JP2008032295A - Refrigeration apparatus - Google Patents

Refrigeration apparatus Download PDF

Info

Publication number
JP2008032295A
JP2008032295A JP2006204924A JP2006204924A JP2008032295A JP 2008032295 A JP2008032295 A JP 2008032295A JP 2006204924 A JP2006204924 A JP 2006204924A JP 2006204924 A JP2006204924 A JP 2006204924A JP 2008032295 A JP2008032295 A JP 2008032295A
Authority
JP
Japan
Prior art keywords
expansion valve
refrigerant
pressure
condenser
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006204924A
Other languages
Japanese (ja)
Inventor
Yuhei Yamagami
雄平 山上
Hisanori Ishita
尚紀 井下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Retail Systems Co Ltd
Original Assignee
Fuji Electric Retail Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Retail Systems Co Ltd filed Critical Fuji Electric Retail Systems Co Ltd
Priority to JP2006204924A priority Critical patent/JP2008032295A/en
Publication of JP2008032295A publication Critical patent/JP2008032295A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/39Dispositions with two or more expansion means arranged in series, i.e. multi-stage expansion, on a refrigerant line leading to the same evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide

Abstract

<P>PROBLEM TO BE SOLVED: To prevent oil choke in an expansion valve. <P>SOLUTION: In this refrigeration apparatus provided with a refrigerant circulating route constituted by connecting a compressor 1, a condenser 2, the expansion valve 4 and an evaporator 5 by a closed loop, a pressure reducing means 3a for reducing a pressure of the refrigerant radiating heat at the condenser 2, to a two-phase region G of a gas-liquid mixing state, is disposed between the condenser 2 and the expansion valve 4, and the refrigerant is kept in the gas-liquid mixing state at an input portion of the expansion valve 4, thus a gas component is included, a density is reduced, and a flow velocity is increased. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、圧縮機、凝縮器、膨張弁、および蒸発器を閉ループに結合してなる冷媒循環経路内を、冷媒と共に冷凍機油(オイル)が循環する冷凍装置に係り、より詳しくは膨張弁でのオイルチョーク(冷凍機油の詰まり)を防止できる冷凍装置に関する。   The present invention relates to a refrigerating apparatus in which refrigerating machine oil (oil) circulates with a refrigerant in a refrigerant circulation path formed by coupling a compressor, a condenser, an expansion valve, and an evaporator in a closed loop. The present invention relates to a refrigeration apparatus that can prevent oil choke (clogging of refrigerator oil).

圧縮機、凝縮器、開度調整可能な膨張弁、および蒸発器を閉ループに結合して冷媒循環経路を構成してなる冷凍装置は一般に知られている。   A refrigerating apparatus in which a refrigerant circulation path is configured by connecting a compressor, a condenser, an expansion valve whose opening is adjustable, and an evaporator in a closed loop is generally known.

また、冷媒としては、一般にHFC冷媒(ハイドロフルオロカーボン)が使用されている。しかし、地球環境を保護する観点から、より地球環境に対する影響の少ない冷媒の開発が要求されている。そこで、最近では、不燃性、安全性、不腐食性、更にオゾン層への影響が少なく、人体にも悪影響を与えない二酸化炭素を冷媒として使用する冷凍装置の開発が進められている。   As the refrigerant, HFC refrigerant (hydrofluorocarbon) is generally used. However, from the viewpoint of protecting the global environment, the development of a refrigerant that has less influence on the global environment is required. Therefore, recently, development of a refrigeration apparatus using carbon dioxide as a refrigerant, which is nonflammable, safe, non-corrosive, has little influence on the ozone layer, and does not adversely affect the human body, has been promoted.

ところで、フロンを用いた冷凍装置では、高温側の圧力が約1〜2MPaで運転されるのに対し、二酸化炭素を冷媒に使用する冷凍装置の場合は、安定運転時でも高温側の圧力が約10MPa以上となる。このため、高圧仕様の特殊な膨張弁が必要となる。そこで、冷媒循環経路内の凝縮器と膨張弁との間にキャピラリチューブからなる減圧手段を介在させて、冷媒の圧力を2段階で減圧することで、膨張弁そのものに要求される耐圧性を低くできるようにして、汎用品の膨張弁の使用を可能としたものが提案されている(例えば、特許文献1参照)。   By the way, in the refrigeration apparatus using Freon, the high temperature side pressure is operated at about 1 to 2 MPa, whereas in the case of a refrigeration apparatus using carbon dioxide as a refrigerant, the high temperature side pressure is about even during stable operation. 10 MPa or more. For this reason, a special expansion valve with a high-pressure specification is required. Therefore, a pressure reducing means consisting of a capillary tube is interposed between the condenser in the refrigerant circulation path and the expansion valve, and the pressure of the refrigerant is reduced in two stages, thereby reducing the pressure resistance required for the expansion valve itself. In order to make it possible to use a general-purpose expansion valve, it has been proposed (see, for example, Patent Document 1).

特開平11−142024号公報(図1)Japanese Patent Laid-Open No. 11-14024 (FIG. 1)

ところで、冷凍装置に使用される圧縮機は、所定粘度の冷凍機油を用いて冷媒を圧縮している。この冷凍機油は、圧縮機内部の摩耗、冷媒漏れ等を防止するための役目を担うものである。例えば、レシプロ圧縮機に使用される冷凍機油は、シリンダが摩耗するのを防止し、またシリンダとピストンの隙間を塞いで冷媒が漏れるのを防止している。しかし、冷凍機油は、圧縮機の構造上、圧縮機内部で完全に封止することは困難であり、圧縮機から冷媒循環経路内に僅かに流出してこの冷媒循環経路内を循環している。つまり、冷媒循環経路内では、冷媒と冷凍機油が混合された状態で循環している。また、冷媒(例えば二酸化炭素)と冷凍機油の関係については、以下のことが解っている。   By the way, the compressor used for the refrigerating apparatus compresses the refrigerant by using a refrigerating machine oil having a predetermined viscosity. This refrigerating machine oil plays a role in preventing wear inside the compressor, leakage of refrigerant, and the like. For example, the refrigerating machine oil used in the reciprocating compressor prevents the cylinder from being worn, and prevents the refrigerant from leaking by closing the gap between the cylinder and the piston. However, refrigeration oil is difficult to completely seal inside the compressor due to the structure of the compressor, and slightly flows out from the compressor into the refrigerant circulation path and circulates in the refrigerant circulation path. . That is, in the refrigerant circulation path, the refrigerant and the refrigeration oil are circulated in a mixed state. Moreover, the following is understood about the relationship between a refrigerant | coolant (for example, carbon dioxide) and refrigeration oil.

すなわち、温度が一定の条件では、二酸化炭素が冷凍機油(単位体積)に溶け込む重量の割合を示す二酸化炭素混合率は、圧力の上昇に伴って増大する。更に、圧力が一定の条件では、二酸化炭素混合率は、温度の低下に伴って増大する。つまり、圧力が上昇するほど、また温度が低下するほど、二酸化炭素は冷凍機油に溶け込みやすくなる特性を有している。   That is, under the condition where the temperature is constant, the carbon dioxide mixing ratio indicating the ratio of the weight of carbon dioxide dissolved in the refrigerating machine oil (unit volume) increases as the pressure increases. Furthermore, under the condition where the pressure is constant, the carbon dioxide mixing ratio increases as the temperature decreases. That is, as the pressure increases and the temperature decreases, carbon dioxide has a characteristic of becoming more easily dissolved in the refrigerating machine oil.

また、温度が一定の条件では、冷凍機油の粘度は、二酸化炭素混合率の減少に伴って増大する。更に、二酸化炭素混合率が一定の条件では、冷凍機油の粘度は、温度の低下に伴って増大する。つまり、二酸化炭素混合率が減少するほど、また温度が低下するほど、冷凍機油は粘る特性を有している。   On the other hand, when the temperature is constant, the viscosity of the refrigerating machine oil increases as the carbon dioxide mixing rate decreases. Furthermore, under the condition where the carbon dioxide mixing ratio is constant, the viscosity of the refrigerating machine oil increases as the temperature decreases. That is, as the carbon dioxide mixing ratio decreases and the temperature decreases, the refrigeration oil has a characteristic that it becomes sticky.

このため、膨張弁の開度を絞ることによる低流量時に、膨張弁の入力部での流速が小さくなったり、低温になると、オイルの粘度が増大し、膨張弁部分でオイルチョーク(冷凍機油の詰まり)が発生する。オイルチョークが発生すると、二酸化炭素からなる冷媒の循環量が極端に小さくなり、膨張弁の高圧側の圧力が上がり、圧縮機の保護回路が働くまでに至る。   For this reason, when the flow rate at the input part of the expansion valve becomes low or the temperature becomes low at low flow rates by reducing the opening of the expansion valve, the viscosity of the oil increases and an oil choke (of the refrigerating machine oil) Clogging) occurs. When the oil choke is generated, the circulation amount of the refrigerant composed of carbon dioxide becomes extremely small, the pressure on the high pressure side of the expansion valve is increased, and the protection circuit of the compressor is activated.

また、二酸化炭素を冷媒として使用する冷凍装置では、冷媒循環経路内の圧力がHFC冷媒を使用する場合と比べて高圧側、低圧側ともに上昇し、圧縮機の内部負荷(摩擦等)が増大して圧縮機自体を破損する可能性が高くなる。しかも、高圧から低圧へ移行する行程において、冷媒は超臨界、液体、気液2相状態へと相変化を行う。そのため、この圧縮機の冷凍機油としては、HFC冷媒の場合の冷凍機油と比べて高い粘度のものを使用している。つまり、二酸化炭素を冷媒として使用する冷凍装置の冷媒循環経路内を循環している冷凍機油は、低温では膨張弁で非常に詰まり易い。   Also, in a refrigeration system that uses carbon dioxide as a refrigerant, the pressure in the refrigerant circulation path increases both on the high-pressure side and the low-pressure side compared to the case where HFC refrigerant is used, and the internal load (friction, etc.) of the compressor increases. This increases the possibility of damaging the compressor itself. Moreover, in the process of transition from high pressure to low pressure, the refrigerant undergoes a phase change to a supercritical, liquid, gas-liquid two-phase state. For this reason, as the refrigerating machine oil of this compressor, one having a higher viscosity than the refrigerating machine oil in the case of the HFC refrigerant is used. That is, the refrigerating machine oil circulating in the refrigerant circulation path of the refrigeration apparatus using carbon dioxide as a refrigerant is very likely to be clogged with the expansion valve at a low temperature.

このような膨張弁でのオイルチョークの問題は、前述の従来例のように冷媒循環経路内の凝縮器と膨張弁との間にキャピラリチューブからなる減圧手段を介在させて、冷媒の圧力を単に2段階で減圧するだけで解決できるものではない。本発明者等の実験によれば、前述の従来例のように膨張弁の上流側に減圧手段(キャピラリチューブ)を配置した場合は、1段目の減圧手段(キャピラリチューブ)による減圧後の冷媒の性状や温度がオイルチョークに関して重要な意味をもつことが判明した。すなわち、膨張弁の上流側に減圧手段(キャピラリチューブ)を配置して2段階減圧を行った場合でも、1段目の減圧後の冷媒の性状が液相のみの状態であれば、膨張弁の入力部での流速が小さくなったり、低温になった時にオイルチョークが発生することが解った。そして、これを解消するには、1段目の減圧手段となるキャピラリチューブにて冷媒を2相(気液混合)となる領域まで減圧し、ガス成分を含ませ、密度を小さくして、流速を速くすればよく、また膨張弁の下流側に減圧手段(キャピラリチューブ)を配置して2段階減圧を行えば、膨張弁直後の温度を上げることができて、冷凍機油の粘度を低く抑えることができるため、1段目の膨張弁にて必ずしも冷媒を2相(気液混合)となる領域まで減圧しなくともオイルチョークは発生しないという、これまで知られていなかった物理現象を発見した。   The problem of the oil choke in such an expansion valve is that the pressure of the refrigerant is simply set by interposing a pressure reducing means comprising a capillary tube between the condenser and the expansion valve in the refrigerant circulation path as in the above-described conventional example. It cannot be solved simply by reducing the pressure in two stages. According to the experiments by the present inventors, when the pressure reducing means (capillary tube) is arranged upstream of the expansion valve as in the above-described conventional example, the refrigerant after pressure reduction by the first stage pressure reducing means (capillary tube). It has been found that the properties and temperature of the oil have important implications for oil chokes. In other words, even when a pressure reducing means (capillary tube) is arranged upstream of the expansion valve and the two-stage pressure reduction is performed, if the property of the refrigerant after the first pressure reduction is only in the liquid phase, the expansion valve It has been found that oil choke is generated when the flow velocity at the input section decreases or when the temperature becomes low. In order to solve this problem, the pressure of the refrigerant is reduced to a region of two phases (gas-liquid mixing) with a capillary tube as a first-stage pressure reducing means, the gas component is included, the density is reduced, If the pressure reducing means (capillary tube) is placed downstream of the expansion valve and the pressure is reduced in two stages, the temperature immediately after the expansion valve can be raised and the viscosity of the refrigerating machine oil can be kept low. Therefore, an undiscovered physical phenomenon has been discovered that oil choke does not occur even if the first stage expansion valve does not necessarily reduce the pressure of the refrigerant to a region that is in two phases (gas-liquid mixing).

本発明は、以上の点と前記知見とに鑑み、膨張弁でのオイルチョークを防止することのできる冷凍装置を得ることを目的とする。   An object of the present invention is to obtain a refrigeration apparatus capable of preventing oil choke in an expansion valve in view of the above points and the above knowledge.

(1)本発明に係る冷凍装置は、下記の構成からなるものである。すなわち、圧縮機、凝縮器、膨張弁、および蒸発器を閉ループに結合して冷媒循環経路を構成してなる冷凍装置において、凝縮器と膨張弁との間に、凝縮器にて放熱された冷媒の圧力を気液混合状態となる2相域まで減圧する減圧手段を設けたものである。   (1) The refrigeration apparatus according to the present invention has the following configuration. That is, in a refrigeration apparatus in which a compressor, a condenser, an expansion valve, and an evaporator are connected in a closed loop to form a refrigerant circulation path, the refrigerant radiated by the condenser between the condenser and the expansion valve Is provided with a pressure reducing means for reducing the pressure to a two-phase region where a gas-liquid mixed state is achieved.

(2)本発明に係る冷凍装置は、下記の構成からなるものである。すなわち、圧縮機、凝縮器、膨張弁、および蒸発器を閉ループに結合して冷媒循環経路を構成してなる冷凍装置において、膨張弁と蒸発器との間に、膨張弁にて断熱膨張により減圧された冷媒の圧力を、更に蒸発器の蒸発温度まで断熱膨張により減圧する減圧手段を設けたものである。   (2) The refrigeration apparatus according to the present invention has the following configuration. That is, in a refrigeration system in which a refrigerant circulation path is configured by connecting a compressor, a condenser, an expansion valve, and an evaporator in a closed loop, the pressure is reduced by adiabatic expansion at the expansion valve between the expansion valve and the evaporator. A pressure reducing means for reducing the pressure of the refrigerant further by adiabatic expansion to the evaporation temperature of the evaporator is provided.

(3)本発明に係る冷凍装置は、下記の構成からなるものである。すなわち、圧縮機、凝縮器、膨張弁、および蒸発器を閉ループに結合して冷媒循環経路を構成してなる冷凍装置において、凝縮器と膨張弁との間に、凝縮器にて放熱された冷媒の圧力を気液混合状態となる2相域まで減圧する第1の減圧手段を設けるとともに、膨張弁と蒸発器との間に、第1の減圧手段と膨張弁にて断熱膨張により2段階で減圧された冷媒の圧力を、更に蒸発器の蒸発温度まで断熱膨張により減圧する第2の減圧手段を設けたものである。   (3) The refrigeration apparatus according to the present invention has the following configuration. That is, in a refrigeration apparatus in which a compressor, a condenser, an expansion valve, and an evaporator are connected in a closed loop to form a refrigerant circulation path, the refrigerant radiated by the condenser between the condenser and the expansion valve The first pressure reducing means for reducing the pressure of the gas to the two-phase region where the gas-liquid mixture is brought about is provided, and the first pressure reducing means and the expansion valve are adiabatically expanded in two stages between the expansion valve and the evaporator. A second depressurizing means for depressurizing the pressure of the depressurized refrigerant to the evaporation temperature of the evaporator by adiabatic expansion is provided.

(4)本発明に係る冷凍装置は、減圧手段を、キャピラリチューブまたはオリフィスによって構成したものである。   (4) In the refrigeration apparatus according to the present invention, the decompression means is constituted by a capillary tube or an orifice.

(5)本発明に係る冷凍装置は、冷媒として二酸化炭素を用いたものである。   (5) The refrigeration apparatus according to the present invention uses carbon dioxide as a refrigerant.

本発明の冷却装置においては、膨張弁の前、後、又は前後に、冷凍機油の粘性を下げるための減圧手段を配置しているので、冷凍機油の粘性が増大することがなく、冷媒の流速が速くなり、膨張弁でのオイルチョークを防止することができる。   In the cooling device of the present invention, the decompression means for lowering the viscosity of the refrigerating machine oil is arranged before, after, or before and after the expansion valve, so that the viscosity of the refrigerating machine oil does not increase and the flow rate of the refrigerant And the oil choke at the expansion valve can be prevented.

また、減圧手段としてキャピラリチューブまたはオリフィスを用いることで、構造の簡略化が図れ、コストを抑制することができる。   Further, by using a capillary tube or an orifice as the decompression means, the structure can be simplified and the cost can be reduced.

また、冷媒として二酸化炭素を用いることで、地球環境や人体に悪影響を与えず、安全性の確保が容易となる。   Further, by using carbon dioxide as a refrigerant, it is easy to ensure safety without adversely affecting the global environment and the human body.

実施の形態1.
図1は本発明の実施の形態1に係る冷凍装置の動作を示すモリエル線図(P−H線図)、図2はその冷凍回路(冷媒循環経路)の構成図である。
Embodiment 1 FIG.
FIG. 1 is a Mollier diagram (PH diagram) showing the operation of the refrigeration apparatus according to Embodiment 1 of the present invention, and FIG. 2 is a configuration diagram of the refrigeration circuit (refrigerant circulation path).

本実施形態の冷凍装置は、図2のように圧縮機1、凝縮器2、開度調整可能な膨張弁4、および蒸発器5を閉ループに結合し、冷媒として二酸化炭素を用いてなる冷凍回路(冷媒循環経路)において、凝縮器2と膨張弁4との間(膨張弁4の上流側)に、凝縮器2にて放熱された冷媒の圧力を液体から気液混合状態となる2相域(図1中の塗り潰されたG領域)まで減圧する減圧手段すなわちキャピラリチューブ3aを設けたものである。   As shown in FIG. 2, the refrigeration apparatus of the present embodiment is a refrigeration circuit in which a compressor 1, a condenser 2, an expansion valve 4 with adjustable opening, and an evaporator 5 are coupled in a closed loop and carbon dioxide is used as a refrigerant. In the (refrigerant circulation path), between the condenser 2 and the expansion valve 4 (upstream of the expansion valve 4), the two-phase region where the pressure of the refrigerant radiated by the condenser 2 is changed from a liquid to a gas-liquid mixed state. A pressure reducing means, that is, a capillary tube 3a for reducing the pressure to (the filled G region in FIG. 1) is provided.

本実施形態の冷凍装置においては、圧縮機1から吐出した冷媒が図2中に矢印で示すように凝縮器2、キャピラリチューブ3a、膨張弁4及び蒸発器5に順次循環することにより、冷凍サイクルが構成される。   In the refrigeration apparatus of the present embodiment, the refrigerant discharged from the compressor 1 is circulated sequentially to the condenser 2, the capillary tube 3a, the expansion valve 4 and the evaporator 5 as indicated by arrows in FIG. Is configured.

図1中のA,B,C,D,Eで示した線は冷媒がたどる経路を示しており、A〜Bは圧縮機1が冷媒を圧縮する行程、B〜Cは凝縮器2により冷媒が熱エネルギを放出する行程、C〜D〜Eは断熱膨張により2段階で減圧する行程、E〜Aは蒸発器5により冷媒が熱エネルギを吸収する行程である。C〜E間の途中のDは冷媒が気液混合状態となる2相域G内の圧力、Eは蒸発器5の蒸発温度(以下、これを「エバ温度」という)であり、ここではC〜Dまではキャピラリチューブ3aにより減圧し、D〜Eまでは膨張弁4により減圧するようになっている。   The lines indicated by A, B, C, D, and E in FIG. 1 indicate the paths that the refrigerant follows. A to B are strokes in which the compressor 1 compresses the refrigerant, and B to C are the refrigerant by the condenser 2. , C to D to E are steps in which pressure is reduced in two stages by adiabatic expansion, and E to A are steps in which the refrigerant absorbs heat energy by the evaporator 5. D in the middle of C to E is the pressure in the two-phase region G where the refrigerant is in a gas-liquid mixed state, and E is the evaporation temperature of the evaporator 5 (hereinafter referred to as “evaporation temperature”). Up to ~ D, the pressure is reduced by the capillary tube 3a, and up to D ~ E is reduced by the expansion valve 4.

このように、本実施形態の冷凍装置は、膨張弁4の上流側に、凝縮器2にて放熱された冷媒の圧力を気液混合状態となる2相域Gまで減圧するキャピラリチューブ3aを設けたので、膨張弁4の入力部では冷媒が気液混合状態となる。そして、この気液混合状態下では冷媒のクオリティ(乾き度)があるため、ガス成分が含まれ、密度が小さくなり、流速が速くなる。このため、たとえ粘度が高くなった冷凍機油が混入していても、これを押し出し、詰まらないように流してやることができ、膨張弁4でのオイルチョークを防止することができる。   As described above, the refrigeration apparatus of the present embodiment is provided with the capillary tube 3a on the upstream side of the expansion valve 4 for reducing the pressure of the refrigerant radiated by the condenser 2 to the two-phase region G where the gas-liquid mixed state is established. Therefore, the refrigerant is in a gas-liquid mixed state at the input portion of the expansion valve 4. And in this gas-liquid mixed state, since there is a quality (dryness) of the refrigerant, a gas component is contained, the density is reduced, and the flow rate is increased. For this reason, even if refrigeration oil having a high viscosity is mixed, it can be pushed out and allowed to flow without clogging, and oil choking at the expansion valve 4 can be prevented.

実施の形態2.
図3は本発明の実施の形態2に係る冷凍装置の動作を示すモリエル線図(P−H線図)、図4はその冷凍回路(冷媒循環経路)の構成図であり、各図中、前述の実施の形態1と同一部分には同一符号を付してある。
Embodiment 2. FIG.
FIG. 3 is a Mollier diagram (PH diagram) illustrating the operation of the refrigeration apparatus according to Embodiment 2 of the present invention, and FIG. 4 is a configuration diagram of the refrigeration circuit (refrigerant circulation path). The same parts as those in the first embodiment are denoted by the same reference numerals.

本実施形態の冷凍装置は、図4のように圧縮機1、凝縮器2、開度調整可能な膨張弁4、および蒸発器5を閉ループに結合し、冷媒として二酸化炭素を用いてなる冷凍回路(冷媒循環経路)において、膨張弁4と蒸発器5との間(膨張弁4の下流側)に、膨張弁4にて断熱膨張により減圧された冷媒の圧力を、更に蒸発器5のエバ温度まで断熱膨張により減圧する減圧手段すなわちキャピラリチューブ3bを設けた点が前述の実施の形態1のものと異なっている。それ以外の構成は前述の実施の形態1のものと同様である。   As shown in FIG. 4, the refrigeration apparatus of the present embodiment is a refrigeration circuit in which a compressor 1, a condenser 2, an expansion valve 4 with adjustable opening, and an evaporator 5 are coupled in a closed loop and carbon dioxide is used as a refrigerant. In the (refrigerant circulation path), between the expansion valve 4 and the evaporator 5 (on the downstream side of the expansion valve 4), the pressure of the refrigerant depressurized by the adiabatic expansion by the expansion valve 4 is further increased. This is different from that of the first embodiment described above in that a pressure reducing means for reducing pressure by adiabatic expansion, that is, a capillary tube 3b is provided. Other configurations are the same as those of the first embodiment.

本実施形態の冷凍装置において、図3中のA,B,C,D,Eで示した線は冷媒がたどる経路を示しており、A〜Bは圧縮機1が冷媒を圧縮する行程、B〜Cは凝縮器2により冷媒が熱エネルギを放出する行程、C〜D〜Eは断熱膨張により2段階で減圧する行程、E〜Aは蒸発器5により冷媒が熱エネルギを吸収する行程である。C〜E間の途中のDは冷媒が気液混合状態となる2相域G内の圧力、Eは蒸発器5のエバ温度であり、ここではC〜Dまでは膨張弁4により減圧し、D〜Eまではキャピラリチューブ3aにより減圧するようになっている。   In the refrigeration apparatus of the present embodiment, the lines indicated by A, B, C, D, and E in FIG. 3 indicate the paths that the refrigerant follows, and A to B are steps in which the compressor 1 compresses the refrigerant, B C is a process in which the refrigerant releases thermal energy by the condenser 2, C C to D are processes in which the pressure is reduced in two stages by adiabatic expansion, and E to A are processes in which the refrigerant absorbs the heat energy by the evaporator 5. . D in the middle between C and E is the pressure in the two-phase region G where the refrigerant is in a gas-liquid mixed state, E is the evaporator temperature of the evaporator 5, and here, the pressure is reduced by the expansion valve 4 until C to D, From D to E, the pressure is reduced by the capillary tube 3a.

このように、本実施形態の冷凍装置においては、膨張弁4の下流側に、膨張弁4にて膨張された冷媒を必要なエバ温度まで下げるキャピラリチューブ3bを設けたので、膨張弁4直後の状態をD点まで上げることができる。このため、膨張弁4直後の温度を上げることができて、冷凍機油の粘度を低く抑えることができ、膨張弁4でのオイルチョークを防止することができる。   As described above, in the refrigeration apparatus of the present embodiment, the capillary tube 3b that lowers the refrigerant expanded by the expansion valve 4 to the required evaporation temperature is provided on the downstream side of the expansion valve 4. The state can be raised to point D. For this reason, the temperature immediately after the expansion valve 4 can be raised, the viscosity of the refrigerating machine oil can be kept low, and oil choke at the expansion valve 4 can be prevented.

なお、ここでは膨張弁4により、冷媒を2相(気液混合)となる領域Gまで減圧するようにしたものを例に挙げて説明したが、既述したように膨張弁4後の冷媒をキャピラリチューブ3bによって必要なエバ温度まで下げるようにして、膨張弁4直後の温度を上げ、冷凍機油の粘度を低く抑えることができるようにしているため、1段目となる膨張弁4にて必ずしも冷媒を2相域Gまで減圧しなくともよく、それよりも高く設定することも可能である。   In this example, the expansion valve 4 is used to reduce the pressure of the refrigerant to the region G that is in two phases (gas-liquid mixture). However, as described above, the refrigerant after the expansion valve 4 is used. Since the temperature immediately after the expansion valve 4 is raised by the capillary tube 3b so as to increase the temperature immediately after the expansion valve 4, the viscosity of the refrigerating machine oil can be kept low. The refrigerant does not have to be depressurized to the two-phase region G, and can be set higher than that.

実施の形態3.
図5は本発明の実施の形態3に係る冷凍装置の動作を示すモリエル線図(P−H線図)、図6はその冷凍回路(冷媒循環経路)の構成図であり、各図中、前述の実施の形態1及び2と同一部分には同一符号を付してある。
Embodiment 3 FIG.
FIG. 5 is a Mollier diagram (PH diagram) illustrating the operation of the refrigeration apparatus according to Embodiment 3 of the present invention, and FIG. 6 is a configuration diagram of the refrigeration circuit (refrigerant circulation path). The same parts as those in the first and second embodiments are denoted by the same reference numerals.

本実施形態の冷凍装置は、図6のように圧縮機1、凝縮器2、開度調整可能な膨張弁4、および蒸発器5を閉ループに結合し、冷媒として二酸化炭素を用いてなる冷凍回路(冷媒循環経路)において、凝縮器2と膨張弁4との間(膨張弁4の上流側)に、凝縮器2にて放熱された冷媒の圧力を気液混合状態となる2相域Gまで減圧する第1の減圧手段すなわちキャピラリチューブ3aを設けるとともに、膨張弁4と蒸発器5との間(膨張弁4の下流側)に、キャピラリチューブ3aと膨張弁4にて断熱膨張により2段階で減圧された冷媒の圧力を、更に蒸発器5のエバ温度まで断熱膨張により減圧する第2の減圧手段すなわちキャピラリチューブ3bを設けたものであり、前述の実施の形態1の機能と前述の実施の形態2の機能を併せ持つ点に特徴を有している。   As shown in FIG. 6, the refrigeration apparatus of the present embodiment is a refrigeration circuit in which a compressor 1, a condenser 2, an expansion valve 4 with adjustable opening, and an evaporator 5 are coupled in a closed loop and carbon dioxide is used as a refrigerant. In the (refrigerant circulation path), between the condenser 2 and the expansion valve 4 (upstream side of the expansion valve 4), the pressure of the refrigerant radiated by the condenser 2 reaches the two-phase region G where the gas-liquid mixed state is achieved. A first pressure reducing means for reducing the pressure, that is, the capillary tube 3a is provided, and between the expansion valve 4 and the evaporator 5 (on the downstream side of the expansion valve 4), the capillary tube 3a and the expansion valve 4 are adiabatically expanded in two stages. The second pressure reducing means, that is, the capillary tube 3b for reducing the pressure of the decompressed refrigerant further by adiabatic expansion to the evaporation temperature of the evaporator 5, is provided. The function of the first embodiment and the above-described implementation are provided. Point that has the function of Form 2 It has a feature.

本実施形態の冷凍装置において、図5中のA,B,C,D,F,Eで示した線は冷媒がたどる経路を示しており、A〜Bは圧縮機1が冷媒を圧縮する行程、B〜Cは凝縮器2により冷媒が熱エネルギを放出する行程、C〜D〜F〜Eは断熱膨張により3段階で減圧する行程、E〜Aは蒸発器5により冷媒が熱エネルギを吸収する行程である。C〜E間の途中のDは冷媒が気液混合状態となる2相域G内の圧力、Fは2相域G内でDよりも低い圧力、Eは蒸発器5のエバ温度であり、ここではC〜Dまではキャピラリチューブ3aにより減圧し、D〜Fまでは膨張弁4により減圧し、F〜Eまではキャピラリチューブ3bにより減圧するようになっている。   In the refrigeration apparatus of the present embodiment, the lines indicated by A, B, C, D, F, and E in FIG. 5 indicate the paths that the refrigerant follows, and A to B are steps in which the compressor 1 compresses the refrigerant. B to C are processes in which the refrigerant releases heat energy by the condenser 2, C to D to F to E are processes in which the pressure is reduced in three stages by adiabatic expansion, and E to A are the processes in which the refrigerant absorbs the heat energy by the evaporator 5. It is the process to do. D in the middle between C and E is the pressure in the two-phase region G where the refrigerant is in a gas-liquid mixed state, F is the pressure lower than D in the two-phase region G, E is the evaporator temperature of the evaporator 5, Here, the pressure from C to D is reduced by the capillary tube 3a, the pressure from D to F is reduced by the expansion valve 4, and the pressure from F to E is reduced by the capillary tube 3b.

このように、本実施形態の冷凍装置においては、膨張弁4の上流側に、凝縮器2にて放熱された冷媒の圧力を気液混合状態となる2相域Gまで減圧するキャピラリチューブ3aを設けるとともに、膨張弁4の下流側に、キャピラリチューブ3aと膨張弁4にて断熱膨張により2段階で減圧された冷媒の圧力を、更に蒸発器5のエバ温度まで断熱膨張により減圧するキャピラリチューブ3bを設けたので、前述の実施の形態1,2と同様の効果を有し、これらの相乗効果により膨張弁4でのオイルチョークを確実に防止することができる。すなわち、膨張弁4の入力部では常にガス成分が含まれ、密度が小さくなり、流速が速くなり、たとえ粘度が高くなった冷凍機油が混入していても、これを押し出し、詰まらないように流してやることができる。また、膨張弁4直後の状態をF点まで上げることができて、膨張弁4直後の温度を上げることが可能となり、冷凍機油の粘度を低く抑えることができて、膨張弁4でのオイルチョークを防止することができる。   As described above, in the refrigeration apparatus of the present embodiment, the capillary tube 3a for reducing the pressure of the refrigerant radiated by the condenser 2 to the two-phase region G in a gas-liquid mixed state is provided upstream of the expansion valve 4. The capillary tube 3b is provided downstream of the expansion valve 4 and the pressure of the refrigerant depressurized in two stages by the adiabatic expansion by the capillary tube 3a and the expansion valve 4 is further reduced by the adiabatic expansion to the evaporation temperature of the evaporator 5. Thus, the same effects as those of the first and second embodiments are obtained, and the oil choke in the expansion valve 4 can be reliably prevented by the synergistic effect thereof. That is, gas components are always included in the input portion of the expansion valve 4, the density is reduced, the flow rate is increased, and even if refrigeration oil with increased viscosity is mixed, it is pushed out and flows so as not to be clogged. I can do it. Further, the state immediately after the expansion valve 4 can be raised to the point F, the temperature immediately after the expansion valve 4 can be raised, the viscosity of the refrigerating machine oil can be kept low, and the oil choke in the expansion valve 4 Can be prevented.

なお、前述の各実施形態では、いずれも減圧手段としてキャピラリチューブを用いたものを例に挙げて説明したが、これに代えてオリフィスを用いることもできる。いずれの場合も、構造の簡略化が図れ、コストを抑制することができる。   In each of the above-described embodiments, the example using the capillary tube as the pressure reducing means has been described as an example, but an orifice can be used instead. In either case, the structure can be simplified and the cost can be reduced.

本発明の実施の形態1に係る冷凍装置の動作を示すモリエル線図である。It is a Mollier diagram which shows operation | movement of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態1に係る冷凍装置の冷凍回路の構成図である。It is a block diagram of the freezing circuit of the freezing apparatus which concerns on Embodiment 1 of this invention. 本発明の実施の形態2に係る冷凍装置の動作を示すモリエル線図である。It is a Mollier diagram which shows operation | movement of the freezing apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る冷凍装置の冷凍回路の構成図である。It is a block diagram of the freezing circuit of the freezing apparatus which concerns on Embodiment 2 of this invention. 本発明の実施の形態3に係る冷凍装置の動作を示すモリエル線図である。It is a Mollier diagram which shows operation | movement of the freezing apparatus which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る冷凍装置の冷凍回路の構成図である。It is a block diagram of the freezing circuit of the freezing apparatus which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 圧縮機
2 凝縮器
3a,3b キャピラリチューブ(減圧手段)
4 膨張弁
5 蒸発器
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3a, 3b Capillary tube (pressure reduction means)
4 Expansion valve 5 Evaporator

Claims (5)

圧縮機、凝縮器、膨張弁、および蒸発器を閉ループに結合して冷媒循環経路を構成してなる冷凍装置において、
前記凝縮器と前記膨張弁との間に、前記凝縮器にて放熱された冷媒の圧力を気液混合状態となる2相域まで減圧する減圧手段を設けたことを特徴とする冷凍装置。
In a refrigeration apparatus in which a compressor, a condenser, an expansion valve, and an evaporator are coupled in a closed loop to form a refrigerant circulation path.
A refrigeration apparatus comprising a decompression means for reducing the pressure of the refrigerant radiated by the condenser to a two-phase region in a gas-liquid mixed state between the condenser and the expansion valve.
圧縮機、凝縮器、膨張弁、および蒸発器を閉ループに結合して冷媒循環経路を構成してなる冷凍装置において、
前記膨張弁と前記蒸発器との間に、前記膨張弁にて断熱膨張により減圧された冷媒の圧力を、更に前記蒸発器の蒸発温度まで断熱膨張により減圧する減圧手段を設けたことを特徴とする冷凍装置。
In a refrigeration apparatus in which a compressor, a condenser, an expansion valve, and an evaporator are coupled in a closed loop to form a refrigerant circulation path.
A pressure reducing means is provided between the expansion valve and the evaporator to further reduce the pressure of the refrigerant depressurized by adiabatic expansion by the expansion valve to the evaporation temperature of the evaporator by adiabatic expansion. Refrigeration equipment.
圧縮機、凝縮器、膨張弁、および蒸発器を閉ループに結合して冷媒循環経路を構成してなる冷凍装置において、
前記凝縮器と前記膨張弁との間に、前記凝縮器にて放熱された冷媒の圧力を気液混合状態となる2相域まで減圧する第1の減圧手段を設けるとともに、
前記膨張弁と前記蒸発器との間に、前記第1の減圧手段と前記膨張弁にて断熱膨張により2段階で減圧された冷媒の圧力を、更に前記蒸発器の蒸発温度まで断熱膨張により減圧する第2の減圧手段を設けたことを特徴とする冷凍装置。
In a refrigeration apparatus in which a compressor, a condenser, an expansion valve, and an evaporator are coupled in a closed loop to form a refrigerant circulation path.
Between the condenser and the expansion valve, there is provided a first decompression means for decompressing the pressure of the refrigerant radiated by the condenser to a two-phase region that is in a gas-liquid mixed state,
Between the expansion valve and the evaporator, the pressure of the refrigerant depressurized in two stages by adiabatic expansion by the first depressurization means and the expansion valve is further reduced by adiabatic expansion to the evaporation temperature of the evaporator. A refrigeration apparatus provided with a second decompression means.
前記減圧手段を、キャピラリチューブまたはオリフィスによって構成したことを特徴とする請求項1乃至請求項3のいずれかに記載の冷凍装置。   The refrigeration apparatus according to any one of claims 1 to 3, wherein the decompression means is constituted by a capillary tube or an orifice. 前記冷媒は、二酸化炭素であることを特徴とする請求項1乃至請求項4のいずれかに記載の冷凍装置。
The refrigeration apparatus according to any one of claims 1 to 4, wherein the refrigerant is carbon dioxide.
JP2006204924A 2006-07-27 2006-07-27 Refrigeration apparatus Pending JP2008032295A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006204924A JP2008032295A (en) 2006-07-27 2006-07-27 Refrigeration apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006204924A JP2008032295A (en) 2006-07-27 2006-07-27 Refrigeration apparatus

Publications (1)

Publication Number Publication Date
JP2008032295A true JP2008032295A (en) 2008-02-14

Family

ID=39121915

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006204924A Pending JP2008032295A (en) 2006-07-27 2006-07-27 Refrigeration apparatus

Country Status (1)

Country Link
JP (1) JP2008032295A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052898A (en) * 2004-08-12 2006-02-23 Sanyo Electric Co Ltd Refrigerant cycle device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006052898A (en) * 2004-08-12 2006-02-23 Sanyo Electric Co Ltd Refrigerant cycle device

Similar Documents

Publication Publication Date Title
US8887524B2 (en) Refrigerating apparatus
EP3012555B1 (en) Refrigeration cycle device
JP4130121B2 (en) Dual refrigeration system combining ammonia and carbon dioxide
CA2492272A1 (en) Method and apparatus for control of carbon dioxide gas cooler pressure by use of a capillary tube
EP1873466A2 (en) Refrigeration cycle and water heater
JP2006183950A (en) Refrigeration apparatus and refrigerator
AU2017238687B2 (en) Refrigerating cycle apparatus
JP6188918B2 (en) Refrigeration equipment
JP4049769B2 (en) Refrigerant cycle equipment
JPWO2003004948A1 (en) Heat pump equipment
JP5014271B2 (en) Refrigeration cycle equipment
JP4841288B2 (en) Refrigeration equipment
JP2009300001A (en) Refrigerating cycle device
JP2008164288A (en) Refrigerating device
JP6602395B2 (en) Refrigeration cycle equipment
JP2007263390A (en) Refrigerating cycle device
JP4841287B2 (en) Refrigeration equipment
JP2008032295A (en) Refrigeration apparatus
US20140069122A1 (en) Apparatus and method for controlling refrigerant temperature in a heat pump or refrigeration apparatus
JP2006329568A (en) Heat pump device
KR100869082B1 (en) Dual Refrigerant Refrigeration Equipment by Compulsive Circulation of Secondary Refrigerant
JP2013002737A (en) Refrigeration cycle device
JP3218140U (en) Refrigerant liquid hammer impact reduction device for refrigeration cycle.
KR101129722B1 (en) Refrigerating and cooling system provided with overheat protection heat exchanger using carbon dioxide refrigerant
JP2007101043A (en) Heat cycle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110412

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816