JP2008027936A - Vacuum processing apparatus - Google Patents

Vacuum processing apparatus Download PDF

Info

Publication number
JP2008027936A
JP2008027936A JP2006195065A JP2006195065A JP2008027936A JP 2008027936 A JP2008027936 A JP 2008027936A JP 2006195065 A JP2006195065 A JP 2006195065A JP 2006195065 A JP2006195065 A JP 2006195065A JP 2008027936 A JP2008027936 A JP 2008027936A
Authority
JP
Japan
Prior art keywords
gas
processing chamber
flow
processing
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006195065A
Other languages
Japanese (ja)
Other versions
JP4806598B2 (en
Inventor
Yuusuke Takegawa
祐亮 武川
Takeshi Tsubaki
武士 椿
Hideaki Kondo
英明 近藤
Fumio Horihashi
文生 湟橋
Yukihiro Hase
征洋 長谷
Tadamitsu Kanekiyo
任光 金清
Katsuji Yagi
勝嗣 八木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Hitachi High Tech Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp, Hitachi High Tech Corp filed Critical Hitachi High Technologies Corp
Priority to JP2006195065A priority Critical patent/JP4806598B2/en
Publication of JP2008027936A publication Critical patent/JP2008027936A/en
Application granted granted Critical
Publication of JP4806598B2 publication Critical patent/JP4806598B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum processing apparatus in which precision of processing is enhanced for a shunt of processing gas by examining the flow rate of processing gas with high precision. <P>SOLUTION: The vacuum processing apparatus for processing a sample arranged in a processing chamber by supplying processing gas through a plurality of passages into the processing chamber in a vacuum container where the internal pressure is reduced comprises a shunt for adjusting the ratio at which the gas of different flow rate is supplied to the plurality of passages, and a function for performing examination of the shunt by using the pressure variation rate in the processing chamber when the gas is supplied by stopping discharge of gas under such a state as the shunt and the passage can conduct the gas at a maximum flow rate and the pressure variation rate in the processing chamber when the gas is supplied only from each of the plurality of passages under such a state as the shunt can conduct the gas at a predetermined shunt ratio. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、半導体ウエハ等の基板状の試料を真空容器内の処理室で処理する真空処理装置に係り、特に、処理室内に複数箇所から異なる組成のガスを供給して試料を処理する真空処理装置に関する。   The present invention relates to a vacuum processing apparatus for processing a substrate-like sample such as a semiconductor wafer in a processing chamber in a vacuum vessel, and in particular, vacuum processing for processing a sample by supplying gases having different compositions from a plurality of locations in the processing chamber. Relates to the device.

従来、半導体デバイスを製造する工程において、半導体ウエハやLCD基板などの処理対象の基板表面に所望の微細加工を施すため、真空容器内部の処理室に基板を配置し処理室内に導入された反応性ガスを電磁波によりプラズマ化して得られたプラズマを用いて処理する装置が広く利用されている。   Conventionally, in the process of manufacturing a semiconductor device, in order to perform desired microfabrication on the surface of a substrate to be processed such as a semiconductor wafer or an LCD substrate, the reactivity introduced into the processing chamber by placing the substrate in the processing chamber inside the vacuum vessel 2. Description of the Related Art Apparatuses that use plasma obtained by converting gas into plasma with electromagnetic waves are widely used.

このような半導体デバイスの製造では、製造して得られた全ての半導体デバイスが同等の性能を有することが求められるため、半導体デバイスを製造する装置においては、基板等の試料に対し均一な処理を施すこと、このために試料の表面上に均一なプラズマを形成することが求められる。これを実現するためには、導入したガスを試料の処理対象面の全体にわたり均一な濃度に分布させるとともに、処理面全体にわたり均一な濃度に保ちつつ迅速に排気する必要がある。   In the manufacture of such a semiconductor device, it is required that all semiconductor devices obtained by manufacturing have the same performance. Therefore, in an apparatus for manufacturing a semiconductor device, uniform processing is performed on a sample such as a substrate. For this purpose, it is required to form a uniform plasma on the surface of the sample. In order to realize this, it is necessary to distribute the introduced gas to a uniform concentration over the entire surface to be processed of the sample, and to quickly exhaust the gas while maintaining a uniform concentration over the entire processing surface.

また近年、上記処理に用いられる試料である半導体ウエハの外径は大口径化しており、従来よりも半導体ウエハの中心部と外周部とで均一なガスの流れやプラズマ中の粒子の密度の分布が得られ難いという問題が生じている。これに伴い、半導体ウエハ上の広い領域にわたり、さらに均一な処理を行うことが求められている。これを実現するため、試料の中心部と外周縁部への処理ガスの供給量を個別に調節することで、試料の中央側と外周側とで各々の領域上方の空間のガス流れや粒子の分布に応じて処理用ガスの性質を異ならせるように調節をして、試料の均一な処理を実現しようとする技術が考えられている。   In recent years, the outer diameter of a semiconductor wafer, which is a sample used for the above-mentioned processing, has become larger, and the gas flow and the density distribution of particles in the plasma are more uniform at the center and outer periphery of the semiconductor wafer than before. There is a problem that is difficult to obtain. Along with this, it is required to perform more uniform processing over a wide area on the semiconductor wafer. In order to achieve this, by individually adjusting the amount of processing gas supplied to the center and outer periphery of the sample, the gas flow and particles in the space above each region on the center side and outer periphery side of the sample A technique for realizing uniform processing of a sample by adjusting the properties of the processing gas according to the distribution is considered.

このような処理ガスの供給箇所に応じた調節する技術として、各々が独立したガス供給ライン上に各々流量制御装置(マスフローコントローラ)を配置して、これらのガス供給ラインが中心部と外周縁部とへ各々供給を行うことが考えられる。   As a technique for adjusting according to the supply location of such processing gas, a flow control device (mass flow controller) is arranged on each independent gas supply line, and these gas supply lines are arranged at the center portion and the outer peripheral edge portion. It is conceivable to supply each of them.

しかし、一つの処理室に対して、それぞれ独立した流量制御装置を有するガス供給ラインを用いたガス供給を行うことは、半導体製造設備の大型化や設備の高騰を招くだけでなく、メンテナンス等にも手数が掛かることになる。そのため、一つの流量制御装置を有するガス供給ラインから複数箇所のガス供給口に対応した各々のガス供給ラインへ分岐させて、その分流比を制御することが望ましい方法である。   However, supplying gas to a single processing chamber using a gas supply line having an independent flow rate control device not only leads to an increase in the size of the semiconductor manufacturing facility and a rise in the facility, but also maintenance and the like. Will take more work. Therefore, it is a desirable method to branch from a gas supply line having one flow rate control device to each gas supply line corresponding to a plurality of gas supply ports and to control the diversion ratio.

一方、このようなガスの供給の技術では、ガスを分流させるための分流装置が所望の比率で正確に分流するように調整すること、すなわち、校正が必要となる。このような流量制御機器の校正方法の例として、特許文献1(特開平6−53103号公報),特許文献2(特開平7−86268号公報)がある。また、分流器を用いたプロセスガス分流供給方法の例としては、特許文献3(特開2004−5308号公報),特許文献4(特開
2005−11258号公報),特許文献5(特開2005−56914号公報)が知られている。
On the other hand, in such a gas supply technique, it is necessary to adjust the diversion device for diverting the gas so that the diversion device accurately diverts the gas at a desired ratio, that is, calibration. Examples of such a calibration method for a flow control device include Patent Document 1 (Japanese Patent Laid-Open No. 6-53103) and Patent Document 2 (Japanese Patent Laid-Open No. 7-86268). Examples of the process gas diversion supply method using a flow divider include Patent Document 3 (Japanese Patent Laid-Open No. 2004-5308), Patent Document 4 (Japanese Patent Laid-Open No. 2005-11258), and Patent Document 5 (Japanese Laid-Open Patent Publication No. 2005). -56914).

特開平6−53103号公報JP-A-6-53103 特開平7−86268号公報JP 7-86268 A 特開2004−5308号公報JP 2004-5308 A 特開2005−11258号公報JP 2005-11258 A 特開2005−56914号公報JP 2005-56914 A

上記の従来技術において、分流するための装置である分流器は、2つに分岐した各ガスラインの流量が、所望の分流比となるように調節している。このような所望な分流比となるような調節を行うため、従来の技術では、分流前の流量制御機器の流量と、分流後の各ラインに取り付けられた流量測定器の値を測定することにより流量の制御を行っている。   In the above-described prior art, the flow divider which is a device for diverting is adjusted so that the flow rate of each gas line branched into two has a desired diversion ratio. In order to perform such adjustment to achieve a desired diversion ratio, the conventional technique measures the flow rate of the flow control device before diversion and the value of the flow rate measuring device attached to each line after diversion. The flow rate is controlled.

分流器については、一般的には、上記特許文献4に示されるように、分流器自体のユニットで信頼性を向上するための施策が施されている。しかしながら、たとえばプラズマエッチング装置のメーカにおいては、分流器のユニットを外部から購入し、組み付けることで使用する場合も多く、分流器の信頼性を客観的に確認したいという要求がある。   As for the shunt, generally, as shown in the above-mentioned Patent Document 4, a measure for improving the reliability is provided by the unit of the shunt itself. However, for example, a manufacturer of a plasma etching apparatus often purchases a shunt unit from the outside and uses it by assembling it, and there is a demand for objectively confirming the reliability of the shunt.

本発明の目的は、処理用のガスの分流器について高精度に処理用ガス流量の検定を行うことで処理の精度を向上した真空処理装置を提供することにある。   An object of the present invention is to provide a vacuum processing apparatus in which the processing gas flow rate is improved and the processing accuracy is improved by performing the processing gas flow rate verification with high accuracy.

上記目的は、内部が減圧される真空容器内の処理室に複数の経路を介して処理用ガスを供給し、前記処理室内に配置した試料を処理する真空処理装置であって、前記複数の経路に異なる流量の前記ガスを分配する比を調節する分流器と、前記分流器及び前記経路それぞれを最大流量の前記ガスを通流可能な状態にし、前記処理室の排気を停止して、前記処理室に前記ガスを供給した際のこの処理室内の圧力変化率と前記分流器を所定の分流比で前記ガスを通流可能な状態にして、前記複数の経路の各々からのみ前記処理室内に前記ガスを供給した際のこの処理室内の圧力変化率とを用いて、前記分流器の検定を行う機能を備えた真空処理装置により達成される。   The above object is a vacuum processing apparatus for supplying a processing gas to a processing chamber in a vacuum chamber whose pressure is reduced via a plurality of paths and processing a sample disposed in the processing chamber, wherein the plurality of paths A flow divider that adjusts the ratio of distributing the gas at different flow rates to each other, the flow divider and the path to be in a state in which the gas at the maximum flow rate can flow, the exhaust of the processing chamber is stopped, and the process When the gas is supplied to the chamber, the pressure change rate in the processing chamber and the flow divider are set in a state in which the gas can flow at a predetermined diversion ratio, and the processing chamber enters the processing chamber only from each of the plurality of paths. This is achieved by a vacuum processing apparatus having a function of performing verification of the flow divider using the pressure change rate in the processing chamber when the gas is supplied.

また、内部が減圧される真空容器内の処理室に複数の経路を介して処理用ガスを供給し、前記処理室内に配置した資料を処理する真空処理装置であって、前記複数の経路に異なる流量の前記ガスを分配する比を調節する分流器と、前記分流器及び前記経路の少なくとも一つを最大流量の前記ガスを通流可能な状態にし、前記処理室の排気を停止して、この少なくとも一つの経路から前記処理室に前記ガスを供給した際のこの処理室内の圧力変化率と前記分流器を所定の分流比で前記ガスを通流可能な状態にして、前記複数の経路の各々からのみ前記処理室内に前記ガスを供給した際のこの処理室内の圧力変化率とを用いて、前記分流器の検定を行う機能を備えた真空処理装置により達成される。   Further, the vacuum processing apparatus supplies processing gas to a processing chamber in a vacuum chamber whose inside is depressurized through a plurality of paths, and processes a material disposed in the processing chamber, which is different from the plurality of paths. A flow divider for adjusting a ratio of distributing the gas at a flow rate, and at least one of the flow divider and the path is allowed to flow the gas at a maximum flow rate, and the exhaust of the processing chamber is stopped, When the gas is supplied to the processing chamber from at least one path, the rate of change in pressure in the processing chamber and the flow divider are set in a state in which the gas can flow at a predetermined diversion ratio. This is achieved by a vacuum processing apparatus having a function of performing the verification of the flow divider using the rate of change in pressure in the processing chamber when the gas is supplied into the processing chamber only from the side.

さらには、前記圧力の変化率の検出のそれぞれは、前記処理室内を実質的に同一の条件にして検出されることで達成される。さらにまた、前記圧力の変化率の検出のそれぞれは、相互に連続して検出されることにより達成される。   Furthermore, each detection of the rate of change of the pressure is achieved by detecting the processing chamber under substantially the same conditions. Furthermore, each detection of the rate of change of the pressure is achieved by detecting each other in succession.

さらにまた、前記最大流量のガスの供給は、前記分流器内に配置された流量の調節手段を全開の状態にして行われることにより達成される。   Furthermore, the supply of the gas at the maximum flow rate is achieved by performing the flow rate adjusting means arranged in the flow divider in a fully open state.

さらにまた、前記分流器と前記処理室との間の前記2つの経路の各々に接続された2つの排気路を備え、前記分流器を所定の分流比に調節した際にいずれか一つの経路から前記処理室に前記ガスを供給するとともに、他の経路からこれに接続された排気路を介してガスを排出することにより達成される。   Furthermore, two exhaust paths connected to each of the two paths between the shunt and the processing chamber are provided, and when the shunt is adjusted to a predetermined shunt ratio, any one path is used. This is achieved by supplying the gas to the processing chamber and discharging the gas from another path through an exhaust path connected thereto.

本発明によれば、処理用のガスの分流器について高精度に処理用ガス流量の検定を行うことで処理の精度を向上した真空処理装置を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the vacuum processing apparatus which improved the precision of the process can be provided by performing the test | inspection of the gas flow rate for a process with high precision about the shunt of the gas for a process.

本発明の実施の形態を、以下、図面を用いて説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は、プラズマエッチング装置の構成を示した図である。図1において、7はUHFまたはVHF帯の電波を導入するためのアンテナ、8は磁場を発生するソレノイドコイル、9は処理室、10は試料であるウェハを配置する試料台、11は試料台を上下に移動させる駆動機構である。処理室9の一方には、流量制御機器2と分流器4,ガス供給源1が接続してあり、もう一方には圧力計12,排気ポンプ14が接続してある。制御コントローラ15内には中央演算処理装置と記憶手段とが接続してある。また、装置の操作は表示モニタ16で行う。   FIG. 1 is a diagram showing the configuration of a plasma etching apparatus. In FIG. 1, 7 is an antenna for introducing radio waves in the UHF or VHF band, 8 is a solenoid coil for generating a magnetic field, 9 is a processing chamber, 10 is a sample stage on which a wafer as a sample is placed, and 11 is a sample stage. It is a drive mechanism that moves up and down. One side of the processing chamber 9 is connected to the flow rate control device 2, the flow divider 4, and the gas supply source 1, and the other side is connected to the pressure gauge 12 and the exhaust pump 14. A central processing unit and storage means are connected in the controller 15. The operation of the apparatus is performed on the display monitor 16.

アンテナ7より導入されUHFやVHF帯の電波が透過する誘電体製の窓部材を介して入射した電波と処理室9の外側に巻装されたソレノイドコイル8による磁界の作用によって、プロセスガス中の電子は効率よくエネルギーを与えられ、電子サイクロトロン共鳴による高密度なプラズマが生成される。プラズマが生成した後に、ウェハを試料台10に吸着させる。ウェハが試料台10に吸着された後に、さらに高周波電源より高周波バイアス電圧を出力しプロセス処理を開始する。   Due to the action of the electromagnetic wave introduced through the dielectric window member introduced from the antenna 7 and transmitting the UHF or VHF band radio wave and the magnetic field by the solenoid coil 8 wound around the outside of the processing chamber 9, Electrons are efficiently energized and a high-density plasma is generated by electron cyclotron resonance. After the plasma is generated, the wafer is adsorbed on the sample stage 10. After the wafer is adsorbed on the sample stage 10, a high frequency bias voltage is further output from the high frequency power supply to start the process.

この装置におけるプロセスガス配管系は、ガス供給源1からプロセスガスを流すガス導入ライン17−1と、プロセスガス流量を一定に保つための流量制御機器2と、ガス供給源1から流れるプロセスガスを遮断するバルブ3と、ガス導入ライン17−1を2系統のガスラインに分岐する分流器4と、分流器4で2系統に分岐されたガスを流すための第1ガス導入ライン17−2及び第2ガス導入ライン17−3と、2系統に分かれた片側1系統の第1ガス導入ライン17−2を排気する第1ガス排気ライン17−4と、もう片側1系統の第2ガス導入ライン17−3を排気する第2ガス排気ライン17−5を備えている。プロセス処理中は、流量制御機器2に流量を設定、分流器4に分流比を設定し第1ガス導入ライン17−2及び第2ガス導入ライン17−3を介してプロセスガスを処理室9へ導入する。   The process gas piping system in this apparatus includes a gas introduction line 17-1 for flowing process gas from the gas supply source 1, a flow rate control device 2 for keeping the process gas flow rate constant, and a process gas flowing from the gas supply source 1. A valve 3 to be shut off, a flow divider 4 for branching the gas introduction line 17-1 into two gas lines, a first gas introduction line 17-2 for flowing the gas branched into two lines by the flow divider 4; The second gas introduction line 17-3, the first gas exhaust line 17-4 for exhausting the first gas introduction line 17-2 on one side divided into two systems, and the second gas introduction line on the other side one system A second gas exhaust line 17-5 for exhausting 17-3 is provided. During the process, the flow rate is set in the flow rate control device 2, the flow dividing ratio is set in the flow divider 4, and the process gas is supplied to the processing chamber 9 via the first gas introduction line 17-2 and the second gas introduction line 17-3. Introduce.

図2乃至図5は、分流器4内の各ガスラインに内蔵されている可変バルブの動作概要図である。分流器4においては、分流器内蔵制御コントローラ23が、分流器4内の各ラインに取り付けられた流量測定器22の情報に基づき、設定した所望の分流比となるように各ラインに備え付けられている可変バルブの制御を行う。流量測定器22の代わりに圧力測定器等の測定器を取り付けることもある。   2 to 5 are operation outline diagrams of the variable valves built in the gas lines in the flow divider 4. In the flow divider 4, a flow divider built-in controller 23 is provided in each line so that a desired flow division ratio is set based on information of the flow rate measuring device 22 attached to each line in the flow divider 4. Control the variable valve. A measuring instrument such as a pressure measuring instrument may be attached instead of the flow measuring instrument 22.

図2は、分流器4に分流比を設定したときの可変バルブの動作概要図であり、このときは分流器内蔵制御コントローラ23が、分流器4内の各ラインに取り付けられた流量測定器22の情報に基づいて所望の分流比となるように演算を行い、可変バルブのシール部駆動機構18に所定位置への移動信号を送り、シール部駆動部19及びシール部21を上下させ配管に流れる流量を制御している状態である。   FIG. 2 is a schematic diagram showing the operation of the variable valve when the flow dividing ratio is set in the flow divider 4. At this time, the flow controller 22 is attached to each line in the flow divider 4 by the flow divider built-in controller 23. Based on this information, a calculation is performed so that a desired diversion ratio is obtained, a movement signal to a predetermined position is sent to the seal portion drive mechanism 18 of the variable valve, and the seal portion drive portion 19 and the seal portion 21 are moved up and down to flow into the pipe. The flow rate is being controlled.

図3は、分流器4に全閉を設定したときの可変バルブの動作概要図であり、このときは分流器4に所望の分流比を設定していないため、分流器内蔵制御コントローラ23が、分流器4内の各ラインに取り付けられた流量測定器22の情報に基づいて演算することなく、可変バルブのシール部駆動機構18に全閉位置への移動信号を送り、シール部駆動部
19及びシール部21をガスの流路を塞ぐ位置へ移動させ、ガスが通流不可能な状態とする。
FIG. 3 is an operation schematic diagram of the variable valve when the shunt 4 is fully closed. At this time, since the desired shunt ratio is not set in the shunt 4, the shunt divider built-in controller 23 Without calculating on the basis of the information of the flow rate measuring device 22 attached to each line in the flow divider 4, a movement signal to the fully closed position is sent to the seal portion drive mechanism 18 of the variable valve, and the seal portion drive portion 19 and The seal portion 21 is moved to a position where the gas flow path is blocked, so that the gas cannot flow.

図4,図5は、分流器4に全開を設定したときの可変バルブの動作概要図であり、このときは分流器4に所望の分流比を設定していないため、分流器内蔵制御コントローラ23が分流器4内の各ラインに取り付けられた流量測定器22の情報に基づいて演算することなく、可変バルブのシール部駆動機構18に全開位置への移動信号を送り、シール部駆動部19及びシール部21をプロセスガスの流路の妨げにならない位置(図4)、あるいはプロセスガスの流路の妨げが最小となる位置(図5)へ移動させ、最大流量のガスが通流可能な状態とする。   FIGS. 4 and 5 are operation schematic diagrams of the variable valve when the shunt 4 is fully opened. Since the desired shunt ratio is not set in the shunt 4 at this time, the shunt built-in controller 23 Without a calculation based on the information of the flow rate measuring device 22 attached to each line in the flow divider 4, a movement signal to the fully open position is sent to the seal portion drive mechanism 18 of the variable valve, and the seal portion drive portion 19 and The seal portion 21 is moved to a position where the flow of the process gas is not obstructed (FIG. 4) or to a position where the obstruction of the flow of the process gas is minimized (FIG. 5), so that the gas with the maximum flow rate can flow. And

分流器4の検定の流れを以下に説明する。図6に示すシーケンス起動画面内の分流器検定実行ボタンを押す。これにより、分流器検定のシーケンスが開始する。まず、処理室9とガスライン17−1,17−2,17−3を排気する(S1)。次に、流量制御機器2にガス導入ライン17−1の流量と、分流器4に第1ガス導入ライン17−2と第2ガス導入ライン17−3の分流比とを設定する(S2)。   The flow of verification of the shunt 4 will be described below. The shunt verification execution button in the sequence start screen shown in FIG. 6 is pushed. This starts the shunt verification sequence. First, the processing chamber 9 and the gas lines 17-1, 17-2, 17-3 are exhausted (S1). Next, the flow rate of the gas introduction line 17-1 is set in the flow rate control device 2, and the diversion ratio between the first gas introduction line 17-2 and the second gas introduction line 17-3 is set in the flow divider 4 (S2).

次に、ガス遮断バルブ3と、第1ガス導入バルブ5−1と、第2ガス排気バルブ6−2を開いて処理室9に片側のプロセスガスを導入しながら、もう一方のプロセスガスを排気する(S3)。次に、処理室排気バルブ13を閉じて処理室9を密閉状態にする(S4)。次に圧力計12で処理室9の圧力変動を測定し、制御コントローラ15で経過時間と圧力値により流量を算出し、経過時間及び圧力値,流量を記憶する(S5)。次に、ガス遮断バルブ3と、第1ガス導入バルブ5−1と、第2ガス排気バルブ6−2とを閉じる
(S6)。上記S1〜S6で、一方のプロセスガスラインの流量を測定する。
Next, the gas shutoff valve 3, the first gas introduction valve 5-1, and the second gas exhaust valve 6-2 are opened to introduce one process gas into the processing chamber 9, while exhausting the other process gas. (S3). Next, the processing chamber exhaust valve 13 is closed to seal the processing chamber 9 (S4). Next, the pressure fluctuation in the processing chamber 9 is measured by the pressure gauge 12, the flow rate is calculated by the elapsed time and the pressure value by the controller 15, and the elapsed time, the pressure value, and the flow rate are stored (S5). Next, the gas shut-off valve 3, the first gas introduction valve 5-1, and the second gas exhaust valve 6-2 are closed (S6). In S1 to S6, the flow rate of one process gas line is measured.

次に、再び処理室9とガスライン17−1,17−2,17−3を排気する(S7)。次に、流量制御機器2にガス導入ライン17−1の流量と、分流器4に第1ガス導入ライン17−2と第2ガス導入ライン17−3の分流比(上記S2で設定した分流比と同様の値)とを設定する(S8)。次に、ガス遮断バルブ3と、第2ガス導入バルブ5−2と、第1ガス排気バルブ6−1を開いて処理室9に片側のプロセスガスを導入しながら、もう一方のプロセスガスを排気する(S9)。   Next, the processing chamber 9 and the gas lines 17-1, 17-2, 17-3 are exhausted again (S7). Next, the flow rate of the gas introduction line 17-1 in the flow rate control device 2, and the flow dividing ratio between the first gas introduction line 17-2 and the second gas introduction line 17-3 in the flow divider 4 (the flow division ratio set in S2 above). (Similar values) are set (S8). Next, while opening the gas shutoff valve 3, the second gas introduction valve 5-2, and the first gas exhaust valve 6-1 to introduce the process gas on one side into the processing chamber 9, the other process gas is exhausted. (S9).

次に、処理室排気バルブ13を閉じて処理室9を密閉状態にする(S10)。次に、圧力計12で処理室9の圧力変動を測定し、制御コントローラ15で経過時間及び圧力値により流量を算出し、経過時間及び圧力値、流量を記憶する(S11)。この測定時における温度及び処理室内壁面の表面の状態はS5の測定時と略同一である。次に、ガス遮断バルブ3と、第2ガス導入バルブ5−2と、第1ガス排気バルブ6−1とを閉じる(S12)。上記S7〜S12で、もう一方のプロセスガスラインの流量を測定する。   Next, the processing chamber exhaust valve 13 is closed to seal the processing chamber 9 (S10). Next, the pressure fluctuation in the processing chamber 9 is measured by the pressure gauge 12, the flow rate is calculated by the elapsed time and the pressure value by the controller 15, and the elapsed time, the pressure value, and the flow rate are stored (S11). The temperature and the state of the surface of the processing chamber wall during this measurement are substantially the same as those during the measurement of S5. Next, the gas cutoff valve 3, the second gas introduction valve 5-2, and the first gas exhaust valve 6-1 are closed (S12). In S7 to S12, the flow rate of the other process gas line is measured.

次に、再び処理室9とガスライン17−1,17−2,17−3を排気する(S13)。次に、分流器4内の2つの可変バルブを全開とする(S14)。ここでの分流器4の設定は、分流器4内のいずか1つの可変バルブを全開としても良い。ガス遮断バルブ3と、第1ガス導入バルブ5−1と、第2ガス導入バルブ5−2とを開いて処理室9にプロセスガスを導入する(S15)。   Next, the processing chamber 9 and the gas lines 17-1, 17-2, 17-3 are exhausted again (S13). Next, the two variable valves in the flow divider 4 are fully opened (S14). In the setting of the flow divider 4 here, any one variable valve in the flow divider 4 may be fully opened. The gas cutoff valve 3, the first gas introduction valve 5-1, and the second gas introduction valve 5-2 are opened to introduce the process gas into the processing chamber 9 (S15).

次に、処理室排気バルブ13を閉じて処理室9を密閉状態にする(S16)。次に、圧力計12で処理室9の圧力変動を測定し、制御コントローラ15で経過時間と圧力値により流量を算出し、経過時間及び圧力値,流量を記憶する(S17)。この測定時における温度及び処理室内壁面の表面の状態はS5及びS11の測定時と略同一である。次に、ガス遮断バルブ3と、第1ガス導入バルブ5−1と、第2ガス導入バルブ5−2とを閉じる(S18)。上記S13〜S18で、2系統あるプロセスガスラインの合計流量を測定する。さらに、処理室及びガスラインを排気するため、処理室排気バルブ13を開いて処理室9とガスライン17−1,17−2,17−3を排気する(S19)。   Next, the processing chamber exhaust valve 13 is closed to seal the processing chamber 9 (S16). Next, the pressure fluctuation in the processing chamber 9 is measured by the pressure gauge 12, the flow rate is calculated by the elapsed time and the pressure value by the controller 15, and the elapsed time, the pressure value, and the flow rate are stored (S17). The temperature at the time of measurement and the state of the surface of the processing chamber wall surface are substantially the same as those at the time of measurement of S5 and S11. Next, the gas cutoff valve 3, the first gas introduction valve 5-1, and the second gas introduction valve 5-2 are closed (S18). In S13 to S18, the total flow rate of the two process gas lines is measured. Further, in order to exhaust the processing chamber and the gas line, the processing chamber exhaust valve 13 is opened to exhaust the processing chamber 9 and the gas lines 17-1, 17-2, 17-3 (S19).

次に、測定結果から分流器4の検定を行う。制御コントローラ15が、S5とS11で記憶した流量から分流器4から第1ガス導入ライン17−2及び第2ガス導入ライン17−3を介して処理室9に流れるガスの分流比を算出する(S20)。その値と設定した所望の分流比を比較し、その差がある許容値内である場合は、分流器4は正常であると判断し、許容値を超えた場合は、分流器4は異常であると判断する。ここで許容値は任意に設定できる値とする。その判定の結果は表示モニタ16に表示し、判定が正常である場合はOK、異常である場合はNGを表示する(S21)。図7に表示例を示す。   Next, the shunt 4 is verified from the measurement result. The controller 15 calculates a diversion ratio of the gas flowing from the flow divider 4 to the processing chamber 9 via the first gas introduction line 17-2 and the second gas introduction line 17-3 from the flow rates stored in S5 and S11 ( S20). The value is compared with the set desired shunt ratio, and if the difference is within a certain allowable value, it is determined that the shunt 4 is normal, and if the allowable value is exceeded, the shunt 4 is abnormal. Judge that there is. Here, the allowable value is a value that can be arbitrarily set. The result of the determination is displayed on the display monitor 16, and OK is displayed if the determination is normal, and NG is displayed if the determination is abnormal (S21). FIG. 7 shows a display example.

次に、制御コントローラ15が、S5とS11で記憶している流量の和とS17で記憶している流量を比較し、その差がある一定範囲内である場合は、分流器4は正常であると判断し、許容値を超えた場合は、分流器4は異常であると判断する。ここで許容値は任意に設定できる値とする。その判定の結果は表示モニタ16に表示し、判定が正常である場合はOK、異常である場合はNGを表示する(S22)。図7に表示例を示す。   Next, the controller 15 compares the flow rate stored in S5 and S11 with the flow rate stored in S17, and if the difference is within a certain range, the flow divider 4 is normal. If the allowable value is exceeded, it is determined that the shunt 4 is abnormal. Here, the allowable value is a value that can be arbitrarily set. The result of the determination is displayed on the display monitor 16, and OK is displayed if the determination is normal, and NG is displayed if the determination is abnormal (S22). FIG. 7 shows a display example.

また、常時上記検定結果を確認することができるように、制御コントローラ15内で、算出した分流比,測定流量と設定流量の差,S5とS11で記憶している流量の和とS17の差,許容値,正常・異常の判定結果を記憶する(S23)。上記測定結果の詳細を使用者が得るため、前記S5,S11,S17で記憶していた経過時間と圧力値,流量のそれぞれの値を、表示モニタ16に表示しても良い。   Further, in order to be able to confirm the above-mentioned verification result at all times, the controller 15 calculates the diversion ratio, the difference between the measured flow rate and the set flow rate, the sum of the flow rate stored in S5 and S11 and the difference between S17, The allowable value and the normal / abnormal judgment result are stored (S23). In order for the user to obtain details of the measurement results, the elapsed time, pressure value, and flow rate values stored in S5, S11, and S17 may be displayed on the display monitor 16.

上記検定により異常と判断される場合としては、第1ガス導入ライン17−2及び第2ガス導入ライン17−3の配管の詰まり及び分流器4内の可変バルブ及び流量計の異常等が考えられる。複数の分流比を診断する場合は、前述のシーケンス(S1〜S12)を繰り返し、制御コントローラ15で流量を算出し、上記に示すように分流比及び流量の比較を行い、所望の分流比及び流量でガスが導入されていることを確認する。   As a case where it is determined that there is an abnormality by the above-described verification, the piping of the first gas introduction line 17-2 and the second gas introduction line 17-3 may be clogged, the variable valve in the flow divider 4 and the abnormality of the flow meter, etc. . When diagnosing a plurality of diversion ratios, the above-described sequence (S1 to S12) is repeated, the flow rate is calculated by the controller 15, and the diversion ratio and the flow rate are compared as described above to obtain the desired diversion ratio and flow rate. Confirm that the gas has been introduced.

上記実施例には、分流器4は2系統のガスラインへの分流を行う場合を示したが、3系統のガスラインでも本発明は適用できる。その場合はまず、分流器4に分流比を設定した状態で、分流した1つのガスライン毎にガスを処理室9へ導入し、圧力変動を測定し流量を算出する。その測定した流量から分流比を算出する。次に、分流器4内の少なくとも1つのガスラインの可変バルブを全開とし、ガスを処理室9へ導入し、圧力変動を測定し流量を算出する。上記で算出した分流比は設定した分流比と比較し、上記で算出した分流器4に分流比を設定したときの3つのガスラインの流量の総和と分流器4内の少なくとも1つのガスラインの可変バルブを全開にしたときの流量を比較することで、分流器4を検定することが出来る。   In the above-described embodiment, the case where the flow divider 4 performs the diversion to the two gas lines is shown, but the present invention can also be applied to the three gas lines. In that case, first, in a state where the flow dividing ratio is set in the flow divider 4, gas is introduced into the processing chamber 9 for each divided gas line, pressure fluctuation is measured, and the flow rate is calculated. A diversion ratio is calculated from the measured flow rate. Next, the variable valve of at least one gas line in the flow divider 4 is fully opened, the gas is introduced into the processing chamber 9, the pressure fluctuation is measured, and the flow rate is calculated. The shunt ratio calculated above is compared with the set shunt ratio, the sum of the flow rates of the three gas lines when the shunt ratio is set for the shunt 4 calculated above, and the at least one gas line in the shunt 4 is set. By comparing the flow rate when the variable valve is fully opened, the flow divider 4 can be verified.

前述のシーケンスにおいて、プロセスガスライン17−1で導入するガス流量を500ml/min 、第1ガス導入ライン17−2と第2ガス導入ライン17−3の分流比を3:2を設定して図3に示すシーケンス起動画面の分流器検定実行ボタンを押したときに実施される分流比を検定する流れの具体例を示す。   In the above-described sequence, the flow rate of gas introduced through the process gas line 17-1 is set to 500 ml / min, and the diversion ratio between the first gas introduction line 17-2 and the second gas introduction line 17-3 is set to 3: 2. 3 shows a specific example of a flow for verifying the shunt ratio performed when the shunt verification execution button on the sequence activation screen shown in FIG. 3 is pressed.

まず、分流器4に分流比を設定するときの第1ガス導入ライン17−2の流量測定
(S1〜S6)においては、流量制御機器2に流量500ml/min と、分流器4に第1ガス導入ライン17−2と第2ガス導入ライン17−3の分流比3:2とを設定し、プロセスガスを処理室9に導入して処理室の圧力変動を測定し、経過時間と圧力値により流量を算出する。その算出した流量をA ml/min とする。
First, in the flow rate measurement (S1 to S6) of the first gas introduction line 17-2 when setting the flow ratio to the flow divider 4, the flow rate control device 2 has a flow rate of 500 ml / min and the flow divider 4 has the first gas. A split flow ratio of 3: 2 is set between the introduction line 17-2 and the second gas introduction line 17-3, the process gas is introduced into the processing chamber 9, and the pressure fluctuation in the processing chamber is measured. Calculate the flow rate. Let the calculated flow rate be A ml / min.

次に、分流器4に分流比を設定するときの第2ガス導入ライン17−3の流量測定
(S7〜S12)においては、流量制御機器2に流量500ml/min と、分流器4に第1ガス導入ライン17−2と第2ガス導入ライン17−3の分流比3:2とを設定し、プロセスガスを処理室9に導入して処理室の圧力変動を測定し、経過時間と圧力値により流量を算出する。その算出した流量をB ml/min とする。
Next, in the flow rate measurement (S7 to S12) of the second gas introduction line 17-3 when the flow dividing ratio is set in the flow divider 4, the flow rate control device 2 has a flow rate of 500 ml / min, and the flow divider 4 has the first flow rate. The split flow ratio 3: 2 of the gas introduction line 17-2 and the second gas introduction line 17-3 is set, the process gas is introduced into the processing chamber 9, the pressure fluctuation in the processing chamber is measured, the elapsed time and the pressure value To calculate the flow rate. Let the calculated flow rate be B ml / min.

次に、分流器4に全開を設定するときの第1,第2ガス導入ライン17−2,17−3の流量測定(S13〜S18)においては、流量制御機器2に流量500ml/min に設定、分流器4内の2つの可変バルブを全開とし、プロセスガスを処理室9に導入して処理室の圧力変動を測定し、経過時間と圧力値により流量を算出する。その算出した流量をCml/min とする。   Next, in the flow rate measurement (S13 to S18) of the first and second gas introduction lines 17-2 and 17-3 when fully opening the flow divider 4, the flow rate control device 2 is set to a flow rate of 500 ml / min. The two variable valves in the flow divider 4 are fully opened, the process gas is introduced into the processing chamber 9, the pressure fluctuation in the processing chamber is measured, and the flow rate is calculated from the elapsed time and the pressure value. The calculated flow rate is Cml / min.

制御コントローラ15が上記で記憶している流量を用いて、分流比A:Bが所望の分流比3:2であるかの検定を行う。検定の方法としては、例えば許容値が2.8〜3.2:
2.2〜1.8、測定した流量A=310ml/min 、B=190ml/min であるとき分流比はA:B=3.1:1.9であり、許容値内の値であるので、分流器4によりプロセスガスが所望の分流比で処理室へ流れていると判断し、表示モニタ16に「O.K.」を表示する。測定した流量A=350ml/min 、B=150ml/min であるときA:B=3.5:1.5であり、許容値を超えた値であるので、分流器4に異常があると判断し、表示モニタ16に「N.G.」を表示する。また、制御コントローラ15が上記で記憶している所望の分流比に制御したときの流量A ml/min とB ml/min の和が分流器4内の2つの可変バルブを全開としたときの流量C ml/min であるかの検定を行う。
Using the flow rate stored by the controller 15 as described above, it is verified whether the diversion ratio A: B is the desired diversion ratio 3: 2. As a method of the test, for example, an allowable value is 2.8 to 3.2:
When the measured flow rate is A = 310 ml / min and B = 190 ml / min, the diversion ratio is A: B = 3.1: 1.9, which is within the allowable value. The flow divider 4 determines that the process gas is flowing into the processing chamber at a desired flow division ratio, and displays “OK” on the display monitor 16. When the measured flow rate A = 350 ml / min and B = 150 ml / min, A: B = 3.5: 1.5, which is a value exceeding the allowable value. Then, “NG” is displayed on the display monitor 16. Moreover, the flow rate when the two variable valves in the flow divider 4 are fully opened is the sum of the flow rates A ml / min and B ml / min when the controller 15 controls the desired diversion ratio stored above. Test for C ml / min.

検定の方法としては、例えば許容値がC−20〜C+20ml/min で、測定した流量A=305ml/min ,B=205ml/min ,C=500ml/min であるとき、A ml/min とB ml/min の和は510ml/min で許容値内の値であるので、分流器4によりプロセスガスが所望の流量で処理室へ流れていると判断し、表示モニタ16に
「O.K.」を表示する。測定した流量A=330ml/min ,B=220ml/min ,C=500ml/min であるときA ml/min とB ml/min の和は550ml/
min で許容値を超えた値であるので、分流器4に異常があると判断し、表示モニタ16に「N.G.」を表示する。
For example, when the allowable values are C-20 to C + 20 ml / min and the measured flow rates are A = 305 ml / min, B = 205 ml / min, and C = 500 ml / min, A ml / min and B ml are used. Since the sum of / min is within the allowable value at 510 ml / min, it is determined by the flow divider 4 that the process gas is flowing into the processing chamber at a desired flow rate, and “OK” is displayed on the display monitor 16. indicate. When the measured flow rate is A = 330 ml / min, B = 220 ml / min, and C = 500 ml / min, the sum of A ml / min and B ml / min is 550 ml / min.
Since the value exceeds the allowable value in min, it is determined that there is an abnormality in the flow divider 4 and “NG” is displayed on the display monitor 16.

複数の分流比を診断する場合は、前述のシーケンス(S1〜S12)を繰り返し、制御コントローラ15で流量を算出し、上記に示すように分流比及び流量の比較を行い、所望の分流比及び流量でガスが導入されていることを確認する。   When diagnosing a plurality of diversion ratios, the above-described sequence (S1 to S12) is repeated, the flow rate is calculated by the controller 15, and the diversion ratio and the flow rate are compared as described above to obtain the desired diversion ratio and flow rate. Confirm that the gas has been introduced.

本発明の実施例に係るプラズマエッチング装置の概略図である。1 is a schematic view of a plasma etching apparatus according to an embodiment of the present invention. 図1に示す実施例に係る可変バルブの構成の概略を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the outline of a structure of the variable valve based on the Example shown in FIG. 図1に示す実施例に係る可変バルブの構成の概略を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the outline of a structure of the variable valve based on the Example shown in FIG. 図1に示す実施例に係る可変バルブの構成の概略を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the outline of a structure of the variable valve based on the Example shown in FIG. 図1に示す実施例に係る可変バルブの構成の概略を説明する縦断面図である。It is a longitudinal cross-sectional view explaining the outline of a structure of the variable valve based on the Example shown in FIG. 図1に示す実施例に係る分流器の分流比の検定シーケンスを実行する画面を示す模式図である。It is a schematic diagram which shows the screen which performs the test sequence of the shunt ratio of the shunt according to the embodiment shown in FIG. 図1に示す実施例に係るプラズマエッチング装置の分流器の分流比の検定を実行した結果を表示する画面を示す図である。It is a figure which shows the screen which displays the result of having performed the test of the shunt ratio of the shunt of the plasma etching apparatus which concerns on the Example shown in FIG. 図1に示す実施例に係るプラズマエッチング装置の分流器の分流比を検定する手順の流れを示すフローチャートである。It is a flowchart which shows the flow of the procedure which test | inspects the shunt ratio of the shunt of the plasma etching apparatus concerning the Example shown in FIG. 図1に示す実施例に係るプラズマエッチング装置の分流器の分流比を検定する手順の流れを示すフローチャートである。It is a flowchart which shows the flow of the procedure which test | inspects the shunt ratio of the shunt of the plasma etching apparatus concerning the Example shown in FIG.

符号の説明Explanation of symbols

1…ガス供給源、2…流量制御機器、3…ガス遮断バルブ、4…分流器、5−1…第1ガス導入バルブ、5−2…第2ガス導入バルブ、6−1…第1ガス排気バルブ、6−2…第2ガス排気バルブ、7…アンテナ、8…ソレノイドコイル、9…処理室、10…試料台、11…試料台駆動機構、12…圧力計、13…処理室排気バルブ、14…排気ポンプ、15…制御コントローラ、16…表示モニタ、17−1…ガス導入ライン、17−2…第1ガス導入ライン、17−3…第2ガス導入ライン、17−4…第1ガス排気ライン、
17−5…第2ガス排気ライン、18…シール部駆動機構、19…シール部駆動部、20…板バネ、21…シール部、22…流量測定器、23…分流器内蔵制御コントローラ。

DESCRIPTION OF SYMBOLS 1 ... Gas supply source, 2 ... Flow control apparatus, 3 ... Gas cutoff valve, 4 ... Shunt, 5-1 ... 1st gas introduction valve, 5-2 ... 2nd gas introduction valve, 6-1 ... 1st gas Exhaust valve, 6-2 ... second gas exhaust valve, 7 ... antenna, 8 ... solenoid coil, 9 ... processing chamber, 10 ... sample stage, 11 ... sample stage drive mechanism, 12 ... pressure gauge, 13 ... processing chamber exhaust valve , 14 ... exhaust pump, 15 ... control controller, 16 ... display monitor, 17-1 ... gas introduction line, 17-2 ... first gas introduction line, 17-3 ... second gas introduction line, 17-4 ... first Gas exhaust line,
17-5: second gas exhaust line, 18: seal portion drive mechanism, 19 ... seal portion drive portion, 20 ... leaf spring, 21 ... seal portion, 22 ... flow rate measuring device, 23 ... controller with built-in flow divider.

Claims (6)

内部が減圧される真空容器内の処理室に複数の経路を介して処理用ガスを供給し、前記処理室内に配置した試料を処理する真空処理装置であって、前記複数の経路に異なる流量の前記ガスを分配する比を調節する分流器と、前記分流器及び前記経路それぞれを最大流量の前記ガスを通流可能な状態にし、前記処理室の排気を停止して、前記処理室に前記ガスを供給した際のこの処理室内の圧力変化率と前記分流器を所定の分流比で前記ガスを通流可能な状態にして、前記複数の経路の各々からのみ前記処理室内に前記ガスを供給した際のこの処理室内の圧力変化率とを用いて、前記分流器の検定を行う機能を備えた真空処理装置。   A vacuum processing apparatus for supplying a processing gas to a processing chamber in a vacuum chamber whose pressure is reduced via a plurality of paths and processing a sample disposed in the processing chamber, wherein the plurality of paths have different flow rates. A flow divider that adjusts a ratio of distributing the gas, and the flow divider and the path are set in a state in which the gas having a maximum flow rate can flow, the exhaust of the processing chamber is stopped, and the gas is supplied to the processing chamber. The gas was supplied into the processing chamber only from each of the plurality of paths, with the rate of change of pressure in the processing chamber when the gas was supplied and the flow divider being allowed to flow the gas at a predetermined diversion ratio. A vacuum processing apparatus having a function of performing verification of the flow divider using the pressure change rate in the processing chamber. 内部が減圧される真空容器内の処理室に複数の経路を介して処理用ガスを供給し、前記処理室内に配置した資料を処理する真空処理装置であって、前記複数の経路に異なる流量の前記ガスを分配する比を調節する分流器と、前記分流器及び前記経路の少なくとも一つを最大流量の前記ガスを通流可能な状態にし、前記処理室の排気を停止して、この少なくとも一つの経路から前記処理室に前記ガスを供給した際のこの処理室内の圧力変化率と前記分流器を所定の分流比で前記ガスを通流可能な状態にして、前記複数の経路の各々からのみ前記処理室内に前記ガスを供給した際のこの処理室内の圧力変化率とを用いて、前記分流器の検定を行う機能を備えた真空処理装置。   A vacuum processing apparatus that supplies processing gas to a processing chamber in a vacuum chamber whose inside is depressurized through a plurality of paths, and processes a material disposed in the processing chamber, wherein the plurality of paths have different flow rates. A flow divider for adjusting the gas distribution ratio, and at least one of the flow divider and the path is configured to allow the flow of the gas at the maximum flow rate, and the exhaust of the processing chamber is stopped, and at least one of the flow divider and the flow path is stopped. When the gas is supplied to the processing chamber from one path, the rate of change in pressure in the processing chamber and the flow divider are set in a state in which the gas can flow at a predetermined diversion ratio, and only from each of the plurality of paths. A vacuum processing apparatus having a function of verifying the flow divider using a pressure change rate in the processing chamber when the gas is supplied into the processing chamber. 前記圧力の変化率の検出のそれぞれは、前記処理室内を実質的に同一の条件にして検出される請求項1又は2に記載の真空処理装置。   The vacuum processing apparatus according to claim 1, wherein each of the pressure change rates is detected under substantially the same conditions in the processing chamber. 前記圧力の変化率の検出のそれぞれは、相互に連続して検出される請求項1ないし3のいずれかに記載の真空処理装置。   The vacuum processing apparatus according to any one of claims 1 to 3, wherein each of the detections of the rate of change in pressure is detected continuously. 前記最大流量のガスの供給は、前記分流器内に配置された流量の調節手段を全開の状態にして行われる請求項1ないし4のいずれかに記載の真空処理装置。   The vacuum processing apparatus according to any one of claims 1 to 4, wherein the supply of the gas at the maximum flow rate is performed with a flow rate adjusting means disposed in the shunt being fully opened. 前記分流器と前記処理室との間の前記2つの経路の各々に接続された2つの排気路を備え、前記分流器を所定の分流比に調節した際にいずれか一つの経路から前記処理室に前記ガスを供給するとともに、他の経路からこれに接続された排気路を介してガスを排出する請求項1ないし5のいずれかの記載の真空処理装置。
Two exhaust paths connected to each of the two paths between the flow divider and the processing chamber are provided, and when the flow divider is adjusted to a predetermined diversion ratio, the processing chamber is connected from any one path. The vacuum processing apparatus according to any one of claims 1 to 5, wherein the gas is supplied to the gas and exhausted from another path through an exhaust path connected thereto.
JP2006195065A 2006-07-18 2006-07-18 Vacuum processing equipment Active JP4806598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195065A JP4806598B2 (en) 2006-07-18 2006-07-18 Vacuum processing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195065A JP4806598B2 (en) 2006-07-18 2006-07-18 Vacuum processing equipment

Publications (2)

Publication Number Publication Date
JP2008027936A true JP2008027936A (en) 2008-02-07
JP4806598B2 JP4806598B2 (en) 2011-11-02

Family

ID=39118303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195065A Active JP4806598B2 (en) 2006-07-18 2006-07-18 Vacuum processing equipment

Country Status (1)

Country Link
JP (1) JP4806598B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050531A (en) * 2015-07-30 2017-03-09 ラム リサーチ コーポレーションLam Research Corporation Gas supply system
CN112786426A (en) * 2019-11-07 2021-05-11 东京毅力科创株式会社 Gas supply method and substrate processing apparatus
US11342163B2 (en) 2016-02-12 2022-05-24 Lam Research Corporation Variable depth edge ring for etch uniformity control

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186296A (en) * 1991-04-22 1993-07-27 Applied Materials Inc Assay of flow amount of process gas in wafer manufacturing system and device and method for said assay
JP2006041088A (en) * 2004-07-26 2006-02-09 Hitachi High-Technologies Corp Plasma treatment apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05186296A (en) * 1991-04-22 1993-07-27 Applied Materials Inc Assay of flow amount of process gas in wafer manufacturing system and device and method for said assay
JP2006041088A (en) * 2004-07-26 2006-02-09 Hitachi High-Technologies Corp Plasma treatment apparatus

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017050531A (en) * 2015-07-30 2017-03-09 ラム リサーチ コーポレーションLam Research Corporation Gas supply system
US11342163B2 (en) 2016-02-12 2022-05-24 Lam Research Corporation Variable depth edge ring for etch uniformity control
CN112786426A (en) * 2019-11-07 2021-05-11 东京毅力科创株式会社 Gas supply method and substrate processing apparatus
CN112786426B (en) * 2019-11-07 2024-06-07 东京毅力科创株式会社 Gas supply method and substrate processing apparatus

Also Published As

Publication number Publication date
JP4806598B2 (en) 2011-11-02

Similar Documents

Publication Publication Date Title
KR100781407B1 (en) Substrate processing device
JP4502590B2 (en) Semiconductor manufacturing equipment
WO2012014375A1 (en) Calibration method and flow-rate measurement method for flow-rate controller of gas supplying apparatus
US9273394B2 (en) Plasma processing apparatus and diagnosis method thereof
US20100030390A1 (en) Flow rate ratio control device
JP3367811B2 (en) Gas piping system certification system
US20070181192A1 (en) Method and apparatus for monitoring gas flow amount in semiconductor manufacturing equipment
TW201126144A (en) Gas flow rate verification unit
US20080110569A1 (en) Plasma etching apparatus and plasma etching method
KR101116979B1 (en) Semiconductor production system and semiconductor production process
JP4806598B2 (en) Vacuum processing equipment
TW201514500A (en) Metrology method for transient gas flow
US20190139796A1 (en) Monitoring apparatus and semiconductor manufacturing apparatus including the same
US8148268B2 (en) Plasma treatment apparatus and plasma treatment method
JP5004614B2 (en) Vacuum processing equipment
JP2008159875A (en) Substrate suction system and semiconductor manufacturing apparatus
KR20140093511A (en) Apparatus for providing the sample gas and method thereof
TW201437417A (en) Gas delivery device and testing method of gas distributor thereof
TW201334022A (en) Gas distribution system and authentication method applied to plasma processing apparatus
US20220328288A1 (en) Inspection method of plasma processing apparatus
KR20160078667A (en) Humidity measuring apparatus and improvement method for measuring degree thereof
US20140261703A1 (en) Method to detect valve deviation
JP6647905B2 (en) Vacuum processing equipment
JP2008244294A (en) Process gas feeder and method of feeding process gas
JP2003194654A (en) Airtightness test method and gas supply device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090511

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110519

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110815

R150 Certificate of patent or registration of utility model

Ref document number: 4806598

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350