JP2008027914A - Superfine coaxial cable - Google Patents

Superfine coaxial cable Download PDF

Info

Publication number
JP2008027914A
JP2008027914A JP2007188675A JP2007188675A JP2008027914A JP 2008027914 A JP2008027914 A JP 2008027914A JP 2007188675 A JP2007188675 A JP 2007188675A JP 2007188675 A JP2007188675 A JP 2007188675A JP 2008027914 A JP2008027914 A JP 2008027914A
Authority
JP
Japan
Prior art keywords
coaxial cable
insulating layer
inner conductor
shield layer
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007188675A
Other languages
Japanese (ja)
Inventor
Chan-Yong Park
パク、チャン−ヨン
Gi-Joon Nam
ナム、ギ−ジュン
Jung-Won Park
パク、ジョン−ウォン
In-Ha Kim
キム、イン−ハ
June-Sun Kim
キム、ジュン−ソン
Hyun Suk Kim
キム、ヒョン−ソク
Il-Gun Seo
ソ、イル−ゴン
Gun-Joo Lee
リー、ゴン−ジュ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LS Cable and Systems Ltd
Original Assignee
LS Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LS Cable Ltd filed Critical LS Cable Ltd
Publication of JP2008027914A publication Critical patent/JP2008027914A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/02Cables with twisted pairs or quads
    • H01B11/12Arrangements for exhibiting specific transmission characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1808Construction of the conductors
    • H01B11/1813Co-axial cables with at least one braided conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1834Construction of the insulation between the conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1869Construction of the layers on the outer side of the outer conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B11/00Communication cables or conductors
    • H01B11/18Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
    • H01B11/1895Particular features or applications
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/016Apparatus or processes specially adapted for manufacturing conductors or cables for manufacturing co-axial cables

Abstract

<P>PROBLEM TO BE SOLVED: To provide a superfine coaxial cable which has excellent impedance characteristics and can stably transmit signals without a reflection loss even in a high-frequency transmission and moreover can transmit a high-quality image by remarkably controlling an external interference of signals in a high-frequency transmission. <P>SOLUTION: The superfine coaxial cable is provided with an internal conductor in which a plurality of first superfine metallic wires are twisted at a pitch of 0.5 to 3 mm, an insulating layer composed of a polymer material of a dielectric constant of 1.2 to 2.0, a metallic shielding layer which surrounds the insulating layer and of which a plurality of the second superfine metallic wires surround horizontally the insulating layer at a horizontal winding pitch of 2.0 to 10.0mm, and a protecting cover layer formed to surround the metallic shielding layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本件発明は、極細同軸ケーブルに関する。さらに詳しくは、優れたインピーダンス特性を有し、高周波伝送の際にも反射損失なく安定的な信号伝送が可能であり、また、高周波伝送の際に信号の外部干渉を著しく抑制して、高画質の伝送が可能な極細同軸ケーブルに関する。   The present invention relates to a micro coaxial cable. More specifically, it has excellent impedance characteristics, enables stable signal transmission without reflection loss even during high-frequency transmission, and significantly suppresses external signal interference during high-frequency transmission, resulting in high image quality. The present invention relates to an ultrafine coaxial cable capable of transmitting data.

同軸ケーブルは信号を伝送するための内部導体と、内部導体の同軸上に外部導体(金属シールド層)が形成された構造のケーブルであって、大きさ別/種類別に数多くの製品が開発されている。そして、主に建物の地下のアンテナ又はCATVなどに信号を伝送するためのケーブルとして用いられてきた。従来の同軸ケーブルに関する主な開発テーマは、エネルギーの損失を減らすための内部導体と外部導体との間の構造設計、誘電特性の改善及び外部導体に対する種々の機能の付与などであった。   A coaxial cable is a cable with a structure in which an inner conductor for transmitting signals and an outer conductor (metal shield layer) are formed on the same axis as the inner conductor. Many products have been developed by size and type. Yes. And it has been mainly used as a cable for transmitting a signal to an antenna in the basement of a building or a CATV. The main development themes regarding the conventional coaxial cable were the structural design between the inner conductor and the outer conductor to reduce energy loss, the improvement of dielectric characteristics, and the addition of various functions to the outer conductor.

そして、高度情報化社会への進展に伴い、情報通信機器及びその機器に搭載される半導体素子の試験装置及び検査装置などでは、伝送速度の高速化への対応要請が高まっている。   With the advancement to a highly information-oriented society, there is an increasing demand for higher transmission speeds in information communication devices and semiconductor device testing devices and inspection devices mounted on such devices.

一方、ポータブルマルチメディア機器、そして内視鏡などの医療機器の小型化が進み、これらの駆動に用いる直径1mm以下の極細同軸ケーブルの、性能向上のための研究が活発に行われている。   On the other hand, miniaturization of portable multimedia devices and medical devices such as endoscopes is progressing, and research for improving the performance of ultra-fine coaxial cables having a diameter of 1 mm or less used for driving these devices is actively conducted.

このような同軸ケーブルは、一般に、内部導体、絶縁層、金属シールド層及び保護被覆層で構成される。そして、同軸ケーブルの伝送特性は、以下の数1を用いて計算される特性インピーダンス(Characteristic Impedance, Z)によって決まる。同軸ケーブルの伝送特性においては、インピーダンス整合(Impedance Matching)が最も重要な要素である。そして、エネルギー波の電力伝送特性が最も良いインピーダンスは33オーム(Ω)、信号波形の歪み(distortion)特性が最も良いインピーダンスは75オームであり、国際標準値はそのほぼ中央値である45〜50オームである。 Such a coaxial cable is generally composed of an inner conductor, an insulating layer, a metal shield layer, and a protective coating layer. The transmission characteristic of the coaxial cable is determined by a characteristic impedance (Characteristic Impedance, Z 0 ) calculated using the following equation ( 1 ). Impedance matching is the most important factor in the transmission characteristics of a coaxial cable. The impedance with the best power transmission characteristic of the energy wave is 33 ohms (Ω), the impedance with the best distortion characteristic of the signal waveform is 75 ohms, and the international standard value is approximately the median value of 45-50. Ohm.

上記の数式から分かるように、特性インピーダンスは「内部導体の直径」と「金属シールド層の内径」及び「絶縁層の誘電率」と密接な相関関係を有する。もし、1つのシステムの内部に適用されている特性インピーダンスに違いがあれば、信号伝送中に反射損失(Reflection Loss)が発生して伝送特性が悪くなるので、インピーダンスを整合させた設計は、ケーブル設計者のみならず、システム設計者にとっても非常に重要な課題である。   As can be seen from the above formula, the characteristic impedance has a close correlation with “the diameter of the inner conductor”, “the inner diameter of the metal shield layer”, and “the dielectric constant of the insulating layer”. If there is a difference in the characteristic impedance applied inside one system, reflection loss will occur during signal transmission and transmission characteristics will deteriorate. This is a very important issue not only for designers but also for system designers.

しかし、極細同軸ケーブル分野においては、上記のような特性インピーダンスに関する研究は殆ど進んでいない。そして、特許文献1及び特許文献2などはあるが、これらは主に内部導体を伝送する信号の外部漏洩を防止することを目的として、金属シールド層の内部又は外部に、電磁波のシールド特性に優れた金属層、又は金属が蒸着されたフィルム層を備えることなどに焦点が合わせられている。   However, in the field of micro coaxial cables, little research has been made on the characteristic impedance as described above. There are Patent Document 1 and Patent Document 2, and these are excellent in electromagnetic wave shielding characteristics inside or outside the metal shield layer mainly for the purpose of preventing external leakage of signals transmitted through the internal conductor. The focus is on having a metal layer or a film layer on which the metal is deposited.

従来の一般同軸ケーブル又は大口径同軸ケーブルは、その直径が通常5mm〜42mm程度であって、内部導体、絶縁層及び金属シールド層の直径が充分大きいため、特性制御の面においては十分なマージンがあり、絶縁層の制御も可能であった。しかし、極細同軸ケーブルにおいては、全体の直径が1mm以下であり、内部導体、絶縁層及び金属シールド層の直径も微細である。従って、内部導体の外径が不均一になり絶縁層の外径基準の設計や金属シールド層の設計が容易ではなく、インピーダンスの不整合が発生する問題がある。このような問題を解決するための努力は関連分野で重ねられており、このような技術的背景下で本件発明が案出された。   Conventional general coaxial cables or large-diameter coaxial cables are usually about 5 mm to 42 mm in diameter, and the inner conductor, insulating layer, and metal shield layer have sufficiently large diameters, so that there is a sufficient margin in terms of characteristic control. In addition, the insulating layer could be controlled. However, in the micro coaxial cable, the entire diameter is 1 mm or less, and the diameters of the inner conductor, the insulating layer, and the metal shield layer are also minute. Therefore, the outer diameter of the inner conductor is not uniform, and the design of the outer diameter reference of the insulating layer and the design of the metal shield layer are not easy, and there is a problem that impedance mismatch occurs. Efforts to solve such problems have been repeated in related fields, and the present invention has been devised under such a technical background.

米国特許第6130385号US Pat. No. 6,130,385 米国特許公開2003−51897号公報US Patent Publication No. 2003-51897

本件発明が解決する課題は、優れたインピーダンス特性を有し、高周波の伝送の際にも反射損失がなく安定的な信号伝送が可能で、また、高周波伝送の際に信号の外部干渉を著しく抑制して高画質の伝送が可能な極細同軸ケーブルを提供することである。   The problem to be solved by the present invention is that it has excellent impedance characteristics, enables stable signal transmission without reflection loss even during high-frequency transmission, and significantly suppresses external interference of signals during high-frequency transmission Thus, an ultrafine coaxial cable capable of high-quality transmission is provided.

前述した本件発明が解決しようとする技術的課題を果たすために、本件発明の同軸ケーブルは、2本以上の第1極細金属線が0.5mm〜3.0mmのピッチで捻れた内部導体と、当該内部導体を取り囲む誘電率1.2〜3.0の高分子材料で構成される絶縁層と、当該絶縁層を取り囲み、2本以上の第2極細金属線が横巻きピッチ2.0mm〜10.0mmで当該絶縁層を横巻きしてなる金属シールド層と当該金属シールド層を取り囲んで形成された保護被覆層とを備える極細同軸ケーブルとする。   In order to achieve the technical problem to be solved by the present invention described above, the coaxial cable of the present invention includes an inner conductor in which two or more first fine metal wires are twisted at a pitch of 0.5 mm to 3.0 mm, An insulating layer made of a polymer material having a dielectric constant of 1.2 to 3.0 surrounding the inner conductor, and two or more second fine metal wires surrounding the insulating layer and having a lateral winding pitch of 2.0 mm to 10 mm The micro coaxial cable is provided with a metal shield layer formed by horizontally winding the insulating layer at 0.0 mm and a protective coating layer formed so as to surround the metal shield layer.

前記内部導体を構成する第1極細金属線の捻れピッチは、1.0mm〜1.4mmであることが好ましい。また、当該内部導体の直径は、0.07mm〜0.10mmであることが好ましく、内部導体を構成する第1極細金属線の直径は、0.01mm〜0.04mmであることが好ましい。   It is preferable that the twist pitch of the 1st ultrafine metal wire which comprises the said internal conductor is 1.0 mm-1.4 mm. Moreover, it is preferable that the diameter of the said internal conductor is 0.07 mm-0.10 mm, and it is preferable that the diameter of the 1st extra fine metal wire which comprises an internal conductor is 0.01 mm-0.04 mm.

そして、前記内部導体を構成する第1極細金属線は、銅合金で構成されることが好ましい。   And it is preferable that the 1st extra fine metal wire which comprises the said internal conductor is comprised with a copper alloy.

また、前記絶縁層の誘電率は、1.5〜2.5であることがより好ましく、当該絶縁層は、フッ素系樹脂を用いたものであることが好ましい。そして、前記フッ素系樹脂は、四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合樹脂(PerFluoro Alkoxy Resin:以下、「PFA樹脂」と称する。)を用いることが更に好ましい。   The dielectric constant of the insulating layer is more preferably 1.5 to 2.5, and the insulating layer is preferably made of a fluorine-based resin. The fluororesin is more preferably a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin (PerFluor Alkoxy Resin: hereinafter referred to as “PFA resin”).

また、前記金属シールド層を構成する第2極細金属線の横巻きピッチは、3.0mm〜4.5mmであることがより好ましく、当該金属シールド層を構成する第2極細金属線は、当該内部導体を構成する第1極細金属線の捻じり方向と反対方向に横巻きされることがより好ましい。   The horizontal winding pitch of the second ultrafine metal wire constituting the metal shield layer is more preferably 3.0 mm to 4.5 mm, and the second ultrafine metal wire constituting the metal shield layer is the internal More preferably, the first ultrafine metal wire constituting the conductor is laterally wound in a direction opposite to the twisting direction.

また、前記金属シールド層を構成する第2極細金属線は、銅合金で構成されることが好ましい。   Moreover, it is preferable that the 2nd extra fine metal wire which comprises the said metal shield layer is comprised with a copper alloy.

また、前記金属シールド層を構成する第2極細金属線の直径は、0.02mm〜0.04mmであることが好ましく、前記金属シールド層を構成する第2極細金属線の本数は、15〜35本であることが好ましい。   Moreover, it is preferable that the diameter of the 2nd ultrafine metal wire which comprises the said metal shield layer is 0.02 mm-0.04 mm, and the number of the 2nd ultrafine metal wire which comprises the said metal shield layer is 15-35. A book is preferred.

本件発明は、さらに、2本以上の第1極細金属線が所定のピッチで捻れた内部導体と、当該内部導体を取り囲み、高分子材料で構成される絶縁層と、所定のピッチで当該内部導体を構成する第1極細金属線の捻じり方向と反対方向に横巻きされた2本以上の第2極細金属線で当該絶縁層を取り囲んで形成された金属シールド層と当該金属シールド層を取り囲んで形成された保護被覆層とを備える極細同軸ケーブルを提供する。   The present invention further includes an inner conductor in which two or more first fine metal wires are twisted at a predetermined pitch, an insulating layer surrounding the inner conductor and made of a polymer material, and the inner conductor at a predetermined pitch. A metal shield layer formed by surrounding two or more second fine metal wires that are wound in the opposite direction to the twisting direction of the first fine metal wire constituting the metal layer, and surrounding the metal shield layer An ultrafine coaxial cable including a protective covering layer formed is provided.

本件発明に係る極細同軸ケーブルは、2本以上の第1極細金属線が0.5〜3mmのピッチで捻れた内部導体と、当該内部導体を取り囲み、誘電率1.2〜3.0の高分子材料で構成される絶縁層と、当該絶縁層を取り囲み、2本以上の第2極細金属線が横巻きピッチ2.0〜10.0mmで当該絶縁層を横巻きしてなる金属シールド層と、当該金属シールド層を取り囲んで形成された保護被覆層とを備えるものであり、優れたインピーダンス特性を有し、高周波伝送の際にも反射損失なく安定的な信号伝送が可能であり、高周波伝送の際に信号の外部干渉を著しく抑制して高画質の伝送が可能であり、反復的な曲げにも安定した機械的特性が確保できる。   The micro coaxial cable according to the present invention includes an inner conductor in which two or more first extra fine metal wires are twisted at a pitch of 0.5 to 3 mm and a high dielectric constant of 1.2 to 3.0. An insulating layer made of a molecular material, a metal shield layer surrounding the insulating layer, and two or more second fine metal wires horizontally winding the insulating layer at a horizontal winding pitch of 2.0 to 10.0 mm And a protective coating layer that surrounds the metal shield layer, has excellent impedance characteristics, enables stable signal transmission without reflection loss even during high-frequency transmission, and high-frequency transmission In this case, the external interference of the signal is remarkably suppressed and high-quality image transmission is possible, and stable mechanical characteristics can be ensured even during repetitive bending.

以下、本件発明の好ましい実施形態を詳しく説明する。しかし、本件発明に係る明細書及び請求範囲に用いられている用語や単語は、通常の意味や辞書に記載の意味に限定して解釈されるものではなく、発明者は自分の発明を最善の方法で説明するために用語の概念を適切に定義することができるという原則に則り、本件発明の技術的思想に符合する意味と概念とに解釈すべきものである。従って、本明細書に記載された実施形態は、本件発明の最も好ましい一実施形態に過ぎず、本件発明の技術的思想の全てを代弁するものではないため、本出願時点においてこれらに代替できる多様な均等物と変形例があり得ることを断っておく。   Hereinafter, preferred embodiments of the present invention will be described in detail. However, the terms and words used in the specification and claims of the present invention are not construed as being limited to ordinary meanings or meanings described in a dictionary, and the inventor is the best in his invention. In accordance with the principle that the concept of a term can be appropriately defined for explaining in a method, it should be interpreted as a meaning and a concept consistent with the technical idea of the present invention. Therefore, the embodiment described in the present specification is only the most preferable embodiment of the present invention, and does not represent all of the technical idea of the present invention. It should be noted that there can be equivalents and variations.

本件発明に係る極細同軸ケーブルは、内部導体、当該内部導体を取り囲んで形成された絶縁層、当該絶縁層を取り囲んで形成された金属シールド層及び当該金属シールド層を取り囲んで形成された保護被覆層を備えるものであって、内部導体、絶縁層及び金属シールド層の構成が最適化され、優れたインピーダンス特性を有するので、高周波伝送の際にも反射損失なく安定的な信号伝送が可能であり、また、高周波伝送の際に信号の外部干渉を著しく抑制するので、高画質の伝送が可能である。   The micro coaxial cable according to the present invention includes an inner conductor, an insulating layer formed surrounding the inner conductor, a metal shield layer formed surrounding the insulating layer, and a protective coating layer formed surrounding the metal shield layer. Since the configuration of the inner conductor, insulating layer and metal shield layer is optimized and has excellent impedance characteristics, stable signal transmission without reflection loss is possible even during high-frequency transmission, Further, since external interference of signals is remarkably suppressed during high-frequency transmission, high-quality transmission is possible.

図1は、本件発明の一実施形態における極細同軸ケーブルの斜視図である。図1に示すように、本件発明の1つの実施形態におけるる極細同軸ケーブルは、内部導体11と、当該内部導体に面しながら当該内部導体を取り囲んで形成された絶縁層13、当該絶縁層に面しながら当該絶縁層を取り囲むように形成された金属シールド層17及び当該金属シールド層に面しながら当該金属シールド層を取り囲むように形成された保護被覆層19とを備えている。   FIG. 1 is a perspective view of a micro coaxial cable according to an embodiment of the present invention. As shown in FIG. 1, the micro coaxial cable according to one embodiment of the present invention includes an inner conductor 11, an insulating layer 13 formed so as to surround the inner conductor while facing the inner conductor, and the insulating layer. A metal shield layer 17 is formed so as to surround the insulating layer while facing it, and a protective coating layer 19 is formed so as to surround the metal shield layer while facing the metal shield layer.

前記内部導体11は、2本以上の第1極細金属線からなり、当該第1極細金属線は所定のピッチで捻れて内部導体11を形成する。当該ピッチは0.5mm〜3.0mmが好ましく、1.0mm〜1.4mmがさらに好ましい。当該ピッチが0.5mm未満の場合には、内部導体の外径が無駄に大きくなって屈曲特性が悪くなる。一方、当該ピッチが3.0mmを超えると、第1極細金属線で構成される内部導体が稠密に連結されず隙間が生じてしまいコネクターを連結する際に接点不良を誘発することがある。前記第1極細金属線の直径は、周波数特性(RF:Radio Frequency)を考慮すると、0.01mm〜0.04mmであることが好ましい。また、前記第1極細金属線は、電気伝導性及び経済性などを考慮すると、銅合金で構成されることが好ましい。このような構成を有する内部導体11自体の直径は、第1極細金属線の前記ピッチ条件と、第1極細金属線の直径及び同軸ケーブルのインピーダンス特性を考慮すると、0.07mm〜0.10mmとすることが好ましい。   The inner conductor 11 is composed of two or more first fine metal wires, and the first fine metal wires are twisted at a predetermined pitch to form the inner conductor 11. The pitch is preferably 0.5 mm to 3.0 mm, and more preferably 1.0 mm to 1.4 mm. When the pitch is less than 0.5 mm, the outer diameter of the inner conductor becomes unnecessarily large and the bending characteristics are deteriorated. On the other hand, if the pitch exceeds 3.0 mm, the internal conductor composed of the first ultrafine metal wire is not densely connected and a gap is formed, which may cause a contact failure when connecting the connectors. The diameter of the first ultrafine metal wire is preferably 0.01 mm to 0.04 mm in consideration of frequency characteristics (RF: Radio Frequency). In addition, the first fine metal wire is preferably made of a copper alloy in consideration of electrical conductivity and economy. In consideration of the pitch condition of the first fine metal wire, the diameter of the first fine metal wire, and the impedance characteristics of the coaxial cable, the diameter of the inner conductor 11 itself having such a configuration is 0.07 mm to 0.10 mm. It is preferable to do.

前記内部導体の外周面には、高分子樹脂で構成される絶縁層13が、押出機を用いて被覆される。前記高分子樹脂の誘電率(ε)は、1.2〜3.0であることが好ましく、1.5〜2.5であることがより好ましい。1.2未満の誘電率は、高分子材料を発泡させても実現が難しく、誘電率が3.0を超過すれば信号の高速伝送が困難になる。前記高分子樹脂の種類は特に限定されないが、溶融粘度が低くて加工が容易なフッ素系樹脂が好ましく、その中でもPFA樹脂が最も好ましく用いられる。絶縁層13では、誘電率をさらに低くするために、高分子を発泡させて、絶縁層内に発泡セルを形成させることもできる。絶縁層形成の際に、押出機のノズルは、発泡した絶縁層が内部導体の外周面をすぐ覆うように共押出(Co‐extrusion)し、発泡した絶縁体が押し出されながら被覆することが好ましい。   The outer peripheral surface of the inner conductor is covered with an insulating layer 13 made of a polymer resin using an extruder. The dielectric constant (ε) of the polymer resin is preferably 1.2 to 3.0, and more preferably 1.5 to 2.5. A dielectric constant of less than 1.2 is difficult to realize even if the polymer material is foamed, and if the dielectric constant exceeds 3.0, high-speed signal transmission becomes difficult. The type of the polymer resin is not particularly limited, but a fluorine resin having a low melt viscosity and easy processing is preferable, and among them, a PFA resin is most preferably used. In the insulating layer 13, in order to further lower the dielectric constant, a polymer can be foamed to form a foam cell in the insulating layer. When forming the insulating layer, it is preferable that the nozzle of the extruder is co-extruded (co-extrusion) so that the foamed insulating layer immediately covers the outer peripheral surface of the inner conductor, and the foamed insulator is covered while being extruded. .

絶縁層の外周部には、電磁波信号(Electromagnetic Signal)の損失を抑制するために、2本以上の第2極細金属線を横巻きして、誘電体が完全に取り囲まれるように金属シールド層17を形成する。前記第2極細金属線の横巻きピッチは、2.0mm〜10.0mm(角度としては20〜4度)であることが好ましく、3.5mm〜4.5mmであることがより好ましい。ピッチが2.0mm未満では、無駄に稠密なピッチにより金属シールド層が厚くなりすぎ、金属線の使用量が過剰で、横巻き体(第2極細金属線)が他の横巻き体上に乗り上げたりするため、曲げ特性が悪くなる。一方、10.0mmを超えると、横巻き体が形状を維持できずに乱れるか、横巻き体間の間隔が空いてTEM(Transverse Electro Magnetic)波が有効に伝送できないか、又は特性インピーダンスの不均一を引き起こすことになる。横巻きピッチ、絶縁層の厚さ、特性インピーダンスなどを考慮すると、前記第2極細金属線の直径は、0.02mm〜0.04mmであることが好ましく、第2極細金属線の本数は15〜35本であることが好ましい。また、第2極細金属線は電気伝導性及び経済性を考慮すると、銅合金で構成されることが好ましい。   In order to suppress the loss of the electromagnetic signal (Electromagnetic Signal), the metal shield layer 17 is wound around the outer peripheral portion of the insulating layer so that the dielectric is completely surrounded by horizontally winding two or more second fine metal wires. Form. The horizontal winding pitch of the second ultrafine metal wire is preferably 2.0 mm to 10.0 mm (20 to 4 degrees as an angle), and more preferably 3.5 mm to 4.5 mm. If the pitch is less than 2.0 mm, the metal shield layer becomes too thick due to a useless dense pitch, the amount of metal wire used is excessive, and the horizontal winding (second extra fine metal wire) rides on the other horizontal winding. The bending characteristics deteriorate. On the other hand, if it exceeds 10.0 mm, the horizontal windings may be disturbed without maintaining their shape, or the space between the horizontal windings will be widened, and TEM (Transverse Electro Magnetic) waves cannot be transmitted effectively, or the characteristic impedance will be poor. It will cause uniformity. Considering the horizontal winding pitch, the thickness of the insulating layer, the characteristic impedance, etc., the diameter of the second ultrafine metal wire is preferably 0.02 mm to 0.04 mm, and the number of the second ultrafine metal wires is 15 to The number is preferably 35. The second ultrafine metal wire is preferably made of a copper alloy in consideration of electrical conductivity and economy.

金属シールド層を構成する第2極細金属線の横巻き方向は、内部導体を構成する第2極細金属線の捻じり方向と反対方向であることが好ましい。横巻き方向この様にすれば、インピーダンス特性に優れるのみならず、反復的な曲げによる機械的特性も良好であり、一方向に反る現象の発生も抑制できる。   It is preferable that the horizontal winding direction of the second ultrafine metal wire constituting the metal shield layer is opposite to the twisting direction of the second ultrafine metal wire constituting the internal conductor. Horizontal winding direction In this way, not only is the impedance characteristic excellent, but the mechanical characteristics due to repetitive bending are also good, and the occurrence of a phenomenon that warps in one direction can be suppressed.

図2は、横巻き体が横巻きされる過程を模式的に示している。内部導体及びその外周部に絶縁層が形成されている線材21は、A方向に回転しながらB方向に進む。すると、第2極細金属線27が巻き取りされたミニボビン(Bobbin)25から出た第2極細金属線27が、所定ピッチで線材に横巻きされて、金属シールド層が形成されたケーブル23が製造される。   FIG. 2 schematically shows a process in which the horizontally wound body is horizontally wound. The wire 21 having an inner conductor and an insulating layer formed on the outer periphery thereof proceeds in the B direction while rotating in the A direction. Then, the second ultrafine metal wire 27 coming out of the mini bobbin 25 around which the second ultrafine metal wire 27 is wound is horizontally wound around the wire at a predetermined pitch, and the cable 23 in which the metal shield layer is formed is manufactured. Is done.

図3及び図4は、本件発明に係る構成を有する金属シールド層の表面写真である。また、図6及び図7は、従来の技術による金属シールド層の表面写真である。従来の技術によれば、金属シールド層に、図6に示したような横巻き体の空き、又は図7に示したような横巻き体の乗り上げのような問題があった。しかし、本件発明に係る構成を備える金属シールド層は、図3及び図4に示すように、このような問題が全くないことが分かる。   3 and 4 are photographs of the surface of the metal shield layer having the configuration according to the present invention. 6 and 7 are photographs of the surface of the metal shield layer according to the conventional technique. According to the prior art, there has been a problem in the metal shield layer such as the empty space of the horizontally wound body as shown in FIG. 6 or the running of the horizontally wound body as shown in FIG. However, it can be seen that the metal shield layer having the configuration according to the present invention does not have such a problem as shown in FIGS.

前記金属シールド層の外周部には、同軸ケーブルの保護のための保護被覆層19が形成される。前記保護被覆層19は、従来の同軸ケーブルの保護被覆層の形成のために用いうる材料から選択して用いることができる。   A protective coating layer 19 for protecting the coaxial cable is formed on the outer periphery of the metal shield layer. The protective coating layer 19 can be selected from materials that can be used for forming a protective coating layer of a conventional coaxial cable.

図5は、本件発明に係る極細同軸ケーブルの特性インピーダンス(Z:Characteristic Impedance)を、インピーダンス分析機(Impedance Analyzer)で測定した結果を模式的に示している。図5から、特性インピーダンスは上下限値内でほぼ均一に維持されている。   FIG. 5 schematically shows the result of measuring the characteristic impedance (Z: Characteristic Impedance) of the micro coaxial cable according to the present invention by using an impedance analyzer (Impedance Analyzer). From FIG. 5, the characteristic impedance is maintained substantially uniform within the upper and lower limit values.

図8は、従来の同軸ケーブルの特性インピーダンスを、インピーダンス分析機で測定した結果を模式的に示している。図6から、特性インピーダンスが時間軸方向で変動していることが分かり、特に変動が大きな部分においては、規格の上限と下限に近接しており、特性が安定していない。   FIG. 8 schematically shows the result of measuring the characteristic impedance of a conventional coaxial cable with an impedance analyzer. From FIG. 6, it can be seen that the characteristic impedance fluctuates in the time axis direction. In particular, in a portion where the fluctuation is large, the characteristic is not stable because it is close to the upper and lower limits of the standard.

以上のように、本件発明を限定された実施形態と図面とによって説明したが、本件発明はこれによって限定されるものではない。本件発明が属する技術分野において、通常の知識を有する者であれば、本件発明の技術思想と特許請求範囲の均等範囲内で多様な修正及び変形が可能なのは言うまでもない。   As described above, the present invention has been described with the limited embodiments and the drawings, but the present invention is not limited thereto. It goes without saying that a person having ordinary knowledge in the technical field to which the present invention belongs can make various modifications and variations within the technical scope of the present invention and the equivalent scope of the claims.

本件発明に係る極細同軸ケーブルは、優れたインピーダンス特性を有しており、高周波伝送の際にも反射損失なく安定的な信号伝送が可能である。また、高周波伝送の際に信号の外部干渉を有効に抑制しするので高画質の伝送が可能であり、反復的な曲げにも安定な機械的特性が確保できる。このような高性能の極細同軸ケーブルを用いれば、内視鏡及びポータブルマルチメディア機器などの小型化を実現できる。   The micro coaxial cable according to the present invention has excellent impedance characteristics, and can perform stable signal transmission without reflection loss even during high-frequency transmission. Further, since external interference of signals is effectively suppressed during high-frequency transmission, high-quality transmission is possible, and stable mechanical characteristics can be ensured even with repeated bending. By using such a high-performance micro coaxial cable, it is possible to reduce the size of endoscopes and portable multimedia devices.

本明細書に添付される下記の図面は本件発明の好ましい実施形態を例示するものであって、発明の詳細な説明とともに本件発明の技術思想をさらに理解させる役割を果たすものであるため、本件発明はそのような図面に記載された事項にのみ限定されて解釈されてはいけない。
本件発明の一実施形態にる極細同軸ケーブルの構造を概略的に示した斜視図である。 横巻き体が横巻きされる過程を図式的に示した図である。 本件発明に係る構成を有する金属シールド層の表面写真である。 本件発明に係る構成を有する金属シールド層の表面写真である。 本件発明に係る極細同軸ケーブルの特性インピーダンス(Z:Characteristic Impedance)をインピーダンス分析機(Impedance Analyzer)で測定した結果を模式的に示した図である。 従来の技術における金属シールド層の表面写真である。 従来の技術における金属シールド層の表面写真である。 従来の極細同軸ケーブルの特性インピーダンスをインピーダンス分析機で測定した結果を模式的に示した図である。
The following drawings attached to the present specification illustrate preferred embodiments of the present invention, and serve to further understand the technical idea of the present invention together with the detailed description of the invention. Should not be construed as being limited to the matter described in such drawings.
It is the perspective view which showed roughly the structure of the micro coaxial cable which concerns on one Embodiment of this invention. It is the figure which showed typically the process in which a horizontal winding body is laterally wound. It is a surface photograph of the metal shield layer which has the composition concerning the present invention. It is a surface photograph of the metal shield layer which has the composition concerning the present invention. It is the figure which showed typically the result of having measured the characteristic impedance (Z: CharacteristicImpedance) of the micro coaxial cable which concerns on this invention with the impedance analyzer (Impedance Analyzer). It is the surface photograph of the metal shield layer in a prior art. It is the surface photograph of the metal shield layer in a prior art. It is the figure which showed typically the result of having measured the characteristic impedance of the conventional micro coaxial cable with the impedance analyzer.

符号の説明Explanation of symbols

11 内部導体
13 絶縁層
17 金属シールド層
19 保護被覆層
21 内部導体の外周部に絶縁層が形成された線材
23 ケーブル
25 ミニボビン
27 第2極細金属線
A 線材の回転方向
B 線材の進行方向
DESCRIPTION OF SYMBOLS 11 Inner conductor 13 Insulating layer 17 Metal shield layer 19 Protective coating layer 21 Wire rod in which an insulating layer is formed on the outer peripheral portion of the inner conductor 23 Cable 25 Mini bobbin 27 Second ultrafine metal wire A Wire rotation direction B Wire rod traveling direction

Claims (10)

同軸ケーブルにおいて、
2本以上の第1極細金属線が0.5mm〜3.0mmのピッチで捻れた内部導体と、当該内部導体を取り囲む、誘電率1.2〜3.0の高分子材料で構成される絶縁層と、当該絶縁層を取り囲み、2本以上の第2極細金属線が横巻きピッチ2.0mm〜10.0mmで当該絶縁層を横巻きした金属シールド層と当該金属シールド層を取り囲んで形成された保護被覆層とを備えることを特徴とする極細同軸ケーブル。
For coaxial cable,
An insulation composed of an inner conductor in which two or more first fine metal wires are twisted at a pitch of 0.5 mm to 3.0 mm and a polymer material having a dielectric constant of 1.2 to 3.0 surrounding the inner conductor. A metal shield layer that surrounds the insulating layer and two or more second ultrafine metal wires are wound around the insulating layer at a transverse winding pitch of 2.0 mm to 10.0 mm and the metal shield layer. An extra fine coaxial cable comprising a protective coating layer.
前記内部導体の直径は、0.07mm〜0.10mmである請求項1に記載の極細同軸ケーブル。 The micro coaxial cable according to claim 1, wherein the inner conductor has a diameter of 0.07 mm to 0.10 mm. 前記内部導体を構成する第1極細金属線は、銅合金を用いたものである請求項1又は請求項2に記載の極細同軸ケーブル。 3. The micro coaxial cable according to claim 1, wherein the first ultra fine metal wire constituting the inner conductor uses a copper alloy. 前記内部導体を構成する第1極細金属線の直径は、0.01mm〜0.04mmである請求項1〜請求項3のいずれかに記載の極細同軸ケーブル。 The diameter of the 1st ultrafine metal wire which comprises the said internal conductor is 0.01 mm-0.04 mm, The ultrafine coaxial cable in any one of Claims 1-3. 前記絶縁層は、フッ素系樹脂を用いたものである請求項1〜請求項4のいずれかに記載の極細同軸ケーブル。 The micro coaxial cable according to any one of claims 1 to 4, wherein the insulating layer uses a fluorine-based resin. 前記フッ素系樹脂は、四フッ化エチレン・パーフルオロアルキルビニルエーテル共重合樹脂である請求項5に記載の極細同軸ケーブル。 The micro coaxial cable according to claim 5, wherein the fluororesin is a tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer resin. 前記金属シールド層を構成する第2極細金属線は、銅合金を用いたものである請求項1〜請求項6のいずれかに記載の極細同軸ケーブル。 The ultrafine coaxial cable according to any one of claims 1 to 6, wherein the second ultrafine metal wire constituting the metal shield layer uses a copper alloy. 前記金属シールド層を構成する第2極細金属線の直径は、0.02mm〜0.04mmである請求項1〜請求項7のいずれかに記載の極細同軸ケーブル。 The diameter of the 2nd extra fine metal wire which comprises the said metal shield layer is 0.02 mm-0.04 mm, The micro coaxial cable in any one of Claims 1-7. 前記金属シールド層を構成する第2極細金属線の本数は、15本〜35本である請求項1〜請求項8のいずれかに記載の極細同軸ケーブル。 The number of the 2nd extra fine metal wires which comprise the said metal shield layer is 15-35, The micro coaxial cable in any one of Claims 1-8. 同軸ケーブルであって、
2本以上の第1極細金属線が所定のピッチで捻れた内部導体と、当該内部導体を取り囲み、高分子材料で構成される絶縁層と、所定のピッチで当該内部導体を構成する第1極細金属線の捻じり方向と反対方向に横巻きされた2本以上の第2極細金属線を用いて当該絶縁層を取り囲んで形成された金属シールド層と当該金属シールド層を取り囲んで形成された保護被覆層とを備えることを特徴とする極細同軸ケーブル。
A coaxial cable,
An inner conductor in which two or more first ultrafine metal wires are twisted at a predetermined pitch, an insulating layer that surrounds the inner conductor and is made of a polymer material, and a first ultrafine that constitutes the inner conductor at a predetermined pitch A metal shield layer formed by surrounding two or more second fine metal wires wound in a direction opposite to the twisting direction of the metal wire and surrounding the insulating layer, and a protection formed by surrounding the metal shield layer An extra fine coaxial cable comprising a coating layer.
JP2007188675A 2006-07-21 2007-07-19 Superfine coaxial cable Pending JP2008027914A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020060068632A KR100842986B1 (en) 2006-07-21 2006-07-21 Micro coaxial cable

Publications (1)

Publication Number Publication Date
JP2008027914A true JP2008027914A (en) 2008-02-07

Family

ID=39042294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007188675A Pending JP2008027914A (en) 2006-07-21 2007-07-19 Superfine coaxial cable

Country Status (3)

Country Link
JP (1) JP2008027914A (en)
KR (1) KR100842986B1 (en)
CN (1) CN101110284A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211855A (en) * 2008-03-03 2009-09-17 Sumitomo Electric Ind Ltd Coaxial flat cable
JP2010015762A (en) * 2008-07-02 2010-01-21 Autonetworks Technologies Ltd Coaxial cable
JP2010198973A (en) * 2009-02-26 2010-09-09 Sumitomo Electric Ind Ltd Coaxial cable and method of manufacturing the same
WO2013125679A1 (en) * 2012-02-24 2013-08-29 矢崎総業株式会社 Electrical wire routing structure, and electrical wire with external cladding member
US20150008011A1 (en) * 2012-03-21 2015-01-08 Leoni Kabel Holding Gmbh Signal cable for high frequency signal transmission and method of transmission

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101120365B1 (en) * 2010-02-02 2012-02-24 성균관대학교산학협력단 Micro coaxial cable comprising coated metallic shield and method for manufacturing the same
JP2012079563A (en) * 2010-10-01 2012-04-19 Yazaki Corp Electric wire
CN103345976B (en) * 2013-07-12 2015-10-28 苏州科茂电子材料科技有限公司 The coaxial cable that a kind of against natural is curling and processing method thereof
US9330815B2 (en) * 2013-08-14 2016-05-03 Apple Inc. Cable structures with insulating tape and systems and methods for making the same
JP6645350B2 (en) * 2016-05-12 2020-02-14 住友電気工業株式会社 Low air leak electric wire

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262591A (en) 1991-08-21 1993-11-16 Champlain Cable Corporation Inherently-shielded cable construction with a braided reinforcing and grounding layer
JP3042164B2 (en) * 1992-04-27 2000-05-15 日立電線株式会社 Heat resistant thin coaxial cable
JP4409202B2 (en) * 2003-04-25 2010-02-03 株式会社潤工社 coaxial cable

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009211855A (en) * 2008-03-03 2009-09-17 Sumitomo Electric Ind Ltd Coaxial flat cable
JP2010015762A (en) * 2008-07-02 2010-01-21 Autonetworks Technologies Ltd Coaxial cable
JP2010198973A (en) * 2009-02-26 2010-09-09 Sumitomo Electric Ind Ltd Coaxial cable and method of manufacturing the same
US8933330B2 (en) 2009-02-26 2015-01-13 Sumitomo Electric Industries, Ltd. Coaxial cable and method of making the same
US9230716B2 (en) 2009-02-26 2016-01-05 Sumitomo Electric Industries, Ltd. Coaxial cable
WO2013125679A1 (en) * 2012-02-24 2013-08-29 矢崎総業株式会社 Electrical wire routing structure, and electrical wire with external cladding member
US20140345904A1 (en) * 2012-02-24 2014-11-27 Yazaki Corporation Wiring structure of electric wire and electric wire with exterior member
US20150008011A1 (en) * 2012-03-21 2015-01-08 Leoni Kabel Holding Gmbh Signal cable for high frequency signal transmission and method of transmission

Also Published As

Publication number Publication date
KR100842986B1 (en) 2008-07-01
CN101110284A (en) 2008-01-23
KR20080008845A (en) 2008-01-24

Similar Documents

Publication Publication Date Title
JP2008027914A (en) Superfine coaxial cable
CN100375204C (en) Differential signal transmission cable
US20100258333A1 (en) High speed data cable with shield connection
US10991485B2 (en) Coaxial cable
JP2010218741A (en) High-speed differential cable
JP4229124B2 (en) coaxial cable
JP2006286480A (en) Transmission cable for differential signal
US20180268965A1 (en) Data cable for high speed data transmissions and method of manufacturing the data cable
WO2015145537A1 (en) Transmission line
CN202771829U (en) A cable used for differential signal transmission and wire beam utilizing the cable
JP2008171690A (en) Coaxial cable, and multi-core cable
JP4591094B2 (en) Coaxial cable and multi-core coaxial cable
JP2007280762A (en) Non-halogen coaxial cable, and multicore cable using it
JP2006351414A (en) Coaxial cable
JP6924037B2 (en) coaxial cable
JP2005158415A (en) Coaxial cable
JP2003187649A (en) Semi-flexible coaxial cable
KR100751664B1 (en) Differential Signal Transmission Cable
JP5315815B2 (en) Thin coaxial cable
JP2004087189A (en) Transmission cable and manufacturing method of the same
KR100910431B1 (en) Micro coaxial cable
JP2000057863A (en) Coaxial cable
JP2010073463A (en) High-speed differential cable
JP6261229B2 (en) coaxial cable
WO2013099783A1 (en) Cable

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090907