JP2008028200A - Three-dimensional circuit component and its manufacturing method - Google Patents

Three-dimensional circuit component and its manufacturing method Download PDF

Info

Publication number
JP2008028200A
JP2008028200A JP2006199948A JP2006199948A JP2008028200A JP 2008028200 A JP2008028200 A JP 2008028200A JP 2006199948 A JP2006199948 A JP 2006199948A JP 2006199948 A JP2006199948 A JP 2006199948A JP 2008028200 A JP2008028200 A JP 2008028200A
Authority
JP
Japan
Prior art keywords
insulating substrate
metal film
recess
circuit component
dimensional circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006199948A
Other languages
Japanese (ja)
Inventor
Naoto Ikegawa
直人 池川
Hitoshi Makinaga
仁 牧永
Mitsuru Kobayashi
充 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006199948A priority Critical patent/JP2008028200A/en
Publication of JP2008028200A publication Critical patent/JP2008028200A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Manufacturing Of Printed Circuit Boards (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a three-dimensional circuit component capable of obtaining excellent electromagnetic wave shieldability, and to provide its manufacturing method. <P>SOLUTION: By forming a recess 2 provided with a metal film 6 including carbon nanotubes 7 on the inner side face on an insulation substrate 1, and arranging a sensor element 4 which needs to be shut off from noise inside the recess 2; the sensor element 4 is surrounded by the metal film 6 including the carbon nanotubes 7. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、立体回路部品およびその製造方法に関するものである。   The present invention relates to a three-dimensional circuit component and a method for manufacturing the same.

立体回路部品において、ノイズ源となる電子部品、またはノイズから遮断されることが必要な電子部品を実装することがある、例えば、センサ素子等は微弱電流で動作するため、外部からの電磁波ノイズの影響を強く受けて、誤動作を引き起こしやすい。   In a three-dimensional circuit component, an electronic component that becomes a noise source or an electronic component that needs to be shielded from noise may be mounted. For example, a sensor element or the like operates with a weak current. It is strongly affected and easily causes malfunctions.

また、従来の電磁波シールド体としては、ポリアミド樹脂と炭素繊維を溶融混練して成形したものや(例えば、特許文献1参照)、カーボンナノチューブを含んだ熱可塑性樹脂よりなる制電層または導電層を基板上に設けたもの(例えば、特許文献2,3参照)がある。
特開平2002−234950号公報 特開平2004−230690号公報 特開平2004−253796号公報
In addition, as a conventional electromagnetic wave shield, a polyamide resin and carbon fiber are melt-kneaded and molded (for example, refer to Patent Document 1), an antistatic layer or a conductive layer made of a thermoplastic resin containing carbon nanotubes. Some are provided on a substrate (for example, see Patent Documents 2 and 3).
Japanese Patent Laid-Open No. 2002-234950 Japanese Patent Application Laid-Open No. 2004-230690 Japanese Patent Laid-Open No. 2004-253776

しかし、上記従来の電磁波シールド体は、樹脂に炭素繊維やカーボンナノチューブを混ぜていることから絶縁体とはならず、電気めっき処理による回路形成が不可能であるので、立体回路部品の基板材料に用いることはできなかった。また、その電磁波シールド性も十分ではなかった。   However, the conventional electromagnetic wave shielding body is not an insulator because carbon fiber or carbon nanotube is mixed in the resin, and circuit formation by electroplating is impossible. It could not be used. Moreover, the electromagnetic wave shielding property was not sufficient.

本発明は、上記事由に鑑みてなされたものであり、その目的は、優れた電磁波シールド性を得ることができる立体回路部品およびその製造方法を提供することにある。   This invention is made | formed in view of the said reason, The objective is to provide the three-dimensional circuit component which can obtain the outstanding electromagnetic wave shielding property, and its manufacturing method.

請求項1の発明は、ノイズ源となる電子部品、またはノイズから遮断されることが必要な電子部品を包囲する内側面を設けた絶縁基板を備え、絶縁基板の少なくとも前記内側面にカーボンナノチューブを含む1層以上の金属膜を設けることを特徴とする。   The invention of claim 1 comprises an insulating substrate provided with an inner surface surrounding an electronic component that is a noise source or an electronic component that needs to be shielded from noise, and carbon nanotubes are provided on at least the inner surface of the insulating substrate. One or more layers of metal films are provided.

この発明によれば、金属による電磁波の反射または吸収と、カーボンナノチューブによる電磁波の吸収との相乗効果によって、優れた電磁波シールド性を得ることができる。   According to the present invention, excellent electromagnetic shielding properties can be obtained by the synergistic effect of reflection or absorption of electromagnetic waves by metal and absorption of electromagnetic waves by carbon nanotubes.

請求項2の発明は、請求項1において、前記金属膜は、銅または銅を含む合金であることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the metal film is copper or an alloy containing copper.

この発明によれば、銅は導電性が高い(体積固有抵抗が低い)ので、電磁波の反射による損失を大きくできる。   According to this invention, since copper has high conductivity (low volume resistivity), loss due to reflection of electromagnetic waves can be increased.

請求項3の発明は、請求項1において、前記金属膜は、ニッケルまたはニッケルを含む合金であることを特徴とする。   According to a third aspect of the present invention, in the first aspect, the metal film is nickel or an alloy containing nickel.

この発明によれば、ニッケルは磁性損失が大きいので、電磁波の吸収による損失を大きくできる。   According to this invention, since nickel has a large magnetic loss, the loss due to the absorption of electromagnetic waves can be increased.

請求項4の発明は、請求項1乃至3いずれかにおいて、前記絶縁基板は、カーボンナノチューブを含む前記金属膜を内側面に設けた凹部を形成されて、当該凹部の底面上に設けた前記電子部品を実装する実装用端子と、絶縁基板の外面に設けた配線パターンと、実装用端子と配線パターンとを接続するスルーホールとを備えることを特徴とする。   A fourth aspect of the present invention is the electronic device according to any one of the first to third aspects, wherein the insulating substrate is formed with a recess provided on the inner surface of the metal film containing carbon nanotubes, and the electron provided on the bottom surface of the recess. A mounting terminal for mounting a component, a wiring pattern provided on the outer surface of the insulating substrate, and a through hole for connecting the mounting terminal and the wiring pattern are provided.

この発明によれば、凹部の内側面を配線パターンが通らないので、内側面全体にカーボンナノチューブを含む金属膜を形成でき、電磁波に対するシールド効果がさらに向上する。   According to the present invention, since the wiring pattern does not pass through the inner side surface of the recess, the metal film containing carbon nanotubes can be formed on the entire inner side surface, and the shielding effect against electromagnetic waves is further improved.

請求項5の発明は、請求項1乃至4いずれかにおいて、前記絶縁基板は、カーボンナノチューブを含む前記金属膜を内側面および底面に設けた凹部を形成されて、当該凹部内に前記電子機器を配置することを特徴とする。   According to a fifth aspect of the present invention, the insulating substrate according to any one of the first to fourth aspects, wherein the insulating substrate is formed with concave portions provided with the metal film containing carbon nanotubes on an inner surface and a bottom surface, and the electronic device is disposed in the concave portion. It is characterized by arranging.

この発明によれば、電磁波に対するシールド効果がさらに向上する。   According to the present invention, the shielding effect against electromagnetic waves is further improved.

請求項6の発明は、請求項1乃至5いずれかにおいて、前記絶縁基板は、一面に開口を有する凹部を形成されて、当該凹部内に前記電子機器を配置し、凹部の内側面および絶縁基板の前記一面にカーボンナノチューブを含む前記金属膜を設け、絶縁基板の前記一面には、凹部の開口を塞ぐとともに前記一面に設けた金属膜に接触する金属製の蓋を覆設することを特徴とする。   According to a sixth aspect of the present invention, in any one of the first to fifth aspects, the insulating substrate is formed with a concave portion having an opening on one surface, the electronic device is disposed in the concave portion, and the inner side surface of the concave portion and the insulating substrate The metal film containing carbon nanotubes is provided on the one surface of the substrate, and the one surface of the insulating substrate is covered with a metal lid that closes the opening of the recess and contacts the metal film provided on the one surface. To do.

この発明によれば、電磁波に対するシールド効果がさらに向上する。   According to the present invention, the shielding effect against electromagnetic waves is further improved.

請求項7の発明は、請求項6において、前記絶縁基板の一面に設けた金属膜は、他の金属膜を形成するときに行う電気めっき処理の給電線として用いることを特徴とする。   A seventh aspect of the invention is characterized in that, in the sixth aspect, the metal film provided on one surface of the insulating substrate is used as a power supply line for an electroplating process performed when another metal film is formed.

この発明によれば、給電線を別途設ける必要がなく、構造の単純化を図ることができる。   According to the present invention, it is not necessary to separately provide a feeder line, and the structure can be simplified.

請求項8の発明は、絶縁基板の表面をプラズマ処理して表面の活性化を行った後、絶縁基板の表面を被覆する金属層を形成し、次に回路形成部分と非回路形成部分の境界領域にレーザ光を照射して境界領域の金属層を除去し、次に回路形成部分の金属層にめっき処理を施すことで金属膜を形成する立体回路部品の製造方法において、ノイズ源となる電子部品、またはノイズから遮断されることが必要な電子部品を包囲する内側面を設けた絶縁基板の少なくとも前記内側面にカーボンナノチューブを含む1層以上の金属膜をめっき処理によって形成することを特徴とする。   In the invention of claim 8, after the surface of the insulating substrate is activated by plasma treatment, a metal layer covering the surface of the insulating substrate is formed, and then the boundary between the circuit forming portion and the non-circuit forming portion. In a method of manufacturing a three-dimensional circuit component in which a metal film is formed by irradiating a region with a laser beam to remove a metal layer in a boundary region and then plating the metal layer in a circuit forming portion, an electron that becomes a noise source One or more metal films containing carbon nanotubes are formed by plating on at least the inner surface of an insulating substrate provided with an inner surface surrounding an electronic component that needs to be shielded from components or noise. To do.

この発明によれば、金属膜による電磁波の反射または吸収と、カーボンナノチューブによる電磁波の吸収との相乗効果によって、優れた電磁波シールド性を得ることができる。   According to the present invention, excellent electromagnetic shielding properties can be obtained by the synergistic effect of the reflection or absorption of electromagnetic waves by the metal film and the absorption of electromagnetic waves by the carbon nanotubes.

以上説明したように、本発明では、優れた電磁波シールド性を得ることができるという効果がある。   As described above, the present invention has an effect that an excellent electromagnetic shielding property can be obtained.

以下、本発明の実施の形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

(実施形態1)
図1、図2(a)(b)(図2(a)は、図2(b)のX1−X1’断面を示す。但し、図2(b)において、センサ素子4は省略。)は、本実施形態の立体回路部品A1の構成を示しており、直方体に成形された絶縁基板1の上面に凹部2が形成され、凹部2の底面には一対の実装用端子3,3が形成され、実装用端子3,3上にはセンサ素子4が配置され、センサ素子4は実装用端子3,3に電気的に接続している。実装用端子3からは配線パターン5が延設されており、配線パターン5は、各実装用端子3から互いに反対方向に伸びて、凹部2の底面,絶縁基板1の内側面、絶縁基板1の外縁部の上面,絶縁基板1の外側面に亘って直線状に形成され、立体回路部品A1の外部に電気的に接続される。なお、センサ素子4が自己の容量や抵抗値の変化を検知して出力する場合は、図1に示すように一対の実装用端子3、一対の配線パターン5を形成して、各々を信号線、GND線として用いるが、センサ素子4に電源が必要な場合は、3つの実装用端子3、3つの配線パターン5を形成して、各々を電源線、信号線、GND線として用いる。
(Embodiment 1)
1 and 2 (a) and (b) (FIG. 2 (a) shows a cross section taken along line X1-X1 ′ of FIG. 2 (however, sensor element 4 is omitted in FIG. 2 (b)). 1 shows the configuration of the three-dimensional circuit component A1 of the present embodiment, in which a recess 2 is formed on the top surface of an insulating substrate 1 formed in a rectangular parallelepiped, and a pair of mounting terminals 3 and 3 are formed on the bottom surface of the recess 2. The sensor element 4 is disposed on the mounting terminals 3 and 3, and the sensor element 4 is electrically connected to the mounting terminals 3 and 3. A wiring pattern 5 extends from the mounting terminal 3, and the wiring pattern 5 extends in the opposite direction from each mounting terminal 3, so that the bottom surface of the recess 2, the inner surface of the insulating substrate 1, and the insulating substrate 1. It is formed in a straight line over the upper surface of the outer edge and the outer surface of the insulating substrate 1, and is electrically connected to the outside of the three-dimensional circuit component A1. When the sensor element 4 detects and outputs a change in its own capacitance or resistance value, a pair of mounting terminals 3 and a pair of wiring patterns 5 are formed as shown in FIG. When the sensor element 4 requires a power supply, three mounting terminals 3 and three wiring patterns 5 are formed and used as a power supply line, a signal line, and a GND line, respectively.

そして、本実施形態では、配線パターン5近傍以外の絶縁基板1の内側面に金属膜6a、外側面に金属膜6bを形成し、さらに絶縁基板1の外縁部の上面には、内側面と外側面の金属膜6a,6bを連結する金属膜6cを2箇所に形成しており、これらの金属膜6(以降、金属膜6a,6b,6c,...を示すときは金属膜6と称す)はカーボンナノチューブ7を含有している。   In this embodiment, the metal film 6a is formed on the inner surface of the insulating substrate 1 other than the vicinity of the wiring pattern 5, the metal film 6b is formed on the outer surface, and the inner surface and the outer surface are formed on the upper surface of the outer edge portion of the insulating substrate 1. The metal films 6c that connect the metal films 6a and 6b on the side surfaces are formed at two locations, and these metal films 6 (hereinafter, the metal films 6a, 6b, 6c,. ) Contains carbon nanotubes 7.

以下、絶縁基板1の表面に、実装用端子3、配線パターン5、金属膜6を形成するプロセスについて、図3(a)〜(c)、図4(a)〜(d)を用いて説明する。まず、絶縁基板1は、ポリフタルアミド(PPA)、液晶ポリマー(LCP)、ポリエーテルエーテルケトン(PEEK)等の耐熱性に優れたポリマー基材、またはアルミナ(92〜99%)、窒化アルミ、炭化ケイ素等のセラミックス基材からなり、配線パターン5が形成されない互いに対向する絶縁基板1の外側面に設けたピンゲート8を介して基材が供給されて直方体に成形され、上面には凹部2が形成される(図3(a))。なお、好ましいポリマー基材としては、熱可塑性樹脂であって、上記以外に例えば、6ナイロン(PA6)、6−6ナイロン(PA6−6)、4−6ナイロン(PA46)、11ナイロン(PA11)、6−10ナイロン、PA−MXD−6、芳香族ポリアミド(PA6T、PA9T等)等のポリアミド、またはポリフェニレンサルファイド、またはポリフェニレンエーテル、ポリエーテルケトン等のポリケトン、またはポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート等のポリエステル、またはポリエーテルイミド、またはポリイミド等を例示することができる。   Hereinafter, the process of forming the mounting terminals 3, the wiring pattern 5, and the metal film 6 on the surface of the insulating substrate 1 will be described with reference to FIGS. 3 (a) to 3 (c) and FIGS. 4 (a) to 4 (d). To do. First, the insulating substrate 1 is made of a polymer base material excellent in heat resistance such as polyphthalamide (PPA), liquid crystal polymer (LCP), polyether ether ketone (PEEK), or alumina (92 to 99%), aluminum nitride, The substrate is made of a ceramic substrate such as silicon carbide, and is formed into a rectangular parallelepiped through a pin gate 8 provided on the outer surface of the insulating substrate 1 facing each other where the wiring pattern 5 is not formed. It is formed (FIG. 3A). A preferable polymer base material is a thermoplastic resin. In addition to the above, for example, 6 nylon (PA6), 6-6 nylon (PA6-6), 4-6 nylon (PA46), 11 nylon (PA11) , 6-10 nylon, PA-MXD-6, polyamides such as aromatic polyamide (PA6T, PA9T, etc.), polyphenylene sulfide, polyketones such as polyphenylene ether, polyetherketone, or polyethylene terephthalate (PET), polybutylene terephthalate Examples thereof include polyester, polyetherimide, polyimide and the like.

次に、絶縁基板1の表面にRFプラズマ処理を施して、絶縁基板1の表面を活性化させる。プラズマ処理は、チャンバー内に一対の電極を対向配置し、一方の電極に高周波電源を接続するとともに他方の電極を接地して構成されるプラズマ処理装置を用いて行われる。そして、絶縁基板1の表面をプラズマ処理するにあたっては、絶縁基板1を一方の電極上にセットし、チャンバー内を真空引きして10−4Pa程度に減圧した後、チャンバー内にNやNH等の化学的反応が活性なガスを導入して流通させるとともに、チャンバー内のガス圧を8〜15Paに制御し、次に高周波電源によって電極間に高周波電圧(RF:13.56MHz)を10〜100秒程度印加する。このとき、電極間の高周波グロー放電による気体放電現象によって、チャンバー内の活性ガスが励起され、陽イオンやラジカル等のプラズマが発生し、陽イオンやラジカル等がチャンバー内に形成される。 Next, the surface of the insulating substrate 1 is subjected to RF plasma treatment to activate the surface of the insulating substrate 1. The plasma processing is performed using a plasma processing apparatus in which a pair of electrodes are disposed facing each other in a chamber, a high frequency power source is connected to one electrode, and the other electrode is grounded. And when plasma-treating the surface of the insulating substrate 1, the insulating substrate 1 is set on one electrode, the inside of the chamber is evacuated to reduce the pressure to about 10 −4 Pa, and then N 2 or NH is put into the chamber. A gas having an active chemical reaction such as 3 is introduced and circulated, the gas pressure in the chamber is controlled to 8 to 15 Pa, and then a high frequency voltage (RF: 13.56 MHz) is applied between the electrodes by a high frequency power source. Apply for about 100 seconds. At this time, the active gas in the chamber is excited by the gas discharge phenomenon due to the high-frequency glow discharge between the electrodes, plasma such as cations and radicals is generated, and cations and radicals are formed in the chamber.

そして、この陽イオンやラジカル等が絶縁基板1の表面に衝突することによって、絶縁基板1の表面が活性化され、後述するメタライジング処理において絶縁基板1と金属層M1との間で化学的結合が形成されて、密着性を高めることができる。特に、陽イオンが絶縁基板1に誘引衝突すると、絶縁基板1の表面に金属と結合しやすい窒素極性基や酸素極性基が導入されるので、金属層M1との密着性がより向上する。   The cations, radicals, and the like collide with the surface of the insulating substrate 1 to activate the surface of the insulating substrate 1, and chemically bond between the insulating substrate 1 and the metal layer M1 in the metalizing process described later. Can be formed to improve the adhesion. In particular, when a cation attracts and collides with the insulating substrate 1, a nitrogen polar group or an oxygen polar group that easily binds to a metal is introduced to the surface of the insulating substrate 1, so that the adhesion with the metal layer M 1 is further improved.

なお、プラズマ処理の条件は上記に限定されるものではなく、絶縁基板1の表面がプラズマ処理によって過度に粗面化されない範囲で任意に設定して行うことができる。また、プラズマの種類も特に限定されるものではないが、窒素プラズマ処理が望ましい。窒素プラズマ処理では、酸素プラズマ処理のように樹脂のエステル結合が切断されて炭酸ガスを脱離することが少ないので、絶縁基板1の表層部の強度低下を抑制することができ、金属層M1の密着性が低下することを防ぐことができる。   Note that the conditions for the plasma treatment are not limited to the above, and the conditions can be arbitrarily set within a range in which the surface of the insulating substrate 1 is not excessively roughened by the plasma treatment. The type of plasma is not particularly limited, but nitrogen plasma treatment is desirable. In the nitrogen plasma treatment, since the ester bond of the resin is not cut and the carbon dioxide gas is not released as in the oxygen plasma treatment, the strength reduction of the surface layer portion of the insulating substrate 1 can be suppressed. It can prevent that adhesiveness falls.

そして、上記のように絶縁基板1をプラズマ処理した後、スパッタリングまたは真空蒸着またはイオンプレーティング等の物理蒸着法(PVD法)により、絶縁基板1の表面に金属層M1を形成するメタライジング処理を行う(図3(b))。ここで、絶縁基板1をチャンバー内でプラズマ処理した後、このチャンバー内を大気開放することなく、スパッタリング、真空蒸着、イオンプレーティング等のいずれかの処理を連続プロセスで行うことが望ましい。金属層M1を形成する金属としては銅、ニッケル、金、アルミニウム、チタン、モリブデン、クロム、タングステン、スズ、鉛、黄銅、ニクロム等の単体、あるいは合金を用いることができる。   Then, after the plasma treatment of the insulating substrate 1 as described above, a metalizing process for forming the metal layer M1 on the surface of the insulating substrate 1 by a physical vapor deposition method (PVD method) such as sputtering, vacuum vapor deposition, or ion plating is performed. Perform (FIG. 3B). Here, after the insulating substrate 1 is plasma-treated in the chamber, it is desirable to perform any treatment such as sputtering, vacuum deposition, ion plating, etc. in a continuous process without opening the inside of the chamber to the atmosphere. As a metal forming the metal layer M1, a simple substance such as copper, nickel, gold, aluminum, titanium, molybdenum, chromium, tungsten, tin, lead, brass, nichrome, or an alloy can be used.

スパッタリングとしては、例えば、DCスパッタ方式を適用する。まず、チャンバー内に絶縁基板1を配置し、真空ポンプよってチャンバー内を真空引きして10−4Pa程度に減圧した後、チャンバー内にアルゴン等の不活性ガスを0.1Paのガス圧となるように導入する。そして、500Vの直流電圧を絶縁基板1に印加することによって、銅ターゲットをボンバードし、200〜500nm程度の膜厚を有する銅等の金属層M1を絶縁基板1の表面に形成する。 As the sputtering, for example, a DC sputtering method is applied. First, the insulating substrate 1 is placed in the chamber, the inside of the chamber is evacuated by a vacuum pump and the pressure is reduced to about 10 −4 Pa, and then an inert gas such as argon is brought to a gas pressure of 0.1 Pa in the chamber. To introduce. Then, by applying a DC voltage of 500 V to the insulating substrate 1, the copper target is bombarded, and a metal layer M1 such as copper having a thickness of about 200 to 500 nm is formed on the surface of the insulating substrate 1.

また、真空蒸着としては、例えば、電子線加熱式真空蒸着方式を適用する。まず、チャンバー内に絶縁基板1を配置し、真空ポンプよってチャンバー内を真空引きして10−4Pa程度に減圧した後、400〜800mAの電子流を発生させ、この電子流をるつぼの中の蒸着材料に衝突させて加熱すると、蒸着材料が蒸発し、200nm程度の膜厚を有する銅等の金属層M1を絶縁基板1の表面に形成する。 Moreover, as a vacuum evaporation, an electron beam heating type vacuum evaporation system is applied, for example. First, the insulating substrate 1 is placed in the chamber, and the inside of the chamber is evacuated by a vacuum pump to reduce the pressure to about 10 −4 Pa. Then, an electron current of 400 to 800 mA is generated, When heated by colliding with the vapor deposition material, the vapor deposition material evaporates, and a metal layer M1 such as copper having a film thickness of about 200 nm is formed on the surface of the insulating substrate 1.

また、イオンプレーティングで金属層M1を形成する場合は、まず、チャンバー内に絶縁基板1を配置し、真空ポンプよってチャンバー内を真空引きして10−4Pa程度に減圧した後、上記真空蒸着と同様にるつぼの中の蒸着材料を蒸発させるとともに、絶縁基板1とるつぼの間に設けた誘導アンテナ部にアルゴン等の不活性ガスを導入し、チャンバー内のガス圧を0.05〜0.1Paに設定してプラズマを発生させる。そして、誘導アンテナに13.56MHz、500Wの高周波のパワーを印加し、さらに絶縁基板1を載置している電極に高周波のパワーを印加して所望のバイアス電圧を発生させることによって、200〜500nm程度の膜厚を有する銅等の金属層M1を絶縁基板1の表面に形成する。 When the metal layer M1 is formed by ion plating, first, the insulating substrate 1 is placed in the chamber, the inside of the chamber is evacuated by a vacuum pump and the pressure is reduced to about 10 −4 Pa, and then the vacuum deposition is performed. The evaporation material in the crucible is evaporated, and an inert gas such as argon is introduced into the induction antenna provided between the insulating substrate 1 and the crucible so that the gas pressure in the chamber is 0.05 to 0. 0. Plasma is generated by setting to 1 Pa. Then, high frequency power of 13.56 MHz and 500 W is applied to the induction antenna, and further, high frequency power is applied to the electrode on which the insulating substrate 1 is placed to generate a desired bias voltage, thereby causing 200 to 500 nm. A metal layer M <b> 1 such as copper having a thickness of about a thickness is formed on the surface of the insulating substrate 1.

物理蒸着法によって絶縁基板1の表面に金属層M1を形成するにあたって、プラズマ処理を行わないで金属層M1を形成しても、回路形成が可能な程度の密着力を得ることは困難であるが、上記のように、絶縁基板1の表面を予めプラズマ処理によって化学的に活性化させることで、絶縁基板1の表面に対する金属層M1の密着性を高くしている。   In forming the metal layer M1 on the surface of the insulating substrate 1 by the physical vapor deposition method, it is difficult to obtain an adhesive force capable of forming a circuit even if the metal layer M1 is formed without performing plasma treatment. As described above, the surface of the insulating substrate 1 is chemically activated in advance by plasma treatment, so that the adhesion of the metal layer M1 to the surface of the insulating substrate 1 is increased.

なお、メタライジング処理には、上記以外に無電解めっき処理を用いてもよい。   In addition to the above, an electroless plating process may be used for the metalizing process.

次に、絶縁基板1の表面に設けた金属層M1で回路形成するパターニングを行う(図3(c))。本実施形態では、絶縁基板1はその上面に凹部2を形成した三次元立体表面を有しており、この立体表面に金属層M1を形成した後に回路パターンを形成することによって、MID等の立体回路基板に仕上げる。   Next, patterning for forming a circuit with the metal layer M1 provided on the surface of the insulating substrate 1 is performed (FIG. 3C). In the present embodiment, the insulating substrate 1 has a three-dimensional solid surface having a concave portion 2 formed on the upper surface thereof, and by forming a circuit pattern after forming the metal layer M1 on the three-dimensional surface, a three-dimensional surface such as MID is formed. Finish on the circuit board.

パターニングは、例えばレーザ法(微細三次元レーザ加工)によって行う。回路形成部分と回路非形成部分との境界領域に沿って金属層M1にレーザ光を照射し、この境界領域の金属層M1を除去することによって、回路形成部分の金属層M1を回路パターンとして、金属層M1の回路非形成部分から分離する。   Patterning is performed by, for example, a laser method (fine three-dimensional laser processing). By irradiating the metal layer M1 with a laser beam along the boundary region between the circuit forming portion and the circuit non-forming portion, and removing the metal layer M1 in the boundary region, the metal layer M1 in the circuit forming portion is used as a circuit pattern. It separates from the circuit non-formation part of the metal layer M1.

次に、ピンゲート8を介して回路形成部分の金属層M1にのみ給電し、電気銅めっき処理を施して厚付けし、5〜20μm程度の厚みを有する銅導電層M2を金属層M1の表面に形成する(図4(a))。この銅導電層M2は、硫酸銅、シアン化銅、ピロリン酸銅、ホウフッ化銅のいずれの銅めっきでもよい。   Next, power is supplied only to the metal layer M1 in the circuit forming portion through the pin gate 8, and the copper conductive layer M2 having a thickness of about 5 to 20 μm is formed on the surface of the metal layer M1 by performing an electrolytic copper plating process. Form (FIG. 4A). This copper conductive layer M2 may be any copper plating of copper sulfate, copper cyanide, copper pyrophosphate, copper borofluoride.

次に、ソフトエッチング処理を施すことで、回路非形成部分に残る金属層M1を除去し、銅導電層M2を表面に形成した回路形成部分は残存させることによって、所望のパターン形状の回路を形成した成形回路基板となる(図4(b))。このソフトエッチング処理は、金属層M1が銅の場合、過硫酸アンモニウム、硝酸、硫酸、塩酸等を用いる。   Next, by performing a soft etching process, the metal layer M1 remaining in the circuit non-formation portion is removed, and the circuit formation portion having the copper conductive layer M2 formed on the surface is left to form a circuit having a desired pattern shape. The formed circuit board is obtained (FIG. 4B). This soft etching treatment uses ammonium persulfate, nitric acid, sulfuric acid, hydrochloric acid or the like when the metal layer M1 is copper.

次に、ピンゲート8を介して給電し、銅導電層M2の表面に電気ニッケルめっき処理を施して、数μm程度の厚みを有するニッケル導電層M3を形成する(図4(c))。この電気ニッケルめっき処理は、ワット浴、スルファミン酸浴、クエン酸浴、ホウフッ化浴、全塩化物浴、全硫酸塩浴のいずれを用いてもよい。   Next, power is supplied through the pin gate 8, and the surface of the copper conductive layer M2 is subjected to an electro nickel plating process to form a nickel conductive layer M3 having a thickness of about several μm (FIG. 4C). For this electro nickel plating treatment, any of Watts bath, sulfamic acid bath, citric acid bath, borofluoride bath, total chloride bath, or total sulfate bath may be used.

次に、ピンゲート8を介して給電し、ニッケルめっき層M3の表面に電気金めっき処理を施して、数μm程度の厚みを有する金導電層M4を形成する(図4(d))。   Next, power is supplied through the pin gate 8, and the surface of the nickel plating layer M3 is subjected to electrogold plating to form a gold conductive layer M4 having a thickness of about several μm (FIG. 4D).

図3,図4では、1つの絶縁基板1に対する処理を示しているが、1つの成形体から複数の絶縁基板1を作る場合は、この成形体に対して上記一連の処理を施して、最後に絶縁基板1を個片毎に切断する。   3 and 4 show the processing for one insulating substrate 1, but when a plurality of insulating substrates 1 are made from one molded body, the above-described series of processing is performed on the molded body, and the final processing is performed. The insulating substrate 1 is cut into individual pieces.

実装用端子3、配線パターン5、金属膜6は、上記一連の処理による金属層M1、銅導電層M2,ニッケル導電層M3,金導電層M4で構成されるのであるが、金属膜6にカーボンナノチューブ7を含有させるには、上記電気銅めっき処理において、銅のめっき液中にカーボンナノチューブ7を分散剤とともに添加して、該分散剤によりめっき液中にカーボンナノチューブ7を分散させ、このめっき液を用いて電気銅めっき処理を施すことにより、カーボンナノチューブ7が含まれている銅導電層M2を形成する。なお、めっき液は銅、あるいは銅を含む合金であればよい。   The mounting terminal 3, the wiring pattern 5, and the metal film 6 are composed of the metal layer M1, the copper conductive layer M2, the nickel conductive layer M3, and the gold conductive layer M4 by the above-described series of processing. In order to contain the nanotubes 7, in the electrolytic copper plating process, the carbon nanotubes 7 are added to the copper plating solution together with a dispersing agent, and the carbon nanotubes 7 are dispersed in the plating solution by the dispersing agent. The copper conductive layer M <b> 2 including the carbon nanotubes 7 is formed by performing an electrolytic copper plating process using the above. The plating solution may be copper or an alloy containing copper.

または、上記ニッケルめっき処理において、ニッケルのめっき液中にカーボンナノチューブ7を分散剤とともに添加することで、カーボンナノチューブ7が含まれているニッケル導電層M3を形成して、金属膜6にカーボンナノチューブ7を含有させる。なお、めっき液はニッケル、あるいはニッケルを含む合金であればよい。   Alternatively, in the nickel plating treatment, the carbon conductive layer M3 containing the carbon nanotubes 7 is formed by adding the carbon nanotubes 7 together with the dispersant in the nickel plating solution, and the carbon nanotubes 7 are formed on the metal film 6. Containing. The plating solution may be nickel or an alloy containing nickel.

または、上記カーボンナノチューブ7が含まれている銅導電層M2と、上記カーボンナノチューブ7が含まれているニッケル導電層M3との両方を形成して、金属膜6にカーボンナノチューブ7を含有させてもよい。   Alternatively, both the copper conductive layer M2 containing the carbon nanotubes 7 and the nickel conductive layer M3 containing the carbon nanotubes 7 may be formed so that the carbon nanotubes 7 are contained in the metal film 6. Good.

そして、図1に示すように、絶縁基板1の内側面および外側面には、カーボンナノチューブ7を含有する金属膜6a,6bが各々形成されており、銅導電層M2の銅または銅合金は導電性が高い(体積固有抵抗が低い)ので電磁波の反射による損失を大きくでき、ニッケル導電層M3のニッケルまたはニッケル合金は磁性損失による電磁波の吸収が大きいので、金属膜6a,6bが電磁波ノイズを反射,吸収し、さらにカーボンナノチューブ7が電磁波ノイズを吸収するので、凹部2の底面上に配置されたセンサ素子4は、周囲を包囲する金属膜6a,6bとカーボンナノチューブ7の相乗効果によって電磁波ノイズに対する優れたシールド性を得ることができ、外部からの電磁波ノイズの干渉やノイズの重畳を防止することができる。   As shown in FIG. 1, metal films 6a and 6b containing carbon nanotubes 7 are respectively formed on the inner and outer surfaces of the insulating substrate 1, and the copper or copper alloy of the copper conductive layer M2 is conductive. Because of its high properties (low volume resistivity), the loss due to the reflection of the electromagnetic wave can be increased, and the nickel or nickel alloy of the nickel conductive layer M3 has a large absorption of the electromagnetic wave due to the magnetic loss, so the metal films 6a and 6b reflect the electromagnetic wave noise. , And further, the carbon nanotube 7 absorbs electromagnetic wave noise, so that the sensor element 4 disposed on the bottom surface of the recess 2 is resistant to electromagnetic wave noise by the synergistic effect of the surrounding metal films 6a and 6b and the carbon nanotube 7. Excellent shielding properties can be obtained, and interference of electromagnetic wave noise from outside and superposition of noise can be prevented.

さらに金属膜6だけでなく、実装用端子3、配線パターン5もカーボンナノチューブ7を混入しためっき液を用いてめっき処理することで、カーボンナノチューブ7を含有する実装用端子3、配線パターン5を形成してもよく、さらなるシールド性の向上を図ることができ、且つカーボンナノチューブ7を含む実装用端子3、配線パターン5は電気伝導性に優れたものとなる。   Further, not only the metal film 6 but also the mounting terminals 3 and the wiring patterns 5 are plated using a plating solution mixed with the carbon nanotubes 7 to form the mounting terminals 3 and the wiring patterns 5 containing the carbon nanotubes 7. Alternatively, the shielding property can be further improved, and the mounting terminal 3 and the wiring pattern 5 including the carbon nanotubes 7 are excellent in electrical conductivity.

また、センサ素子4の代わりにノイズ源となる電子部品を凹部2内に配置すれば、周囲を包囲する金属膜6a,6bとカーボンナノチューブ7の相乗効果によって、外部へ放出される電磁波ノイズを抑制できる。   In addition, if an electronic component serving as a noise source is disposed in the recess 2 instead of the sensor element 4, the electromagnetic noise emitted to the outside is suppressed by the synergistic effect of the surrounding metal films 6a and 6b and the carbon nanotubes 7. it can.

(実施形態2)
図5、図6(a)〜(c)は、本実施形態の立体回路部品A2の構成を示しており、実施形態1と同様の構成には同一の符号を付して説明は省略する。なお、図6(a)は、図5のX2−X2’断面を示す。
(Embodiment 2)
5 and 6A to 6C show the configuration of the three-dimensional circuit component A2 of the present embodiment. The same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted. FIG. 6A shows an X2-X2 ′ cross section of FIG.

立体回路部品A2は、矩形の枠体に成形された絶縁基板11で構成され、絶縁基板11の枠部11aの内側には矩形の孔11bが形成されている。そして、枠部11aの互いに対向する2辺において、上面、内側面、下面の3面に亘って連続した複数本の配線パターン12が各々形成され、枠部11aの残りの2辺の内側面にはカーボンナノチューブ7を含有する金属膜6aが形成され、さらに枠部11aの外側面にもカーボンナノチューブ7を含有する金属膜6bが形成されている。   The three-dimensional circuit component A2 is constituted by an insulating substrate 11 formed into a rectangular frame, and a rectangular hole 11b is formed inside the frame portion 11a of the insulating substrate 11. A plurality of continuous wiring patterns 12 are formed on the two opposite sides of the frame portion 11a over the three surfaces of the upper surface, the inner surface, and the lower surface, and are formed on the inner surfaces of the remaining two sides of the frame portion 11a. A metal film 6a containing carbon nanotubes 7 is formed, and a metal film 6b containing carbon nanotubes 7b is also formed on the outer surface of the frame portion 11a.

絶縁基板11の成形時には、枠部11aの配線パターン12を形成する2辺に沿って設けたサイドゲート13を介して基材が供給される。   When the insulating substrate 11 is formed, the base material is supplied through the side gates 13 provided along two sides forming the wiring pattern 12 of the frame portion 11a.

また、絶縁基板11の表面に金属膜6、配線パターン12を形成するプロセスは、図3(a)〜(c)、図4(a)〜(d)に示される実施形態1と同様の処理が行われ、図4(a)(c)(d)の電気めっき処理においては、配線パターン12を形成した絶縁基板11の2辺に沿って設けたサイドゲート13を介して給電される。さらに、金属膜6にカーボンナノチューブ7を含有させる処理も実施形態1と同様に行われる。   Further, the process of forming the metal film 6 and the wiring pattern 12 on the surface of the insulating substrate 11 is the same as that of the first embodiment shown in FIGS. 3 (a) to 3 (c) and FIGS. 4 (a) to 4 (d). 4A, 4C, and 4D, power is supplied through the side gates 13 provided along two sides of the insulating substrate 11 on which the wiring pattern 12 is formed. Further, the process of incorporating the carbon nanotubes 7 into the metal film 6 is also performed in the same manner as in the first embodiment.

また、サイドゲート13を介して複数の絶縁基板1を1つの成形体で構成すれば、サイドゲート13に設けた配線パターン14を介して各絶縁基板1に給電することで、複数の絶縁基板1において同時に電気めっき処理が可能となる。そして、最後にサイドゲート13を切断して個片毎に分割することで、生産性が向上する。   In addition, if the plurality of insulating substrates 1 are formed of a single molded body through the side gates 13, the plurality of insulating substrates 1 are fed by supplying power to the respective insulating substrates 1 through the wiring patterns 14 provided on the side gates 13. At the same time, electroplating can be performed. Finally, the side gate 13 is cut and divided into individual pieces, thereby improving productivity.

そして、立体回路部品A2は(図6(a))、ノイズ源となる電子部品22を上面に実装したプリント配線板21の上面に載置され、電子部品22は絶縁基板1の孔11b内に位置し、プリント配線板21上面の配線パターン23は、絶縁基板1の枠部11aの下面に形成した配線パターン12に半田H1を介して電気的に接続する(図6(b))。さらに、立体回路部品A2の上面には、ノイズ源となる電子部品25を下面に実装したプリント配線板24の下面が載置され、電子部品25は絶縁基板1の孔11b内に位置し、プリント配線板24下面の配線パターン26は、絶縁基板1の枠部11aの上面に形成した配線パターン12に半田H2を介して電気的に接続する(図6(c))。すなわち、プリント配線板21,24は、立体回路部品A2の配線パターン12を介して互いに電気的に接続されている。   The three-dimensional circuit component A2 (FIG. 6A) is placed on the upper surface of the printed wiring board 21 on which the electronic component 22 serving as a noise source is mounted. The electronic component 22 is placed in the hole 11b of the insulating substrate 1. The wiring pattern 23 located on the upper surface of the printed wiring board 21 is electrically connected to the wiring pattern 12 formed on the lower surface of the frame portion 11a of the insulating substrate 1 via the solder H1 (FIG. 6B). Further, on the upper surface of the three-dimensional circuit component A2, the lower surface of the printed wiring board 24 on which the electronic component 25 serving as a noise source is mounted on the lower surface is placed. The electronic component 25 is located in the hole 11b of the insulating substrate 1 and is printed. The wiring pattern 26 on the lower surface of the wiring board 24 is electrically connected to the wiring pattern 12 formed on the upper surface of the frame portion 11a of the insulating substrate 1 through the solder H2 (FIG. 6C). That is, the printed wiring boards 21 and 24 are electrically connected to each other via the wiring pattern 12 of the three-dimensional circuit component A2.

上記図6(c)の状態で、電子部品22,25は、立体回路部品A2の枠部11aの孔11b内に位置し、枠部11aの内側面、外側面に形成したカーボンナノチューブ7を含有する金属膜6a,6bによってその周囲を包囲されている。したがって、周囲を包囲する金属膜6a,6bとカーボンナノチューブ7の相乗効果によって電磁波ノイズに対する優れたシールド性を得ることができ、外部へ放出される電磁波ノイズを抑制できる。また、電子部品22,25の代わりにセンサ素子をプリント配線板21,24上に実装すれば、外部からの電磁波ノイズの干渉やノイズの重畳を防止することができる。   In the state of FIG. 6C, the electronic components 22 and 25 are located in the holes 11b of the frame portion 11a of the three-dimensional circuit component A2, and contain carbon nanotubes 7 formed on the inner and outer surfaces of the frame portion 11a. The surroundings are surrounded by metal films 6a and 6b. Therefore, an excellent shielding property against electromagnetic wave noise can be obtained by the synergistic effect of the metal films 6a and 6b surrounding the periphery and the carbon nanotube 7, and electromagnetic wave noise emitted to the outside can be suppressed. Further, if a sensor element is mounted on the printed wiring boards 21 and 24 instead of the electronic components 22 and 25, interference of electromagnetic wave noise from outside and superposition of noise can be prevented.

このように、プリント配線板21,24に金属製のシールド部材を各々設ける必要がなく、1つの立体回路部品A2によって、プリント配線板21,24を互いに電気的に接続しながら小型化が可能になるとともに、プリント配線板21,24に実装している電子部品に対して優れたシールド性を得ることができる。   In this way, it is not necessary to provide a metal shield member on each of the printed wiring boards 21 and 24, and it is possible to reduce the size while electrically connecting the printed wiring boards 21 and 24 to each other by a single three-dimensional circuit component A2. In addition, an excellent shielding property can be obtained for the electronic components mounted on the printed wiring boards 21 and 24.

(実施形態3)
図7、図8(a)(b)、図9は、本実施形態の立体回路部品A3の構成を示しており、実施形態1と同様の構成には同一の符号を付して説明は省略する。なお、図8(a)は、図7のX3−X3’断面を示す。
(Embodiment 3)
7, FIG. 8 (a) (b), FIG. 9 has shown the structure of 3D circuit component A3 of this embodiment, The same code | symbol is attached | subjected to the structure similar to Embodiment 1, and description is abbreviate | omitted. To do. FIG. 8A shows an X3-X3 ′ cross section of FIG.

立体回路部品A3において、絶縁基板1の凹部2の底面上に設けた実装用端子3は、凹部2の底面を上下方向に貫通するスルーホール31を介して絶縁基板1の下面に設けた配線パターン32に電気的に接続している(図9の一部拡大図参照)。したがって、実施形態1では、カーボンナノチューブ7を含有する金属膜6a,6bを、配線パターン5を避けて絶縁基板1の内側面および外側面に形成していたが、本実施形態では、カーボンナノチューブ7を含有する金属膜6a,6bを、絶縁基板1の内側面および外側面の全面に亘って形成することができ、シールド効果がさらに向上する。   In the three-dimensional circuit component A3, the mounting terminal 3 provided on the bottom surface of the recess 2 of the insulating substrate 1 is provided with a wiring pattern provided on the bottom surface of the insulating substrate 1 through a through hole 31 penetrating the bottom surface of the recess 2 in the vertical direction. 32 (see a partially enlarged view of FIG. 9). Therefore, in the first embodiment, the metal films 6a and 6b containing the carbon nanotubes 7 are formed on the inner side surface and the outer side surface of the insulating substrate 1 avoiding the wiring pattern 5, but in this embodiment, the carbon nanotubes 7 The metal films 6a and 6b containing can be formed over the entire inner surface and outer surface of the insulating substrate 1, and the shielding effect is further improved.

なお、本実施形態では図8(b)に示すように、3つの実装用端子3を設けて、センサ素子4は各実装用端子3を介して電源線、信号線、GND線に接続している。   In this embodiment, as shown in FIG. 8B, three mounting terminals 3 are provided, and the sensor element 4 is connected to a power supply line, a signal line, and a GND line via each mounting terminal 3. Yes.

(実施形態4)
図10、図11(a)(b)は、本実施形態の立体回路部品A4の構成を示しており、実施形態2と同様の構成には同一の符号を付して説明は省略する。なお、図11(a)は、図10のX4−X4’断面を示す。
(Embodiment 4)
FIGS. 10, 11A and 11B show the configuration of the three-dimensional circuit component A4 of the present embodiment. The same reference numerals are given to the same configurations as those of the second embodiment, and the description thereof will be omitted. In addition, Fig.11 (a) shows the X4-X4 'cross section of FIG.

立体回路部品A4は、絶縁基板11の枠部11aの上面および下面に接続用端子41,43を複数設け、各接続用端子41と各接続用端子43とは枠部11aを上下方向に貫通するスルーホール42を介して電気的に接続している(図11(b)の一部拡大図参照)。したがって、実施形態2では、絶縁基板11の枠部11aの上面、内側面、下面に配線パターン12を形成するために、枠部11aの内側面では配線パターン12を避けてカーボンナノチューブ7を含有する金属膜6aを形成していたが、本実施形態では、カーボンナノチューブ7を含有する金属膜6aを、枠部11aの内側面の全面に亘って形成することができ、シールド効果がさらに向上する。   The three-dimensional circuit component A4 is provided with a plurality of connection terminals 41, 43 on the upper and lower surfaces of the frame portion 11a of the insulating substrate 11, and each connection terminal 41 and each connection terminal 43 penetrates the frame portion 11a in the vertical direction. Electrical connection is made through the through hole 42 (see a partially enlarged view of FIG. 11B). Therefore, in Embodiment 2, in order to form the wiring pattern 12 on the upper surface, the inner surface, and the lower surface of the frame portion 11a of the insulating substrate 11, the inner surface of the frame portion 11a avoids the wiring pattern 12 and contains the carbon nanotubes 7. Although the metal film 6a is formed, in this embodiment, the metal film 6a containing the carbon nanotubes 7 can be formed over the entire inner surface of the frame portion 11a, and the shielding effect is further improved.

(実施形態5)
図12(a)(b)に示す立体回路基板A5は、実施形態1の立体回路基板A1において絶縁基板1の内側面、外側面だけでなく、絶縁基板1の凹部2の底面にも、カーボンナノチューブ7を含有する金属膜6dを形成したもので、さらなるシールド効果の向上を図ることができる。
(Embodiment 5)
12A and 12B, the three-dimensional circuit board A5 is not limited to the inner surface and the outer surface of the insulating substrate 1 in the three-dimensional circuit board A1 of Embodiment 1, but also the bottom surface of the recess 2 of the insulating substrate 1. By forming the metal film 6d containing the nanotubes 7, it is possible to further improve the shielding effect.

また、図13(a)(b)に示す立体回路基板A6は、実施形態3の立体回路基板A3において内側面、外側面だけでなく、絶縁基板1の凹部2の底面にも、カーボンナノチューブ7を含有する金属膜6dを形成したもので、さらなるシールド効果の向上を図ることができる。   13A and 13B is not limited to the inner surface and the outer surface in the three-dimensional circuit board A3 of the third embodiment, and the carbon nanotubes 7 are also formed on the bottom surface of the recess 2 of the insulating substrate 1. The metal film 6d containing is formed, and the shield effect can be further improved.

(実施形態6)
図14、図15(a)(b)は、本実施形態の立体回路部品A7の構成を示しており、実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 6)
FIG. 14, FIG. 15 (a) (b) has shown the structure of 3D circuit component A7 of this embodiment, the same code | symbol is attached | subjected to the structure similar to Embodiment 1, and description is abbreviate | omitted.

立体回路部品A7は、絶縁基板1の対向する2辺の外縁部の各上面において、その辺方向の略中央に凹部61を各々設け、配線パターン5が凹部61内を通って、絶縁基板1の内側面、外側面に連続するように形成されている。   In the three-dimensional circuit component A7, a concave portion 61 is provided in each of the upper surfaces of two opposite outer edge portions of the insulating substrate 1 at a substantially central portion in the side direction, and the wiring pattern 5 passes through the concave portion 61. It is formed to be continuous with the inner surface and the outer surface.

そして、凹部61を除く絶縁基板1の外縁部の上面全体には、カーボンナノチューブ7を含有する金属膜6cが、絶縁基板1の内側面、外側面の金属膜6a,6bに連続して形成されている。そして、金属製の蓋62が凹部2の開口を塞ぐように絶縁基板1の上面に配置され、この金属製の蓋62の下面は、絶縁基板1の外縁部の上面に設けた金属膜6cに半田H3を介して接続している。したがって、立体回路部品A7の金属膜6と蓋62とが同電位になり、シールド効果がさらに向上する。   A metal film 6c containing carbon nanotubes 7 is formed continuously on the inner and outer metal films 6a and 6b on the entire upper surface of the outer edge of the insulating substrate 1 excluding the recess 61. ing. A metal lid 62 is arranged on the upper surface of the insulating substrate 1 so as to block the opening of the recess 2, and the lower surface of the metal lid 62 is formed on the metal film 6 c provided on the upper surface of the outer edge portion of the insulating substrate 1. It is connected via the solder H3. Therefore, the metal film 6 and the lid 62 of the three-dimensional circuit component A7 have the same potential, and the shielding effect is further improved.

また、図15(a)に示すように、プリント配線板63上に、蓋62を覆設した立体回路部品A6を実装し、絶縁基板1の外側面に設けた金属膜6bをプリント配線板63のGND電位に半田H4を介して接続し、金属膜6、蓋62をプリント配線板63のGND電位と同電位にすることで、シールド効果はさらに一層向上する。   Further, as shown in FIG. 15A, the three-dimensional circuit component A6 covering the lid 62 is mounted on the printed wiring board 63, and the metal film 6b provided on the outer surface of the insulating substrate 1 is attached to the printed wiring board 63. By connecting the metal film 6 and the lid 62 to the GND potential of the printed wiring board 63, the shielding effect is further improved.

さらに、本実施形態では、凹部61を除く絶縁基板1の外縁部の上面全体に金属膜6cを形成することで、金属膜6cと蓋62との接触面積を最大限にとっており、蓋62によるシールド機能を効果的にしている。   Furthermore, in the present embodiment, the metal film 6c is formed on the entire upper surface of the outer edge portion of the insulating substrate 1 excluding the recess 61, so that the contact area between the metal film 6c and the lid 62 is maximized, and the shielding by the lid 62 is performed. The function is effective.

(実施形態7)
図16は、本実施形態の立体回路部品A8の構成を示しており、実施形態1と同様の構成には同一の符号を付して説明は省略する。
(Embodiment 7)
FIG. 16 shows the configuration of the three-dimensional circuit component A8 of the present embodiment. The same reference numerals are given to the same configurations as those of the first embodiment, and the description thereof will be omitted.

立体回路部品A8は、絶縁基板1の対向する2辺の外縁部の各上面において、その辺方向の略中央に凹部61を各々設け、配線パターン5が凹部61内を通って、絶縁基板1の内側面、外側面に連続するように形成されている。   In the three-dimensional circuit component A8, a concave portion 61 is provided in each of the upper surfaces of two opposite outer edges of the insulating substrate 1 at the substantially center in the side direction, and the wiring pattern 5 passes through the concave portion 61 to It is formed to be continuous with the inner surface and the outer surface.

そして、金属製の蓋62が凹部2の開口を塞ぐように絶縁基板1の上面に配置され、この金属製の蓋62の下面は、絶縁基板1の外縁部の上面に設けた2箇所の金属膜6cに半田H5を介して接続している。したがって、立体回路部品A7の金属膜6と蓋62とが同電位になり、シールド効果がさらに向上する。   The metal lid 62 is disposed on the upper surface of the insulating substrate 1 so as to block the opening of the recess 2, and the lower surface of the metal lid 62 is provided at two locations on the upper surface of the outer edge portion of the insulating substrate 1. The film 6c is connected via the solder H5. Therefore, the metal film 6 and the lid 62 of the three-dimensional circuit component A7 have the same potential, and the shielding effect is further improved.

また、この絶縁基板1の外縁部の上面に設けた2箇所の金属膜6cを、図4(a)(c)(d)の電気めっき処理における給電線として用いれば、給電線を別途設ける必要がなく、構造の単純化を図ることができる。   Further, if the two metal films 6c provided on the upper surface of the outer edge portion of the insulating substrate 1 are used as a power supply line in the electroplating process of FIGS. 4A, 4C and 4D, it is necessary to provide a power supply line separately. The structure can be simplified.

実施形態1の立体回路部品の構成を示す斜視図である。FIG. 3 is a perspective view illustrating a configuration of a molded circuit component according to the first embodiment. (a)(b)同上の構成を示す断面図および平面図である。(A) (b) It is sectional drawing and a top view which show the structure same as the above. (a)〜(c)同上の製造方法を示す断面図である。(A)-(c) It is sectional drawing which shows the manufacturing method same as the above. (a)〜(d)同上の製造方法を示す断面図である。(A)-(d) It is sectional drawing which shows the manufacturing method same as the above. 実施形態2の立体回路部品の構成を示す斜視図である。It is a perspective view which shows the structure of the three-dimensional circuit component of Embodiment 2. FIG. (a)〜(c)同上の使用形態を示す断面図である。(A)-(c) It is sectional drawing which shows the usage pattern same as the above. 実施形態3の立体回路部品の構成を示す斜視図である。It is a perspective view which shows the structure of the three-dimensional circuit component of Embodiment 3. FIG. (a)(b)同上の構成を示す断面図および平面図である。(A) (b) It is sectional drawing and a top view which show the structure same as the above. 同上の一部を示す拡大断面図である。It is an expanded sectional view showing a part same as the above. 実施形態4の立体回路部品の構成を示す斜視図である。It is a perspective view which shows the structure of the three-dimensional circuit component of Embodiment 4. (a)(b)同上の構成を示す断面図および一部拡大断面図である。(A) (b) It is sectional drawing and a partially expanded sectional view which show the structure same as the above. (a)(b)実施形態5の立体回路部品の構成を示す斜視図および平面図である。(A) (b) It is the perspective view and top view which show the structure of the three-dimensional circuit component of Embodiment 5. FIG. (a)(b)同上の別の立体回路部品の構成を示す斜視図および平面図である。(A) (b) It is the perspective view and top view which show the structure of another three-dimensional circuit component same as the above. 実施形態6の立体回路部品の構成を示す斜視図である。FIG. 10 is a perspective view illustrating a configuration of a molded circuit component according to a sixth embodiment. (a)(b)同上の構成を示す断面図および一部拡大図である。(A) (b) It is sectional drawing and a partial enlarged view which show the structure same as the above. 実施形態7の立体回路部品の構成を示す斜視図である。FIG. 10 is a perspective view illustrating a configuration of a molded circuit component according to a seventh embodiment.

符号の説明Explanation of symbols

A1立体回路部品
1 絶縁基板
2 凹部
3 実装用端子
4 センサ素子
5 配線パターン
6 金属膜
7 カーボンナノチューブ
A1 three-dimensional circuit component 1 Insulating substrate 2 Recessed part 3 Mounting terminal 4 Sensor element 5 Wiring pattern 6 Metal film 7 Carbon nanotube

Claims (8)

ノイズ源となる電子部品、またはノイズから遮断されることが必要な電子部品を包囲する内側面を設けた絶縁基板を備え、絶縁基板の少なくとも前記内側面にカーボンナノチューブを含む1層以上の金属膜を設けることを特徴とする立体回路部品。 One or more metal films including an insulating substrate having an inner surface that surrounds an electronic component that is a noise source or an electronic component that needs to be shielded from noise, and includes carbon nanotubes on at least the inner surface of the insulating substrate A three-dimensional circuit component comprising: 前記金属膜は、銅または銅を含む合金であることを特徴とする請求項1記載の立体回路部品。 The three-dimensional circuit component according to claim 1, wherein the metal film is copper or an alloy containing copper. 前記金属膜は、ニッケルまたはニッケルを含む合金であることを特徴とする請求項1記載の立体回路部品。 The three-dimensional circuit component according to claim 1, wherein the metal film is nickel or an alloy containing nickel. 前記絶縁基板は、カーボンナノチューブを含む前記金属膜を内側面に設けた凹部を形成されて、当該凹部の底面上に設けた前記電子部品を実装する実装用端子と、絶縁基板の外面に設けた配線パターンと、実装用端子と配線パターンとを接続するスルーホールとを備えることを特徴とする請求項1乃至3いずれか記載の立体回路部品。 The insulating substrate is formed with a recess provided on the inner surface with the metal film containing carbon nanotubes, and provided on the outer surface of the insulating substrate for mounting the electronic component provided on the bottom surface of the recess. 4. The three-dimensional circuit component according to claim 1, further comprising: a wiring pattern; and a through hole that connects the mounting terminal and the wiring pattern. 5. 前記絶縁基板は、カーボンナノチューブを含む前記金属膜を内側面および底面に設けた凹部を形成されて、当該凹部内に前記電子機器を配置することを特徴とする請求項1乃至4いずれか記載の立体回路部品。 5. The insulating substrate according to claim 1, wherein the insulating substrate is formed with a recess provided on the inner surface and the bottom surface of the metal film containing carbon nanotubes, and the electronic device is disposed in the recess. 3D circuit parts. 前記絶縁基板は、一面に開口を有する凹部を形成されて、当該凹部内に前記電子機器を配置し、凹部の内側面および絶縁基板の前記一面にカーボンナノチューブを含む前記金属膜を設け、
絶縁基板の前記一面には、凹部の開口を塞ぐとともに前記一面に設けた金属膜に接触する金属製の蓋を覆設することを特徴とする請求項1乃至5いずれか記載の立体回路部品。
The insulating substrate is formed with a recess having an opening on one surface, the electronic device is disposed in the recess, and the metal film containing carbon nanotubes is provided on the inner surface of the recess and the one surface of the insulating substrate,
6. The three-dimensional circuit component according to claim 1, wherein the one surface of the insulating substrate is covered with a metal lid that closes the opening of the recess and contacts the metal film provided on the one surface.
前記絶縁基板の一面に設けた金属膜は、他の金属膜を形成するときに行う電気めっき処理の給電線として用いることを特徴とする請求項6記載の立体回路部品。 The three-dimensional circuit component according to claim 6, wherein the metal film provided on one surface of the insulating substrate is used as a power supply line for an electroplating process performed when another metal film is formed. 絶縁基板の表面をプラズマ処理して表面の活性化を行った後、絶縁基板の表面を被覆する金属層を形成し、次に回路形成部分と非回路形成部分の境界領域にレーザ光を照射して境界領域の金属層を除去し、次に回路形成部分の金属層にめっき処理を施すことで金属膜を形成する立体回路部品の製造方法において、
ノイズ源となる電子部品、またはノイズから遮断されることが必要な電子部品を包囲する内側面を設けた絶縁基板の少なくとも前記内側面にカーボンナノチューブを含む1層以上の金属膜をめっき処理によって形成することを特徴とする立体回路部品の製造方法。
After the surface of the insulating substrate is activated by plasma treatment, a metal layer is formed to cover the surface of the insulating substrate, and then laser light is irradiated to the boundary area between the circuit forming portion and the non-circuit forming portion. In the method of manufacturing a three-dimensional circuit component in which a metal film is formed by removing the metal layer in the boundary region and then plating the metal layer in the circuit forming portion.
One or more metal films containing carbon nanotubes are formed by plating on at least the inner surface of an insulating substrate provided with an inner surface that surrounds an electronic component that becomes a noise source or an electronic component that needs to be shielded from noise. A method for manufacturing a three-dimensional circuit component.
JP2006199948A 2006-07-21 2006-07-21 Three-dimensional circuit component and its manufacturing method Pending JP2008028200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199948A JP2008028200A (en) 2006-07-21 2006-07-21 Three-dimensional circuit component and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199948A JP2008028200A (en) 2006-07-21 2006-07-21 Three-dimensional circuit component and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008028200A true JP2008028200A (en) 2008-02-07

Family

ID=39118519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199948A Pending JP2008028200A (en) 2006-07-21 2006-07-21 Three-dimensional circuit component and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008028200A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192669A (en) * 2009-02-18 2010-09-02 Panasonic Electric Works Co Ltd Plating film for electromagnetic shielding, electromagnetic shielding substrate, and method of manufacturing thereof
JP2010219313A (en) * 2009-03-17 2010-09-30 Sankyo Kasei Co Ltd Method of manufacturing three-dimensional molded circuit component
CN103247604A (en) * 2012-02-01 2013-08-14 三美电机株式会社 Electronic module and method of manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264988A (en) * 1995-03-24 1996-10-11 Matsushita Electric Works Ltd Microwave circuit substrate and its manufacturing method
JP2001274034A (en) * 2000-01-20 2001-10-05 Shinko Electric Ind Co Ltd Electronic parts package
JP2001352154A (en) * 2000-06-02 2001-12-21 Matsushita Electric Works Ltd Method for manufacturing circuit substrate
JP2004119882A (en) * 2002-09-27 2004-04-15 Sony Corp Semiconductor device
JP2004156074A (en) * 2002-11-01 2004-06-03 Univ Shinshu Plated structure and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08264988A (en) * 1995-03-24 1996-10-11 Matsushita Electric Works Ltd Microwave circuit substrate and its manufacturing method
JP2001274034A (en) * 2000-01-20 2001-10-05 Shinko Electric Ind Co Ltd Electronic parts package
JP2001352154A (en) * 2000-06-02 2001-12-21 Matsushita Electric Works Ltd Method for manufacturing circuit substrate
JP2004119882A (en) * 2002-09-27 2004-04-15 Sony Corp Semiconductor device
JP2004156074A (en) * 2002-11-01 2004-06-03 Univ Shinshu Plated structure and manufacturing method therefor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010192669A (en) * 2009-02-18 2010-09-02 Panasonic Electric Works Co Ltd Plating film for electromagnetic shielding, electromagnetic shielding substrate, and method of manufacturing thereof
JP2010219313A (en) * 2009-03-17 2010-09-30 Sankyo Kasei Co Ltd Method of manufacturing three-dimensional molded circuit component
CN103247604A (en) * 2012-02-01 2013-08-14 三美电机株式会社 Electronic module and method of manufacturing same
JP2013161831A (en) * 2012-02-01 2013-08-19 Mitsumi Electric Co Ltd Electronic module and method for manufacturing the same
US9161483B2 (en) 2012-02-01 2015-10-13 Mitsumi Electric Co., Ltd. Electronic module and method of manufacturing electronic module

Similar Documents

Publication Publication Date Title
US20130170154A1 (en) Printed circuit board having embedded capacitor and method of manufacturing the same
US10285268B2 (en) Printed circuit board and method of manufacturing the same
US9018539B2 (en) Printed circuit board and method for manufacturing the same
US20130126215A1 (en) Printed circuit board and method for manufacturing the same
US20060024449A1 (en) Method of manufacturing laminate for flexible printed circuit board
JP2003046250A (en) Multilayer substrate with via for build-up and its manufacturing method
US20130118792A1 (en) Printed circuit board and method for manufacturing the same
JP2008028200A (en) Three-dimensional circuit component and its manufacturing method
JP2005219259A (en) Metallized polyimide film
KR20100095658A (en) Adhesive-free flexible laminate
US20020148816A1 (en) Method and apparatus for fabricating printed circuit board using atmospheric pressure capillary discharge plasma shower
JP2005219258A (en) Metallized polyimide film and its manufacturing method
JP2006502590A (en) Method for manufacturing printed circuit board
JP3556178B2 (en) Flexible copper-clad board and method of manufacturing the same
JP2005317631A (en) Electronic circuit board
KR101897394B1 (en) Vacuum device
WO2021143381A1 (en) Method for manufacturing three-dimensional circuit and electronic element
KR102191662B1 (en) Method producing film for heat dissipation and noise shielding of electronic device
KR100894701B1 (en) Rigid-flexible Print circuit board and method for manufacturing thereof
JP2007196122A (en) Plasma cleaning method
JP4920336B2 (en) Wiring member manufacturing method
JP2004064022A (en) Printed wiring board and manufacturing method thereof
JP2011198814A (en) Wiring circuit board and method of manufacturing wiring circuit board
US9698475B2 (en) Structural body and wireless communication apparatus
US20230397337A1 (en) Method for manufacturing substrate with built-in components, and substrate with built-in components

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071105

A977 Report on retrieval

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Effective date: 20100517

Free format text: JAPANESE INTERMEDIATE CODE: A523

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100812

A02 Decision of refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A02