JP2008025751A - Sealing structure - Google Patents

Sealing structure Download PDF

Info

Publication number
JP2008025751A
JP2008025751A JP2006200330A JP2006200330A JP2008025751A JP 2008025751 A JP2008025751 A JP 2008025751A JP 2006200330 A JP2006200330 A JP 2006200330A JP 2006200330 A JP2006200330 A JP 2006200330A JP 2008025751 A JP2008025751 A JP 2008025751A
Authority
JP
Japan
Prior art keywords
boot
shaft
inner diameter
constant velocity
velocity universal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006200330A
Other languages
Japanese (ja)
Inventor
Masaru Murayama
大 村山
Yasunori Kawasaki
恭典 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2006200330A priority Critical patent/JP2008025751A/en
Publication of JP2008025751A publication Critical patent/JP2008025751A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Sealing Devices (AREA)
  • Diaphragms And Bellows (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a sealing structure for a constant velocity universal joint boot for exhibiting stable sealing performance over a long period while holding high sealing performance even in severe working environment under high temperature conditions. <P>SOLUTION: The sealing structure is provided for sealing between a shaft 9 connected to an inside joint member of a constant velocity universal joint and a constant velocity universal joint boot 1. On a shaft fixed portion 11 of the boot 1 to which a boot band 18 is fastened, an annular protruded portion 25 is provided to be pressed against the shaft 9. The annular protruded portion 25 has a protruded body 27 protruded from the inner diameter face of the shaft fixed portion 11 toward the inner diameter, and a small protrusion 26 protruded from the inner diameter end of the protruded body 27 toward the inner diameter so as to be crushed in close contact with the shaft. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、シール構造に関し、特に、等速自在継手の内側継手部材に連結されたシャフトと、等速自在継手用ブーツとの間のシール構造に関するものである。   The present invention relates to a seal structure, and more particularly to a seal structure between a shaft connected to an inner joint member of a constant velocity universal joint and a boot for the constant velocity universal joint.

自動車や各種産業機械における動力の伝達に用いられる等速自在継手には、継手内部への塵埃等の異物侵入防止や継手内部に封入されたグリースの漏れ防止を目的とし、蛇腹状のブーツが装着される。   Constant velocity universal joints used for power transmission in automobiles and various industrial machines are equipped with bellows-shaped boots to prevent foreign materials such as dust from entering the joints and leakage of grease enclosed in the joints. Is done.

この種のブーツは例えば図4や図5に示すように、等速自在継手100の外輪101に固定される大径部102と、内輪103から延びるシャフト104に固定される小径部105と、大径部102と小径部105との間に設けられ、谷106と山107とが交互に形成された蛇腹部108とを有する。そして、大径部102と小径部105とはそれぞれブーツバンド109が装着されることによって固定される。   For example, as shown in FIGS. 4 and 5, this type of boot includes a large diameter portion 102 fixed to the outer ring 101 of the constant velocity universal joint 100, a small diameter portion 105 fixed to a shaft 104 extending from the inner ring 103, and a large diameter portion. It has a bellows part 108 provided between the diameter part 102 and the small diameter part 105 and having valleys 106 and peaks 107 alternately formed. And the large diameter part 102 and the small diameter part 105 are fixed by attaching the boot band 109, respectively.

すなわち、大径部102の外周面及び小径部105の外周面にはそれぞれバンド装着用溝110、111が設けられ、各溝110、111にブーツバンド109、109が嵌合される。また、シャフト104のブーツ取付部には、ブーツ溝112と、このブーツ溝112の両側の突起(周方向突起部)113、113とが設けられている。この場合、ブーツバンド109の締め付けによって、突起113、113をブーツの小径部105の一部に食い込ませることにより、シール性を高めている。   That is, band mounting grooves 110 and 111 are provided on the outer peripheral surface of the large-diameter portion 102 and the outer peripheral surface of the small-diameter portion 105, respectively, and the boot bands 109 and 109 are fitted into the grooves 110 and 111, respectively. The boot mounting portion of the shaft 104 is provided with a boot groove 112 and protrusions (circumferential protrusions) 113 and 113 on both sides of the boot groove 112. In this case, by tightening the boot band 109, the protrusions 113 and 113 are bitten into a part of the small diameter portion 105 of the boot, thereby improving the sealing performance.

また、図6に示すように、シャフト104に複数の周方向溝115を設け、ブーツバンド109の締め付けによって、これらの周方向溝115に小径部105の内周面の一部を嵌合させるようにしているものもある。   Further, as shown in FIG. 6, a plurality of circumferential grooves 115 are provided in the shaft 104, and by tightening the boot band 109, a part of the inner circumferential surface of the small diameter portion 105 is fitted into these circumferential grooves 115. Some of them are

さらには、ブーツの小径部の内周面に環状凸条を設け、この環状凸条を被装着側の凹条に嵌合させるものもある(特許文献1)。
実開昭61−129968号公報
Further, there is a type in which an annular ridge is provided on the inner peripheral surface of the small-diameter portion of the boot, and this annular ridge is fitted to the groove on the mounted side (Patent Document 1).
Japanese Utility Model Publication No. 61-129968

ところで、近年、自動車用等速自在継手には、省スペース化や排気管に近いレイアウト及び排気温度の高温化等、使用環境が厳しくなってきている。そのため、等速自在継手ブーツに対しても要求性能が高まりつつあり、樹脂ブーツが広く適用されている。   By the way, in recent years, the use environment of the constant velocity universal joint for automobiles has become severe, such as space saving, layout close to the exhaust pipe, and high exhaust temperature. Therefore, the required performance is increasing for the constant velocity universal joint boot, and the resin boot is widely applied.

しかしながら、ブーツバンドによる締付部のシール性は、経時変化により低下する。このため、図4や図5に示すようにシャフトに突起を設けたものであっても、図6に示すように複数の周方向溝を設けたものであっても、ブーツの小径部の内周面に環状凸条を設けたもの(前記特許文献1に記載もの)であっても、締付効果が十分でなくなる。近年では、熱可塑性エラストマーからなる樹脂ブーツは、ゴム製ブーツ(CRブーツ)に比べて、疲労性や摩耗性、高速回転性(回転時振れ廻り性)に優れるため、普及している。このような樹脂ブーツは熱による影響が大きく、高温に曝されるとシール性の低下が加速する。これは、高温雰囲気下では熱可塑性エラストマーの圧縮永久歪の変化が大きく、反発力が低下して、いわゆる「へたり」が生じるからである。特に、デファレンシャルギア側(インボード側)での高温環境下(高温雰囲気下)でこの傾向が著しい。このため、従来のようなシール構造では、長期に亘って安定したシール機能を発揮することができない。   However, the sealing performance of the tightening portion by the boot band is lowered due to a change with time. For this reason, even if the shaft is provided with protrusions as shown in FIGS. 4 and 5, or a plurality of circumferential grooves as shown in FIG. Even if the peripheral surface is provided with an annular ridge (described in Patent Document 1), the fastening effect is not sufficient. In recent years, resin boots made of thermoplastic elastomers have become widespread because they are more excellent in fatigue, wear and high-speed rotation (running performance during rotation) than rubber boots (CR boots). Such resin boots are greatly affected by heat, and when exposed to high temperatures, deterioration of the sealing performance is accelerated. This is because, under a high temperature atmosphere, the change in compression set of the thermoplastic elastomer is large, the repulsive force is reduced, and so-called “sagging” occurs. In particular, this tendency is remarkable in a high temperature environment (high temperature atmosphere) on the differential gear side (inboard side). For this reason, the conventional seal structure cannot exhibit a stable sealing function over a long period of time.

本発明は、上記課題に鑑みて、高温条件下等の厳しい使用環境であっても、シール性を高く保持することができて、長期に亘って安定したシール性を発揮することができる等速自在継手用ブーツのシール構造を提供する。   In view of the above problems, the present invention is capable of maintaining a high sealing performance even in a severe use environment such as a high temperature condition, and capable of exhibiting a stable sealing performance over a long period of time. A seal structure for a universal joint boot is provided.

本発明のシール構造は、等速自在継手の内側継手部材に連結されたシャフトと、このシャフトに外嵌される等速自在継手用ブーツとの間のシール構造において、ブーツバンドを締付けるブーツのシャフト固定部に、シャフトに圧接する環状突部を少なくとも1個設けるとともに、この環状突部を前記シャフト固定部の内径面から内径方向へ突出する突部本体と、この突部本体の内径端部から内径方向へ突出してシャフト密接状態で圧潰する微小突起とで構成したものである。   The seal structure of the present invention is a shaft of a boot for tightening a boot band in a seal structure between a shaft connected to an inner joint member of a constant velocity universal joint and a boot for a constant velocity universal joint fitted on the shaft. The fixing portion is provided with at least one annular protrusion pressed against the shaft, and the annular protrusion protrudes in the inner diameter direction from the inner diameter surface of the shaft fixing portion, and the inner diameter end of the protrusion main body. It is composed of minute protrusions that protrude in the inner diameter direction and are crushed in a shaft-close state.

ブーツのシャフト固定部にブーツバンドを締付けることによって得られる緊迫力により、ブーツ側の環状突部がシャフトに密接してシール効果を高めることができる。また、高温雰囲気下において反発力が低下したとしても、微小突起がつぶれることにより、シャフト接触部に対して追従しやすくして、安定して密接している。   Due to the tightening force obtained by fastening the boot band to the shaft fixing portion of the boot, the annular projection on the boot side can be brought into close contact with the shaft to enhance the sealing effect. Further, even if the repulsive force is reduced under a high temperature atmosphere, the minute protrusions are crushed so that the shaft contact portion can be easily followed and stably in close contact.

前記環状突部の突部本体の断面形状を外径側から内径側に向かって細くなる台形状としたり、微小突起の断面形状を内径側が円弧となる半円形状としたりできる。   The cross-sectional shape of the protrusion main body of the annular protrusion may be a trapezoidal shape that narrows from the outer diameter side toward the inner diameter side, or the cross-sectional shape of the minute protrusion may be a semicircular shape having an arc on the inner diameter side.

前記シャフトのブーツ取付部に一対の周方向突起部を設け、この一対の周方向突起部間のシャフト外径面に前記環状突部を圧接させることができる。これにより、一対の周方向突起部がブーツのシャフト固定部に食い込むとともに、ブーツ側の環状突部が周方向突起部間においてシャフト外径面に圧接する。   A pair of circumferential projections can be provided on the boot mounting portion of the shaft, and the annular projection can be brought into pressure contact with the outer surface of the shaft between the pair of circumferential projections. Thereby, while a pair of circumferential direction protrusion part bites into the shaft fixing | fixed part of a boot, the cyclic | annular protrusion part by the side of a boot press-contacts to a shaft outer-diameter surface between circumferential direction protrusion parts.

ブーツ材料を熱可塑性エラストマーとしたので、等速自在継手用ブーツは、疲労性や摩耗性、高速回転性(回転時振れ廻り性)に優れる。   Since the boot material is made of thermoplastic elastomer, the constant velocity universal joint boot is excellent in fatigue, wear and high-speed rotation (running performance during rotation).

本発明は、ブーツ側の環状突部がシャフトに押し付けられて、シール性を高めることができる。また、高温雰囲気下では、微小突起がつぶれることにより、シャフト接触部に対して追従しやすくして、安定して密着(密接)する。すなわち、熱影響で生じるブーツのいわゆる「へたり」によってシール性が低下することを防止し、より強いシール性を有することが可能である。   According to the present invention, the annular protrusion on the boot side is pressed against the shaft, and the sealing performance can be improved. Further, in a high temperature atmosphere, the minute protrusions are crushed so that they can easily follow the shaft contact portion and stably adhere (closely). That is, it is possible to prevent the sealing performance from being lowered by the so-called “sagging” of the boot caused by the heat effect, and to have a stronger sealing performance.

前記環状突部の突部本体の断面形状を、外径側から内径側に向かって細くなる台形状とすることによって、ブーツ装着状態(ブーツバンド締付状態)での微小突起からの押圧力を安定して受けることができ、強度的に優れる利点がある。また、微小突起の断面形状を内径側が円弧となる半円形状とすることによって、ブーツ取付部に安定した圧接状態を確保できる。しかも、ブーツ取付部との接触面積を比較的小さくできるため、高い面圧で圧接できて、シール性のさらなる向上を図ることができる。   By making the cross-sectional shape of the protrusion main body of the annular protrusion into a trapezoidal shape that narrows from the outer diameter side toward the inner diameter side, the pressing force from the minute protrusions in the boot mounting state (boot band tightening state) is reduced. There is an advantage that it can be received stably and is excellent in strength. Further, by making the cross-sectional shape of the microprotrusions into a semicircular shape in which the inner diameter side is an arc, a stable pressure contact state can be secured at the boot mounting portion. In addition, since the contact area with the boot mounting portion can be made relatively small, the contact can be made with a high surface pressure, and the sealing performance can be further improved.

一対の周方向突起部をシャフト固定部に食い込ませるとともに、ブーツ側の環状突部を周方向突起部間においてシャフト外径面に圧接させることができる。これにより、シール効果を一層高めることができる。   The pair of circumferential projections can be bitten into the shaft fixing portion, and the annular projection on the boot side can be pressed against the outer diameter surface of the shaft between the circumferential projections. Thereby, the sealing effect can be further enhanced.

ブーツ材料を熱可塑性エラストマーとしたので、等速自在継手用ブーツは、疲労性や摩耗性、高速回転性(回転時振れ廻り性)に優れ、ブーツとして安定した機能を発揮することができる。しかも、熱による影響が大であるこのような熱可塑性エラストマーを用いても、高温雰囲気下で安定したシール効果を長期に亘って発揮できる。   Since the boot material is made of a thermoplastic elastomer, the constant velocity universal joint boot is excellent in fatigue, wear and high-speed rotation (running performance during rotation), and can exhibit a stable function as a boot. Moreover, even if such a thermoplastic elastomer that is greatly affected by heat is used, a stable sealing effect can be exhibited over a long period of time in a high-temperature atmosphere.

以下本発明の実施の形態を図1〜図3に基づいて説明する。   Embodiments of the present invention will be described below with reference to FIGS.

図1は本発明のシール構造が使用された等速自在継手2と等速自在継手用ブーツ1を示し、この等速自在継手2は、内周面に複数の案内溝(トラック溝)3を軸方向に形成した外側継手部材としての外輪4と、外周面に複数の案内溝(トラック溝)5を形成した内側継手部材としての内輪6と、外輪4の案内溝3と内輪6の案内溝5とで協働して形成されるボールトラックに配される複数のボール7と、ボール7を収容するためのポケット8aを有するケージ8等から構成される。また、内輪6の内周にセレーションやスプライン等のトルク伝達手段を介してシャフト9を結合している。   FIG. 1 shows a constant velocity universal joint 2 and a constant velocity universal joint boot 1 in which the seal structure of the present invention is used. This constant velocity universal joint 2 has a plurality of guide grooves (track grooves) 3 on its inner peripheral surface. An outer ring 4 as an outer joint member formed in the axial direction, an inner ring 6 as an inner joint member formed with a plurality of guide grooves (track grooves) 5 on the outer peripheral surface, a guide groove 3 of the outer ring 4 and a guide groove of the inner ring 6 5, a plurality of balls 7 arranged on a ball track formed in cooperation with 5, a cage 8 having a pocket 8 a for accommodating the balls 7, and the like. Further, the shaft 9 is coupled to the inner periphery of the inner ring 6 via torque transmission means such as serrations and splines.

なお、等速自在継手2としては、この等速自在継手用ブーツ1を取付けることができるものであればよいので、固定式等速自在継手であっても、摺動式等速自在継手であってもよい。   The constant velocity universal joint 2 is not limited as long as the constant velocity universal joint boot 1 can be attached to the constant velocity universal joint 2, so that even a fixed type constant velocity universal joint is a sliding type constant velocity universal joint. May be.

等速自在継手用ブーツ1は、例えば、エステル系、オレフィン系、ウレタン系、アミド系、スチレン系等の熱可塑性エラストマーにて形成される。熱可塑性エラストマーは樹脂とゴムの中間の性質を持っている。熱可塑性エラストマーは、弾性体でありながら、熱可塑性樹脂の通常の成形機にて加工することができる。   The constant velocity universal joint boot 1 is made of, for example, a thermoplastic elastomer such as ester, olefin, urethane, amide, or styrene. Thermoplastic elastomers have intermediate properties between resin and rubber. Although the thermoplastic elastomer is an elastic body, it can be processed by a normal molding machine for thermoplastic resins.

等速自在継手用ブーツ1は、等速自在継手2の外側継手部材(外輪4)の開口端部に装着される大径部10と、等速自在継手2の内側継手部材(内輪6)に連結されたシャフト9に装着される小径部11と、大径部10と小径部11との間に設けられ、軸方向に沿って交互に配設される山部12と谷部13とを有する蛇腹部14とを備える。山部12と谷部13とは傾斜部15にて連結されている。   The constant velocity universal joint boot 1 is attached to the large diameter portion 10 attached to the open end of the outer joint member (outer ring 4) of the constant velocity universal joint 2 and the inner joint member (inner ring 6) of the constant velocity universal joint 2. A small-diameter portion 11 to be attached to the connected shaft 9, and a ridge portion 12 and a valley portion 13 that are provided between the large-diameter portion 10 and the small-diameter portion 11 and are alternately arranged along the axial direction. And a bellows portion 14. The mountain part 12 and the valley part 13 are connected by an inclined part 15.

外輪4の開口部側の外周面に周方向切欠きからなるブーツ取付部16が設けられ、このブーツ取付部16に大径部10が外嵌される。そして、大径部10の外周面に形成された嵌合溝17にブーツバンド18を嵌着することによって、大径部10を外輪4に固定している。   A boot mounting portion 16 made of a circumferential notch is provided on the outer peripheral surface on the opening side of the outer ring 4, and the large-diameter portion 10 is fitted on the boot mounting portion 16. Then, the large-diameter portion 10 is fixed to the outer ring 4 by fitting the boot band 18 into the fitting groove 17 formed on the outer peripheral surface of the large-diameter portion 10.

シャフト9には、外輪4から所定量突出した位置に、周方向に沿ったブーツ取付用溝20を有するブーツ取付部22が設けられ、小径部11がブーツ取付部22に外嵌される。ブーツ取付用溝20の開口端(軸方向端)に周方向突起部(突起)23、24が設けられている。なお、この周方向突起部23、24は、その外径寸法が同一であって、ブーツ取付部22の外径寸法よりも大きく設定している。また、周方向突起部23、24の外周面23a、24aの幅寸法(軸方向長さ)を同一に設定している。   The shaft 9 is provided with a boot mounting portion 22 having a boot mounting groove 20 along the circumferential direction at a position protruding from the outer ring 4 by a predetermined amount, and the small diameter portion 11 is externally fitted to the boot mounting portion 22. Circumferential protrusions (protrusions) 23 and 24 are provided at the opening end (axial end) of the boot mounting groove 20. The circumferential protrusions 23 and 24 have the same outer diameter and are set to be larger than the outer diameter of the boot mounting portion 22. Moreover, the width dimension (axial direction length) of the outer peripheral surfaces 23a and 24a of the circumferential direction projection parts 23 and 24 is set equally.

ブーツ1の小径部(シャフト固定部)11の内周面には、図2に示すように、環状突部25を2個形成している。すなわち、この環状突部25は、シャフト固定部11の内径面から内径方向へ突出する突部本体27と、この突部本体27の内径端部から内径方向へ突出する微小突起26とで構成されている。前記突部本体27の断面形状は、外径側から内径側に向かって細くなる台形状としている。また、微小突起26の断面形状を、内径側が円弧となる半円形状としている。   As shown in FIG. 2, two annular protrusions 25 are formed on the inner peripheral surface of the small diameter portion (shaft fixing portion) 11 of the boot 1. That is, the annular protrusion 25 includes a protrusion body 27 that protrudes in the inner diameter direction from the inner diameter surface of the shaft fixing portion 11 and a minute protrusion 26 that protrudes in the inner diameter direction from the inner diameter end of the protrusion body 27. ing. The cross-sectional shape of the protrusion main body 27 is a trapezoidal shape that becomes thinner from the outer diameter side toward the inner diameter side. Moreover, the cross-sectional shape of the microprotrusion 26 is a semicircular shape having an arc on the inner diameter side.

この場合、図2や図3に示すように、各環状突部25の突出長さAがブーツ取付用溝20の深さBとほぼ同等に設定されると共に、その2個合わせた幅寸法C(シャフト軸方向長さ)がブーツ取付用溝20の幅寸法E(シャフト軸方向長さ)よりも小さく設定されている。   In this case, as shown in FIGS. 2 and 3, the projecting length A of each annular projecting portion 25 is set substantially equal to the depth B of the boot mounting groove 20, and the combined width dimension C thereof. The (shaft axial length) is set smaller than the width dimension E (shaft axial length) of the boot mounting groove 20.

また、前記環状突部25の本体部27とブーツのシャフト固定部11の内径面とのコーナー部に、偏平膨出部28、28を設けても良い。   Further, flat bulging portions 28 and 28 may be provided at the corner portion between the main body portion 27 of the annular protrusion 25 and the inner diameter surface of the shaft fixing portion 11 of the boot.

そして、ブーツ1の小径部11がブーツ取付部22に外嵌された状態で、バンド装着用溝29にブーツバンド18を装着することによって、小径部11をシャフト9に固定している。この場合、図3に示すように、周方向突起部23、24がブーツ1の小径部11の内周面に食い込むとともに、ブーツ取付用溝20に嵌合している環状突部25がこのブーツ取付用溝20の底面に圧接する。これによって、ブーツ1の小径部11をブーツ取付部22に装着(固定)することができる。   The small-diameter portion 11 is fixed to the shaft 9 by mounting the boot band 18 in the band mounting groove 29 in a state where the small-diameter portion 11 of the boot 1 is externally fitted to the boot mounting portion 22. In this case, as shown in FIG. 3, the circumferential protrusions 23 and 24 bite into the inner peripheral surface of the small-diameter portion 11 of the boot 1, and the annular protrusion 25 fitted in the boot mounting groove 20 includes the boot Press contact with the bottom surface of the mounting groove 20. Accordingly, the small diameter portion 11 of the boot 1 can be mounted (fixed) to the boot mounting portion 22.

このように、本発明のシール構造では、ブーツ1のシャフト固定部11にブーツバンド18を締付けることによって、ブーツ側の環状突部25がシャフト9に押し付けられてシール性を高めることができる。ところで、圧縮永久歪が小さければ、復元力に優れるので、この状態ではシール性に優れるが、圧縮永久歪が大きくなるほど反発力(復元力)が低下してシール性に劣ることになる。このため、高温雰囲気下で使用されて反発力が低下しても、この微小突起26が圧潰することによって、シャフト接触部に対して追従しやすくして密接性を高めて、シール性の低下を防止している。すなわち、熱影響で生じるブーツ1のいわゆる「へたり」によってシール性低下がなく、より強いシール性を有することが可能となる。このように、本発明の等速自在継手用ブーツを高温雰囲気下で使用しても、安定したシール機能を長期に亘って発揮することができる。   Thus, in the seal structure of the present invention, by tightening the boot band 18 to the shaft fixing portion 11 of the boot 1, the annular protrusion 25 on the boot side is pressed against the shaft 9 and the sealing performance can be improved. By the way, if the compression set is small, the restoring force is excellent. Therefore, in this state, the sealing property is excellent. However, as the compression permanent strain increases, the repulsive force (restoring force) decreases and the sealing property is inferior. For this reason, even if it is used in a high-temperature atmosphere and the repulsive force is reduced, the minute protrusions 26 are crushed, thereby making it easier to follow the shaft contact portion and improving the adhesion, thereby reducing the sealing performance. It is preventing. That is, the so-called “sagging” of the boot 1 caused by the heat effect does not cause a decrease in the sealing performance, and it is possible to have a stronger sealing performance. As described above, even when the constant velocity universal joint boot of the present invention is used in a high temperature atmosphere, a stable sealing function can be exhibited over a long period of time.

前記環状突部25の突部本体27の断面形状を、外径側から内径側に向かって細くなる台形状とすることによって、ブーツ装着状態(シャフト圧接状態)での微小突起26からの押圧力を安定して受けることができて、強度的に優れる利点がある。また、微小突起26の断面形状を内径側が円弧となる半円形状とすることによって、ブーツ取付部22に安定した圧接状態を確保できる。しかも、ブーツ取付部22との接触面積を比較的小さくできるため、高い面圧で圧接できて、シール性のさらなる向上を図ることができる。   The cross-sectional shape of the protrusion main body 27 of the annular protrusion 25 is a trapezoidal shape that becomes narrower from the outer diameter side toward the inner diameter side, so that the pressing force from the minute protrusion 26 in the boot mounting state (shaft pressure contact state) Can be stably received, and there is an advantage that it is excellent in strength. In addition, by making the cross-sectional shape of the minute protrusion 26 a semicircular shape having an arc on the inner diameter side, a stable pressure contact state can be secured on the boot mounting portion 22. Moreover, since the contact area with the boot mounting portion 22 can be made relatively small, the contact can be made with a high surface pressure, and the sealing performance can be further improved.

前記シャフト9のブーツ取付部22に一対の周方向突起部23、24を設け、この一対の周方向突起部23、24間のシャフト外径面に前記環状突部25を圧接させている。すなわち、一対の周方向突起部23、24がブーツ1のシャフト固定部11に食い込むとともに、ブーツ側の環状突部25が周方向突起部23、24間においてシャフト外径面に圧接する。これにより、シール効果を一層高めることができる。   A pair of circumferential projections 23, 24 are provided on the boot mounting portion 22 of the shaft 9, and the annular projection 25 is pressed against the outer surface of the shaft between the pair of circumferential projections 23, 24. That is, the pair of circumferential projections 23 and 24 bite into the shaft fixing portion 11 of the boot 1, and the annular projection 25 on the boot side is pressed against the shaft outer diameter surface between the circumferential projections 23 and 24. Thereby, the sealing effect can be further enhanced.

特に、ブーツ材料を熱可塑性エラストマーとしたので、等速自在継手用ブーツ1は疲労性や摩耗性、高速回転性(回転時振れ廻り性)に優れ、ブーツ1としてより一層安定した機能を発揮することができる。しかも、熱による影響が大であるこのような熱可塑性エラストマーを用いても、高温雰囲気下で安定したシール効果を長期に亘って発揮できる。   In particular, since the boot material is made of a thermoplastic elastomer, the constant velocity universal joint boot 1 is excellent in fatigue, wear and high-speed rotation (running performance during rotation), and exhibits a more stable function as the boot 1. be able to. Moreover, even if such a thermoplastic elastomer that is greatly affected by heat is used, a stable sealing effect can be exhibited over a long period of time in a high-temperature atmosphere.

以上、本発明の実施形態につき説明したが、本発明は前記実施形態に限定されることなく種々の変形が可能であって、例えば、環状突部25の数は2個に限るものではなく、1又は3個以上であってもよい。なお、微小突起26の数が多い場合、より優れたシール効果を発揮することができる。また、突部本体27の断面形状としても、三角形、矩形等の種々の形状のものを選択できる。環状突部25を複数個有する場合、すべての環状突部25が同一寸法形状であっても、異なる寸法形状であってもよく、全環状突部25のうち任意に選択した複数個の環状突部25のみを同一寸法形状としてもよい。また、偏平膨出部28を有しないものであってもよい。   As described above, the embodiment of the present invention has been described. However, the present invention is not limited to the above-described embodiment, and various modifications are possible. For example, the number of the annular protrusions 25 is not limited to two. 1 or 3 or more may be sufficient. In addition, when there are many microprotrusions 26, the more excellent sealing effect can be exhibited. Also, as the cross-sectional shape of the protrusion main body 27, various shapes such as a triangle and a rectangle can be selected. When a plurality of annular protrusions 25 are provided, all the annular protrusions 25 may have the same or different dimensions, and a plurality of annular protrusions arbitrarily selected from all the annular protrusions 25 may be used. Only the portion 25 may have the same size and shape. Further, the flat bulging portion 28 may not be provided.

さらに、微小突起26の断面形状としても、半円形状に限定されることなく、多角形であってもよい。すなわち、微小突起26としては、このシール構造が使用される部位の温度下でブーツバンド18にて締付けられた状態で圧潰して、シャフト9との密着(密接)性を高めることができる大きさや形状であればよい。   Further, the cross-sectional shape of the minute protrusions 26 is not limited to a semicircular shape, and may be a polygonal shape. That is, the size of the small protrusion 26 is such that it can be crushed in a state of being tightened by the boot band 18 at the temperature of the part where the seal structure is used, and the close contact (tightness) with the shaft 9 can be improved. Any shape is acceptable.

前記実施形態では、一対の周方向突起部23、24間にブーツ取付用溝20が形成されているが、このようなブーツ取付用溝20を省略してもよい。また、ブーツ取付用溝20を設ける場合、その断面形状を、半円形状、三角形状、台形状、矩形状等の種々のものを採用することができる。   In the embodiment, the boot mounting groove 20 is formed between the pair of circumferential protrusions 23 and 24. However, the boot mounting groove 20 may be omitted. Moreover, when providing the groove | channel 20 for boot attachment, various things, such as a semicircle shape, a triangular shape, trapezoid shape, a rectangular shape, are employable as the cross-sectional shape.

ブーツ材料は、疲労性や摩耗性等の耐久性、耐熱老化性、耐油性等に優れる熱可塑性エラストマーが好ましいが、クロロプレン等のゴム材料であってもよい。   The boot material is preferably a thermoplastic elastomer having excellent durability such as fatigue and wear, heat aging resistance, and oil resistance, but may be a rubber material such as chloroprene.

本発明の実施形態を示すシール構造を使用した等速自在継手の断面図である。It is sectional drawing of the constant velocity universal joint which uses the seal structure which shows embodiment of this invention. 前記等速自在継手用ブーツの要部拡大断面図である。It is a principal part expanded sectional view of the said boot for constant velocity universal joints. 前記等速自在継手のシール構造の拡大断面図である。It is an expanded sectional view of the seal structure of the constant velocity universal joint. 従来のシール構造を使用した等速自在継手の断面図である。It is sectional drawing of the constant velocity universal joint using the conventional seal structure. 従来の等速自在継手のシール構造の拡大断面図である。It is an expanded sectional view of the seal structure of the conventional constant velocity universal joint. 他の従来の等速自在継手のシール構造の拡大断面図である。It is an expanded sectional view of the seal structure of another conventional constant velocity universal joint.

符号の説明Explanation of symbols

1 等速自在継手用ブーツ
6 内輪
9 シャフト
11 小径部
18 ブーツバンド
23 周方向突起部
24 周方向突起部
25 環状突部
26 微小突起
27 突部本体
1 boot for constant velocity universal joint 6 inner ring 9 shaft 11 small diameter portion 18 boot band 23 circumferential projection 24 circumferential projection 25 annular projection 26 minute projection 27 projection main body

Claims (5)

等速自在継手の内側継手部材に連結されたシャフトと、このシャフトに外嵌される等速自在継手用ブーツとの間のシール構造において、
ブーツバンドを締付けるブーツのシャフト固定部に、シャフトに圧接する環状突部を少なくとも1個設けるとともに、この環状突部を前記シャフト固定部の内径面から内径方向へ突出する突部本体と、この突部本体の内径端部から内径方向へ突出してシャフト密接状態で圧潰する微小突起とで構成したことを特徴とするシール構造。
In the seal structure between the shaft connected to the inner joint member of the constant velocity universal joint and the boot for the constant velocity universal joint fitted on the shaft,
The shaft fixing portion of the boot for fastening the boot band is provided with at least one annular protrusion pressed against the shaft, and the annular protrusion protrudes in the inner diameter direction from the inner diameter surface of the shaft fixing portion, and the protrusion A seal structure characterized in that it is composed of minute protrusions that protrude in the inner diameter direction from the inner diameter end of the main body and are crushed in a shaft-tight state.
前記環状突部の突部本体の断面形状を、外径側から内径側に向かって細くなる台形状としたことを特徴とする請求項1のシール構造。   The seal structure according to claim 1, wherein a cross-sectional shape of the projecting portion main body of the annular projecting portion is a trapezoidal shape that narrows from the outer diameter side toward the inner diameter side. 前記環状突部の微小突起の断面形状を、内径側が円弧となる半円形状としたことを特徴とする請求項1又は請求項2のシール構造。   The seal structure according to claim 1 or 2, wherein a cross-sectional shape of the minute protrusion of the annular protrusion is a semicircular shape having an arc on the inner diameter side. 前記シャフトのブーツ取付部に一対の周方向突起部を設け、この一対の周方向突起部間のシャフト外径面に前記環状突部を圧接させたことを特徴とする請求項1〜請求項3のいずれかのシール構造。   4. A pair of circumferential projections are provided on the boot mounting portion of the shaft, and the annular projection is pressed against an outer diameter surface of the shaft between the pair of circumferential projections. Either seal structure. 前記等速自在継手用ブーツのブーツ材料が熱可塑性エラストマーからなることを特徴とする請求項1〜請求項4のいずれかのシール構造。   The seal structure according to any one of claims 1 to 4, wherein a boot material of the constant velocity universal joint boot is made of a thermoplastic elastomer.
JP2006200330A 2006-07-24 2006-07-24 Sealing structure Withdrawn JP2008025751A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006200330A JP2008025751A (en) 2006-07-24 2006-07-24 Sealing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006200330A JP2008025751A (en) 2006-07-24 2006-07-24 Sealing structure

Publications (1)

Publication Number Publication Date
JP2008025751A true JP2008025751A (en) 2008-02-07

Family

ID=39116580

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006200330A Withdrawn JP2008025751A (en) 2006-07-24 2006-07-24 Sealing structure

Country Status (1)

Country Link
JP (1) JP2008025751A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221199A (en) * 2009-03-25 2010-10-07 Fuji Xerox Co Ltd Method of applying liquid material, seal structure and cleaning device
CN109780176A (en) * 2019-03-14 2019-05-21 重庆青山工业有限责任公司 The worm gear shaft modular construction of automotive speed sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010221199A (en) * 2009-03-25 2010-10-07 Fuji Xerox Co Ltd Method of applying liquid material, seal structure and cleaning device
CN109780176A (en) * 2019-03-14 2019-05-21 重庆青山工业有限责任公司 The worm gear shaft modular construction of automotive speed sensor
CN109780176B (en) * 2019-03-14 2023-09-26 重庆青山工业有限责任公司 Worm wheel shaft assembly structure of automobile speed sensor

Similar Documents

Publication Publication Date Title
JPWO2007049429A1 (en) Universal joint boots
JP2009068510A (en) Constant velocity universal joint
JP6517042B2 (en) Constant velocity universal joint
JP2008025751A (en) Sealing structure
JP4657897B2 (en) Seal structure
WO2013058059A1 (en) Constant velocity universal joint
JP5534733B2 (en) Universal joint boots
JP2007211927A (en) Boots for constant velocity universal joint
JP2007146960A (en) Sealing structure
JP2007232043A (en) Boot mounting structure
JP4975341B2 (en) Mounting structure for constant velocity universal joint boots
JP5763707B2 (en) Constant velocity joint boots
JP4932355B2 (en) Mounting structure for constant velocity universal joint boots
JP2007232144A (en) Shaft for constant velocity universal joint
JP2007155003A (en) Constant velocity universal joint boot
JP2008045675A (en) Boot mounting structure of constant velocity universal joint
JP2007232044A (en) Boot mounting structure
JP2007078148A (en) Boot for constant velocity universal joint
JP4932345B2 (en) Mounting structure for constant velocity universal joint boots
JP2009180372A (en) Constant velocity universal joint boot
JP2008025742A (en) Mounting structure for constant velocity universal joint boot
EP2758685B1 (en) External rolling diaphragm overmoulded high speed constant velocity joint boot
JP2010048354A (en) Sealing device for universal joint
JP5183960B2 (en) Constant velocity universal boots
JP2009270628A (en) Constant velocity universal joint boot, and constant velocity universal joint

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006