JP2008025877A - Exhaust heat recovery unit - Google Patents

Exhaust heat recovery unit Download PDF

Info

Publication number
JP2008025877A
JP2008025877A JP2006196608A JP2006196608A JP2008025877A JP 2008025877 A JP2008025877 A JP 2008025877A JP 2006196608 A JP2006196608 A JP 2006196608A JP 2006196608 A JP2006196608 A JP 2006196608A JP 2008025877 A JP2008025877 A JP 2008025877A
Authority
JP
Japan
Prior art keywords
working fluid
condensing
evaporation
unit
heat recovery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006196608A
Other languages
Japanese (ja)
Inventor
Masashi Miyagawa
雅志 宮川
Kimikazu Obara
公和 小原
Satoru Inoue
哲 井上
Seiji Inoue
誠司 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006196608A priority Critical patent/JP2008025877A/en
Publication of JP2008025877A publication Critical patent/JP2008025877A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0266Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with separate evaporating and condensing chambers connected by at least one conduit; Loop-type heat pipes; with multiple or common evaporating or condensing chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/06Control arrangements therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D21/0001Recuperative heat exchangers
    • F28D21/0003Recuperative heat exchangers the heat being recuperated from exhaust gases

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust heat recovery unit capable of adjusting a heat recovering quantity by a simple constitution. <P>SOLUTION: This exhaust heat recovery unit comprises an evaporation-side connecting portion 61 through which a working fluid flowing from an evaporating portion 1 to a condensing portion 2 passes, a condensation-side connecting portion 62 through which the working fluid flowing from the condensing portion 2 to the evaporating portion 1 passes, a storing portion 7 for storing the working fluid condensed in the condensing portion 2, a first flow channel 81 connecting the condensing portion 2 and the storing portion 7, a second flow channel 82 connecting the lower end of the storing portion 7 and the condensation-side connecting portion 62, and a switching valve 9 disposed in the first flow channel 81 for controlling the inflow of the working fluid from the condensing portion 2 to the storing portion 7. The lower end of the storing portion 7 is positioned at an upper side with respect to the lower end of the evaporating portion 1, and the switching valve 9 is constituted to control the working fluid to flow from the condensing portion 2 to the storing portion 7 when a temperature of the working fluid at the condensing portion 2 is higher than a prescribed temperature, and to control the working fluid to flow from the condensing portion 2 to the storing portion 7 when the temperature of the working fluid at the condensing portion 2 is lower than the prescribed temperature. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、自動車等の車両に用いられる排気熱回収器に関する。   The present invention relates to an exhaust heat recovery device used for a vehicle such as an automobile.

近年、ヒートパイプの原理を利用して車両のエンジンの排気系から排気ガスの排気熱を回収して、この排気熱を暖機促進等に利用する技術が知られている。   2. Description of the Related Art In recent years, a technology is known in which exhaust heat of exhaust gas is recovered from an exhaust system of a vehicle engine using the principle of a heat pipe, and this exhaust heat is used for promoting warm-up.

このような排気熱回収器は、エンジンの排気管内にヒートパイプの蒸発部を配設するとともに、エンジンの冷却水経路内にヒートパイプの凝縮部を配設し、排気ガスの排気熱によって冷却水を加熱している(例えば、特許文献1参照)。   In such an exhaust heat recovery device, a heat pipe evaporating part is arranged in the exhaust pipe of the engine, and a heat pipe condensing part is arranged in the engine cooling water path so that the cooling water is cooled by the exhaust heat of the exhaust gas. Is heated (see, for example, Patent Document 1).

ところで、排気熱回収器は、例えば冬季の始動時等には、排気熱を回収することで早期に冷却水温度を上昇させることができるため、燃費や暖房性能を向上させることができる。一方、夏季のエンジン高負荷時等には、オーバーヒートを回避するために排気熱の回収を停止する必要がある。そこで、排気熱回収器の系外に貯留槽を設け、この貯留槽に作動流体を逃出させることで作動流体の循環を停止させ、これにより熱回収を停止させる方法が提案されている(例えば、特許文献2参照)。
特開昭62−268722号公報 特開平3−36495号公報
By the way, the exhaust heat recovery device can raise the cooling water temperature at an early stage by recovering the exhaust heat at the start of winter, for example, so that the fuel consumption and the heating performance can be improved. On the other hand, when the engine is heavily loaded in summer, it is necessary to stop the recovery of exhaust heat in order to avoid overheating. Therefore, a method has been proposed in which a storage tank is provided outside the exhaust heat recovery system, and the working fluid is caused to escape into the storage tank to stop the circulation of the working fluid, thereby stopping the heat recovery (for example, , See Patent Document 2).
Japanese Patent Laid-Open No. 62-268722 JP-A-3-36495

しかしながら、上記特許文献1に記載の方法では、熱回収を再開させる、すなわち作動流体を再び循環させる場合に、貯留槽に貯留された作動流体を排気熱回収器の系内に戻すための戻帰手段(ピストン等)が必要となるため、構成が複雑になるという問題がある。   However, in the method described in Patent Document 1, when the heat recovery is restarted, that is, when the working fluid is circulated again, the return for returning the working fluid stored in the storage tank into the exhaust heat recovery system. Since means (piston etc.) are needed, there exists a problem that a structure becomes complicated.

本発明は、上記点に鑑み、簡易な構成で熱回収量を調整することができる排気熱回収器を提供することを目的とする。   In view of the above points, an object of the present invention is to provide an exhaust heat recovery device capable of adjusting a heat recovery amount with a simple configuration.

上記目的を達成するため、本発明では、内燃機関から排出された排気ガスが流通する排気ガス経路内に配置され、排気ガスと内部に封入された蒸発および凝縮可能な作動流体との間で熱交換を行い、作動流体を蒸発させる蒸発部(1)と、内燃機関の冷却水が流通する冷却水経路内に配置され、蒸発部(1)で蒸発した作動流体と冷却水との間で熱交換を行い、作動流体を凝縮させる凝縮部(2)とを備え、蒸発部(1)および凝縮部(2)が、作動流体が循環する閉ループ状流路内に配置される排気熱回収器であって、蒸発部(1)から凝縮部(2)に流れる蒸発した作動流体が通過する蒸発側連結部(61)と、凝縮部(2)から蒸発部(1)に流れる凝縮した作動流体が通過する凝縮側連結部(62)と、閉ループ状流路外に設けられ、凝縮部(2)で凝縮した作動流体を貯留する貯留部(7)と、凝縮部(2)と貯留部(7)とを接続する第1の流路(81)と、貯留部(7)の下端部と凝縮側連結部(62)とを接続する第2の流路(82)と、第1の流路(81)に設けられ、凝縮部(2)から貯留部(7)への作動流体の流入を制御する流入制御手段(9、10)とを備え、貯留部(7)の下端部は、蒸発部(1)の下端部より上側に位置しており、流入制御手段(9、10)は、凝縮部(2)における作動流体の温度が所定温度以上のときには、作動流体が第1の流路(81)を介して凝縮部(2)から貯留部(7)へ流入可能にし、凝縮部(2)における作動流体の温度が所定温度を下回るときには、作動流体が第1の流路(81)を介して凝縮部(2)から貯留部(7)への流入を制御するように構成されていることを特徴としている。   In order to achieve the above object, according to the present invention, heat is generated between the exhaust gas and the working fluid that can be evaporated and condensed, which is disposed in the exhaust gas passage through which the exhaust gas discharged from the internal combustion engine flows. An evaporator (1) that exchanges and evaporates the working fluid and a cooling water path that is disposed in the cooling water passage through which the cooling water of the internal combustion engine flows and heats between the working fluid evaporated in the evaporating unit (1) and the cooling water. An exhaust heat recovery device including a condensing unit (2) for exchanging and condensing the working fluid, wherein the evaporating unit (1) and the condensing unit (2) are arranged in a closed loop flow path through which the working fluid circulates. The evaporation side connecting part (61) through which the evaporated working fluid flowing from the evaporation part (1) to the condensing part (2) passes, and the condensed working fluid flowing from the condensing part (2) to the evaporation part (1) A condensing side connecting portion (62) that passes therethrough and is provided outside the closed loop flow path. A reservoir (7) that stores the working fluid condensed in the condenser (2), a first channel (81) that connects the condenser (2) and the reservoir (7), and a reservoir (7). The second flow path (82) connecting the lower end portion of the liquid crystal and the condensing side connecting portion (62) and the first flow path (81), and from the condensing portion (2) to the storage portion (7) Inflow control means (9, 10) for controlling the inflow of the working fluid, and the lower end of the reservoir (7) is located above the lower end of the evaporation section (1), and the inflow control means (9 10), when the temperature of the working fluid in the condensing unit (2) is equal to or higher than a predetermined temperature, the working fluid can flow from the condensing unit (2) to the storing unit (7) via the first flow path (81). When the temperature of the working fluid in the condensing unit (2) falls below a predetermined temperature, the working fluid is stored from the condensing unit (2) through the first flow path (81). It is characterized by being configured to control the inflow into parts (7).

これにより、作動流体の温度が所定温度以上になった場合には、凝縮部(2)で凝縮した作動流体が貯留部(7)にも流入することができるようになるので、凝縮部(2)で凝縮した作動流体が移動できる容積が通常の熱回収時(凝縮部(2)における作動流体の温度が所定温度を下回っている場合)より増加する。このため、凝縮部(2)側の作動流体の水位が低下し、蒸発部(1)および凝縮部(2)間の水頭差が小さくなる。これにより、凝縮部(2)から蒸発部(1)に流入する作動流体の流量が低下し、作動流体の循環量が低下するため、熱回収性能が低下する。   Thereby, when the temperature of the working fluid becomes equal to or higher than a predetermined temperature, the working fluid condensed in the condensing unit (2) can also flow into the storage unit (7). The volume that the working fluid condensed in step) can move is larger than that during normal heat recovery (when the temperature of the working fluid in the condensing unit (2) is below a predetermined temperature). For this reason, the water level of the working fluid on the condensing part (2) side decreases, and the water head difference between the evaporation part (1) and the condensing part (2) becomes small. Thereby, since the flow volume of the working fluid which flows in into an evaporation part (1) from a condensation part (2) falls, and the circulation amount of a working fluid falls, heat recovery performance falls.

そして、内燃機関を停止させると、作動流体の温度が所定温度を下回り、作動流体が凝縮部(2)から貯留部(7)へ流入しないようになる。貯留部(7)の下端部は蒸発部(1)の下端部より上側にあるため、貯留部(7)内の作動流体はその位置エネルギーにより蒸発部(1)に流入する。これにより、蒸発部(1)および凝縮部(2)間の水頭差がなくなり、作動流体の循環が行われないため、熱回収が停止される。また、この状態で再び内燃機関を始動させると、熱回収が再開される。   When the internal combustion engine is stopped, the temperature of the working fluid falls below a predetermined temperature, and the working fluid does not flow from the condensing unit (2) into the storage unit (7). Since the lower end part of the storage part (7) is above the lower end part of the evaporation part (1), the working fluid in the storage part (7) flows into the evaporation part (1) by its potential energy. As a result, there is no water head difference between the evaporation section (1) and the condensation section (2), and the working fluid is not circulated, so that heat recovery is stopped. Further, when the internal combustion engine is started again in this state, heat recovery is resumed.

以上のように、作動流体が高温になる夏季のエンジン高負荷時等に熱回収性能を大幅に低下させることができるため、オーバーヒートを回避することができる。また、熱回収を再開させる際にピストン等の戻帰装置を必要としないため、簡易な構成で熱回収量を調整することが可能となる。   As described above, since the heat recovery performance can be significantly reduced at the time of high engine load in the summer when the working fluid is at a high temperature, overheating can be avoided. Further, since a return device such as a piston is not required when heat recovery is resumed, it is possible to adjust the amount of heat recovery with a simple configuration.

この場合、蒸発部(1)と凝縮部(2)を、略水平方向に隣接するように配置し、貯留部(7)を、蒸発部(1)と凝縮部(2)の間に配置することができる。   In this case, the evaporator (1) and the condenser (2) are arranged so as to be adjacent in the substantially horizontal direction, and the reservoir (7) is arranged between the evaporator (1) and the condenser (2). be able to.

これにより、蒸発部(1)および凝縮部(2)間に貯留部(7)を配置することができるため、排気熱回収器の体格を小さくすることが可能となる。   Thereby, since a storage part (7) can be arrange | positioned between an evaporation part (1) and a condensation part (2), it becomes possible to make the physique of an exhaust heat recovery device small.

なお、上記各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。   In addition, the code | symbol in the bracket | parenthesis of each said means shows the correspondence with the specific means as described in embodiment mentioned later.

(第1実施形態)
以下、本発明の第1実施形態について図1〜図3に基づいて説明する。本実施形態の排気熱回収器は、車両のエンジン(内燃機関)の排気系から排気ガスの排気熱を回収して、この排気熱を暖機促進等に利用するものである。本実施形態では、排気熱回収器を水平状態の車両に搭載した場合について説明する。
(First embodiment)
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. The exhaust heat recovery device of this embodiment recovers exhaust heat of exhaust gas from an exhaust system of a vehicle engine (internal combustion engine) and uses this exhaust heat for promoting warm-up. In the present embodiment, a case where the exhaust heat recovery device is mounted on a horizontal vehicle will be described.

図1は、本第1実施形態に係る排気熱回収器を示す断面図である。図1に示すように、本実施形態の排気熱回収器は、蒸発部1と凝縮部2とを備えている。   FIG. 1 is a cross-sectional view showing an exhaust heat recovery device according to the first embodiment. As shown in FIG. 1, the exhaust heat recovery device of the present embodiment includes an evaporation unit 1 and a condensing unit 2.

蒸発部1は、図示しないエンジンの排気筒内に配置される第1の筐体100内に設けられている。また、蒸発部1は、排気ガスと後述する作動流体との間で熱交換を行い、作動流体を蒸発させるようになっている。   The evaporation unit 1 is provided in a first housing 100 that is disposed in an exhaust pipe of an engine (not shown). Further, the evaporating unit 1 performs heat exchange between the exhaust gas and a working fluid described later to evaporate the working fluid.

凝縮部2は、排気筒の外部に設けられており、図示しないエンジンの冷却水経路内に配置される第2の筐体200内に設けられている。また、凝縮部2は、蒸発部1で蒸発した伝熱流体とエンジン冷却水との間で熱交換を行い、作動流体を凝縮させるようになっている。第2の筐体200には、エンジンの冷却水出口側に接続される冷却水流入口201と、エンジンの冷却水入口側に接続される冷却水流出口202とが設けられている。   The condensing unit 2 is provided outside the exhaust pipe, and is provided in a second casing 200 that is disposed in a cooling water path of an engine (not shown). Further, the condensing unit 2 performs heat exchange between the heat transfer fluid evaporated in the evaporating unit 1 and the engine coolant to condense the working fluid. The second casing 200 is provided with a cooling water inlet 201 connected to the cooling water outlet side of the engine and a cooling water outlet 202 connected to the cooling water inlet side of the engine.

第1の筐体100と第2の筐体200は、略水平方向に隣接するように配置されている。また、第1の筐体100と第2の筐体200の間には、クリアランス3が設けられている。   The first casing 100 and the second casing 200 are arranged so as to be adjacent in a substantially horizontal direction. A clearance 3 is provided between the first casing 100 and the second casing 200.

次に、蒸発部1の構成について説明する。   Next, the configuration of the evaporation unit 1 will be described.

蒸発部1は、複数本の蒸発側ヒートパイプ4aを有している。蒸発側ヒートパイプ4aは、排気ガスの流通方向(紙面垂直方向)が長径方向と一致するように扁平状に形成されているとともに、その長手方向が鉛直方向に一致するように複数本平行に配置されている。   The evaporation unit 1 has a plurality of evaporation side heat pipes 4a. The evaporation side heat pipes 4a are formed in a flat shape so that the flow direction of the exhaust gas (perpendicular to the paper surface) coincides with the major axis direction, and a plurality of the heat pipes 4a are arranged in parallel so that the longitudinal direction thereof coincides with the vertical direction. Has been.

蒸発部1において、蒸発側ヒートパイプ4a長手方向両端部には、蒸発側ヒートパイプ4a積層方向に延びて、全ての蒸発側ヒートパイプ4aと連通する蒸発側ヘッダ5aがそれぞれ設けられている。二つの蒸発側ヘッダ5aのうち、上方側に配置される蒸発側ヘッダ5aを第1の蒸発側ヘッダ51aといい、下方側に配置される蒸発側ヘッダ5aを第2の蒸発側ヘッダ52aという。   In the evaporating unit 1, evaporating side heat pipes 4a are provided with evaporating side headers 5a that extend in the evaporating side heat pipe 4a stacking direction and communicate with all the evaporating side heat pipes 4a at both ends of the evaporating side heat pipe 4a in the longitudinal direction. Of the two evaporation headers 5a, the evaporation header 5a disposed on the upper side is referred to as a first evaporation header 51a, and the evaporation header 5a disposed on the lower side is referred to as a second evaporation header 52a.

次に、凝縮部2の構成について説明する。   Next, the configuration of the condensing unit 2 will be described.

凝縮部2は、複数本の凝縮側ヒートパイプ4bを有している。凝縮側ヒートパイプ4bは、エンジン冷却水の流通方向(紙面垂直方向)が長径方向と一致するように扁平状に形成されているとともに、その長手方向が鉛直方向に一致するように複数本平行に配置されている。   The condensing part 2 has a plurality of condensing side heat pipes 4b. Condensation side heat pipes 4b are formed in a flat shape so that the flow direction (perpendicular to the paper surface) of the engine cooling water coincides with the major axis direction, and a plurality of the condensing side heat pipes 4b are arranged in parallel so that the longitudinal direction thereof coincides with the vertical direction. Has been placed.

凝縮部2において、凝縮側ヒートパイプ4b長手方向両端部には、凝縮側ヒートパイプ4b積層方向に延びて、全ての凝縮側ヒートパイプ4bと連通する凝縮側ヘッダ5bがそれぞれ設けられている。二つの凝縮側ヘッダ5bのうち、上方側に配置される凝縮側ヘッダ5bを第1の凝縮側ヘッダ51bといい、下方側に配置される凝縮側ヘッダ5bを第2の凝縮側ヘッダ52bという。   In the condensing unit 2, condensing side heat pipes 4b are provided with condensing side headers 5b that extend in the stacking direction of the condensing side heat pipes 4b and communicate with all the condensing side heat pipes 4b at both ends in the longitudinal direction. Of the two condensing side headers 5b, the condensing side header 5b disposed on the upper side is referred to as a first condensing side header 51b, and the condensing side header 5b disposed on the lower side is referred to as a second condensing side header 52b.

蒸発側ヘッダ5aと凝縮側ヘッダ5bは、筒状の連結部6を介して連通状態に接続されている。そして、蒸発側、凝縮側ヒートパイプ4a、4b、蒸発側、凝縮側ヘッダ5a、5bおよび連結部6によって閉ループが形成されており、これらの内部に水やアルコール等の蒸発・凝縮可能な作動流体が封入されている。ここで、二つの連結部6のうち、上方側に配置され、第1の蒸発側ヘッダ51aと第1の凝縮側ヘッダ51bとを接続するものを蒸発側連結部61といい、下方側に配置され、第2の蒸発側ヘッダ52aと第2の凝縮側ヘッダ52bとを接続するものを凝縮側連結部62という。   The evaporating side header 5a and the condensing side header 5b are connected in a communicating state via a cylindrical connecting portion 6. A closed loop is formed by the evaporation side, the condensation side heat pipes 4a and 4b, the evaporation side, the condensation side headers 5a and 5b, and the connecting portion 6, and a working fluid capable of evaporating and condensing water, alcohol, etc. Is enclosed. Here, of the two connecting portions 6, the one arranged on the upper side and connecting the first evaporation side header 51 a and the first condensing side header 51 b is referred to as the evaporation side connecting portion 61, and is arranged on the lower side. What connects the second evaporation side header 52a and the second condensation side header 52b is referred to as a condensation side connecting portion 62.

第1の筐体100と第2の筐体200の間のクリアランス3には、凝縮部2で凝縮した作動流体を貯留する貯留部7が設けられている。貯留部7の下端部は、蒸発部1の下端部より上側に位置している。また、クリアランス3には、凝縮部2で凝縮された作動流体を貯留部7に流入させる第1の流路81と、貯留部7に貯留された作動流体を凝縮側連結部2に戻す第2の流路82とが設けられている。   In the clearance 3 between the first casing 100 and the second casing 200, a storage section 7 that stores the working fluid condensed in the condensing section 2 is provided. The lower end of the storage unit 7 is located above the lower end of the evaporation unit 1. The clearance 3 includes a first flow path 81 that allows the working fluid condensed in the condensing unit 2 to flow into the storage unit 7, and a second that returns the working fluid stored in the storage unit 7 to the condensing side connection unit 2. The flow path 82 is provided.

第2の流路82は、貯留部7の下端部から凝縮側連結部62に向かって略鉛直方向に延びている。第1の流路81の一端は、凝縮部2における複数の凝縮側ヒートパイプ4bのうち最も蒸発部1に近い凝縮側ヒートパイプ4bの下方側に接続され、他端は、第2の流路82に接続されている。また、2つの流路81、82の接続部には、切替バルブ9(流入制御手段)が配設されている。   The second flow path 82 extends in a substantially vertical direction from the lower end portion of the storage portion 7 toward the condensation side connection portion 62. One end of the first flow path 81 is connected to the lower side of the condensation side heat pipe 4b closest to the evaporation section 1 among the plurality of condensation side heat pipes 4b in the condensation section 2, and the other end is connected to the second flow path. 82. Further, a switching valve 9 (inflow control means) is disposed at a connection portion between the two flow paths 81 and 82.

図2は本第1実施形態の切替バルブ9近傍を示す拡大断面図であり、(a)が閉弁状態を、(b)が開弁状態を示している。図2(a)、(b)に示すように、切替バルブ9は、弁体90と、この弁体90が着座する弁座91を有している。   FIG. 2 is an enlarged cross-sectional view showing the vicinity of the switching valve 9 according to the first embodiment, where (a) shows a valve closing state and (b) shows a valve opening state. As shown in FIGS. 2A and 2B, the switching valve 9 includes a valve body 90 and a valve seat 91 on which the valve body 90 is seated.

弁座91は、第1の流路81と第2の流路82の接続部に配置されている。本実施形態では、弁座91は板状に形成されており、この弁座91により第1の流路81が閉塞されるようになっている。また、弁座91の略中央部には、第1の流路81と第2の流路82とを連通させる連通孔91aが形成されている。   The valve seat 91 is disposed at a connection portion between the first flow path 81 and the second flow path 82. In the present embodiment, the valve seat 91 is formed in a plate shape, and the first flow path 81 is closed by the valve seat 91. In addition, a communication hole 91 a that allows the first flow path 81 and the second flow path 82 to communicate with each other is formed in a substantially central portion of the valve seat 91.

弁座91における第2の流路82側の面には、第1の流路81側に向かって開口した断面略コの字形状の第1の支持部材92の両端部が接続されている。また、弁座91における第1の流路81側の面には、第2の流路82側に向かって開口した断面コの字形状の第2の支持部材93の両端部が接続されている。   Both end portions of a first support member 92 having a substantially U-shaped cross section opened toward the first flow path 81 are connected to the surface of the valve seat 91 on the second flow path 82 side. In addition, both ends of a second support member 93 having a U-shaped cross section that opens toward the second flow path 82 are connected to the surface of the valve seat 91 on the first flow path 81 side. .

また、弁体90は、第1の流路81の反対側から弁座91に対して離接可能に設けられている。弁体90と第1の支持部材92の間には、コイルスプリング94が配設されている。弁体90は連通孔91aより大きく形成されており、弁体90が弁座91と接触することにより連通孔91aが閉塞されるようになっている。   Further, the valve body 90 is provided so as to be able to be separated from the valve seat 91 from the opposite side of the first flow path 81. A coil spring 94 is disposed between the valve body 90 and the first support member 92. The valve body 90 is formed larger than the communication hole 91 a, and the communication hole 91 a is closed when the valve body 90 comes into contact with the valve seat 91.

また、弁体90における第1の流路81側の面には、バイメタルやワックスペレット等の感温変形部材95の一端が固着されている。また、感温変形部材95の他端は、第2の支持部材93に固着されている。感温変形部材95は、第1の流路81内の作動流体の温度が所定温度以上になると、熱膨張するようになっている。このため、弁体90は、感温変形部材95によって、第1の流路81内の作動流体の温度に応じて第1の流路81における作動流体の流れ方向(図2(a)、(b)中の左右方向)に駆動されるようになっている。   In addition, one end of a temperature-sensitive deformation member 95 such as a bimetal or wax pellet is fixed to the surface of the valve body 90 on the first flow path 81 side. Further, the other end of the temperature-sensitive deformation member 95 is fixed to the second support member 93. The temperature-sensitive deformation member 95 is thermally expanded when the temperature of the working fluid in the first flow path 81 becomes a predetermined temperature or higher. For this reason, the valve body 90 causes the temperature-sensitive deformation member 95 to change the flow direction of the working fluid in the first flow path 81 according to the temperature of the working fluid in the first flow path 81 (FIG. 2A, ( b) in the horizontal direction).

続いて、上記構成の切替バルブ9の作動について述べる。   Next, the operation of the switching valve 9 configured as described above will be described.

図2(a)に示すように、コイルスプリング94の付勢によって、弁体90は常に弁座91と接触し、連通孔91aが閉塞されている。   As shown in FIG. 2A, the valve body 90 is always in contact with the valve seat 91 by the urging of the coil spring 94, and the communication hole 91a is closed.

図2(b)に示すように、第1の流路81内の作動流体の温度が所定温度以上になると、感温変形部材95が熱膨張する。ここで、感温変形部材95は、第2の支持部材93に固定されているため、第2の流路82側に向かって膨張し、弁体90を押圧する。これにより、コイルスプリング94が圧縮されて弁体90が弁座91から離間し、連通孔91aが開放される。したがって、第1の流路81と第2の流路82とが、連通孔91aを介して連通された状態となる。この結果、第1の流路81内の作動流体は、第2の流路82を流れて貯留部7(図1参照)に流入する。   As shown in FIG. 2B, when the temperature of the working fluid in the first flow path 81 becomes equal to or higher than a predetermined temperature, the temperature-sensitive deformation member 95 is thermally expanded. Here, since the temperature-sensitive deformation member 95 is fixed to the second support member 93, the temperature-sensitive deformation member 95 expands toward the second flow path 82 and presses the valve body 90. Thereby, the coil spring 94 is compressed, the valve body 90 is separated from the valve seat 91, and the communication hole 91a is opened. Accordingly, the first flow path 81 and the second flow path 82 are communicated with each other through the communication hole 91a. As a result, the working fluid in the first flow path 81 flows through the second flow path 82 and flows into the storage section 7 (see FIG. 1).

次に、上述の構成において本実施形の作動について説明する。図3は本第1実施形態に係る排気熱回収器の作動状態を示す概略断面図で、(a)はエンジン停止時、(b)は熱回収時、(c)は熱回収性能低下時を示している。   Next, the operation of this embodiment in the above configuration will be described. 3A and 3B are schematic cross-sectional views showing the operating state of the exhaust heat recovery device according to the first embodiment. FIG. 3A shows when the engine is stopped, FIG. Show.

図3(a)に示すように、エンジン停止時には、蒸発部1および凝縮部2の作動流体(液体)の水位は等しくなっており、作動流体は循環していない。   As shown in FIG. 3A, when the engine is stopped, the water levels of the working fluid (liquid) in the evaporator 1 and the condenser 2 are equal, and the working fluid is not circulated.

図3(b)に示すように、エンジンを始動すると、第1の筐体100内に高温の排気ガスが流入するため、蒸発部1で作動流体が蒸発する。そして、蒸発部1で蒸発した作動流体が蒸発側連結部61を通って凝縮部2に流入し、凝縮部2で作動流体は凝縮されて液体となる。液体状の作動流体は、凝縮側連結部62を通って蒸発部1に再び流入する。このような作動流体の蒸発と凝縮のバランスによって、蒸発部1および凝縮部2間で作動流体(液体)の水位差(以下、第1の水頭差hという)が生じる。この第1の水頭差hによって、凝縮部2から蒸発部1に作動流体が還流され、これにより作動流体の循環が行われている。このように、作動流体が蒸発部1と凝縮部2とを循環することにより、排気熱回収が行われている。 As shown in FIG. 3B, when the engine is started, high-temperature exhaust gas flows into the first housing 100, so that the working fluid evaporates in the evaporation unit 1. Then, the working fluid evaporated in the evaporating unit 1 flows into the condensing unit 2 through the evaporating side connecting unit 61, and the working fluid is condensed in the condensing unit 2 to become a liquid. The liquid working fluid flows again into the evaporation unit 1 through the condensation side connection unit 62. Due to such a balance between evaporation and condensation of the working fluid, a water level difference (hereinafter referred to as a first water head difference h 1 ) of the working fluid (liquid) occurs between the evaporation unit 1 and the condensation unit 2. Due to the first water head difference h 1 , the working fluid is recirculated from the condensing unit 2 to the evaporation unit 1, thereby circulating the working fluid. Thus, exhaust heat recovery is performed by the working fluid circulating through the evaporation section 1 and the condensation section 2.

そして、作動流体が所定温度以上になると、図3(c)に示すように、切替バルブ9が開弁し、凝縮部2で凝縮した作動流体が貯留部7にも流入することができるようになる。このため、凝縮部2で凝縮した作動流体が移動できる容積が、熱回収時(凝縮部2における作動流体の温度が所定温度を下回っている場合)より増加する。これにより、凝縮部2の水位が低下し、蒸発部1および凝縮部2間の水頭差(以下、第2の水頭差hという)が、第1の水頭差hより小さくため、凝縮部2から蒸発部1に流入する作動流体の流量が低下し、熱回収量が大幅に減少する。 When the working fluid reaches a predetermined temperature or higher, as shown in FIG. 3C, the switching valve 9 is opened so that the working fluid condensed in the condensing unit 2 can also flow into the storage unit 7. Become. For this reason, the volume which the working fluid condensed by the condensation part 2 can move increases from the time of heat recovery (when the temperature of the working fluid in the condensation part 2 is lower than a predetermined temperature). As a result, the water level of the condensing unit 2 decreases, and the water head difference between the evaporation unit 1 and the condensing unit 2 (hereinafter referred to as the second water head difference h 2 ) is smaller than the first water head difference h 1. The flow rate of the working fluid flowing into the evaporation unit 1 from 2 is reduced, and the heat recovery amount is greatly reduced.

そして、再びエンジンを停止させると、第1の筐体100内に排気ガスが流入しないため、作動流体の温度が低下する。これにより、切替バルブ9が閉弁し、図3(a)に示すように、蒸発部1および凝縮部2における作動流体の水位が等しくなり、作動流体の循環が停止する。この状態で再びエンジンを始動させると、熱回収が再開される。   When the engine is stopped again, exhaust gas does not flow into the first housing 100, so the temperature of the working fluid decreases. Thereby, the switching valve 9 is closed, and as shown in FIG. 3A, the water levels of the working fluid in the evaporator 1 and the condenser 2 become equal, and the circulation of the working fluid stops. When the engine is started again in this state, heat recovery is resumed.

以上説明したように、作動流体が高温になる夏季のエンジン高負荷時等に熱回収性能を大幅に低下させることができるため、オーバーヒートを回避することができる。また、熱回収を再開させる際にピストン等の戻帰装置を必要としないため、簡易な構成で熱回収量を調整することが可能となる。   As described above, since the heat recovery performance can be significantly reduced at the time of high engine load in the summer when the working fluid is at a high temperature, overheating can be avoided. Further, since a return device such as a piston is not required when heat recovery is resumed, it is possible to adjust the amount of heat recovery with a simple configuration.

また、蒸発部1および凝縮部2間のクリアランス3に貯留部7を配置することができるため、排気熱回収器の体格を小さくすることが可能となる。   Moreover, since the storage part 7 can be arrange | positioned in the clearance 3 between the evaporation part 1 and the condensation part 2, it becomes possible to make the physique of an exhaust heat recovery device small.

(第2実施形態)
次に、本発明の第2実施形態について図4および図5に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
(Second Embodiment)
Next, a second embodiment of the present invention will be described with reference to FIGS. The same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図4は、本第2実施形態に係る排気熱回収器を示す断面図である。図4において、蒸発部1および凝縮部2の詳細な構成は上記第1実施形態と同様であるため図示を省略している。また、第2の筐体200には、上記第1実施形態と同様、冷却水流入口201および冷却水流出口202が設けられているが、図示を省略している。   FIG. 4 is a cross-sectional view showing an exhaust heat recovery device according to the second embodiment. In FIG. 4, since the detailed structure of the evaporation part 1 and the condensation part 2 is the same as that of the said 1st Embodiment, illustration is abbreviate | omitted. Further, the second casing 200 is provided with a cooling water inlet 201 and a cooling water outlet 202 as in the first embodiment, but the illustration is omitted.

図4に示すように、本実施形態では、凝縮部2は、蒸発部1より鉛直方向の長さが短くなっている。そして、凝縮部2の下端部は、蒸発部1の下端部より上方に位置している。また、凝縮側連結部62は、凝縮部2の下端部から鉛直方向下側に向かって延びる第1の連結部材62aと、第1の連結部材62aの下端部から蒸発部1の下端部に向かって略水平方向に延びる第2の連結部材62bとからなっている。   As shown in FIG. 4, in the present embodiment, the condensing unit 2 has a shorter length in the vertical direction than the evaporation unit 1. And the lower end part of the condensation part 2 is located above the lower end part of the evaporation part 1. FIG. In addition, the condensing side connecting portion 62 extends from the lower end portion of the condensing portion 2 toward the lower side in the vertical direction, and extends from the lower end portion of the first connecting member 62a toward the lower end portion of the evaporation portion 1. And a second connecting member 62b extending in a substantially horizontal direction.

本実施形態では、貯留部7は、凝縮部2における蒸発部1の反対側に配置されている、すなわち蒸発部1、凝縮部2、貯留部7の順で配置されている。換言すると、蒸発部1と貯留部7の間に凝縮部2が配置されている。   In this embodiment, the storage part 7 is arrange | positioned in the condensing part 2 on the opposite side of the evaporation part 1, ie, the evaporation part 1, the condensation part 2, and the storage part 7 are arrange | positioned in order. In other words, the condensing unit 2 is disposed between the evaporation unit 1 and the storage unit 7.

第1の流路81は、一方の端部が凝縮部2の下端部に接続されており、他方の端部が貯留部7の上端部に接続されている。また、第2の流路82は、一方の端部が貯留部7の下端部に接続されており、他方の端部が凝縮側連結部62の第1の連結部材62aに接続されている。本実施形態では、第1、第2の流路81、82は、その長手方向が略水平方向になるようにそれぞれ配置されている。   One end of the first flow path 81 is connected to the lower end of the condensing unit 2, and the other end is connected to the upper end of the storage unit 7. The second flow path 82 has one end connected to the lower end of the reservoir 7 and the other end connected to the first connecting member 62 a of the condensing side connecting part 62. In the present embodiment, the first and second flow paths 81 and 82 are arranged so that the longitudinal direction thereof is substantially horizontal.

第1の流路81には、開閉バルブ10(流入制御手段)が配設されている。開閉バルブ10は、凝縮部2で凝縮された作動流体の温度に基づいて第1の流路81を開閉する開閉手段となっている。具体的には、凝縮された作動流体の温度が予め設定された所定温度を超えると開弁し、逆に所定温度を下回ると閉弁するように構成されている。また、第2の流路82には、作動流体が貯留部7側から凝縮側連結部62側に流れるのを防止する逆止弁11が配設されている。   The first flow path 81 is provided with an opening / closing valve 10 (inflow control means). The opening / closing valve 10 is an opening / closing means for opening / closing the first flow path 81 based on the temperature of the working fluid condensed in the condensing unit 2. Specifically, the valve is opened when the temperature of the condensed working fluid exceeds a predetermined temperature set in advance, and is closed when the temperature falls below the predetermined temperature. The second flow path 82 is provided with the check valve 11 that prevents the working fluid from flowing from the storage section 7 side to the condensation side connection section 62 side.

次に、上述の構成において本実施形の作動について説明する。図5は本第2実施形態に係る排気熱回収器の作動状態を示す概略断面図で、(a)は熱回収時、(b)は熱回収性能低下時、(c)はエンジン停止時、(d)は熱回収再開時を示している。   Next, the operation of this embodiment in the above configuration will be described. FIG. 5 is a schematic cross-sectional view showing the operating state of the exhaust heat recovery device according to the second embodiment, where (a) is when heat is recovered, (b) is when heat recovery performance is reduced, (c) is when the engine is stopped, (D) shows when heat recovery is resumed.

図5(a)に示すように、エンジンを始動させると、第1の筐体100(図4参照)内に高温の排気ガスが流入するため、蒸発部1で作動流体が蒸発する。そして、蒸発部1で蒸発した作動流体が蒸発側連結部61を通って凝縮部2に流入し、凝縮部2で作動流体は凝縮されて液体となる。液体状の作動流体は、凝縮側連結部62を通って蒸発部1に再び流入する。このような作動流体の蒸発と凝縮のバランスによって、蒸発部1および凝縮部2間で作動流体(液体)の水位差(以下、第1の水頭差hという)が生じる。この第1の水頭差hによって、凝縮部2から蒸発部1に作動流体が還流され、これにより作動流体の循環が行われている。このように、作動流体が蒸発部1と凝縮部2を循環することにより、排気熱回収が行われている。 As shown in FIG. 5A, when the engine is started, high-temperature exhaust gas flows into the first housing 100 (see FIG. 4), so that the working fluid evaporates in the evaporation unit 1. Then, the working fluid evaporated in the evaporating unit 1 flows into the condensing unit 2 through the evaporating side connecting unit 61, and the working fluid is condensed in the condensing unit 2 to become a liquid. The liquid working fluid flows again into the evaporation unit 1 through the condensation side connection unit 62. Due to such a balance between evaporation and condensation of the working fluid, a water level difference (hereinafter referred to as a first water head difference h 1 ) of the working fluid (liquid) occurs between the evaporation unit 1 and the condensation unit 2. Due to the first water head difference h 1 , the working fluid is recirculated from the condensing unit 2 to the evaporation unit 1, thereby circulating the working fluid. Thus, exhaust heat recovery is performed by the working fluid circulating through the evaporation section 1 and the condensation section 2.

そして、作動流体が所定温度以上になると、図5(b)に示すように、開閉バルブ10が開弁し、凝縮部2で凝縮した作動流体は、第1の流路81を介して貯留部7にも流入することができるようになる。このため、凝縮部2で凝縮した作動流体が移動できる容積が、熱回収時(凝縮部2における作動流体の温度が所定温度を下回っている場合)より増加する。これにより、凝縮部2の水位が低下して、凝縮した作動流体は第1の連結部材62aおよび貯留部7にのみ存在するようになる(凝縮部2内には存在しないようになる)。このとき、第1の連結部材62a内の作動流体の水位と蒸発部1内の作動流体の水位との差(以下、第2の水頭差hという)は、第1の水頭差hより小さくなる。このため、凝縮部2から蒸発部1に流入する作動流体の流量が低下し、熱回収量が大幅に減少する。 When the working fluid reaches a predetermined temperature or more, as shown in FIG. 5B, the opening / closing valve 10 is opened, and the working fluid condensed in the condensing unit 2 is stored in the storage unit via the first channel 81. 7 can also flow in. For this reason, the volume which the working fluid condensed by the condensation part 2 can move increases from the time of heat recovery (when the temperature of the working fluid in the condensation part 2 is lower than a predetermined temperature). Thereby, the water level of the condensing part 2 falls, and the condensed working fluid comes to exist only in the 1st connection member 62a and the storage part 7 (it does not exist in the condensing part 2). In this case, the difference between the water level in the water level and the working fluid in the evaporator section 1 of the working fluid in the first connecting member 62a (hereinafter, the second of the water head difference h 2), from the first water head difference h 1 Get smaller. For this reason, the flow rate of the working fluid flowing from the condensing unit 2 into the evaporation unit 1 is reduced, and the heat recovery amount is greatly reduced.

ここでエンジンを停止させると、第1の筐体100内に排気ガスが流入しなくなるため、作動流体の温度が低下する。これにより、作動流体が所定温度を下回ると開閉バルブ9が閉弁し、図5(c)に示すように、貯留部7に貯留されていた作動流体が凝縮側連結部62に流出する。このとき、第2の流路82には逆止弁11が設けられているため、凝縮側連結部62から貯留部7に作動流体が流入することはない。このため、蒸発部1および凝縮側連結部62における作動流体の水位が等しくなる、すなわち水頭差がなくなるので、作動流体の循環が停止し、これにより熱回収が停止される。   Here, when the engine is stopped, the exhaust gas does not flow into the first housing 100, so the temperature of the working fluid decreases. Accordingly, when the working fluid falls below a predetermined temperature, the opening / closing valve 9 is closed, and the working fluid stored in the storage section 7 flows out to the condensation side connecting section 62 as shown in FIG. At this time, since the check valve 11 is provided in the second flow path 82, the working fluid does not flow into the storage portion 7 from the condensation side connection portion 62. For this reason, the water levels of the working fluid in the evaporation unit 1 and the condensing side connecting unit 62 become equal, that is, there is no head difference, so that the circulation of the working fluid is stopped, and thus heat recovery is stopped.

ここでエンジンを再び始動すると、図5(d)に示すように、第1の筐体100内に高温の排気ガスが流入するため、蒸発部1で作動流体が蒸発し、蒸発部1で蒸発した作動流体が蒸発側連結部61を通って凝縮部2に流入する。このとき、開閉バルブ10は閉弁しているので、凝縮部2で凝縮した作動流体は、凝縮側連結部62にのみ流出する。このため、凝縮部2内の作動流体の水位が上昇し、蒸発部1および凝縮部2間に第1の水頭差hが生じる。これにより、凝縮部2から蒸発部1に流入する作動流体の流量が増加し、熱回収が再開される。 Here, when the engine is started again, as shown in FIG. 5 (d), since the high-temperature exhaust gas flows into the first casing 100, the working fluid evaporates in the evaporating unit 1 and evaporates in the evaporating unit 1. The working fluid thus flowed flows into the condensing part 2 through the evaporation side connecting part 61. At this time, since the on-off valve 10 is closed, the working fluid condensed in the condensing part 2 flows out only to the condensing side connecting part 62. For this reason, the water level of the working fluid in the condensing unit 2 rises, and a first water head difference h 1 occurs between the evaporating unit 1 and the condensing unit 2. Thereby, the flow volume of the working fluid which flows into the evaporation part 1 from the condensation part 2 increases, and heat recovery is restarted.

以上説明したように、作動流体が高温になる夏季のエンジン高負荷時等には、熱回収性能を大幅に低下させることができるため、オーバーヒートを回避することができる。また、熱回収を再開させる際にピストン等の戻帰装置を必要としないため、簡易な構成で熱回収量を調整することが可能となる。   As described above, since the heat recovery performance can be significantly reduced at the time of high engine load in summer when the working fluid is at a high temperature, overheating can be avoided. Further, since a return device such as a piston is not required when heat recovery is resumed, it is possible to adjust the amount of heat recovery with a simple configuration.

(第3実施形態)
次に、本発明の第3実施形態について図6に基づいて説明する。上記第1実施形態と同様の部分については同一の符号を付して説明を省略する。
(Third embodiment)
Next, a third embodiment of the present invention will be described with reference to FIG. The same parts as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.

図6は、本第3実施形態に係る排気熱回収器を示す断面図である。図6に示すように、本実施形態では、凝縮側ヒートパイプ4bは、長手方向が略鉛直になるように配置されている。また、凝縮側連結部62は、第2の凝縮側ヘッダ52bの下端部から鉛直方向下側に向かって延びる第1の連結部材62aと、第1の連結部材62aの下端部から蒸発部1の下端部に向かって略水平方向に延びる第2の連結部材62bとからなっている。本実施形態では、第1の流路81の一端は第1の連結部材62aに接続されている。これにより、上記第1実施形態と同様の効果を得ることができる。   FIG. 6 is a cross-sectional view showing an exhaust heat recovery device according to the third embodiment. As shown in FIG. 6, in this embodiment, the condensation side heat pipe 4b is arrange | positioned so that a longitudinal direction may become substantially vertical. Further, the condensing side connecting portion 62 includes a first connecting member 62a extending from the lower end portion of the second condensing side header 52b downward in the vertical direction, and the lower end portion of the first connecting member 62a from the lower end portion of the evaporation portion 1 The second connecting member 62b extends in a substantially horizontal direction toward the lower end. In the present embodiment, one end of the first flow path 81 is connected to the first connecting member 62a. Thereby, the effect similar to the said 1st Embodiment can be acquired.

(他の実施形態)
なお、上記第2実施形態において、貯留部7を、凝縮部2における蒸発部1の反対側に配設したが、これに限らず、凝縮部2の下側に配設してもよい。
(Other embodiments)
In addition, in the said 2nd Embodiment, although the storage part 7 was arrange | positioned on the opposite side of the evaporation part 1 in the condensation part 2, you may arrange | position not only to this but to the lower side of the condensation part 2. FIG.

第1実施形態に係る排気熱回収器を示す断面図である。It is sectional drawing which shows the exhaust heat recovery device which concerns on 1st Embodiment. 第1実施形態の切替バルブ9近傍を示す拡大断面図であり、(a)が閉弁状態を、(b)が開弁状態を示している。It is an expanded sectional view showing change valve 9 neighborhood of a 1st embodiment, (a) shows a valve closing state and (b) shows a valve opening state. 第1実施形態に係る排気熱回収器の作動状態を示す概略断面図で、(a)はエンジン停止時、(b)は熱回収時、(c)は熱回収性能低下時を示している。It is a schematic sectional drawing which shows the operating state of the exhaust heat recovery device which concerns on 1st Embodiment, (a) is at the time of engine stop, (b) at the time of heat recovery, (c) has shown the time at the time of heat recovery performance fall. 第2実施形態に係る排気熱回収器を示す断面図である。It is sectional drawing which shows the exhaust heat recovery device which concerns on 2nd Embodiment. 第2実施形態に係る排気熱回収器の作動状態を示す概略断面図で、(a)は熱回収時、(b)は熱回収性能低下時、(c)はエンジン停止時、(d)は熱回収再開時を示している。It is a schematic sectional drawing which shows the operating state of the exhaust heat recovery device concerning a 2nd embodiment, (a) at the time of heat recovery, (b) at the time of heat recovery performance fall, (c) at the time of engine stop, (d) at The time when heat recovery is resumed is shown. 第3実施形態に係る排気熱回収器を示す断面図である。It is sectional drawing which shows the exhaust heat recovery device which concerns on 3rd Embodiment.

符号の説明Explanation of symbols

1…蒸発部、2…凝縮部、7…貯留部、9…切替バルブ(流入制御手段)、10…開閉バルブ(流入制御手段)、61…蒸発側連結部、62凝縮側連結部、81…第1の流路、82…第2の流路。   DESCRIPTION OF SYMBOLS 1 ... Evaporation part, 2 ... Condensing part, 7 ... Storage part, 9 ... Switching valve (inflow control means), 10 ... Opening / closing valve (inflow control means), 61 ... Evaporation side connection part, 62 Condensation side connection part, 81 ... 1st flow path, 82 ... 2nd flow path.

Claims (2)

内燃機関から排出された排気ガスが流通する排気ガス経路内に配置され、前記排気ガスと内部に封入された蒸発および凝縮可能な作動流体との間で熱交換を行い、前記作動流体を蒸発させる蒸発部(1)と、
前記内燃機関の冷却水が流通する冷却水経路内に配置され、前記蒸発部(1)で蒸発した前記作動流体と前記冷却水との間で熱交換を行い、前記作動流体を凝縮させる凝縮部(2)とを備え、
前記蒸発部(1)および前記凝縮部(2)が、前記作動流体が循環する閉ループ状流路内に配置される排気熱回収器であって、
前記蒸発部(1)から前記凝縮部(2)に流れる蒸発した前記作動流体が通過する蒸発側連結部(61)と、
前記凝縮部(2)から前記蒸発部(1)に流れる凝縮した前記作動流体が通過する凝縮側連結部(62)と、
前記閉ループ状流路外に設けられ、前記凝縮部(2)で凝縮した前記作動流体を貯留する貯留部(7)と、
前記凝縮部(2)と前記貯留部(7)とを接続する第1の流路(81)と、
前記貯留部(7)の下端部と前記凝縮側連結部(62)とを接続する第2の流路(82)と、
前記第1の流路(81)に設けられ、前記凝縮部(2)から前記貯留部(7)への前記作動流体の流入を制御する流入制御手段(9、10)とを備え、
前記貯留部(7)の下端部は、前記蒸発部(1)の下端部より上側に位置しており、
前記流入制御手段(9、10)は、前記凝縮部(2)における前記作動流体の温度が所定温度以上のときには、前記作動流体が前記第1の流路(81)を介して前記凝縮部(2)から前記貯留部(7)へ流入可能にし、前記凝縮部(2)における前記作動流体の温度が前記所定温度を下回るときには、前記作動流体が前記第1の流路(81)を介して前記凝縮部(2)から前記貯留部(7)への流入を制御するように構成されていることを特徴とする排気熱回収器。
The exhaust gas exhausted from the internal combustion engine is disposed in an exhaust gas passage through which heat is exchanged between the exhaust gas and an evaporating and condensable working fluid enclosed therein to evaporate the working fluid. An evaporation section (1);
A condensing unit that is arranged in a cooling water path through which the cooling water of the internal combustion engine flows and that exchanges heat between the working fluid evaporated in the evaporation unit (1) and the cooling water to condense the working fluid. (2)
The evaporator (1) and the condenser (2) are exhaust heat recovery devices arranged in a closed loop flow path through which the working fluid circulates,
An evaporation side connecting part (61) through which the evaporated working fluid flowing from the evaporation part (1) to the condensing part (2) passes;
A condensing side connecting part (62) through which the condensed working fluid flowing from the condensing part (2) to the evaporation part (1) passes;
A reservoir (7) that is provided outside the closed-loop flow path and stores the working fluid condensed in the condenser (2);
A first flow path (81) connecting the condensing part (2) and the storage part (7);
A second flow path (82) connecting the lower end of the reservoir (7) and the condensing side connection (62);
Inflow control means (9, 10) that is provided in the first flow path (81) and controls inflow of the working fluid from the condensing unit (2) to the storage unit (7),
The lower end of the reservoir (7) is located above the lower end of the evaporator (1),
When the temperature of the working fluid in the condensing unit (2) is equal to or higher than a predetermined temperature, the inflow control means (9, 10) causes the working fluid to pass through the first channel (81). 2), when the temperature of the working fluid in the condensing unit (2) is lower than the predetermined temperature, the working fluid passes through the first channel (81). An exhaust heat recovery device configured to control inflow from the condensing unit (2) to the storage unit (7).
前記蒸発部(1)と前記凝縮部(2)は、略水平方向に隣接するように配置されており、
前記貯留部(7)は、前記蒸発部(1)と前記凝縮部(2)の間に配置されていることを特徴とする請求項1に記載の排気熱回収器。
The evaporating part (1) and the condensing part (2) are arranged so as to be adjacent in a substantially horizontal direction,
The exhaust heat recovery device according to claim 1, wherein the storage part (7) is arranged between the evaporation part (1) and the condensing part (2).
JP2006196608A 2006-07-19 2006-07-19 Exhaust heat recovery unit Withdrawn JP2008025877A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196608A JP2008025877A (en) 2006-07-19 2006-07-19 Exhaust heat recovery unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196608A JP2008025877A (en) 2006-07-19 2006-07-19 Exhaust heat recovery unit

Publications (1)

Publication Number Publication Date
JP2008025877A true JP2008025877A (en) 2008-02-07

Family

ID=39116688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196608A Withdrawn JP2008025877A (en) 2006-07-19 2006-07-19 Exhaust heat recovery unit

Country Status (1)

Country Link
JP (1) JP2008025877A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146262A1 (en) * 2018-01-29 2019-08-01 株式会社デンソー Thermosiphon cooling device for vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146262A1 (en) * 2018-01-29 2019-08-01 株式会社デンソー Thermosiphon cooling device for vehicle

Similar Documents

Publication Publication Date Title
US20060231235A1 (en) Heat pipe
US7946112B2 (en) Exhaust heat recovery device
EP1801531B1 (en) Waste heat collecting apparatus
US20070289721A1 (en) Loop type heat pipe and waste heat recovery device
JP5195381B2 (en) Exhaust heat recovery device
US20090000577A1 (en) Waste heat collecting apparatus
JP5328527B2 (en) Waste heat regeneration system and control method thereof
JP4245063B2 (en) Waste heat recovery device
JP2007278623A (en) Exhaust heat recovery system
JP2009287433A (en) Waste heat utilizing device for internal combustion engine
JP2008039373A (en) Exhaust heat recovery device
JP2009185773A (en) Exhaust heat utilization device
JP2007332857A (en) Exhaust heat recovery equipment
JP5326577B2 (en) Engine waste heat utilization device
JP2009074494A (en) Exhaust heat recovery device
JP2008025877A (en) Exhaust heat recovery unit
JP2008202450A (en) Exhaust heat recovery apparatus
US20160334148A1 (en) Motor vehicle heat exchanger system
JP4957707B2 (en) Heat storage device
JPS62162716A (en) Evaporative cooling device for internal combustion engine
JP2008303728A (en) Exhaust heat recovery apparatus
JP2008255945A (en) Warming up device for engine
JP4682932B2 (en) Loop heat pipe
JP4670837B2 (en) Engine exhaust heat recovery device and method
JP2009058205A (en) Exhaust heat recovery device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006