step 4 may be performed simultaneously.

また、本実施の形態では、泥漿鋳込み装置を回転させるだけで、スラリー10に対して互いに垂直方向となるように磁場を印加しており、したがって1個の超伝導磁石5で異なる方向から2回の磁場を印加することができる。 In the present embodiment, the magnetic field is applied to the slurry 10 so as to be perpendicular to each other simply by rotating the slurry casting apparatus. Therefore, the single superconducting magnet 5 performs twice from different directions. Can be applied.

そして、各結晶軸が配向制御されたセラミック成形体を使用して圧電部品を形成することができ、したがってシート工法に依らなくとも厚みの厚いブロック状のセラミック成形体を容易に製造することができ、鉛を含まない非鉛系であっても圧電特性の良好な圧電部品を得ることが可能となる。   Then, a piezoelectric molded part can be formed using a ceramic molded body in which the orientation of each crystal axis is controlled. Therefore, a thick block-shaped ceramic molded body can be easily manufactured without depending on the sheet method. Thus, it is possible to obtain a piezoelectric component having excellent piezoelectric characteristics even if it is a lead-free lead-free system.

尚、本発明は上記実施の形態に限定されるものではなく、また、良好な配向性を得るためには印加される磁場の大きさは1T以上が好ましい。   In addition, this invention is not limited to the said embodiment, In order to obtain favorable orientation, the magnitude | size of the applied magnetic field is preferable 1T or more.

また、上記実施の形態では、結晶軸の磁化率がa軸>b軸>c軸の場合を例に述べたが、ビスマス層状化合物などの場合、磁化率がa軸≒b軸>c軸のような関係が成り立つ。この場合、第1の配向性付与工程2では、磁化率の最小の結晶軸(c軸)を除く結晶軸のうち、一方の結晶軸(a軸又はb軸)に配向性が付与される。次いで、第2の配向性付与工程3では、第1の配向性付与工程2においてa軸が配向されたものに対してはb軸、b軸が配向されたものに対してはa軸がそれぞれ配向される。すなわち、a軸又はb軸が第1及び第2配向性付与工程2、3でいづれかの磁場印加方向に配向される結果、磁化率が最小であるc軸も必然的に配向することになる。   In the above embodiment, the case where the susceptibility of the crystal axis is a-axis> b-axis> c-axis has been described as an example. However, in the case of a bismuth layered compound or the like, the susceptibility is a-axis≈b-axis> c-axis. Such a relationship holds. In this case, in the first orientation imparting step 2, orientation is imparted to one of the crystal axes (a axis or b axis) out of the crystal axes excluding the crystal axis having the minimum magnetic susceptibility (c axis). Next, in the second orientation imparting step 3, the a-axis is aligned with respect to the one in which the a-axis is oriented in the first orientation imparting step 2, and the a-axis is relative to the one in which the b-axis is oriented. Oriented. That is, as a result of the a-axis or b-axis being oriented in any one of the magnetic field application directions in the first and second orientation imparting steps 2 and 3, the c-axis having the minimum magnetic susceptibility is necessarily oriented.

また、上記実施の形態では、第1の配向性付与工程1と第2の配向性付与工程2とを時間的間隔を設けずに連続的に行っているが、第2の配向性付与工程2との間に一定の時間的間隔を設けるようにしてもよい。すなわち、第1の配向性付与工程1と第2の配向性付与工程2との間に時間的間隔を設けた場合は、第1の配向性付与工程1と第2の配向性付与工程2とを連続的に行った場合に比べ、配向性は若干低下するものの、各結晶軸の配向性を確保することが可能である。   Moreover, in the said embodiment, although the 1st orientation provision process 1 and the 2nd orientation provision process 2 are performed continuously without providing time intervals, the 2nd orientation provision process 2 You may make it provide a fixed time interval between. That is, when a time interval is provided between the first orientation imparting step 1 and the second orientation imparting step 2, the first orientation imparting step 1 and the second orientation imparting step 2 Although the orientation is slightly reduced as compared with the case where the steps are continuously performed, the orientation of each crystal axis can be ensured.

ただし、第1の配向性付与工程2と第2の配向性付与工程3との間で配向が固定されてしまうと磁化率の高い結晶軸以外の配向も、ランダムなまま固定されてしまうため、配向性が固定されてしまうようなことは極力行わないことが望ましい。   However, if the orientation is fixed between the first orientation imparting step 2 and the second orientation imparting step 3, the orientation other than the crystal axis having a high magnetic susceptibility is also fixed at random, It is desirable not to do as much as possible that the orientation is fixed.

また、上記実施の形態では、磁場印加は第1回目と第2回目とはXY平面上で互いに垂直となる方向に印加したが、XZ面上での互いに垂直となる方向に印加してもよく、また真に垂直でなくとも略垂直な方向に磁場が発生するように印加すればよい。   In the above embodiment, the first and second magnetic fields are applied in directions perpendicular to each other on the XY plane, but may be applied in directions perpendicular to each other on the XZ plane. The magnetic field may be applied so that the magnetic field is generated in a substantially vertical direction even if it is not truly vertical.

また、結晶軸の配向固定の方法としては上述した乾燥処理に限定されるものではなく、紫外線照射等で配向固定するようにしてもよい。   Further, the method for fixing the orientation of the crystal axis is not limited to the above-described drying treatment, and the orientation may be fixed by ultraviolet irradiation or the like.

上記のような非強磁性物質成形体の製造方法を用いることによって、磁化率に異方性を有する非強磁性材料を含むスラリーに、磁場を印加しながら成形処理を施して得られる非強磁性物質成形体であっても、磁場に対する結晶軸の磁化率が実質的に最大である第1の結晶軸以外の結晶軸に配向性が付与されている非強磁性物質成形体を得ることができる。特に、非強磁性材料がビスマス層状化合物を主成分とする場合には、磁化率が最も小さいc軸へも配向性を付与された非強磁性物質成形体が得られる。ビスマス層状化合物において、c軸は結晶軸中で最も長軸であるため、用途によっては電界印加時の圧電特性及び変位量の大きな圧電部品を提供することができる。   By using the method for producing a non-ferromagnetic material molded body as described above, a non-ferromagnetic material obtained by subjecting a slurry containing a non-ferromagnetic material having anisotropy in magnetic susceptibility to a molding process while applying a magnetic field. Even in the case of a material molded body, a non-ferromagnetic material molded body can be obtained in which orientation is imparted to crystal axes other than the first crystal axis in which the magnetic susceptibility of the crystal axis with respect to the magnetic field is substantially maximum. . In particular, when the non-ferromagnetic material is mainly composed of a bismuth layered compound, a non-ferromagnetic material molded body in which orientation is imparted to the c-axis having the smallest magnetic susceptibility can be obtained. In the bismuth layered compound, since the c-axis is the longest axis among the crystal axes, it is possible to provide a piezoelectric component having a large piezoelectric property and displacement when an electric field is applied depending on the application.

尚、上記において非強磁性物質材料としてセラミック材料を用い、本発明の非強磁性物質成形体を圧電部品等の部品本体に使用する場合には、上記配向性固定工程を経て固化されたセラミック成形体を焼成し、セラミック焼結体を得てから、圧電部品本体として用いることが一般的であるが、例えば高分子材料などを用いる場合には、非強磁性物質成形体のままで利用することも可能である。   In the above, when a ceramic material is used as the non-ferromagnetic substance material and the non-ferromagnetic substance molded body of the present invention is used for a component body such as a piezoelectric part, the ceramic molding solidified through the orientation fixing step. After the body is fired to obtain a ceramic sintered body, it is generally used as a piezoelectric component body. For example, when using a polymer material, it should be used as a non-ferromagnetic material molded body. Is also possible.

このような非強磁性物質成形体を電子部品用途として用いる場合には、例えば、半導体保護膜、プリント基板、及び電磁遮蔽材等として用いることが有用であるが、これに限るものではない。   When such a non-ferromagnetic material molded body is used as an electronic component, for example, it is useful to use it as a semiconductor protective film, a printed circuit board, an electromagnetic shielding material, or the like, but is not limited thereto.

次に、本発明の実施例を具体的に説明する。   Next, examples of the present invention will be specifically described.

磁化率に異方性を有する非強磁性物質としてa軸及びb軸の磁化率が同等に高く、c軸の磁化率がa軸及びb軸の磁化率に比べて低いビスマス層状化合物を使用し、結晶の配向性効果を確認した。   As a non-ferromagnetic material having anisotropy in magnetic susceptibility, a bismuth layered compound having an a-axis and b-axis susceptibility that is equally high and a c-axis susceptibility lower than that of the a-axis and b-axis is used. The crystal orientation effect was confirmed.

すなわち、まず、出発原料としてCaCO、Bi、TiO、及びMnCOを用意し、0.5重量%のMnCOを含有した組成式CaBiTi15で表されるビスマス層状化合物が得られるように、前記出発原料を秤量した。 That is, first, CaCO 3, Bi 2 O 3 , TiO 2, and prepared MnCO 3, bismuth layer represented by the composition formula CaBi 4 Ti 4 O 15 containing a MnCO 3 0.5 wt% as the starting material The starting material was weighed to obtain the compound.

次いで、この秤量物をPSZが内有されたボールミルに投入して約16時間湿式で混合し、得られた混合物を乾燥させた後、1200℃の温度で2時間仮焼処理を施し、さらに回転式粉砕機を使用し、乾式で1分間解砕処理を施し、仮焼粉末を得た。   Next, this weighed product is put into a ball mill containing PSZ and mixed wet for about 16 hours. The resulting mixture is dried, then calcined at 1200 ° C. for 2 hours, and further rotated. Using a pulverizer, the powder was crushed by a dry method for 1 minute to obtain a calcined powder.

次に、この仮焼粉末を再度上記ボールミルに投入して約100時間湿式粉砕処理を施して原料粉末を得、さらに表1に示すような配合量となるように原料粉末に水及び有機バインダ(酢酸ビニル樹脂)を混合し、6種類のセラミックスラリーを作製した(スラリーA〜F)。   Next, the calcined powder is again put into the ball mill and subjected to wet pulverization for about 100 hours to obtain a raw material powder. Further, water and an organic binder ( Vinyl acetate resin) was mixed to prepare six types of ceramic slurries (slurries A to F).

次に、各スラリーA〜Fの粘性率を振動式粘度測定器で測定した。   Next, the viscosity of each of the slurries A to F was measured with a vibratory viscometer.

表1は原料粉末、水、有機バインダの各スラリー中の含有量と粘性率を示している。

Figure 2008036816
この表1に示すように、本実施例では原料粉末と水との配合比率を異ならせることにより、粘性率が15〜240mPa・sの範囲に調製された6種類のスラリーA〜Fを得た。 Table 1 shows the contents and viscosity in each slurry of raw material powder, water, and organic binder.
Figure 2008036816
As shown in Table 1, in this example, six types of slurries A to F having a viscosity of 15 to 240 mPa · s were obtained by varying the mixing ratio of the raw material powder and water. .

次に、これらスラリーA〜Fに0.5重量%の分散剤としてのアクリル酸塩を添加し、さらに原料粉末を十分に分散させるため撹拌棒で分散させながら5分間超音波振動を付与し、撹拌した。   Next, an acrylic acid salt as a dispersant of 0.5% by weight is added to these slurries A to F, and ultrasonic vibration is applied for 5 minutes while dispersing with a stir bar to sufficiently disperse the raw material powder. Stir.

そして、このようにして得られたスラリーA〜Fを図3に示す泥漿鋳込み装置の鋳型に流し込み、上述した図2に示す超伝導磁石5の空洞部6に前記泥漿鋳込み装置を配し、下記(1)〜(5)に示す磁場印加方法で磁場を印加しながら、成形処理を行なった。   Then, the slurry A to F thus obtained is poured into the mold of the slurry casting apparatus shown in FIG. 3, and the slurry casting apparatus is arranged in the cavity 6 of the superconducting magnet 5 shown in FIG. The molding process was performed while applying a magnetic field by the magnetic field application method shown in (1) to (5).

〔磁場印加方法〕
(1)第1回目の磁場印加として12Tの磁場を水平方向に15分間印加した後、試料(スラリー)に振動を与えないようにして泥漿鋳込み装置を水平方向に90°回転させ、第2回目の磁場印加として12Tの磁場を水平方向に4時間印加した。尚、第2回目の磁場は、第1回目の磁場の印加方向に対し垂直な方向に印加されることとなる。
[Magnetic field application method]
(1) As a first magnetic field application, a 12T magnetic field is applied for 15 minutes in the horizontal direction, and then the mud casting apparatus is rotated 90 ° in the horizontal direction so as not to vibrate the sample (slurry). As a magnetic field application, a 12T magnetic field was applied in the horizontal direction for 4 hours. Note that the second magnetic field is applied in a direction perpendicular to the first magnetic field application direction.

(2)第1回目の磁場印加として12Tの磁場を水平方向に15分間印加した後、泥漿鋳込み装置を超伝導磁石5より取り出して1分間放置し、その後、第1回目の磁場印加時と水平方向に90°回転させた状態となるように泥漿鋳込み装置を超伝導磁石5の空洞部6に配し、第2回目の磁場印加として12Tの磁場を水平方向に4時間印加した。尚、この場合も、上記(1)と同様、第2回目の磁場は、第1回目の磁場の印加方向に対し垂直な方向に印加されることとなる。 (2) After applying a 12T magnetic field in the horizontal direction for 15 minutes as the first magnetic field application, the mud casting apparatus is taken out of the superconducting magnet 5 and left for 1 minute. A mud casting apparatus was arranged in the cavity 6 of the superconducting magnet 5 so as to be rotated 90 ° in the direction, and a 12 T magnetic field was applied in the horizontal direction for 4 hours as the second magnetic field application. In this case as well, as in (1) above, the second magnetic field is applied in a direction perpendicular to the first magnetic field application direction.

(3)第1回目の磁場印加として12Tの磁場を水平方向に4時間印加した後、泥漿鋳込み装置を超伝導磁石5より取り出し、5分間超音波振動を付与して試料を撹拌し、その後、第1回目の磁場印加時と水平方向に90°回転させた状態となるように泥漿鋳込み装置を超伝導磁石5の空洞部6に配し、第2回目の磁場印加として12Tの磁場を水平方向に4時間印加した。尚、この場合も、上記(1)と同様、第2回目の磁場は、第1回目の磁場の印加方向に対し垂直な方向に印加されることとなる。 (3) As a first magnetic field application, a 12T magnetic field is applied in the horizontal direction for 4 hours, and then the mud casting apparatus is removed from the superconducting magnet 5 and subjected to ultrasonic vibration for 5 minutes, and then the sample is stirred. A mud casting device is arranged in the cavity 6 of the superconducting magnet 5 so that it is rotated by 90 ° in the horizontal direction when the first magnetic field is applied, and a 12 T magnetic field is applied in the horizontal direction as the second magnetic field application. For 4 hours. In this case as well, as in (1) above, the second magnetic field is applied in a direction perpendicular to the first magnetic field application direction.

(4)12Tの磁場を水平方向に4時間印加したのみで、第2回目の磁場印加は行わなかった。 (4) Only a 12T magnetic field was applied in the horizontal direction for 4 hours, and the second magnetic field application was not performed.

(5)磁場印加を行うことなく泥漿鋳込み成形を行った。 (5) Mud casting was performed without applying a magnetic field.

次に、上記(1)〜(5)の成形処理を行なったスラリーを150℃で12時間乾燥させて型抜きし、幅Wが40mm、長さHが35mm、厚みTが5mmの外形寸法を有する試料番号1〜18のセラミック成形体を作製した。   Next, the slurry subjected to the molding treatments (1) to (5) above is dried at 150 ° C. for 12 hours and die-molded, and has outer dimensions of a width W of 40 mm, a length H of 35 mm, and a thickness T of 5 mm. Ceramic molded bodies having sample numbers 1 to 18 were prepared.

次に、このようにして得られたセラミック成形体を500℃の温度で2時間熱処理して有機バインダを除去し、次いで、1200℃の温度で2時間、大気中で焼成処理を施し、幅Wが34mm、長さHが29mm、厚みTが4.2mmの外形寸法を有する試料番号1〜18のセラミック焼結体を得た。   Next, the ceramic molded body thus obtained is heat-treated at a temperature of 500 ° C. for 2 hours to remove the organic binder, and then subjected to a firing treatment in the atmosphere at a temperature of 1200 ° C. for 2 hours. Were obtained. Ceramic sintered bodies of sample numbers 1 to 18 having outer dimensions of 34 mm, length H of 29 mm, and thickness T of 4.2 mm were obtained.

図4はセラミック焼結体の外観を示しており、Pは第1回目の磁場印加方向、Qは第2回目の磁場印加方向を示している。   FIG. 4 shows the appearance of the ceramic sintered body, where P indicates the first magnetic field application direction and Q indicates the second magnetic field application direction.

次に、面A(W×Hの面)、面B(W×Tの面)、面C(H×Tの面)について、X線回折法(線源CuKα、40kV、200mA)を使用して回折角20°〜80°のX線ピーク強度を測定した。比較のためセラミック成形体を粉砕して得た比較用粉末試料の各結晶面のX線ピーク強度も測定した。   Next, for surface A (W × H surface), surface B (W × T surface), and surface C (H × T surface), an X-ray diffraction method (source CuKα, 40 kV, 200 mA) is used. The X-ray peak intensity at a diffraction angle of 20 ° to 80 ° was measured. For comparison, the X-ray peak intensity of each crystal plane of a comparative powder sample obtained by pulverizing a ceramic molded body was also measured.

次に、Lotgering法により数式(1)に基づいてa軸とb軸の配向を示す(l00)面と(0l0)面の配向度F1とc軸の配向を示す(00l)面の配向度F2を面A〜Cのそれぞれについて算出した。

Figure 2008036816
ここで、ΣI(HKL)はセラミック焼結体における特定の結晶面(HKL)のX線ピーク強度の総和であり、ΣI(hkl)はセラミック焼結体の全結晶面(hkl)のX線ピーク強度の総和である。また、ΣIo(HKL)は上記比較用粉末試料の特定の結晶面(HKL)のX線ピーク強度の総和であり、ΣIo(hkl)は上記比較用粉末試料の全結晶面(hkl)のX線ピーク強度の総和である。 Next, the orientation degree F1 of the (l00) plane and the (0l0) plane indicating the orientation of the a-axis and the b-axis and the orientation degree F2 of the (00l) plane indicating the orientation of the c-axis based on the formula (1) by the Lotgering method. Was calculated for each of the surfaces A to C.
Figure 2008036816
Here, ΣI (HKL) is the sum of X-ray peak intensities of specific crystal planes (HKL) in the ceramic sintered body, and ΣI (hkl) is the X-ray peak of all crystal planes (hkl) of the ceramic sintered body. The sum of strength. ΣIo (HKL) is the sum of X-ray peak intensities of specific crystal planes (HKL) of the comparative powder sample, and ΣIo (hkl) is X-rays of all crystal planes (hkl) of the comparative powder sample. The sum of peak intensities.

次に、試料番号1〜18の各試料について、図5に示すように、両主面が面Bに平行で、かつ長さ方向が面Cと直交する幅T′が1mm、長さW′が5mm、厚みH′が0.25mmの矩形板状の圧電セラミック素体20を切り出した。   Next, for each of the samples Nos. 1 to 18, as shown in FIG. 5, the width T ′ in which both main surfaces are parallel to the surface B and the length direction is orthogonal to the surface C is 1 mm, and the length W ′. A rectangular plate-shaped piezoelectric ceramic body 20 having a thickness of 5 mm and a thickness H ′ of 0.25 mm was cut out.

次いで、この圧電セラミック素体20の両端面(H′×T′)に銀ペーストを塗布、焼付けして導電部を形成し、150℃の絶縁オイル中で5kV/mmの直流電圧を10分間印加して分極処理を施した。次に、導電部の所定領域を除去し、図6に示すように圧電セラミック素体20の幅方向(T′)の一端からの距離Lが4mmとなるように電極21a、21bを形成した。尚、電極21a、21bは、長さ方向の中央部の3mmの範囲で対向している。   Next, silver paste is applied to both end faces (H ′ × T ′) of the piezoelectric ceramic body 20 and baked to form a conductive portion, and a DC voltage of 5 kV / mm is applied for 10 minutes in an insulating oil at 150 ° C. Then, the polarization treatment was performed. Next, a predetermined region of the conductive portion was removed, and electrodes 21a and 21b were formed so that the distance L from one end in the width direction (T ′) of the piezoelectric ceramic body 20 was 4 mm as shown in FIG. The electrodes 21a and 21b are opposed to each other within a range of 3 mm at the center in the length direction.

次に、インピーダンスアナライザ(ヒューレット・パッカード社製HP4194A)を使用し、ANSI/IEEEスタンダードに基づき、厚みすべり振動の電気機械結合係数k15を測定した。 Then, using an impedance analyzer (Hewlett-Packard HP4194A), based on the ANSI / IEEE Standard was measured electromechanical coupling factor k 15 in the thickness shear vibration.

表2は試料番号1〜18のスラリーNo.、磁場印加方法、面A〜面Cの結晶面(l00)及び(0l0)、(00l)におけるそれぞれの配向度F1、F2及び電気機械結合係数k15を示している。 Table 2 shows slurry Nos. 1 to 18 of sample numbers 1-18. , Magnetic field application method, the crystal surface of the surface A~ plane C (L00) and (0l0), shows the respective orientation F1, F2 and the electromechanical coupling coefficient k 15 in the (00l).

尚、配向度は、無配向の場合を0%、全ての結晶粒子が配向している場合を100%として規格化した値を示している。

Figure 2008036816
表2に示すように試料番号1、2は、磁場を印加していないため、結晶粒子はランダムに配向しており、面A〜面Cの、(l00)面及び(0l0)面、(00l)面における各配向度F1、F2は6〜12%と低く、電気機械結合係数k15も13.4〜13.5%と低かった。 The degree of orientation indicates a value normalized by 0% when non-oriented and 100% when all crystal grains are oriented.
Figure 2008036816
As shown in Table 2, in Sample Nos. 1 and 2, since no magnetic field was applied, the crystal grains were randomly oriented, and the (l00) plane and (0l0) plane of planes A to C, (00l ) each orientation F1, F2 is as low as 6-12% in surface, electromechanical coupling factor k 15 was low and 13.4 to 13.5%.

また、試料番号3、4は、面Bに対し水平方向(矢印P方向)から磁場を印加しているため、面Bでは磁化率の大きなa軸及びb軸の配向度、すなわち(l00)面、(0l0)面の配向度F1は71〜78%と高く、配向性が付与されているが、面A及び面Cでは各結晶軸の配向度は6〜16%と低く結晶軸はランダムに任意の方向を向いており、電気機械結合係数k15も12.1〜12.4%と低かった。 In Sample Nos. 3 and 4, since the magnetic field is applied from the horizontal direction (arrow P direction) with respect to the surface B, the a-axis and b-axis orientation degrees having a large magnetic susceptibility are obtained on the surface B, that is, the (100) surface. The orientation degree F1 of the (010) plane is as high as 71 to 78%, and the orientation is imparted. However, in the plane A and the plane C, the degree of orientation of each crystal axis is as low as 6 to 16%, and the crystal axes are randomly It was in an arbitrary direction, and the electromechanical coupling coefficient k 15 was also as low as 12.1 to 12.4%.

また、試料番号17、18は、面Cの(l00)面、(0l0)面での配向度F1のみが67〜76%と高く、面Cでのa軸配向は認められたものの、面A、面Bでは結晶軸はランダムに任意の方向に向いているため、これらに面A、面Bでの配向度は7〜14%と低く、このため電気機械結合係数k15も14.9〜15.3%と低かった。これは試料番号17、18では、2回の磁場印加は行っているものの、第1回目の磁場印加を行った後、超音波振動を付与してスラリーを撹拌したため、第1回目の磁場印加による配向効果が取り除かれ、しかも面Cに対して水平方向(矢印Q方向)に第2回目の磁場印加を行っているため、面Cに対しては磁化率の高いa軸及びb軸、すなわち(l00)面及び(0l0)面のみが配向したためと考えられる。 In Sample Nos. 17 and 18, only the orientation degree F1 on the (100) plane and the (010) plane of the plane C is as high as 67 to 76%, and the a-axis orientation on the plane C is recognized, but the plane A In plane B, the crystal axes are randomly oriented in an arbitrary direction. Therefore, the degree of orientation in plane A and plane B is as low as 7 to 14%. Therefore, the electromechanical coupling coefficient k 15 is also 14.9 to It was as low as 15.3%. In Sample Nos. 17 and 18, the magnetic field was applied twice, but after applying the first magnetic field, the ultrasonic vibration was applied to stir the slurry. Since the orientation effect is removed and the second magnetic field application is performed in the horizontal direction (arrow Q direction) with respect to the surface C, the a-axis and b-axis having high magnetic susceptibility with respect to the surface C, that is, ( This is probably because only the (100) plane and the (010) plane were oriented.

これに対し試料番号5〜16は、矢印P方向に磁場印加した後、矢印P方向とは垂直な矢印Q方向に磁場を印加しているので、面B及び面Cでは(l00)面及び(0l0)面の配向度F1が35〜71%と高くa軸に配向性が付与され、さらに面Aでは(00l)面の配向度F2が50〜67%となってc軸に配向性が付与され、したがっていずれの結晶軸にも配向性が付与され、電気機械結合係数k15も20.0〜23.0%と向上することが分かった。 In contrast, Sample Nos. 5 to 16 applied a magnetic field in the direction of the arrow Q perpendicular to the direction of the arrow P after applying the magnetic field in the direction of the arrow P. The orientation degree F1 of the (0l0) plane is as high as 35 to 71%, and orientation is imparted to the a-axis, and in the plane A, the orientation degree F2 of the (00l) plane is 50 to 67% and orientation is imparted to the c-axis. is, thus also imparted orientation to any of the crystal axis, it was found that the electromechanical coupling coefficient k 15 is also improved with 20.0 to 23.0%.

尚、試料番号11〜15のように第1回目の磁場印加と第2回目の磁場印加との間に1分間の時間的間隔を設けた場合は面Aにおけるc軸の配向度が50〜55%であったのに対し、試料番号5〜10のように第1回目の磁場印加と第2回目の磁場印加とを時間的間隔を設けずに連続的に行った場合は面Aにおけるc軸の配向度が57〜63%と高く、これらの結果から、第1回目の磁場印加と第2回目の磁場印加とを時間的間隔を設けずに連続的に行った方が場合に比べ、面Aにおける(00l)面の配向度F2を高くすることができ、より良好な電気機械結合係数k15を得ることのできることが分かった。 When a time interval of 1 minute is provided between the first magnetic field application and the second magnetic field application as in sample numbers 11 to 15, the degree of orientation of the c-axis on the surface A is 50 to 55. However, when the first magnetic field application and the second magnetic field application were continuously performed without providing a time interval as in sample numbers 5 to 10, the c-axis in the plane A The degree of orientation is as high as 57 to 63%. From these results, the first magnetic field application and the second magnetic field application were performed continuously without providing a time interval. It was found that the orientation degree F2 of the (00l) plane in A can be increased, and a better electromechanical coupling coefficient k 15 can be obtained.

また、試料番号5〜10、及び試料番号11〜16との比較からわかるように磁場印加方法が同一の場合は、セラミックスラリーの粘性率が30〜200mPa・sで面Aのc軸の配向度が高くなっており、特に60〜110mPa・sでc軸の配向度はより高くなることが確認された。   Further, as can be seen from the comparison with sample numbers 5 to 10 and sample numbers 11 to 16, when the magnetic field application method is the same, the viscosity of the ceramic slurry is 30 to 200 mPa · s and the degree of orientation of the c-axis of the surface A In particular, it was confirmed that the degree of orientation of the c-axis was higher at 60 to 110 mPa · s.

本発明に係る非強磁性物質成形体の製造方法の一実施の形態を示す製造工程図である。It is a manufacturing-process figure which shows one Embodiment of the manufacturing method of the nonferromagnetic substance molded object which concerns on this invention. 上記実施の形態で使用される超伝導磁石の概略を示す斜視図である。It is a perspective view which shows the outline of the superconducting magnet used by the said embodiment. 上記実施の形態で使用される泥漿鋳込み装置の概略を示す図である。It is a figure which shows the outline of the mud casting apparatus used in the said embodiment. 本実施例で製造されたセラミック焼結体の斜視図である。It is a perspective view of the ceramic sintered compact manufactured by the present Example. 図4のセラミック焼結体を切り出して得られた圧電セラミック素体の斜視図である。FIG. 5 is a perspective view of a piezoelectric ceramic body obtained by cutting out the ceramic sintered body of FIG. 4. 実施例で得られた圧電部品の外観を示す斜視図である。It is a perspective view which shows the external appearance of the piezoelectric component obtained in the Example. 特許文献2で開示された圧電セラミック部品の製造方法を説明するためのセラミックグリーンシートの平面図である。It is a top view of the ceramic green sheet for demonstrating the manufacturing method of the piezoelectric ceramic component disclosed by patent document 2. FIG.

符号の説明Explanation of symbols

1 スラリー作製工程
2 第1の配向性付与工程
3 第2の配向性付与工程
4 配向性固定工程
10 スラリー
DESCRIPTION OF SYMBOLS 1 Slurry preparation process 2 1st orientation provision process 3 2nd orientation provision process 4 Orientation fixing process 10 Slurry

Claims (6)

磁化率に異方性を有する非強磁性材料を含むスラリーに磁場を印加しながら成形処理を施して成形体を形成する非強磁性物質成形体の製造方法であって、
前記非強磁性材料を主成分としたスラリーを作製するスラリー作製工程と、前記スラリーに対し第1の方向に磁場を印加し、磁場に対する結晶軸の磁化率が実質的に最大である第1の結晶軸に配向性を付与する第1の配向性付与工程と、前記第1の結晶軸の配向性を維持した状態で前記第1の方向に対し略垂直な第2の方向に磁場を印加し、前記第1の結晶軸以外の結晶軸に配向性を付与する第2の配向性付与工程と、前記第1及び第2の配向性付与工程で付与された各結晶軸の配向性を固定する配向性固定工程とを含むことを特徴とする非強磁性物質成形体の製造方法。
A method for producing a non-ferromagnetic material molded body that forms a molded body by applying a molding process while applying a magnetic field to a slurry containing a non-ferromagnetic material having anisotropy in magnetic susceptibility,
A slurry preparing step for preparing a slurry containing the non-ferromagnetic material as a main component, and a magnetic field is applied to the slurry in a first direction so that a susceptibility of a crystal axis with respect to the magnetic field is substantially maximum. A first orientation imparting step for imparting orientation to the crystal axis, and a magnetic field is applied in a second direction substantially perpendicular to the first direction while maintaining the orientation of the first crystal axis. Fixing the orientation of each crystal axis given in the second orientation imparting step for imparting orientation to crystal axes other than the first crystal axis and the first and second orientation imparting steps A method for producing a non-ferromagnetic material molded body comprising an orientation fixing step.
前記第1の配向性付与工程と前記第2の配向性付与工程とを連続的に行うことを特徴とする請求項1記載の非強磁性物質成形体の製造方法。   The method for producing a non-ferromagnetic substance molded body according to claim 1, wherein the first orientation imparting step and the second orientation imparting step are continuously performed. 前記スラリー作製工程で作製されたスラリーの粘性率は、30〜200mPa・sであることを特徴とする請求項1又は請求項2記載の非強磁性物質成形体の製造方法。   The method for producing a non-ferromagnetic substance molded body according to claim 1 or 2, wherein a viscosity of the slurry produced in the slurry production step is 30 to 200 mPa · s. 前記非強磁性材料は、ビスマス層状化合物を主成分とするセラミック材料であることを特徴とする請求項1乃至請求項3のいずれかに記載の非強磁性物質成形体の製造方法。   4. The method for producing a non-ferromagnetic material molded body according to claim 1, wherein the non-ferromagnetic material is a ceramic material mainly composed of a bismuth layered compound. 磁化率に異方性を有する非強磁性材料を含むスラリーに、磁場を印加しながら成形処理を施して得られる非強磁性物質成形体であって、磁場に対する結晶軸の磁化率が実質的に最大である第1の結晶軸以外の結晶軸に配向性が付与されていることを特徴とする非強磁性物質成形体。   A non-ferromagnetic material molded body obtained by subjecting a slurry containing a non-ferromagnetic material having anisotropy in magnetic susceptibility to a molding process while applying a magnetic field, wherein the magnetic axis has a magnetic susceptibility substantially equal to the magnetic field. A non-ferromagnetic material molded body, wherein orientation is imparted to crystal axes other than the maximum first crystal axis. 前記非強磁性材料は、ビスマス層状化合物を主成分とするセラミック材料であり、前記第1の結晶軸以外の結晶軸がc軸であることを特徴とする請求項5記載の非強磁性物質成形体。   6. The non-ferromagnetic material molding according to claim 5, wherein the non-ferromagnetic material is a ceramic material mainly composed of a bismuth layered compound, and a crystal axis other than the first crystal axis is a c-axis. body.
JP2004306404A 2004-10-21 2004-10-21 Method for producing non-ferromagnetic substance molding and non-ferromagnetic substance molding Pending JP2008036816A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004306404A JP2008036816A (en) 2004-10-21 2004-10-21 Method for producing non-ferromagnetic substance molding and non-ferromagnetic substance molding
PCT/JP2005/018201 WO2006043407A1 (en) 2004-10-21 2005-09-30 Production method for non-ferromagnetic substance molded product, and non-ferromagnetic substance molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004306404A JP2008036816A (en) 2004-10-21 2004-10-21 Method for producing non-ferromagnetic substance molding and non-ferromagnetic substance molding

Publications (1)

Publication Number Publication Date
JP2008036816A true JP2008036816A (en) 2008-02-21

Family

ID=36202826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004306404A Pending JP2008036816A (en) 2004-10-21 2004-10-21 Method for producing non-ferromagnetic substance molding and non-ferromagnetic substance molding

Country Status (2)

Country Link
JP (1) JP2008036816A (en)
WO (1) WO2006043407A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087380A (en) * 2008-10-01 2010-04-15 Taiyo Yuden Co Ltd Piezoelectric drive element, and piezoelectric drive device
JP2011230373A (en) * 2010-04-27 2011-11-17 Canon Inc Method of manufacturing ceramics, and piezoelectric material

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012026397A1 (en) * 2010-08-26 2012-03-01 独立行政法人物質・材料研究機構 Piezoelectric ceramic and method for producing same
CN102303353B (en) * 2011-06-29 2014-01-29 浙江大学 Gel-casting preparation method for gradient material in moving magnetic field

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0853600B1 (en) * 1995-10-03 2003-06-25 Industrial Research Limited A method of biaxially aligning crystalline material
JP4688271B2 (en) * 2000-10-10 2011-05-25 京セラ株式会社 Method for producing bismuth layered compound sintered body
JP2005297556A (en) * 2004-03-16 2005-10-27 Japan Science & Technology Agency Molding method of uniaxial orientation molding and its molding device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010087380A (en) * 2008-10-01 2010-04-15 Taiyo Yuden Co Ltd Piezoelectric drive element, and piezoelectric drive device
JP2011230373A (en) * 2010-04-27 2011-11-17 Canon Inc Method of manufacturing ceramics, and piezoelectric material

Also Published As

Publication number Publication date
WO2006043407A1 (en) 2006-04-27

Similar Documents

Publication Publication Date Title
Li et al. Defect engineering in lead zirconate titanate ferroelectric ceramic for enhanced electromechanical transducer efficiency
Zhang et al. Preparation and enhanced electrical properties of grain-oriented (Bi1/2Na1/2) TiO3-based lead-free incipient piezoceramics
EP2316804A1 (en) Piezoelectric ceramic, process for producing the piezoelectric ceramic, and piezoelectric device
JP2008037064A (en) Method for producing orientable ceramics
Bansal et al. Magnetoelectric coupling enhancement in lead-free BCTZ–x NZFO composites
CN108727024B (en) Leadless piezoelectric ceramic and preparation method thereof
Liu et al. Piezoelectric and mechanical properties of CaO reinforced porous PZT ceramics with one-dimensional pore channels
CN107032782A (en) Ceramic material, piezoelectric actuator and the method for preparing the ceramic material
Lin et al. Structural, electric and magnetic properties of BiFeO 3-Pb (Mg 1/3 Nb 2/3) O 3-PbTiO 3 ternary ceramics
Adhlakha et al. Study of dielectric, magnetic and magnetoelectric behavior of (x) NZF-(1-x) PLSZT multiferroic composites
CN102320828B (en) Unleaded piezoelectric ceramic consisting of B-site composite Bi-based compound and preparation method thereof
On et al. Influence of sintering behavior on the microstructure and electrical properties of BaTiO3 lead-free ceramics from hydrothermal synthesized precursor nanoparticles
CN107986770A (en) Doping vario-property bismuth ferrite-lead titanate piezoelectric ceramics and preparation method thereof
WO2006043407A1 (en) Production method for non-ferromagnetic substance molded product, and non-ferromagnetic substance molded product
Yao et al. Titanium deficiency in tetragonal-structured (Ba, Ca)(Zr, Ti) O3 piezoelectric ceramics
JP2007084408A (en) Piezoelectric ceramic
Jaita et al. Energy harvesting, electrical, and magnetic properties of potassium bismuth titanate-based lead-free ceramics
Yang et al. Piezoelectric and dielectric properties of PZT–PZN–PMS ceramics prepared by molten salt synthesis method
JP2014012620A (en) Production method of orientation ceramic, orientation ceramic, and ceramic electronic component
Bochenek et al. Multi-component PZT ceramics obtained by mechanochemical activation and conventional ceramic technology
Tsai et al. Investigation of the piezoelectric and anti-reduction properties of (Ba, Ca)(Ti, Sn, Hf) textured ceramics prepared under low oxygen partial pressure conditions at low sintering temperatures
KR101029027B1 (en) Bnbt6 piezoelectric ceramics and method for manufacturing the same
Ramam et al. Effect of acceptor and donor dopants on ferroelectric and piezoelectric properties of lead zirconate titanate ceramics
KR100875479B1 (en) Lead-free piezoelectric ceramic composition and its manufacturing method
Liu et al. Dielectric and piezoelectric behavior of PVDF-modified 3-3 type cement-based piezoelectric composites