JP2008032672A - Abnormality detecting method of rolling device, and abnormality detector for rolling device - Google Patents

Abnormality detecting method of rolling device, and abnormality detector for rolling device Download PDF

Info

Publication number
JP2008032672A
JP2008032672A JP2006255418A JP2006255418A JP2008032672A JP 2008032672 A JP2008032672 A JP 2008032672A JP 2006255418 A JP2006255418 A JP 2006255418A JP 2006255418 A JP2006255418 A JP 2006255418A JP 2008032672 A JP2008032672 A JP 2008032672A
Authority
JP
Japan
Prior art keywords
rolling device
abnormality
magnetic field
electromagnetic induction
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006255418A
Other languages
Japanese (ja)
Inventor
Manabu Chiga
学 千賀
Kenji Imanishi
賢治 今西
Takanori Miyasaka
孝範 宮坂
Noboru Yasuda
昇 安田
Kyosuke Tokiwa
恭輔 常盤
Kinji Yugawa
謹次 湯川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006255418A priority Critical patent/JP2008032672A/en
Publication of JP2008032672A publication Critical patent/JP2008032672A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormality detecting method of a rolling device and an abnormality detector for the rolling device capable of detecting whether an abnormality occurs in the rolling device without using a complicated structure for connecting a conducting wire to a rotating component and without removing the rolling device from a machine device. <P>SOLUTION: An electromagnetic induction sensor 14 having a coil for forming an alternating current magnetic field and a coil for detection is used as a sensor for detecting variation of the magnetic field resulting from the variation of metal texture occurring in the rolling device component of the rolling device or the variation of the lubrication state. It is detected whether an abnormality occurs in the rolling device based on the induced electromotive force occurring in the coil for detection of the electromagnetic induction sensor 14. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、転がり軸受、ボールねじ、直動案内軸受装置などの転動装置に潤滑不良やフレーキングなどの異常が発生したか否かを検知する技術に関する。   The present invention relates to a technique for detecting whether or not an abnormality such as poor lubrication or flaking has occurred in a rolling device such as a rolling bearing, a ball screw, or a linear motion guide bearing device.

一般に、玉軸受やころ軸受などの転がり軸受を工作機械の主軸用軸受として用いる場合には、潤滑剤による回転抵抗を出来るだけ小さくすることが望ましい。そのため、転がり軸受に封入されるグリースの封入量を少なくしたり、あるいはグリースの代わりに潤滑油を使用したりするなどの方策が採られているが、転がり軸受に封入されたグリースが枯渇したり、転がり軸受に潤滑油を霧状あるいはミスト状に供給する給油装置が故障したりすると、転がり軸受に潤滑不良が発生し、焼付きなどの重大な損傷に結び付き易い。そこで、外側軌道輪と内側側軌道輪との間に組み込まれた複数の転動体が絶縁性セラミックスからなる転がり軸受の潤滑状態の良否を判定する方法として、転動体の少なくとも1個を導電性セラミックスで形成し、この転動体と外側軌道輪及び内側軌道輪との間の潤滑状態の良否を外側軌道輪と内側軌道輪との電位差に基づいて判定する方法が知られている(特許文献1参照)。   In general, when a rolling bearing such as a ball bearing or a roller bearing is used as a main shaft bearing of a machine tool, it is desirable to reduce the rotational resistance due to the lubricant as much as possible. For this reason, measures such as reducing the amount of grease enclosed in the rolling bearing or using lubricating oil instead of grease have been taken, but the grease enclosed in the rolling bearing is depleted. If the oil supply device that supplies the lubricating oil to the rolling bearing in the form of a mist or mist fails, the rolling bearing is poorly lubricated and is likely to cause serious damage such as seizure. Therefore, as a method for judging the quality of a rolling bearing in which a plurality of rolling elements incorporated between the outer race and the inner race are made of insulating ceramics, at least one of the rolling elements is made of conductive ceramics. A method is known in which the quality of the lubrication state between the rolling elements and the outer race and the inner race is determined based on the potential difference between the outer race and the inner race (see Patent Document 1). ).

また、転がり軸受の負荷状態を診断する方法としては、コイルに励磁電流を流して軌道輪や転動体の表層部に渦電流を誘導し、その渦電流によってコイルに発生するインピーダンスの変化を検出する渦電流センサ(具体的には、図7に示すように、交流磁場形成用コイル1と、この交流磁場形成用コイル1に交流電流を供給する交流電源2と、この交流電源2から交流磁場形成用コイル1に供給された交流電流のインピーダンス変化を検出するインピーダンス変化検出回路3と、このインピーダンス変化検出回路3で検出されたインピーダンス変化を予め設定された閾値と比較する比較器4と、この比較器4の比較結果を記録すると共に表示する記録及び表示器5とを具備してなる渦電流センサ)を用いて、転がり軸受の疲労による鋼中残留オーステナイトの減少量を測定し、その測定結果から転がり軸受の負荷状態を診断する方法が知られている(特許文献2及び特許文献3参照)。
特開2003−156038号公報 特開2004−198246号公報 特開平5−2082号公報
In addition, as a method of diagnosing the load state of the rolling bearing, an exciting current is passed through the coil to induce an eddy current in the surface layer of the bearing ring or rolling element, and a change in impedance generated in the coil is detected by the eddy current. An eddy current sensor (specifically, as shown in FIG. 7, an alternating magnetic field forming coil 1, an alternating current power source 2 for supplying alternating current to the alternating magnetic field forming coil 1, and an alternating magnetic field formation from the alternating current power source 2 An impedance change detection circuit 3 for detecting an impedance change of the alternating current supplied to the coil 1, a comparator 4 for comparing the impedance change detected by the impedance change detection circuit 3 with a preset threshold value, and this comparison Recording and displaying the comparison result of the device 4 and an eddy current sensor comprising the display 5), and the residual in steel due to rolling bearing fatigue. Measuring the amount of decrease in austenite, a method of diagnosing a load condition of the rolling bearing from the measurement result is known (see Patent Documents 2 and 3).
JP 2003-156038 A JP 2004-198246 A JP-A-5-2082

しかしながら、特許文献1に記載された方法は、外側軌道輪と内側軌道輪との電位差を電位差計で測定する必要があり、外側軌道輪と内側軌道輪との電位差を電位差計で測定するためには、外側軌道輪及び内側軌道輪のうち回転している方の軌道輪に接続される導線が軌道輪の回転によって絡まることを防止しなければならないため、導線の接続部分の構造が複雑になるという問題があった。   However, in the method described in Patent Document 1, it is necessary to measure the potential difference between the outer race and the inner race with a potentiometer. In order to measure the potential difference between the outer race and the inner race with a potentiometer. Since it is necessary to prevent the wire connected to the rotating raceway of the outer raceway and the inner raceway from being entangled by the rotation of the raceway, the structure of the connection portion of the lead becomes complicated There was a problem.

一方、特許文献2及び3に記載の方法で軌道輪の軌道面にフレーキング(早期剥離)が発生したか否かを検出するためには、工作機械などの機械に取り付けられた転がり軸受を機械から取り外して分解した後、軌道輪の軌道面に渦電流センサを近づける必要がある。このため、特許文献2に記載の方法では、転がり軸受が取り付けられた機械の運転を停止したり、転がり軸受を機械装置から取り外したりしなければならないため、多くの手間を要するという問題があった。   On the other hand, in order to detect whether or not flaking (early separation) has occurred on the raceway surface of the raceway by the methods described in Patent Documents 2 and 3, a rolling bearing attached to a machine such as a machine tool is used as a machine. After being detached and disassembled, it is necessary to bring the eddy current sensor closer to the raceway surface of the raceway. For this reason, the method described in Patent Document 2 has a problem in that it requires a lot of work because the operation of the machine to which the rolling bearing is attached must be stopped or the rolling bearing must be removed from the mechanical device. .

本発明は上述した問題点に着目してなされたものであり、その目的は、回転する部品に導線を接続するための複雑な構造を用いることなく、かつ転がり軸受を機械装置から取り外すことなく転動装置に異常が発生したか否かを検知することのできる転動装置の異常検知方法及び転動装置用異常検知装置を提供することにある。   The present invention has been made paying attention to the above-mentioned problems, and its purpose is to use a complicated structure for connecting a conducting wire to a rotating component and without removing a rolling bearing from a mechanical device. An object of the present invention is to provide a rolling device abnormality detection method and a rolling device abnormality detection device capable of detecting whether or not an abnormality has occurred in the rolling device.

請求項1記載の発明に係る転動装置の異常検知方法は、転動装置の転動装置部品に生じた金属組織の変化または潤滑状態の変化に起因した磁場の変化を検出するセンサとして、交流磁場形成用コイルと検出用コイルとを具備してなる電磁誘導センサを用い、この電磁誘導センサの検出用コイルに発生した誘導起電力から前記転動装置に異常が発生したか否かを検知することを特徴とする。   According to the first aspect of the present invention, there is provided a rolling device abnormality detection method using an alternating current as a sensor for detecting a change in a magnetic structure caused by a change in a metal structure or a lubrication state generated in a rolling device part of the rolling device. An electromagnetic induction sensor comprising a magnetic field forming coil and a detection coil is used to detect whether an abnormality has occurred in the rolling device from the induced electromotive force generated in the detection coil of the electromagnetic induction sensor. It is characterized by that.

請求項2記載の発明に係る転動装置の異常検知方法は、請求項1記載の転動装置の異常検知方法において、前記異常が潤滑剤の劣化であることを特徴とする。
請求項3記載の発明に係る転動装置の異常検知方法は、請求項1記載の転動装置の異常検知方法において、前記異常が前記転動装置部品に発生した表面損傷であることを特徴とする。
The abnormality detection method for a rolling device according to a second aspect of the present invention is the abnormality detection method for a rolling device according to the first aspect, wherein the abnormality is deterioration of a lubricant.
The abnormality detection method for a rolling device according to a third aspect of the invention is the abnormality detection method for a rolling device according to the first aspect, wherein the abnormality is a surface damage that has occurred in the rolling device component. To do.

請求項4記載の発明に係る転動装置の異常検知方法は、請求項1記載の転動装置の異常検知方法において、前記異常が前記転動装置部品に発生した表面疲労または内部疲労であることを特徴とする。
請求項5記載の発明に係る転動装置用異常検知装置は、転動装置に異常が発生したか否かを検知する転動装置用異常検知装置であって、交流磁場形成用コイルと検出用コイルとを有してなる電磁誘導センサと、この電磁誘導センサから出力された信号を増幅する増幅器と、この増幅器で増幅された前記電磁誘導センサの出力信号を処理して前記転動装置に異常が発生したか否かを判定する判定手段とを具備してなることを特徴とする。
The abnormality detection method for a rolling device according to a fourth aspect of the present invention is the abnormality detection method for a rolling device according to the first aspect, wherein the abnormality is surface fatigue or internal fatigue occurring in the rolling device component. It is characterized by.
An abnormality detection device for a rolling device according to a fifth aspect of the present invention is an abnormality detection device for a rolling device that detects whether or not an abnormality has occurred in the rolling device, and includes an AC magnetic field forming coil and a detection device. An electromagnetic induction sensor having a coil, an amplifier for amplifying a signal output from the electromagnetic induction sensor, and processing the output signal of the electromagnetic induction sensor amplified by the amplifier to cause an abnormality in the rolling device And determining means for determining whether or not the above has occurred.

請求項6記載の発明に係る転動装置用異常検知装置は、請求項5記載の転動装置用異常検知装置において、前記判定手段がマイクロコンピュータであることを特徴とする。
請求項7記載の発明に係る転動装置用異常検知装置は、請求項5または6記載の転動装置用異常検知装置において、前記電磁誘導センサ、前記増幅器及び前記判定手段の少なくとも一つが前記転動装置または前記転動装置を具備した機械に取り付けられていることを特徴とする。
The abnormality detecting device for a rolling device according to a sixth aspect of the present invention is the abnormality detecting device for a rolling device according to the fifth aspect, wherein the determination means is a microcomputer.
The abnormality detecting device for a rolling device according to a seventh aspect of the invention is the abnormality detecting device for a rolling device according to the fifth or sixth aspect, wherein at least one of the electromagnetic induction sensor, the amplifier, and the determination means is the rolling device. It is attached to a machine equipped with a moving device or the rolling device.

請求項8記載の発明に係る転動装置用異常検知装置は、請求項5〜7のいずれか一項記載の転動装置用異常検知装置において、前記交流磁場形成用コイルと前記検出用コイルが一つの筐体内に収容されていることを特徴とする。   The abnormality detecting device for a rolling device according to an invention of claim 8 is the abnormality detecting device for a rolling device according to any one of claims 5 to 7, wherein the AC magnetic field forming coil and the detection coil are It is characterized by being housed in one housing.

本発明によれば、電磁誘導センサの測定対象が空気を透過する磁場となっていることから、回転する部品に導線を接続するための複雑な構造を用いることなく転動装置に異常が発生したか否かを検知することができる。また、渦電流センサを用いた場合のように、工作機械などの機械に取り付けられた転動装置を機械から取り外して分解する必要がないので、多くの手間を要することなく早期剥離などの異常の有無を転動装置の運転時や停止時でも検査することができる。   According to the present invention, since the measurement target of the electromagnetic induction sensor is a magnetic field that transmits air, an abnormality has occurred in the rolling device without using a complicated structure for connecting the lead wire to the rotating component. Whether or not can be detected. In addition, unlike the case of using an eddy current sensor, it is not necessary to remove and disassemble the rolling device attached to a machine such as a machine tool. The presence or absence can be inspected even when the rolling device is operated or stopped.

図1に、本発明の第1の実施形態に係る転動装置用異常検知装置の概略構成を示す。同図において符号10は軸受ハウジング、11は軸受ハウジング10内に収容された転がり軸受としての玉軸受、12は玉軸受11により支持される回転軸、13は転がり軸受などの転動装置に潤滑不良などの異常が発生したか否を検知する転動装置用異常検知装置であって、この転動装置用異常検知装置13は、転動装置部品に発生した金属組織の変化(たとえば鋼中残留オーステナイトの減少量)或いは潤滑状態の変化に起因した磁場の変化を検出する電磁誘導センサ14と、電磁誘導センサ14から出力された信号を増幅する増幅器15と、増幅器15で増幅された電磁誘導センサ14の出力信号を処理して転動装置(玉軸受11)に異常が発生したか否かを判定する判定手段としてのマイクロコンピュータ16とを備えている。   In FIG. 1, schematic structure of the abnormality detection apparatus for rolling devices which concerns on the 1st Embodiment of this invention is shown. In the figure, reference numeral 10 is a bearing housing, 11 is a ball bearing as a rolling bearing accommodated in the bearing housing 10, 12 is a rotating shaft supported by the ball bearing 11, and 13 is poorly lubricated in a rolling device such as a rolling bearing. An abnormality detection device for a rolling device that detects whether or not an abnormality such as the above has occurred, the abnormality detection device for rolling device 13 is a change in metal structure (for example, residual austenite in steel) ) Or an electromagnetic induction sensor 14 that amplifies the signal output from the electromagnetic induction sensor 14, and the electromagnetic induction sensor 14 that is amplified by the amplifier 15. And a microcomputer 16 as a judging means for judging whether or not an abnormality has occurred in the rolling device (ball bearing 11).

電磁誘導センサ14は、図2に示すように、転動装置部品(例えば玉軸受11の外側軌道輪11b)の検査部位を含む空間部に交流磁場を形成する交流磁場形成用コイル14aと、この交流磁場形成用コイル14aにより形成された交流磁場の変化を電磁誘導現象により検出する検出用コイル14bとからなり、交流磁場形成用コイル14aには、励磁電流として交流電流が交流電源19(図1参照)から供給されるようになっている。なお、検出用コイル14bは交流磁場形成用コイル14aに一部を接触させて交流磁場形成用コイル14aと同軸に巻回されている。また、交流磁場形成用コイル14a及び検出用コイル14bは一つの筐体内に収容されている。   As shown in FIG. 2, the electromagnetic induction sensor 14 includes an alternating magnetic field forming coil 14 a that forms an alternating magnetic field in a space including the inspection site of the rolling device component (for example, the outer race 11 b of the ball bearing 11), The AC magnetic field forming coil 14a includes a detection coil 14b that detects a change in the AC magnetic field by an electromagnetic induction phenomenon. In the AC magnetic field forming coil 14a, an AC current is supplied as an exciting current to an AC power source 19 (FIG. 1). See). The detection coil 14b is wound coaxially with the AC magnetic field forming coil 14a with a part in contact with the AC magnetic field forming coil 14a. The AC magnetic field forming coil 14a and the detection coil 14b are housed in one casing.

電磁誘導センサ14の検出用コイル14bは増幅器15(図1参照)に接続しており、検出用コイル14bに発生した誘導起電力は、増幅器15で増幅された後、玉軸受などの転動装置に異常が発生したか否かを判定する判定手段としてのマイクロコンピュータ16に供給されるようになっている。
マイクロコンピュータ16は、増幅器15で増幅された電磁誘導センサ14の出力信号(検出用コイル14bの誘導起電力)を信号処理する信号処理部16aと、この信号処理部16aの出力を予め設定された閾値と比較し、信号処理部16aの出力が閾値より大きい場合に潤滑不良などの異常が転動装置に発生したと判定する比較判定部16bとを備えて構成されており、比較判定部16bの判定結果は、CRT等の表示器17に出力されるとともに、プリンタ等の記録装置18に出力されるようになっている。
The detection coil 14b of the electromagnetic induction sensor 14 is connected to an amplifier 15 (see FIG. 1), and the induced electromotive force generated in the detection coil 14b is amplified by the amplifier 15, and then a rolling device such as a ball bearing. Is supplied to a microcomputer 16 as a determination means for determining whether or not an abnormality has occurred.
The microcomputer 16 has a signal processing unit 16a that processes the output signal of the electromagnetic induction sensor 14 (the induced electromotive force of the detection coil 14b) amplified by the amplifier 15, and the output of the signal processing unit 16a is set in advance. And a comparison determination unit 16b that determines that an abnormality such as poor lubrication has occurred in the rolling device when the output of the signal processing unit 16a is greater than the threshold. The determination result is output to a display device 17 such as a CRT and also to a recording device 18 such as a printer.

なお、電磁誘導センサ14は玉軸受11の外側軌道輪11bまたは軸受ハウジング10と一体に固定されていてもよいし、取り外し可能に固定されていてもよい。また、電磁誘導センサ14、交流電源19、増幅器15及びマイクロコンピュータ16の一部または全部が転動装置または転動装置が取り付けられた機械と一体になっていてもよい。
このように構成される転動装置用異常検知装置13を用いて玉軸受11などの転動装置の潤滑状態の良否を判定する場合は、図1に示すように、電磁誘導センサ14の軸方向が玉軸受11の転動体11aと外側軌道輪11bとの接触面に対して垂直になるように電磁誘導センサ14を外側軌道輪11bの外周面に近づけ、この状態で交流電源19から電磁誘導センサ14の交流磁場形成用コイル14aに交流電流を供給する。そうすると、交流電源19から供給された交流電流によって電磁誘導センサ14の交流磁場形成用コイル14aが励磁され、図3に示すような交流磁界20が交流磁場形成用コイル14aの励磁によって発生する。なお、交流電源19では、供給する交流電流の周波数を調整することができるものを用いることが望ましい。
The electromagnetic induction sensor 14 may be fixed integrally with the outer race 11b of the ball bearing 11 or the bearing housing 10, or may be fixed detachably. Further, part or all of the electromagnetic induction sensor 14, the AC power source 19, the amplifier 15, and the microcomputer 16 may be integrated with a rolling device or a machine to which the rolling device is attached.
When determining the quality of the lubrication state of the rolling device such as the ball bearing 11 using the rolling device abnormality detecting device 13 configured as described above, as shown in FIG. 1, the axial direction of the electromagnetic induction sensor 14 The electromagnetic induction sensor 14 is brought close to the outer peripheral surface of the outer raceway ring 11b so that it is perpendicular to the contact surface between the rolling element 11a of the ball bearing 11 and the outer raceway ring 11b. An alternating current is supplied to the 14 alternating current magnetic field forming coils 14a. Then, the alternating current magnetic field forming coil 14a of the electromagnetic induction sensor 14 is excited by the alternating current supplied from the alternating current power source 19, and the alternating magnetic field 20 as shown in FIG. 3 is generated by exciting the alternating magnetic field forming coil 14a. Note that it is desirable to use an AC power supply 19 that can adjust the frequency of the supplied AC current.

このようにして電磁誘導センサ14の交流磁場形成用コイル14aから交流磁界20が発生すると、電磁誘導センサ14の検出用コイル14bに誘導起電力が発生する。このとき、検出用コイル14bに発生した誘導起電力は潤滑剤の劣化による潤滑状態の変化や疲労による外側軌道輪11bの鋼中残留オーステナイトの変化に起因して転動装置内に生じる磁場の変化によって変化するため、検出用コイル14bに発生した誘導起電力を予め設定された閾値と比較することによって、玉軸受11における潤滑状態の良否を判定することできる。   When the AC magnetic field 20 is generated from the AC magnetic field forming coil 14a of the electromagnetic induction sensor 14 in this way, an induced electromotive force is generated in the detection coil 14b of the electromagnetic induction sensor 14. At this time, the induced electromotive force generated in the detection coil 14b is a change in the magnetic field generated in the rolling device due to a change in the lubrication state due to deterioration of the lubricant or a change in retained austenite in the steel of the outer race 11b due to fatigue. Therefore, the quality of the lubrication state of the ball bearing 11 can be determined by comparing the induced electromotive force generated in the detection coil 14b with a preset threshold value.

したがって、上述した本発明の第1の実施形態では、転がり軸受の潤滑状態の良否を判定する際に回転側軌道輪と電気的に導通している部材と電位差計とを導線で接続する必要がないので、回転する部品に導線を接続するための複雑な構造を用いることなく転がり軸受の潤滑状態の良否を高精度に判定することができる。
また、早期剥離などの異常が発生したか否かを検査する際に、工作機械などの機械に取り付けられた転動装置を機械から取り外して分解する必要がないので、多くの手間を要することなく早期剥離などの異常の有無を転動装置の運転時や停止時でも検査することができる。
Therefore, in the above-described first embodiment of the present invention, it is necessary to connect a member electrically connected to the rotating raceway and the potentiometer with a conducting wire when determining the quality of the lubrication state of the rolling bearing. Therefore, the quality of the lubrication state of the rolling bearing can be determined with high accuracy without using a complicated structure for connecting the conducting wire to the rotating component.
In addition, when inspecting whether abnormalities such as premature peeling have occurred, it is not necessary to remove the rolling device attached to the machine such as a machine tool from the machine and disassemble it. The presence or absence of abnormalities such as early peeling can be inspected even when the rolling device is operating or stopped.

さらに、マイクロコンピュータ16で得られた検査結果を、回転軸12の回転の制御に利用することができる。
なお、上述した第1の実施形態では検査対象物として玉軸受を例示したが、これに限られるものではなく、例えばころ軸受、ボールねじ、直動案内軸受装置についても本発明を適用することができる。また、軸受はスラスト軸受でもよいし、ラジアル軸受でもよく、内輪及び外輪のどちらか一方または両方が回転する場合において適用することができる。さらに、電磁誘導センサ14から増幅器15及び増幅器15からマイクロコンピュータ16への信号の伝達は有線でも無線でもよい。
Furthermore, the inspection result obtained by the microcomputer 16 can be used for controlling the rotation of the rotary shaft 12.
In the first embodiment described above, the ball bearing is exemplified as the inspection object. However, the present invention is not limited to this. For example, the present invention can be applied to a roller bearing, a ball screw, and a linear motion guide bearing device. it can. Further, the bearing may be a thrust bearing or a radial bearing, and can be applied when one or both of the inner ring and the outer ring rotate. Further, signal transmission from the electromagnetic induction sensor 14 to the amplifier 15 and from the amplifier 15 to the microcomputer 16 may be wired or wireless.

次に、本発明の第2の実施形態に係る転動装置用異常検知装置の概略構成を図4に示す。同図に示される転動装置用異常検知装置は円筒ころ軸受のもみ抜き保持器21aに欠陥や損傷などの異常が発生したか否か機械の運転を停止して、転がり軸受を機械から取り外した状態で検査する場合に用いられるものであって、半組立て状態のころ軸受を載置するためのターンテーブル22と、このターンテーブル22の上方に配置された電磁誘導センサ14と、この電磁誘導センサ14をX軸回り(図中矢印θx方向)に揺動駆動するセンサ揺動機構23と、このセンサ揺動機構23を介して電磁誘導センサ14を図中Z軸方向に昇降駆動するセンサ昇降機構24と、電磁誘導センサ14を図中X軸方向及びY軸方向に動かしてセンサを位置決めするセンサ位置決め機構25と、ターンテーブル22を図中X軸方向に動かしてもみ抜き保持器21aなどの転動装置部品を位置決めする転動装置部品位置決め機構26とを備えて構成されている。   Next, FIG. 4 shows a schematic configuration of the abnormality detecting device for a rolling device according to the second embodiment of the present invention. The abnormality detecting device for a rolling device shown in the figure stops the operation of the machine to determine whether or not an abnormality such as a defect or damage has occurred in the machined cage 21a of the cylindrical roller bearing, and removes the rolling bearing from the machine. A turntable 22 for mounting a semi-assembled roller bearing, an electromagnetic induction sensor 14 disposed above the turntable 22, and the electromagnetic induction sensor. A sensor swing mechanism 23 that swings 14 around the X axis (in the direction of the arrow θx in the figure), and a sensor lift mechanism that drives the electromagnetic induction sensor 14 up and down in the Z axis direction in the figure via the sensor swing mechanism 23. 24, a sensor positioning mechanism 25 for positioning the sensor by moving the electromagnetic induction sensor 14 in the X-axis direction and the Y-axis direction in the figure, and holding the punching table even if the turntable 22 is moved in the X-axis direction in the figure It is constituted by a rolling device component positioning mechanism 26 for positioning the rolling device parts such as 21a.

電磁誘導センサ14は、図2に示したように、交流磁場形成用コイル14aと検出用コイル14bとからなり、交流磁場形成用コイル14aには、交流電流が交流電源から供給されるようになっている。なお、検出用コイル14bは交流磁場形成用コイル14aに一部を接触させて交流磁場形成用コイル14aと同軸に巻回されている。また、交流磁場形成用コイル14a及び検出用コイル14bは一つの筐体内に収容されている。なお、図4中21bは円筒ころ軸受の円筒ころ、21cは円筒ころ軸受の外側軌道輪を示している。   As shown in FIG. 2, the electromagnetic induction sensor 14 includes an alternating magnetic field forming coil 14a and a detecting coil 14b, and an alternating current is supplied to the alternating magnetic field forming coil 14a from an alternating current power source. ing. The detection coil 14b is wound coaxially with the AC magnetic field forming coil 14a with a part in contact with the AC magnetic field forming coil 14a. The AC magnetic field forming coil 14a and the detection coil 14b are housed in one casing. In FIG. 4, 21b represents a cylindrical roller of a cylindrical roller bearing, and 21c represents an outer race of the cylindrical roller bearing.

このような転動装置用異常検知装置を使用して欠陥や損傷などの異常がもみ抜き保持器21aに発生したか否かを検知する手順としては、先ず、図4に示すように、内輪(図示せず)が取り除かれたもみ抜き保持器付き円筒ころ軸受をターンテーブル22上に載置する。次に、ターンテーブル22、センサ揺動機構23、センサ昇降機構24、センサ位置決め機構25及び転動装置部品位置決め機構26を駆動して電磁誘導センサ14をもみ抜き保持器21aの端面に近づけた後、電磁誘導センサ14の交流磁場形成用コイル14aに交流電圧を印加すると、交流磁場形成用コイル14aから交流磁界が発生する。   As a procedure for detecting whether or not an abnormality such as a defect or damage has occurred in the machined cage 21a using such a rolling device abnormality detection device, first, as shown in FIG. A cylindrical roller bearing with a machined cage from which (not shown) has been removed is placed on the turntable 22. Next, after the turntable 22, the sensor swing mechanism 23, the sensor lifting mechanism 24, the sensor positioning mechanism 25, and the rolling device component positioning mechanism 26 are driven to bring the electromagnetic induction sensor 14 closer to the end surface of the machined cage 21a. When an AC voltage is applied to the AC magnetic field forming coil 14a of the electromagnetic induction sensor 14, an AC magnetic field is generated from the AC magnetic field forming coil 14a.

このようにして電磁誘導センサ14の交流磁場形成用コイル14aから交流磁界が発生すると、電磁誘導センサ14の検出用コイル14bに誘導起電力が発生する。このとき、検出用コイル14bに発生した誘導起電力はもみ抜き保持器21aに発生した欠陥や損傷などに比例して変化するため、検出用コイル14bに発生した誘導起電力を予め設定された閾値と比較することによって、欠陥や損傷などの異常がもみ抜き保持器21aに発生したか否かを検知することできる。   When an AC magnetic field is generated from the AC magnetic field forming coil 14a of the electromagnetic induction sensor 14 in this way, an induced electromotive force is generated in the detection coil 14b of the electromagnetic induction sensor 14. At this time, since the induced electromotive force generated in the detection coil 14b changes in proportion to the defect or damage generated in the machined cage 21a, the induced electromotive force generated in the detection coil 14b is set to a preset threshold value. It is possible to detect whether or not an abnormality such as a defect or damage has occurred in the machined cage 21a.

次に、本発明の第3の実施形態に係る転動装置用異常検知装置の概略構成を図5に示す。同図に示される転動装置用異常検知装置は、転がり軸受部品を部品単体又は転がり軸受として組立てた状態あるいは半組立て状態として載置するターンテーブル22と、このターンテーブル22の上方に配置された電磁誘導センサ14と、この電磁誘導センサ14を図中Z軸回り(図中矢印θz方向)に揺動駆動するセンサ揺動機構27と、このセンサ揺動機構27を介して電磁誘導センサ14を図中Z軸方向に昇降駆動するセンサ昇降機構24と、電磁誘導センサ14を図中X軸方向及びY軸方向に動かしてセンサを位置決めするセンサ位置決め機構25と、ターンテーブル22を図中X軸方向に動かして転動装置部品を位置決めする転動装置部品位置決め機構26とを備えて構成されている。   Next, FIG. 5 shows a schematic configuration of the abnormality detecting device for a rolling device according to the third embodiment of the present invention. The abnormality detecting device for a rolling device shown in FIG. 1 is arranged above a turntable 22 on which a rolling bearing component is placed as a single component or a rolling bearing, or placed in a semi-assembled state. The electromagnetic induction sensor 14, the sensor oscillation mechanism 27 that drives the electromagnetic induction sensor 14 to swing around the Z axis (in the direction of the arrow θz in the figure), and the electromagnetic induction sensor 14 via the sensor oscillation mechanism 27. A sensor elevating mechanism 24 that moves up and down in the Z-axis direction in the figure, a sensor positioning mechanism 25 that positions the sensor by moving the electromagnetic induction sensor 14 in the X-axis direction and the Y-axis direction in the figure, and a turntable 22 in the X-axis direction in the figure. And a rolling device component positioning mechanism 26 that moves in the direction to position the rolling device component.

電磁誘導センサ14は、図2に示すように、交流磁場形成用コイル14aと検出用コイル14bとからなり、交流磁場形成用コイル14aには、交流電流が交流電源から供給されるようになっている。なお、検出用コイル14bは交流磁場形成用コイル14aに一部を接触させて交流磁場形成用コイル14aと同軸に巻回されている。また、交流磁場形成用コイル14a及び検出用コイル14bは一つの筐体内に収容されている。   As shown in FIG. 2, the electromagnetic induction sensor 14 includes an AC magnetic field forming coil 14a and a detection coil 14b, and an alternating current is supplied to the AC magnetic field forming coil 14a from an AC power source. Yes. The detection coil 14b is wound coaxially with the AC magnetic field forming coil 14a with a part in contact with the AC magnetic field forming coil 14a. The AC magnetic field forming coil 14a and the detection coil 14b are housed in one casing.

このような転動装置用異常検知装置を使用して欠陥や損傷などの異常がもみ抜き保持器21aの柱部に発生したか否かを検知する手順としては、先ず、機械の運転を停止して、転がり軸受を機械から取り外した状態で、図5に示すように、内輪(図示せず)が取り除かれたもみ抜き保持器付き円筒ころ軸受をターンテーブル22上に載置する。次に、ターンテーブル22、センサ揺動機構27、センサ昇降機構24、センサ位置決め機構25及び転動装置部品位置決め機構26を駆動して電磁誘導センサ14をもみ抜き保持器21aの柱部に近づけた後、電磁誘導センサ14の交流磁場形成用コイル14aに交流電圧を印加すると、交流磁場形成用コイル14aから交流磁界が発生する。   As a procedure for detecting whether or not an abnormality such as a defect or damage has occurred in the pillar portion of the machined cage 21a using such a rolling device abnormality detection device, first, the operation of the machine is stopped. Then, with the rolling bearing removed from the machine, as shown in FIG. 5, the cylindrical roller bearing with a machined cage from which the inner ring (not shown) has been removed is placed on the turntable 22. Next, the turntable 22, the sensor swing mechanism 27, the sensor elevating mechanism 24, the sensor positioning mechanism 25, and the rolling device component positioning mechanism 26 are driven to bring the electromagnetic induction sensor 14 closer to the pillar portion of the machined cage 21a. Thereafter, when an AC voltage is applied to the AC magnetic field forming coil 14a of the electromagnetic induction sensor 14, an AC magnetic field is generated from the AC magnetic field forming coil 14a.

このようにして電磁誘導センサ14の交流磁場形成用コイル14aから交流磁界が発生すると、電磁誘導センサ14の検出用コイル14bに誘導起電力が発生する。このとき、検出用コイル14bに発生した誘導起電力はもみ抜き保持器21aの柱部に発生した欠陥や損傷などに比例して変化するため、検出用コイル14bに発生した誘導起電力を予め設定された閾値と比較することによって、欠陥や損傷などの異常がもみ抜き保持器21aの柱部に発生したか否かを検知することできる。   When an AC magnetic field is generated from the AC magnetic field forming coil 14a of the electromagnetic induction sensor 14 in this way, an induced electromotive force is generated in the detection coil 14b of the electromagnetic induction sensor 14. At this time, the induced electromotive force generated in the detection coil 14b changes in proportion to the defect or damage generated in the pillar portion of the machined cage 21a, so the induced electromotive force generated in the detection coil 14b is set in advance. By comparing with the threshold value, it is possible to detect whether or not an abnormality such as a defect or damage has occurred in the pillar portion of the machined cage 21a.

上述した第2及び第3の実施形態では、転動装置部品としてもみ抜き保持器を例示したが、これに限られるものではない。たとえば、図6に示すように、転動装置部品として転がり軸受の内側軌道輪21dをターンテーブル22上に載置して欠陥や損傷などの異常が内側軌道輪21dに発生したか否かを検知するようにしてもよい。
なお、組立てた状態で内輪と外輪が分離可能なころ軸受としては、実施例の円筒ころ軸受に限らず、円錐ころ軸受や自動調心ころ軸受でも手で分解・組立てが可能であり、分解・組立ての繰り返しにより性能に影響する傷等が発生しなければ適用可能である。
In the 2nd and 3rd embodiment mentioned above, although the machined cage was illustrated as rolling device components, it is not restricted to this. For example, as shown in FIG. 6, the inner bearing ring 21d of the rolling bearing as a rolling device part is placed on the turntable 22 to detect whether an abnormality such as a defect or damage has occurred in the inner bearing ring 21d. You may make it do.
The roller bearings that can be separated from the inner ring and the outer ring in the assembled state are not limited to the cylindrical roller bearings of the embodiment, and tapered roller bearings and self-aligning roller bearings can be disassembled and assembled by hand. The present invention can be applied if no damage or the like affecting the performance occurs due to repeated assembly.

本発明の第1の実施形態に係る転動装置用異常検知装置の概略構成を示す図である。It is a figure which shows schematic structure of the abnormality detection apparatus for rolling devices which concerns on the 1st Embodiment of this invention. 転動装置の転動装置部品に生じた金属組織の変化或いは潤滑状態の変化に起因して磁場の変化を検出する電磁誘導センサの概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the electromagnetic induction sensor which detects the change of the magnetic field resulting from the change of the metal structure which arises in the rolling device components of the rolling device, or the change of the lubrication state. 電磁誘導センサの交流磁場形成用コイルから発生する交流磁界を示す図である。It is a figure which shows the alternating current magnetic field generate | occur | produced from the coil for alternating current magnetic field formation of an electromagnetic induction sensor. 本発明の第2の実施形態に係る転動装置用異常検知装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the abnormality detection apparatus for rolling devices which concerns on the 2nd Embodiment of this invention. 本発明の第3の実施形態に係る転動装置用異常検知装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the abnormality detection apparatus for rolling devices which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る転動装置用異常検知装置の概略構成を示す斜視図である。It is a perspective view which shows schematic structure of the abnormality detection apparatus for rolling devices which concerns on the 4th Embodiment of this invention. 渦電流センサの概略構成を示す図である。It is a figure which shows schematic structure of an eddy current sensor.

符号の説明Explanation of symbols

10 軸受ハウジング
11 玉軸受
11a 転動体
11b 外側軌道輪
11c 内側軌道輪
12 回転軸
13 転動装置用異常検知装置
14 電磁誘導センサ
14a 交流磁場形成用コイル
14b 検出用コイル
15 増幅器
16 マイクロコンピュータ
16a 信号処理部
16b 比較判定部
17 表示器
18 記録装置
19 交流電源
20 交流磁界
21a 円筒ころ軸受のもみ抜き保持器
21b 円筒ころ軸受の円筒ころ
21c 円筒ころ軸受の外側軌道輪
21d 円筒ころ軸受の内側軌道輪
22 ターンテーブル
23,27 センサ揺動機構
24 センサ昇降機構
25 センサ位置決め機構
26 転動装置部品位置決め機構
DESCRIPTION OF SYMBOLS 10 Bearing housing 11 Ball bearing 11a Rolling element 11b Outer raceway ring 11c Inner raceway ring 12 Rotating shaft 13 Rolling device abnormality detection device 14 Electromagnetic induction sensor 14a AC magnetic field forming coil 14b Detection coil 15 Amplifier 16 Microcomputer 16a Signal processing Section 16b Comparison judgment section 17 Indicator 18 Recording device 19 AC power supply 20 AC magnetic field 21a Cylindrical roller bearing milling cage 21b Cylindrical roller bearing cylindrical roller 21c Cylindrical roller bearing outer race ring 21d Cylindrical roller bearing inner race ring 22 Turntable 23, 27 Sensor swing mechanism 24 Sensor lifting mechanism 25 Sensor positioning mechanism 26 Rolling device component positioning mechanism

Claims (8)

転動装置の転動装置部品に生じた金属組織の変化または潤滑状態の変化に起因した磁場の変化を検出するセンサとして、前記転動装置部品の検査部位を含む空間部に交流磁場を形成する交流磁場形成用コイルと、この交流磁場形成用コイルにより形成された交流磁場の変化を電磁誘導現象により検出する検出用コイルとを具備してなる電磁誘導センサを用い、この電磁誘導センサの交流磁場内に配置される検出用コイルに発生した誘導起電力から前記転動装置に異常が発生したか否かを検知することを特徴とする転動装置の異常検知方法。   An alternating magnetic field is formed in a space including an inspection site of the rolling device part as a sensor for detecting a change in magnetic structure caused by a change in a metal structure or a lubrication state generated in the rolling device part of the rolling device. Using an electromagnetic induction sensor comprising an alternating magnetic field forming coil and a detection coil for detecting a change in the alternating magnetic field formed by the alternating magnetic field forming coil by an electromagnetic induction phenomenon, the alternating magnetic field of the electromagnetic induction sensor An abnormality detection method for a rolling device, comprising: detecting whether or not an abnormality has occurred in the rolling device from an induced electromotive force generated in a detection coil disposed inside the rolling device. 請求項1記載の転動装置の異常検知方法において、前記異常が潤滑剤の劣化であることを特徴とする転動装置の異常検知方法。   The abnormality detection method for a rolling device according to claim 1, wherein the abnormality is deterioration of a lubricant. 請求項1記載の転動装置の異常検知方法において、前記異常が前記転動装置部品に発生した表面損傷であることを特徴とする転動装置の異常検知方法。   2. The method for detecting an abnormality of a rolling device according to claim 1, wherein the abnormality is a surface damage occurring in the rolling device component. 請求項1記載の転動装置の異常検知方法において、前記異常が前記転動装置部品に発生した表面疲労または内部疲労であることを特徴とする転動装置の異常検知方法。   The abnormality detection method for a rolling device according to claim 1, wherein the abnormality is surface fatigue or internal fatigue generated in the rolling device component. 転動装置に異常が発生したか否かを検知する転動装置用異常検知装置であって、交流磁場形成用コイルと検出用コイルとを有してなる電磁誘導センサと、この電磁誘導センサから出力された信号を増幅する増幅器と、この増幅器で増幅された前記電磁誘導センサの出力信号を処理して前記転動装置に異常が発生したか否かを判定する判定手段とを具備してなることを特徴とする転動装置用異常検知装置。   An abnormality detection device for a rolling device for detecting whether or not an abnormality has occurred in the rolling device, comprising an electromagnetic induction sensor having an AC magnetic field forming coil and a detection coil, and from this electromagnetic induction sensor An amplifier that amplifies the output signal, and a determination unit that processes the output signal of the electromagnetic induction sensor amplified by the amplifier and determines whether or not an abnormality has occurred in the rolling device. An abnormality detection device for a rolling device. 前記判定手段がマイクロコンピュータであることを特徴とする請求項5記載の転動装置用異常検知装置。   6. The abnormality detecting device for a rolling device according to claim 5, wherein the determining means is a microcomputer. 請求項5または6記載の転動装置用異常検知装置において、前記電磁誘導センサ、前記増幅器及び前記判定手段の少なくとも一つが前記転動装置または前記転動装置を具備した機械に取り付けられていることを特徴とする転動装置用異常検知装置。   The abnormality detection device for a rolling device according to claim 5 or 6, wherein at least one of the electromagnetic induction sensor, the amplifier, and the determination unit is attached to the rolling device or a machine including the rolling device. An abnormality detection device for a rolling device. 請求項5〜7のいずれか一項記載の転動装置用異常検知装置において、前記交流磁場形成用コイルと前記検出用コイルが一つの筐体内に収容されていることを特徴とする転動装置用異常検知装置。   The rolling device abnormality detection device according to any one of claims 5 to 7, wherein the alternating-current magnetic field forming coil and the detection coil are accommodated in a single casing. Anomaly detector.
JP2006255418A 2006-05-26 2006-09-21 Abnormality detecting method of rolling device, and abnormality detector for rolling device Pending JP2008032672A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006255418A JP2008032672A (en) 2006-05-26 2006-09-21 Abnormality detecting method of rolling device, and abnormality detector for rolling device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006147117 2006-05-26
JP2006162413 2006-06-12
JP2006181704 2006-06-30
JP2006255418A JP2008032672A (en) 2006-05-26 2006-09-21 Abnormality detecting method of rolling device, and abnormality detector for rolling device

Publications (1)

Publication Number Publication Date
JP2008032672A true JP2008032672A (en) 2008-02-14

Family

ID=39122236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006255418A Pending JP2008032672A (en) 2006-05-26 2006-09-21 Abnormality detecting method of rolling device, and abnormality detector for rolling device

Country Status (1)

Country Link
JP (1) JP2008032672A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698128A (en) * 2013-12-23 2014-04-02 武汉理工大学 Large-air gap mixed magnetic bearing performance testing device
CN106153337A (en) * 2016-06-22 2016-11-23 东南大学 A kind of Permanent-magnet bearing axial carrying capacity test device
JP2020024172A (en) * 2018-08-08 2020-02-13 日本精工株式会社 Nondegradable diagnostic method for bearing or direct-acting device
JPWO2020255476A1 (en) * 2019-06-17 2021-10-21 日本精工株式会社 Fatigue diagnosis method for rolling machine elements and fatigue diagnosis system for rolling machine elements
CN114112371A (en) * 2021-12-31 2022-03-01 成都华动科技有限公司 Motor train unit large part falling detection system and method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103698128A (en) * 2013-12-23 2014-04-02 武汉理工大学 Large-air gap mixed magnetic bearing performance testing device
CN103698128B (en) * 2013-12-23 2016-05-11 武汉理工大学 A kind of air gaps hybrid magnetic suspension bearing performance testing device
CN106153337A (en) * 2016-06-22 2016-11-23 东南大学 A kind of Permanent-magnet bearing axial carrying capacity test device
JP2020024172A (en) * 2018-08-08 2020-02-13 日本精工株式会社 Nondegradable diagnostic method for bearing or direct-acting device
JPWO2020255476A1 (en) * 2019-06-17 2021-10-21 日本精工株式会社 Fatigue diagnosis method for rolling machine elements and fatigue diagnosis system for rolling machine elements
JP7017188B2 (en) 2019-06-17 2022-02-08 日本精工株式会社 Fatigue diagnosis method for rolling machine elements
US11821810B2 (en) 2019-06-17 2023-11-21 Nsk Ltd. Rolling machine element fatigue diagnosis method and rolling machine element fatigue diagnosis system
CN114112371A (en) * 2021-12-31 2022-03-01 成都华动科技有限公司 Motor train unit large part falling detection system and method

Similar Documents

Publication Publication Date Title
US8229682B2 (en) Apparatus and method for bearing condition monitoring
CN106482627B (en) A kind of testing stand and method for being used to measure bearing Radial windage
JP6499946B2 (en) Machine tool bearing diagnostic device
JP4598656B2 (en) Turbomachine with a device for automatically detecting ferromagnetic particles in an oil enclosure
JP6657256B2 (en) Fault diagnosis method and fault diagnosis device for feed axis
JP2008032672A (en) Abnormality detecting method of rolling device, and abnormality detector for rolling device
JPWO2016175322A1 (en) Abnormality diagnosis system
JP2010217167A (en) Bearing device and spindle device of machine tool
JPWO2020090479A1 (en) Ball screw preload drop detection method and linear drive device
Jacobs et al. The influence of external dynamic loads on the lifetime of rolling element bearings: Experimental analysis of the lubricant film and surface wear
JP5842965B2 (en) Spindle device of machine tool provided with bearing device with load sensor
JPWO2016133100A1 (en) Abnormality diagnosis system
JP2008032677A (en) Method and device for inspecting rolling device component
JP2008032679A (en) Method and device for inspecting product defect of rolling device component
JP2004169756A (en) Bearing device with sensor
JP2008032674A (en) Quality inspection method of rolling device component, and quality inspection device for the rolling device component
JP6966497B2 (en) Bearing diagnostic equipment, bearing diagnostic method, and escalator
Monavar et al. Prediction of defects in roller bearings using vibration signal analysis
JP3845756B2 (en) Magnetic bearing device
US11821810B2 (en) Rolling machine element fatigue diagnosis method and rolling machine element fatigue diagnosis system
CN107076199B (en) Gas bearing spindle
JP6029888B2 (en) Motor diagnostic device, method and program
JP2008020434A (en) Method and device for inspecting internal flaw of antifriction bearing component
JP2003172494A (en) Lubricant deterioration detecting device and rolling device comprising the same
JP2008032680A (en) Inspection method of rolling device component, and inspection device for rolling device component