JP2008028411A - Aqueous dispersion for chemical mechanical polishing used for manufacturing semiconductor device - Google Patents

Aqueous dispersion for chemical mechanical polishing used for manufacturing semiconductor device Download PDF

Info

Publication number
JP2008028411A
JP2008028411A JP2007228263A JP2007228263A JP2008028411A JP 2008028411 A JP2008028411 A JP 2008028411A JP 2007228263 A JP2007228263 A JP 2007228263A JP 2007228263 A JP2007228263 A JP 2007228263A JP 2008028411 A JP2008028411 A JP 2008028411A
Authority
JP
Japan
Prior art keywords
polishing
aqueous dispersion
chemical mechanical
film
tantalum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007228263A
Other languages
Japanese (ja)
Other versions
JP4730358B2 (en
Inventor
Masayuki Motonari
正之 元成
Masayuki Hattori
雅幸 服部
Nobuo Kawahashi
信夫 川橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSR Corp
Original Assignee
JSR Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSR Corp filed Critical JSR Corp
Priority to JP2007228263A priority Critical patent/JP4730358B2/en
Publication of JP2008028411A publication Critical patent/JP2008028411A/en
Application granted granted Critical
Publication of JP4730358B2 publication Critical patent/JP4730358B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous dispersion for chemical mechanical polishing useful for manufacturing a semiconductor device especially capable of efficiently polishing a barrier metal layer and obtaining a sufficiently planarized finishing surface with high precision when polishing a processed film and barrier metal layer provided on a semiconductor substrate. <P>SOLUTION: When polishing a copper film, tantalum layer and/or tantalum nitride layer, and insulation film under the same condition, an aqueous dispersion for chemical mechanical polishing is obtained, in which the ratio (R<SB>Cu</SB>/R<SB>Ta</SB>) of a polish rate (R<SB>Cu</SB>) of the copper film and that (R<SB>Ta</SB>) of the tantalum layer and/or tantalum nitride layer is 1/20 or less and the ratio (R<SB>Cu</SB>/R<SB>In</SB>) of the polish rate (R<SB>Cu</SB>) of the copper film and that (R<SB>In</SB>) of the insulation layer is 5 to 1/5. Preferably, R<SB>Cu</SB>/R<SB>In</SB>is 1/30 or less, especially 1/40 or less, and further 1/50 or less, and R<SB>Cu</SB>/R<SB>In</SB>is 4 to 1/4, especially 3 to 1/3, and further 2 to 1/2. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体装置の製造に用いる化学機械研磨用水系分散体(以下、「化学機械研磨用水系分散体」という。また、「水系分散体」と略記することもある。)に関する。更に詳しくは、本発明は、半導体基板上に設けられる各種の被加工膜及びバリアメタル層の研磨において、特に、バリアメタル層を効率よく研磨することができ、且つ十分に平坦化された精度の高い仕上げ面を得ることができる化学機械研磨用水系分散体に関する。   The present invention relates to a chemical mechanical polishing aqueous dispersion (hereinafter referred to as “chemical mechanical polishing aqueous dispersion”, which is also abbreviated as “aqueous dispersion”) used in the manufacture of semiconductor devices. More specifically, the present invention is particularly effective in polishing various types of processed films and barrier metal layers provided on a semiconductor substrate, and can efficiently polish the barrier metal layer and sufficiently planarize the accuracy. The present invention relates to an aqueous dispersion for chemical mechanical polishing capable of obtaining a high finished surface.

半導体装置の製造における最近の技術として、プロセスウェハ上の絶縁膜に形成された孔若しくは溝などに、タングステン及び銅などの配線材を埋め込んだ後、絶縁膜の表面より上の配線材を研磨によって除去することによって配線を形成する手法がある。この手法により形成される配線をダマシン配線という。この研磨において、タンタル等の硬度の高い金属からなるバリアメタル層を効率よく研磨することは容易ではない。一方、銅等の比較的柔らかい配線材は研磨され易く、配線部分においてディッシングを生じ、平坦な仕上げ面が得られないことがある。また、pHが高い場合には、特に、誘電率の低い多孔質の絶縁膜等では、この絶縁膜が過度に研磨されてしまって良好なダマシン配線を形成することができないという問題がある。   As a recent technology in the manufacture of semiconductor devices, after filling a wiring material such as tungsten and copper into a hole or groove formed in an insulating film on a process wafer, the wiring material above the surface of the insulating film is polished by polishing. There is a method of forming a wiring by removing the wiring. Wiring formed by this method is called damascene wiring. In this polishing, it is not easy to efficiently polish a barrier metal layer made of a hard metal such as tantalum. On the other hand, a relatively soft wiring material such as copper is easily polished, and dishing occurs in the wiring portion, so that a flat finished surface may not be obtained. Also, when the pH is high, there is a problem that a good damascene wiring cannot be formed especially with a porous insulating film having a low dielectric constant because the insulating film is excessively polished.

本発明は、上記の従来の問題を解決するものであり、タンタル等からなるバリアメタル層を十分な速度で研磨することができ、銅等からなる配線材は適度に研磨され、且つ絶縁膜が過度に研磨されることもなく、十分に平坦な仕上げ面が得られ、良好なダマシン配線を形成することができる、半導体装置の製造において有用な化学機械研磨用水系分散体を提供することを目的とする。   The present invention solves the above-mentioned conventional problems, can polish a barrier metal layer made of tantalum or the like at a sufficient rate, a wiring material made of copper or the like is appropriately polished, and an insulating film has An object of the present invention is to provide an aqueous dispersion for chemical mechanical polishing that is useful in the manufacture of semiconductor devices and that can obtain a sufficiently flat finished surface without excessive polishing and can form good damascene wiring. And

半導体基板上に設けられる被加工膜の研磨において、仕上げ面を十分に平坦化することができる化学機械研磨用水系分散体を得ることを目的として検討した結果、特に、アミノ基等を有する複素環化合物からなる研磨速度調整剤を含有させることにより、バリアメタル層の研磨が促進され、銅等の配線材の研磨が抑えられ、更には絶縁膜が過度に研磨されることもなく、十分に平坦化された精度の高い仕上げ面が得られることが見出された。本発明は、このような知見に基づいてなされたものである。   As a result of investigation for the purpose of obtaining an aqueous dispersion for chemical mechanical polishing capable of sufficiently flattening the finished surface in polishing a film to be processed provided on a semiconductor substrate, in particular, a heterocyclic ring having an amino group or the like. By including a compound polishing rate adjusting agent, the polishing of the barrier metal layer is promoted, the polishing of the wiring material such as copper is suppressed, and the insulating film is not excessively polished, and is sufficiently flat. It has been found that a finished surface with high accuracy can be obtained. The present invention has been made based on such knowledge.

上記課題は、第1に銅膜、タンタル層及び/又は窒化タンタル層、並びに絶縁膜の研磨速度の比が特定された化学機械研磨用水系分散体(以下、第1発明という。)により達成される。上記課題は、第2に研磨速度調整剤を含有する水系分散体(以下、第2発明という。)により達成される。また、上記課題は、第3に特定の作用を有する研磨速度調整剤を含有する水系分散体(以下、第3発明という。)により達成される。上記課題は、第4に特定の複素環化合物を研磨速度調整剤として含有する水系分散体(以下、第4発明という。)により達成される。更に、上記課題は、第5に特定のpHを有する水系分散体(以下、第5発明という。)により達成される。   The above-mentioned problem is first achieved by a chemical mechanical polishing aqueous dispersion (hereinafter referred to as a first invention) in which the ratio of polishing rates of a copper film, a tantalum layer and / or a tantalum nitride layer, and an insulating film is specified. The The above-mentioned problem is achieved by an aqueous dispersion (hereinafter referred to as the second invention) that secondly contains a polishing rate adjusting agent. Moreover, the said subject is achieved by the aqueous dispersion (henceforth the 3rd invention hereafter) containing the grinding | polishing rate regulator which has a 3rd specific effect | action. Fourth, the above object is achieved by an aqueous dispersion containing a specific heterocyclic compound as a polishing rate adjusting agent (hereinafter referred to as the fourth invention). Furthermore, the above-mentioned object is achieved by an aqueous dispersion having a specific pH fifth (hereinafter referred to as fifth invention).

第1発明によれば、銅膜とタンタル層及び/又は窒化タンタル層との研磨速度の比、及び銅膜と絶縁膜との研磨速度の比を特定することにより、バリアメタル層を十分な速度で研磨することができ、被加工膜を適度な速度で研磨することができ、且つ絶縁膜が過度に研磨されることがなく、ディッシングを生ずることのない半導体装置の製造において有用な化学機械研磨用水系分散体を得ることができる。また、第2発明によれば、研磨速度調整剤を含有する水系分散体とすることにより、第1発明の化学機械研磨用水系分散体を得ることができる。更に、第3乃至第4発明によれば、研磨速度調整剤の作用、或いは研磨速度調整剤の種類を特定することにより、また、第5発明によれば、pHを特定することにより、容易に第1発明の化学機械研磨用水系分散体を得ることができる。   According to the first aspect of the present invention, the ratio of the polishing rate between the copper film and the tantalum layer and / or the tantalum nitride layer, and the ratio between the polishing rate between the copper film and the insulating film are specified, so that the barrier metal layer has a sufficient speed. Chemical mechanical polishing useful in the manufacture of semiconductor devices that can polish the film to be processed at an appropriate speed, and the insulating film is not excessively polished and does not cause dishing. An aqueous dispersion can be obtained. According to the second invention, the chemical mechanical polishing aqueous dispersion of the first invention can be obtained by using an aqueous dispersion containing a polishing rate adjusting agent. Furthermore, according to the third to fourth inventions, by specifying the action of the polishing rate adjusting agent or the type of the polishing rate adjusting agent, and according to the fifth invention, it is easy to specify the pH. The chemical mechanical polishing aqueous dispersion of the first invention can be obtained.

第1発明の化学機械研磨用水系分散体は、銅膜、タンタル層及び/又は窒化タンタル層、並びに絶縁膜を同一条件により研磨した場合に、上記銅膜の研磨速度(RCu)と上記タンタル層の研磨速度(RTa)との比(RCu/RTa)が1/20以下であり、上記銅膜の研磨速度(RCu)と上記絶縁膜の研磨速度(RIn)との比(RCu/RIn)が5〜(1/5)であることを特徴とする。
上記「銅膜」を形成する銅は、純銅ばかりでなく、銅−シリコン、銅−アルミニウム等、95重量%以上の銅を含有する合金をも含むものとする。また、上記「タンタル層」を形成するタンタルも、純タンタルに限られず、タンタル−ニオブ等のタンタルを含有する合金をも含むものとする。更に、上記「窒化タンタル層」を形成する窒化タンタルも純品に限定はされない。
The chemical mechanical polishing aqueous dispersion of the first invention has a copper film polishing rate (R Cu ) and the tantalum when the copper film, tantalum layer and / or tantalum nitride layer, and insulating film are polished under the same conditions. The ratio (R Cu / R Ta ) with the polishing rate (R Ta ) of the layer is 1/20 or less, and the ratio between the polishing rate (R Cu ) of the copper film and the polishing rate (R In ) of the insulating film (R Cu / R In ) is 5 to (1/5).
The copper forming the “copper film” includes not only pure copper but also an alloy containing 95% by weight or more of copper, such as copper-silicon and copper-aluminum. The tantalum forming the “tantalum layer” is not limited to pure tantalum, but also includes alloys containing tantalum such as tantalum-niobium. Further, the tantalum nitride forming the “tantalum nitride layer” is not limited to a pure product.

上記「同一条件」とは、特定の型式の研磨装置を使用し、その定盤及びヘッドの回転数、研磨圧力、研磨時間、用いる研磨パッドの種類、並びに水系分散体の単位時間当たりの供給量を同一にすることを意味する。   The above “same condition” means that a specific type of polishing apparatus is used, and the rotation speed of the platen and head, polishing pressure, polishing time, type of polishing pad used, and supply amount of aqueous dispersion per unit time Means to be the same.

研磨速度の上記「比」は、銅膜、タンタル層及び/又は窒化タンタル層、並びに絶縁膜を、上記の同一条件のもとに別個に研磨し、各々の研磨速度の値から算出することができる。この研磨は、銅膜、タンタル層及び/又は窒化タンタル層、又は絶縁膜を備えるウェハを用いて行うことができる。   The above-mentioned “ratio” of the polishing rate can be calculated from the value of each polishing rate by separately polishing the copper film, the tantalum layer and / or the tantalum nitride layer, and the insulating film under the same conditions as described above. it can. This polishing can be performed using a wafer provided with a copper film, a tantalum layer and / or a tantalum nitride layer, or an insulating film.

銅膜の研磨速度(RCu)とタンタル層及び/又は窒化タンタル層の研磨速度(RTa)との比(RCu/RTa)は、1/30以下、特に1/40以下、更には1/50以下であることが好ましい。このRCu/RTaが1/20を越える場合は、タンタル層が十分な速度で研磨されず、この水系分散体を半導体基板上に設けられる被加工膜及びバリアメタル層の研磨に用いた場合の、二段階研磨法における二段目の研磨においてバリアメタル層の研磨に長時間を要する。 The ratio (R Cu / R Ta ) between the polishing rate (R Cu ) of the copper film and the polishing rate (R Ta ) of the tantalum layer and / or tantalum nitride layer is 1/30 or less, particularly 1/40 or less, It is preferable that it is 1/50 or less. When this R Cu / R Ta exceeds 1/20, the tantalum layer is not polished at a sufficient speed, and this aqueous dispersion is used for polishing the work film and the barrier metal layer provided on the semiconductor substrate. In the second-stage polishing in the two-stage polishing method, it takes a long time to polish the barrier metal layer.

また、銅膜の研磨速度(RCu)と絶縁膜の研磨速度(RIn)との比(RCu/RIn)は、4〜(1/4)、特に3〜(1/3)、更には2〜(1/2)であることが好ましい。このRCu/RInが5を越える場合は、銅膜の研磨が過度となり、この水系分散体を半導体基板上に設けられる被加工膜の研磨に用いた場合に、配線部分においてディッシングを生じ、十分に平坦化された精度の高い仕上げ面とすることができない。一方、RCu/RInが1/5未満であると、絶縁膜が過度に研磨され、良好なダマシン配線を形成することができない。 The ratio of the polishing rate (R an In) of the polishing rate (R Cu) and the insulating film of the copper film (R Cu / R In) is 4 (1/4), in particular 3 (1/3), Furthermore, it is preferable that it is 2- (1/2). When this R Cu / R In exceeds 5, polishing of the copper film becomes excessive, and when this aqueous dispersion is used for polishing the film to be processed provided on the semiconductor substrate, dishing occurs in the wiring portion, It is not possible to obtain a sufficiently flat finished surface with high accuracy. On the other hand, if R Cu / R In is less than 1/5, the insulating film is excessively polished and a good damascene wiring cannot be formed.

第2発明の化学機械研磨用水系分散体は、研磨剤、水及び研磨速度調整剤を含有することを特徴とする。   The aqueous dispersion for chemical mechanical polishing according to the second invention is characterized by containing an abrasive, water and a polishing rate adjusting agent.

上記「研磨剤」としては、シリカ、アルミナ、セリア、ジルコニア及びチタニア等の無機粒子を使用することができる。この無機粒子としては、気相法により合成されたものが特に好ましい。この気相法による無機粒子としては、ヒュームド法(高温火炎加水分解法)、ナノフェーズテクノロジー社法(金属蒸着酸化法)等により合成されたものが高純度であってより好ましい。   As the “abrasive”, inorganic particles such as silica, alumina, ceria, zirconia, and titania can be used. As the inorganic particles, those synthesized by a vapor phase method are particularly preferable. As the inorganic particles obtained by the vapor phase method, those synthesized by the fumed method (high-temperature flame hydrolysis method), the nanophase technology method (metal vapor deposition oxidation method) or the like are preferable because of high purity.

また、研磨剤としては、ポリ塩化ビニル、ポリスチレン及びスチレン系共重合体、ポリアセタール、飽和ポリエステル、ポリアミド、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリ−1−ブテン、ポリ−4−メチル−1−ペンテン等のポリオレフィン及びオレフィン系共重合体、フェノキシ樹脂、ポリメチルメタクリレート等の(メタ)アクリル樹脂、並びにアクリル系共重合体などの熱可塑性樹脂からなる有機粒子を用いることもできる。更に、エポキシ樹脂、ウレタン樹脂等の熱硬化性樹脂からなる有機粒子を使用することもできる。
これらの無機粒子及び有機粒子は、それぞれ1種のみを使用してもよいし、2種以上を併用してもよく、無機粒子と有機粒子とを併用することもできる。
Also, as the abrasive, polyolefin such as polyvinyl chloride, polystyrene and styrene copolymer, polyacetal, saturated polyester, polyamide, polycarbonate, polyethylene, polypropylene, poly-1-butene, poly-4-methyl-1-pentene, etc. In addition, organic particles composed of olefin copolymers, (meth) acrylic resins such as phenoxy resins and polymethylmethacrylate, and thermoplastic resins such as acrylic copolymers can also be used. Furthermore, organic particles made of a thermosetting resin such as an epoxy resin or a urethane resin can also be used.
These inorganic particles and organic particles may be used alone or in combination of two or more, and inorganic particles and organic particles may be used in combination.

無機粒子及び有機粒子の平均粒子径は0.01〜3μmであることが好ましい。この平均粒子径が0.01μm未満では、研磨速度が低下する傾向にある。一方、この平均粒子径が3μmを越える場合は、研磨剤が沈降し、分離してしまって、安定な化学機械研磨用水系分散体とすることが容易ではない。この平均粒子径は0.05〜1.0μm、更には0.1〜0.7μmであることが特に好ましく、この範囲の平均粒子径を有する研磨剤であれば、特に、バリアメタル層を十分な速度で研磨することができ、且つ粒子の沈降、及び分離を生ずることのない、安定な化学機械研磨用水系分散体とすることができる。尚、この平均粒子径は、透過型電子顕微鏡によって観察することにより測定することができる。   The average particle diameter of the inorganic particles and the organic particles is preferably 0.01 to 3 μm. When this average particle diameter is less than 0.01 μm, the polishing rate tends to decrease. On the other hand, when the average particle diameter exceeds 3 μm, the abrasive settles and separates, and it is not easy to obtain a stable chemical mechanical polishing aqueous dispersion. The average particle size is particularly preferably 0.05 to 1.0 μm, more preferably 0.1 to 0.7 μm. If the abrasive has an average particle size in this range, the barrier metal layer is particularly sufficient. It is possible to obtain a stable chemical mechanical polishing aqueous dispersion which can be polished at a high speed and does not cause sedimentation and separation of particles. The average particle diameter can be measured by observing with a transmission electron microscope.

また、研磨剤の含有量は、化学機械研磨用水系分散体を100部とした場合に、0.3〜15部とすることができ、特に1〜8部、更には2〜6部とすることが好ましい。研磨剤の含有量が0.3部未満では十分な速度で研磨することができず、一方、15部を超えて含有させた場合はコスト高になるとともに、化学機械研磨用水系分散体の安定性が低下するため好ましくない。   The content of the abrasive can be 0.3 to 15 parts, particularly 1 to 8 parts, more preferably 2 to 6 parts, when the chemical mechanical polishing aqueous dispersion is 100 parts. It is preferable. If the content of the abrasive is less than 0.3 parts, polishing cannot be performed at a sufficient speed. On the other hand, if the content exceeds 15 parts, the cost is increased and the chemical mechanical polishing aqueous dispersion is stable. This is not preferable because the properties are lowered.

第3発明は、第2発明の研磨速度調整剤が銅膜の研磨を抑制し、タンタル層及び/又は窒化タンタル層の研磨を促進するものであることを明らかにするものである。
この特定の作用を有する研磨速度調整剤を含有させることにより、第1発明の特定の研磨速度の比を有する化学機械研磨用水系分散体を容易に得ることができる。
The third invention makes it clear that the polishing rate adjusting agent of the second invention suppresses the polishing of the copper film and promotes the polishing of the tantalum layer and / or the tantalum nitride layer.
By including the polishing rate adjusting agent having this specific action, the chemical mechanical polishing aqueous dispersion having the specific polishing rate ratio of the first invention can be easily obtained.

更に、第4発明は推奨される研磨速度調整剤を明らかにするものである。
研磨速度調整剤としては、アミノ基、メルカプト基、炭素数1〜3の短鎖のアルキル基等を有する複素環化合物の誘導体を使用することができる。
そのような誘導体としては、ベンゾチアゾール、ベンゾチアジアゾール及びベンゾトリアゾール等、複素五員環を有する化合物、並びにジアジン及びトリアジン等、複素六員環を有する化合物の誘導体などが挙げられる。
Furthermore, the fourth invention clarifies a recommended polishing rate adjusting agent.
As the polishing rate adjusting agent, a derivative of a heterocyclic compound having an amino group, a mercapto group, a short-chain alkyl group having 1 to 3 carbon atoms, or the like can be used.
Examples of such derivatives include compounds having a hetero five-membered ring such as benzothiazole, benzothiadiazole and benzotriazole, and derivatives of compounds having a hetero six-membered ring such as diazine and triazine.

複素五員環を有する化合物の誘導体としては、前記の化合物の他、2−アミノベンゾチアゾール、2−アミノ−6−メチルベンゾチアゾール、2−メルカプトベンゾチアゾール、4−アミノ−1,2,4−トリアゾール、4−アミノ−3−ヒドラジノ−5−メルカプト−1,2,4−トリアゾール、3−メルカプト−1,2,4−トリアゾール及び3−メルカプト−4−メチル−4H−1,2,4−トリアゾール等が挙げられる。   As derivatives of the compound having a hetero five-membered ring, in addition to the above-mentioned compounds, 2-aminobenzothiazole, 2-amino-6-methylbenzothiazole, 2-mercaptobenzothiazole, 4-amino-1,2,4- Triazole, 4-amino-3-hydrazino-5-mercapto-1,2,4-triazole, 3-mercapto-1,2,4-triazole and 3-mercapto-4-methyl-4H-1,2,4- And triazole.

また、5−アミノ−1H−テトラゾール、2−メルカプトチアゾリン、グアニン、1−フェニル−5−メルカプト−1H−テトラゾール、1H−テトラゾール、1H-テトラゾール−1−酢酸、1−(2−ジメチルアミノエチル)−5−メルカプト−テトラゾール、4,5−ジシアノイミダゾール、2−アミノ−4,5−ジシアノ−1H−イミダゾール及び3H−1,2,3−トリアゾロ[4,5−b]ピリジン−3−オール等を挙げることもできる。   5-amino-1H-tetrazole, 2-mercaptothiazoline, guanine, 1-phenyl-5-mercapto-1H-tetrazole, 1H-tetrazole, 1H-tetrazol-1-acetic acid, 1- (2-dimethylaminoethyl) -5-mercapto-tetrazole, 4,5-dicyanoimidazole, 2-amino-4,5-dicyano-1H-imidazole, 3H-1,2,3-triazolo [4,5-b] pyridin-3-ol, etc. Can also be mentioned.

複素六員環を有する化合物の誘導体としては、3−アミノ−5,6−ジメチル−1,2,4−トリアジン、2,4−ジアミノ−6−ジアリルアミノ−1,3,5−トリアジン、ベンゾグアナミン、チオシアヌル酸、メラミン、3−アミノ−5,6−ジメチル−1,2,4−トリアジン、フタラジン及び2,3−ジシアノ−5−メチルピラジン等が挙げられる。
また、研磨速度調整剤として、複素五員環と複素六員環とを有する化合物の誘導体を用いることもできる。そのような誘導体としては、アデニン及びグアニン等を挙げることができる。
Derivatives of compounds having a hetero 6-membered ring include 3-amino-5,6-dimethyl-1,2,4-triazine, 2,4-diamino-6-diallylamino-1,3,5-triazine, benzoguanamine , Thiocyanuric acid, melamine, 3-amino-5,6-dimethyl-1,2,4-triazine, phthalazine and 2,3-dicyano-5-methylpyrazine.
In addition, a derivative of a compound having a hetero five-membered ring and a hetero six-membered ring can be used as a polishing rate adjusting agent. Examples of such derivatives include adenine and guanine.

これらの研磨速度調整剤のうち、好ましいものとしては、5−アミノ−1H−テトラゾール、グアニン、3−メルカプト−1,2,4−トリアゾール、1−フェニル−5−メルカプト−1H−テトラゾール及び5−メチル−1H−ベンゾトリアゾール等が挙げられる。
特に好ましい研磨速度調整剤は、第4発明に記載の5−アミノ−1H−テトラゾールである。
Among these polishing rate modifiers, preferred are 5-amino-1H-tetrazole, guanine, 3-mercapto-1,2,4-triazole, 1-phenyl-5-mercapto-1H-tetrazole and 5- And methyl-1H-benzotriazole.
A particularly preferable polishing rate adjusting agent is 5-amino-1H-tetrazole described in the fourth invention.

研磨速度調整剤の含有量は、化学機械研磨用水系分散体を100重量部(以下、「部」と略記する。)とした場合に、0.001〜3部とすることができ、特に0.01〜3部、更には0.05〜3部とすることが好ましい。研磨速度調整剤の含有量が0.001部未満であると、タンタル層及び/又は窒化タンタル層を十分な速度で研磨することができず、この水系分散体を半導体基板上に設けられるバリアメタル層の研磨に用いた場合に、その研磨に長時間を要する。一方、この研磨速度調整剤は、3部含有させれば所期の効果が十分に得られ、これを越えて含有させる必要はない。   The content of the polishing rate adjusting agent can be 0.001 to 3 parts, especially 0 when the chemical mechanical polishing aqueous dispersion is 100 parts by weight (hereinafter abbreviated as “part”). 0.01-3 parts, more preferably 0.05-3 parts. When the content of the polishing rate adjusting agent is less than 0.001 part, the tantalum layer and / or the tantalum nitride layer cannot be polished at a sufficient rate, and this aqueous dispersion is a barrier metal provided on the semiconductor substrate. When used for polishing a layer, the polishing takes a long time. On the other hand, if 3 parts of this polishing rate modifier is contained, the desired effect can be sufficiently obtained, and it is not necessary to contain beyond this.

第5発明は化学機械研磨用水系分散体の推奨されるpHの範囲を明らかにするものである。
水系分散体のpHは「1〜8」とすることが好ましい。この範囲のpHであれば絶縁膜の研磨を抑制することができ、絶縁膜が過度に研磨されることがない。このpHは1〜7、特に1〜5、更には1.5〜4.5であることがより好ましい。化学機械研磨用水系分散体のpHが1未満、又は8を越える場合は、特に、シルセスキオキサンを主成分とする絶縁膜のように、誘電率が低く多孔質の絶縁膜などでは、絶縁膜が過度に研磨され、良好なダマシン配線を形成し得ないことがある。
pHの調整は硝酸、硫酸、リン酸等の無機酸、或いはギ酸、酢酸、シュウ酸、マロン酸、コハク酸及び安息香酸等の有機酸によって行うことができる。
The fifth invention clarifies the recommended pH range of the chemical mechanical polishing aqueous dispersion.
The pH of the aqueous dispersion is preferably “1-8”. If the pH is within this range, polishing of the insulating film can be suppressed, and the insulating film is not excessively polished. This pH is more preferably 1 to 7, particularly 1 to 5, and further preferably 1.5 to 4.5. When the pH of the chemical mechanical polishing aqueous dispersion is less than 1 or more than 8, in particular, in the case of a porous insulating film having a low dielectric constant such as an insulating film containing silsesquioxane as a main component, insulation is required. The film may be excessively polished and a good damascene wiring may not be formed.
The pH can be adjusted with inorganic acids such as nitric acid, sulfuric acid and phosphoric acid, or organic acids such as formic acid, acetic acid, oxalic acid, malonic acid, succinic acid and benzoic acid.

また、pHが酸性側である場合は、銅膜を研磨する速度が小さくなり、タンタル層及び/又は窒化タンタル層を研磨する速度は大きくなる。そのため、この酸性の水系分散体を、半導体基板上に設けられる被加工膜の研磨に用いた場合に、被加工膜とバリアメタル層とをよりバランスよく研磨することができる。この水系分散体は、2段階研磨法における2段目の研磨において特に有用である。一方、pHが中性付近である場合は、銅膜を研磨する速度が大きく、タンタル層及び/又は窒化タンタル層を研磨する速度は小さい。そのため、バリアメタル層がストッパー層として十分に機能する。この中性の水系分散体は、2段階研磨法における1段目の研磨においても使用することができる。   Moreover, when pH is an acidic side, the speed | rate which grind | polishes a copper film becomes small, and the speed | rate which grind | polishes a tantalum layer and / or a tantalum nitride layer becomes large. Therefore, when this acidic aqueous dispersion is used for polishing a film to be processed provided on a semiconductor substrate, the film to be processed and the barrier metal layer can be polished with a better balance. This aqueous dispersion is particularly useful in the second stage polishing in the two-stage polishing method. On the other hand, when the pH is near neutral, the speed of polishing the copper film is high, and the speed of polishing the tantalum layer and / or the tantalum nitride layer is low. Therefore, the barrier metal layer functions sufficiently as a stopper layer. This neutral aqueous dispersion can also be used in the first stage polishing in the two-stage polishing method.

本発明の化学機械研磨用水系分散体には、通常、酸化剤は含有されていない。 これは、酸化剤により銅膜等の被加工膜の研磨が促進され、相対的にバリアメタル層の研磨速度が小さくなるためである。しかし、銅膜とタンタル層及び/又は窒化タンタル層との研磨速度の比が第1発明の範囲内となる酸化剤及び含有量であれば、酸化剤を含有させることもできる。この酸化剤の具体例としては、過酸化水素、過酢酸、過安息香酸及びtert−ブチルハイドロパーオキサイド等の有機過酸化物、並びに硝酸及び硝酸鉄等の硝酸化合物などが挙げられる。また、この酸化剤の他、必要に応じて各種の添加剤を配合することもできる。それによって分散状態の安定性を更に向上させたり、研磨速度を高めたり、2種以上の被加工膜等、硬度の異なる被研磨膜の研磨に用いた場合の研磨速度の差異を調整したりすることができる。   The chemical mechanical polishing aqueous dispersion of the present invention usually does not contain an oxidizing agent. This is because the polishing of the film to be processed such as a copper film is promoted by the oxidizing agent, and the polishing rate of the barrier metal layer is relatively reduced. However, an oxidizing agent can also be included as long as the polishing rate ratio between the copper film and the tantalum layer and / or the tantalum nitride layer is within the range of the first invention. Specific examples of the oxidizing agent include organic peroxides such as hydrogen peroxide, peracetic acid, perbenzoic acid and tert-butyl hydroperoxide, and nitric acid compounds such as nitric acid and iron nitrate. In addition to this oxidizing agent, various additives can be blended as required. This further improves the stability of the dispersed state, increases the polishing rate, and adjusts the difference in polishing rate when used for polishing two or more types of processed films with different hardnesses. be able to.

第1発明では、銅膜とタンタル層及び/又は窒化タンタル層との研磨速度の比を特定しているが、本発明の化学機械研磨用水系分散体は、超LSI等の半導体装置の製造過程において、半導体基板上に設けられる各種の被加工膜及びバリアメタル層の研磨に用いることができる。この被加工膜としては、純銅膜、純アルミニウム膜、純タングステン膜等の他、銅、アルミニウム、タングステン等と他の金属との合金からなる膜などが挙げられる。本発明の水系分散体は、これらの各種の被加工膜のうちでも、純銅膜等の硬度の低いものの研磨において特に有用である。また、バリアメタル層としては、タンタル、チタン等の金属、或いはそれらの酸化物及び窒化物などからなるものが挙げられる。
尚、バリアメタル層は、タンタル、チタン等のうちの1種のみにより形成されることが多いが、タンタルと窒化タンタルなどが同一基板上において併用されることもある。
In the first invention, the ratio of the polishing rate between the copper film and the tantalum layer and / or the tantalum nitride layer is specified. The chemical mechanical polishing aqueous dispersion of the present invention is a process for manufacturing a semiconductor device such as a VLSI. Can be used for polishing various work films and barrier metal layers provided on a semiconductor substrate. Examples of the film to be processed include a pure copper film, a pure aluminum film, a pure tungsten film, and the like, and a film made of an alloy of copper, aluminum, tungsten, or the like with another metal. The aqueous dispersion of the present invention is particularly useful for polishing a low-hardness film such as a pure copper film among these various processed films. Moreover, as a barrier metal layer, what consists of metals, such as a tantalum and titanium, or those oxides, nitrides, etc. are mentioned.
The barrier metal layer is often formed of only one of tantalum and titanium, but tantalum and tantalum nitride may be used together on the same substrate.

半導体装置の被加工膜及びバリアメタル層の研磨は市販の化学機械研磨装置(ラップマスターSFT社製、型式「LGP510、LGP552」等)を用いて行なうことができる。
この研磨において、研磨後、被研磨面に残留する研磨剤は除去することが好ましい。この研磨剤の除去は通常の洗浄方法によって行うことができるが、有機粒子の場合は、被研磨面を、酸素の存在下、高温にすることにより粒子を燃焼させて除去することもできる。燃焼の方法としては、酸素プラズマに晒したり、酸素ラジカルをダウンフローで供給すること等のプラズマによる灰化処理等が挙げられ、これによって残留する有機粒子を被研磨面から容易に除去することができる。
Polishing of the film to be processed and the barrier metal layer of the semiconductor device can be performed using a commercially available chemical mechanical polishing apparatus (manufactured by LAPMASTER SFT, model “LGP510, LGP552” or the like).
In this polishing, it is preferable to remove the polishing agent remaining on the surface to be polished after polishing. The removal of the abrasive can be performed by a normal cleaning method, but in the case of organic particles, the surface to be polished can be removed by burning the particles by raising the temperature in the presence of oxygen. Examples of the combustion method include ashing treatment by plasma such as exposure to oxygen plasma or supply of oxygen radicals in a downflow, thereby easily removing residual organic particles from the surface to be polished. it can.

以下、実施例によって本発明を更に詳しく説明する。
(1)研磨剤を含むスラリーの調製
容量2リットルのポリエチレン製の瓶に、100gのヒュームド法シリカ粒子(日本アエロジル株式会社製、商品名「アエロジル#50」)、又はヒュームド法アルミナ粒子(日本アエロジル株式会社製、商品名「アルミナC」)を入れた後、イオン交換水を投入して全量を1000gとし、超音波分散機によって分散させ、調製した。
Hereinafter, the present invention will be described in more detail by way of examples.
(1) Preparation of slurry containing abrasives In a 2 liter polyethylene bottle, 100 g of fumed silica particles (manufactured by Nippon Aerosil Co., Ltd., trade name “Aerosil # 50”) or fumed alumina particles (Nippon Aerosil) After the addition of trade name “Alumina C”), ion exchange water was added to make the total amount 1000 g, and the mixture was dispersed by an ultrasonic disperser.

(2)研磨速度調整剤を含む水溶液の調製
容量1リットルのポリエチレン製の瓶に、5gの5−アミノ−1H−テトラゾール、グアニン又は3−メルカプト−1,2,4−トリアゾールを入れた後、イオン交換水を投入し、溶解させ、全量500gの水溶液を調製した。
(2) Preparation of aqueous solution containing polishing rate modifier After putting 5 g of 5-amino-1H-tetrazole, guanine or 3-mercapto-1,2,4-triazole into a polyethylene bottle with a capacity of 1 liter, Ion exchange water was added and dissolved to prepare an aqueous solution having a total amount of 500 g.

実施例1〜6及び比較例1
容量2リットルのポリエチレン製の瓶に、上記(1)の研磨剤を含むスラリー(実施例1及び3〜6並びに比較例1では500g、実施例2では300g)と、上記(2)の研磨速度調整剤を含む水溶液(実施例1〜3及び5〜6では200g、実施例4では5g)とを入れ、硝酸によってpHを調整した後、イオン交換水を投入して全量を1000gとし、実施例1〜6の化学機械研磨用水系分散体を調製した。また、上記(2)の水溶液を含まない他は実施例1と同様にして比較例1の水系分散体を調製した。それぞれの水系分散体の配合組成は表1のとおりである。
Examples 1 to 6 and Comparative Example 1
A slurry containing the above-mentioned abrasive (1) (500 g in Examples 1 and 3-6 and Comparative Example 1, 300 g in Example 2) in a polyethylene bottle having a capacity of 2 liters, and the polishing rate in (2) above An aqueous solution containing a regulator (200 g in Examples 1 to 3 and 5 to 6, 5 g in Example 4) was added, and after adjusting the pH with nitric acid, ion exchanged water was added to make the total amount 1000 g. 1 to 6 chemical mechanical polishing aqueous dispersions were prepared. Further, an aqueous dispersion of Comparative Example 1 was prepared in the same manner as in Example 1 except that the aqueous solution (2) was not included. Table 1 shows the composition of each aqueous dispersion.

以上、実施例1〜6及び比較例1の化学機械研磨用水系分散体を使用し、8インチ銅膜付きウェーハ、8インチタンタル膜付きウェーハ、8インチ窒化タンタル膜付きウェーハ及び8インチプラズマTEOS膜付きウェーハを研磨した。結果を表1に示す。   As described above, using the chemical mechanical polishing aqueous dispersions of Examples 1 to 6 and Comparative Example 1, a wafer with an 8-inch copper film, a wafer with an 8-inch tantalum film, a wafer with an 8-inch tantalum nitride film, and an 8-inch plasma TEOS film The attached wafer was polished. The results are shown in Table 1.

研磨装置としてラップマスター社製の型式「LGP−510」を使用し、以下の条件で各ウェーハに設けられた膜を研磨し、下記の式によって研磨速度を算出した。
テーブル回転数;50rpm、ヘッド回転数;50rpm、研磨圧力;300g/cm、水系分散体供給速度;100cc/分、研磨時間;1分、研磨パッド;ロデール・ニッタ株式会社製、品番IC1000/SUBA400の2層構造
研磨速度(Å/分)=(研磨前の各膜の厚さ−研磨後の各膜の厚さ)/研磨時間
A model “LGP-510” manufactured by Lapmaster Co., Ltd. was used as a polishing apparatus, the film provided on each wafer was polished under the following conditions, and the polishing rate was calculated according to the following formula.
Table rotation speed: 50 rpm, head rotation speed: 50 rpm, polishing pressure: 300 g / cm 2 , aqueous dispersion supply speed: 100 cc / min, polishing time: 1 minute, polishing pad: Rodel Nitta Co., product number IC1000 / SUBA400 2 layer structure Polishing rate (Å / min) = (Thickness of each film before polishing−Thickness of each film after polishing) / Polishing time

尚、各膜の厚さは、抵抗率測定機(NPS社製、型式「Σ−5」)により直流4探針法でシート抵抗を測定し、このシート抵抗値と銅、タンタル、窒化タンタル又はプラズマTEOSの抵抗率から下記の式によって算出した。
各膜の厚さ(Å)=[シート抵抗値(Ω/cm)×銅、タンタル、窒化タンタル又はプラズマTEOSの抵抗率(Ω/cm)]×10
The thickness of each film is determined by measuring the sheet resistance by a direct current four-probe method using a resistivity measuring device (manufactured by NPS, model “Σ-5”), and the sheet resistance value and copper, tantalum, tantalum nitride or It calculated by the following formula from the resistivity of plasma TEOS.
Thickness (Å) of each film = [sheet resistance value (Ω / cm 2 ) × copper, tantalum, tantalum nitride or plasma TEOS resistivity (Ω / cm)] × 10 8

Figure 2008028411
Figure 2008028411

表1の結果によれば、研磨速度調整剤を含有する実施例1〜6の化学機械研磨用水系分散体では、研磨速度調整剤の含有量が非常に少ない実施例4も含め、銅膜とタンタル膜との研磨速度の比及び銅膜と絶縁膜との研磨速度の比は、いずれも第1発明の範囲内にある。また、窒化タンタル膜の場合はタンタル膜に比べて研磨速度が小さいが、銅膜と窒化タンタル膜との研磨速度の比も第1発明の範囲内にある。このように実施例1〜6の水系分散体を用いて半導体基板上に設けられた被加工膜及びバリアメタル層を研磨した場合、十分に平坦化された精度の高い仕上げ面が得られることが推察される。一方、比較例1の水系分散体では、銅膜と絶縁膜との研磨速度の比は問題ないものの、銅膜と、タンタル膜又は窒化タンタル膜との研磨速度の比が大きく、平坦化が不十分な仕上げ面になることが推察される。   According to the results in Table 1, in the chemical mechanical polishing aqueous dispersions of Examples 1 to 6 containing a polishing rate modifier, the copper film, including Example 4 having a very low content of the polishing rate modifier, The ratio of the polishing rate with the tantalum film and the ratio of the polishing rate with the copper film and the insulating film are both within the scope of the first invention. In the case of the tantalum nitride film, the polishing rate is lower than that of the tantalum film, but the ratio of the polishing rate between the copper film and the tantalum nitride film is also within the scope of the first invention. Thus, when the film to be processed and the barrier metal layer provided on the semiconductor substrate are polished using the aqueous dispersions of Examples 1 to 6, a sufficiently flat and highly accurate finished surface can be obtained. Inferred. On the other hand, in the aqueous dispersion of Comparative Example 1, although the polishing rate ratio between the copper film and the insulating film is not a problem, the polishing rate ratio between the copper film and the tantalum film or the tantalum nitride film is large, and flattening is difficult. It is inferred that the surface is sufficiently finished.

Claims (5)

銅膜、タンタル層及び/又は窒化タンタル層、並びに絶縁膜を同一条件により研磨した場合に、上記銅膜の研磨速度(RCu)と上記タンタル層及び/又は窒化タンタル層の研磨速度(RTa)との比(RCu/RTa)が1/20以下であり、上記銅膜の研磨速度(RCu)と上記絶縁膜の研磨速度(RIn)との比(RCu/RIn)が5〜(1/5)であることを特徴とする半導体装置の製造に用いる化学機械研磨用水系分散体。 When the copper film, the tantalum layer and / or the tantalum nitride layer, and the insulating film are polished under the same conditions, the polishing rate of the copper film (R Cu ) and the polishing rate of the tantalum layer and / or the tantalum nitride layer (R Ta ) Ratio (R Cu / R Ta ) to 1/20 or less, and the ratio (R Cu / R In ) between the polishing rate (R Cu ) of the copper film and the polishing rate (R In ) of the insulating film Is an aqueous dispersion for chemical mechanical polishing used for the production of a semiconductor device, wherein the dispersion is 5 to (1/5). 研磨剤、水及び研磨速度調整剤を含有することを特徴とする半導体装置の製造に用いる化学機械研磨用水系分散体。 A chemical mechanical polishing aqueous dispersion used in the manufacture of a semiconductor device, comprising an abrasive, water and a polishing rate adjusting agent. 上記研磨速度調整剤は、上記銅膜の研磨を抑制し、上記タンタル層及び/又は窒化タンタル層の研磨を促進する請求項2記載の半導体装置の製造に用いる化学機械研磨用水系分散体。 The chemical mechanical polishing aqueous dispersion used for manufacturing a semiconductor device according to claim 2, wherein the polishing rate adjusting agent suppresses polishing of the copper film and promotes polishing of the tantalum layer and / or tantalum nitride layer. 上記研磨速度調整剤が5−アミノ−1H−テトラゾールである請求項2又は3記載の半導体装置の製造に用いる化学機械研磨用水系分散体。 The chemical mechanical polishing aqueous dispersion used in the production of a semiconductor device according to claim 2 or 3, wherein the polishing rate adjusting agent is 5-amino-1H-tetrazole. pHが1〜8である請求項1乃至4のうちのいずれか1項に記載の半導体装置の製造に用いる化学機械研磨用水系分散体。 5. The chemical mechanical polishing aqueous dispersion used for manufacturing a semiconductor device according to claim 1, having a pH of 1 to 8. 6.
JP2007228263A 2007-09-03 2007-09-03 Chemical mechanical polishing aqueous dispersion used in the manufacture of semiconductor devices Expired - Fee Related JP4730358B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007228263A JP4730358B2 (en) 2007-09-03 2007-09-03 Chemical mechanical polishing aqueous dispersion used in the manufacture of semiconductor devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007228263A JP4730358B2 (en) 2007-09-03 2007-09-03 Chemical mechanical polishing aqueous dispersion used in the manufacture of semiconductor devices

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP25175699A Division JP4505891B2 (en) 1999-09-06 1999-09-06 Chemical mechanical polishing aqueous dispersion used in the manufacture of semiconductor devices

Publications (2)

Publication Number Publication Date
JP2008028411A true JP2008028411A (en) 2008-02-07
JP4730358B2 JP4730358B2 (en) 2011-07-20

Family

ID=39118661

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007228263A Expired - Fee Related JP4730358B2 (en) 2007-09-03 2007-09-03 Chemical mechanical polishing aqueous dispersion used in the manufacture of semiconductor devices

Country Status (1)

Country Link
JP (1) JP4730358B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0864594A (en) * 1994-08-18 1996-03-08 Sumitomo Metal Ind Ltd Forming method of wiring
JPH0883780A (en) * 1994-07-12 1996-03-26 Toshiba Corp Abrasive and polishing method
JPH10193510A (en) * 1996-12-27 1998-07-28 Nippon Zeon Co Ltd Production of resin coated substrate and formation of pattern
JPH10214834A (en) * 1997-01-28 1998-08-11 Matsushita Electric Ind Co Ltd Method for forming embedded wiring
JPH1121546A (en) * 1996-12-09 1999-01-26 Cabot Corp Chemical/mechanical polishing slurry useful for copper substrate
JP2000290637A (en) * 1999-04-09 2000-10-17 Tokuyama Corp Polishing material for metal film and polishing method
JP2000315666A (en) * 1999-04-28 2000-11-14 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP2001015464A (en) * 1999-05-07 2001-01-19 Internatl Business Mach Corp <Ibm> Chemical mechanical flattening of barrier or liner for copper metallurgy
JP2001023940A (en) * 1999-07-09 2001-01-26 Seimi Chem Co Ltd Method for planarizing semiconductor integrated circuit and chemical mechanical polishing slurry therefor
WO2001013417A1 (en) * 1999-08-17 2001-02-22 Hitachi Chemical Company, Ltd. Polishing compound for chemimechanical polishing and method for polishing substrate

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0883780A (en) * 1994-07-12 1996-03-26 Toshiba Corp Abrasive and polishing method
JPH0864594A (en) * 1994-08-18 1996-03-08 Sumitomo Metal Ind Ltd Forming method of wiring
JPH1121546A (en) * 1996-12-09 1999-01-26 Cabot Corp Chemical/mechanical polishing slurry useful for copper substrate
JPH10193510A (en) * 1996-12-27 1998-07-28 Nippon Zeon Co Ltd Production of resin coated substrate and formation of pattern
JPH10214834A (en) * 1997-01-28 1998-08-11 Matsushita Electric Ind Co Ltd Method for forming embedded wiring
JP2000290637A (en) * 1999-04-09 2000-10-17 Tokuyama Corp Polishing material for metal film and polishing method
JP2000315666A (en) * 1999-04-28 2000-11-14 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP2001015464A (en) * 1999-05-07 2001-01-19 Internatl Business Mach Corp <Ibm> Chemical mechanical flattening of barrier or liner for copper metallurgy
JP2001023940A (en) * 1999-07-09 2001-01-26 Seimi Chem Co Ltd Method for planarizing semiconductor integrated circuit and chemical mechanical polishing slurry therefor
WO2001013417A1 (en) * 1999-08-17 2001-02-22 Hitachi Chemical Company, Ltd. Polishing compound for chemimechanical polishing and method for polishing substrate

Also Published As

Publication number Publication date
JP4730358B2 (en) 2011-07-20

Similar Documents

Publication Publication Date Title
JP4505891B2 (en) Chemical mechanical polishing aqueous dispersion used in the manufacture of semiconductor devices
TWI478227B (en) Method for chemical mechanical polishing of substrate
JP4814784B2 (en) Modular barrier removal polishing slurry
KR100746785B1 (en) Aqueous Dispersion for Chemical Mechanical Polishing and Chemical Mechanical Polishing Process
TWI415928B (en) Polishing liquid and polishing method
US20020005017A1 (en) Aqueous dispersion for chemical mechanical polishing
JP2002164310A (en) Slurry for chemical-mechanical polishing
KR20090128389A (en) Metal polishing liquid and polishing method
JP2009055047A (en) Polishing slurry
JP2009004748A (en) Alkaline barrier polishing slurry
TWI664280B (en) Elevated temperature cmp compositions and methods for use thereof
TW201024396A (en) Ground composition for use in flatness metal layer
JP2005167219A (en) Composition and method for removing barrier
JP2018107294A (en) Composition for chemical mechanical polishing, and chemical mechanical polishing method
JP2002121541A (en) Aqueous dispersion for chemical machinery polishing
TWI722306B (en) Grinding method and slurry
JP2008028411A (en) Aqueous dispersion for chemical mechanical polishing used for manufacturing semiconductor device
JP2010103409A (en) Metal polishing solution and polishing method using same
US10947415B2 (en) Chemical mechanical polishing of tungsten using a method and composition containing quaternary phosphonium compounds
JP2007287832A (en) Chemical-mechanical polishing method
KR101465603B1 (en) Cmp slurry composition for polishing copper barrier layer and polishing method using the same
JP6955014B2 (en) Chemical mechanical polishing of tungsten using methods and compositions containing quaternary phosphonium compounds
TW202007758A (en) CMP slurry composition for polishing copper films and method for polishing copper films using the same
WO2011077973A1 (en) Polishing agent for copper polishing and polishing method using the same
KR100442549B1 (en) Slurry Composition for Chemical Mechanical Polishing of Metal having Enhanced Polishing Ability and Improved Stability and a Method for Preparing the Slurry Composition

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees