JP2008025713A - Damper device - Google Patents

Damper device Download PDF

Info

Publication number
JP2008025713A
JP2008025713A JP2006198723A JP2006198723A JP2008025713A JP 2008025713 A JP2008025713 A JP 2008025713A JP 2006198723 A JP2006198723 A JP 2006198723A JP 2006198723 A JP2006198723 A JP 2006198723A JP 2008025713 A JP2008025713 A JP 2008025713A
Authority
JP
Japan
Prior art keywords
pressure chamber
piston
damper device
valve body
working liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006198723A
Other languages
Japanese (ja)
Other versions
JP4969170B2 (en
Inventor
Shinkichi Kanaga
信吉 賀長
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Latex Co Ltd
Original Assignee
Fuji Latex Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Latex Co Ltd filed Critical Fuji Latex Co Ltd
Priority to JP2006198723A priority Critical patent/JP4969170B2/en
Publication of JP2008025713A publication Critical patent/JP2008025713A/en
Application granted granted Critical
Publication of JP4969170B2 publication Critical patent/JP4969170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fluid-Damping Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a predetermined damper effect according to change in temperature environment. <P>SOLUTION: The damper device has a cylinder 30 for forming a fluid chamber 31 by enclosing operating fluid Q, a piston 10 movably provided for separating the fluid chamber 31 into a pressure chamber 50 side and a non-pressure chamber 60 side. The piston 10 is equipped with a distribution passage 11 for allowing distribution of the operating fluid Q between the pressure chamber 50 side and the non-pressure chamber 60 side and a valve element 20 capable of opening and closing the distribution passage 11 by deflecting. In the damper device, the valve element 20 is provided at the pressure chamber 50 side and formed of a material of which elastic factor changes according to temperature change. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、温度環境の変化に対応して所定のダンパー効果を得ることができるダンパー装置に関する。   The present invention relates to a damper device capable of obtaining a predetermined damper effect corresponding to a change in temperature environment.

従来のダンパー装置は、特許文献1に示されているように、ピストンに凸設されたガイドバーに弁体を摺動可能に挿入し、この弁体の移動によって、圧力室側と非圧力室側とを連通する作動液体の流通路を開閉するように構成されている。   In the conventional damper device, as shown in Patent Document 1, a valve body is slidably inserted into a guide bar projecting from a piston, and the pressure chamber side and the non-pressure chamber are moved by the movement of the valve body. The flow path of the working liquid communicating with the side is opened and closed.

しかしこのダンパー装置は、使用される温度環境の変化に起因して作動液体の粘性が変動するため、設定温度の許容範囲以内であれば正常に作動するが、温度環境が設定温度の許容範囲を超えて高くなったり低くなると、所定のダンパ−効果を得ることができない恐れがあるという問題があった。   However, this damper device operates normally within the allowable range of the set temperature because the viscosity of the working fluid fluctuates due to changes in the temperature environment used, but the temperature environment does not exceed the allowable range of the set temperature. If it is too high or low, there is a problem that a predetermined damper effect may not be obtained.

特開2000−265738号公報JP 2000-265738 A

解決しようとする問題点は、使用される温度環境の変化に自動的に対応して所定のダンパー効果を得ることができないという点である。   The problem to be solved is that a predetermined damper effect cannot be obtained automatically in response to changes in the temperature environment used.

本発明は、温度環境の変化に自動的に対応するため、作動液体を封入して液体室を形成するシリンダと、前記液体室内を圧力室側と非圧力室側とに区画し移動可能に配置されたピストンと、前記ピストンは前記圧力室側及び非圧力室側間の作動液体の流通を許容する流通路を有すると共に撓むことで前記流通路を開閉可能な弁体を備えたダンパー装置において、前記弁体を、前記圧力室側に設けると共に該弁体を温度変化に応じて弾性係数が変化する材料で形成したことを特徴とするダンパー装置。   In order to automatically cope with a change in temperature environment, the present invention automatically disposes a cylinder that encloses a working liquid to form a liquid chamber, and divides the liquid chamber into a pressure chamber side and a non-pressure chamber side so as to be movable. And a damper device having a valve body capable of opening and closing the flow passage by being bent and having a flow passage allowing the working liquid to flow between the pressure chamber side and the non-pressure chamber side. The damper device is characterized in that the valve body is provided on the pressure chamber side and the valve body is formed of a material whose elastic coefficient changes according to a temperature change.

本発明のダンパー装置は、作動液体を封入して液体室を形成するシリンダと、前記液体室内を圧力室側と非圧力室側とに区画し移動可能に配置されたピストンと、前記ピストンは前記圧力室側及び非圧力室側間の作動液体の流通を許容する流通路を有すると共に撓むことで前記流通路を開閉可能な弁体を備えたダンパー装置において、前記弁体を、前記圧力室側に設けると共に該弁体を温度変化に応じて弾性係数が変化する材料で形成したから、使用される温度環境の変化に自動的に対応して所定のダンパー効果を確実に得ることができる。従って、低温から高温まで温度依存性が少なく、ダンパー性能を一定化することができる。   The damper device according to the present invention includes a cylinder that encloses a working liquid to form a liquid chamber, a piston that is movably arranged to partition the liquid chamber into a pressure chamber side and a non-pressure chamber side, and the piston includes the piston In a damper device having a flow passage that allows flow of the working liquid between the pressure chamber side and the non-pressure chamber side and is capable of opening and closing the flow passage by being bent, the valve body includes the pressure chamber. Since the valve body is formed of a material having an elastic coefficient that changes in response to a temperature change, a predetermined damper effect can be reliably obtained by automatically responding to a change in the temperature environment to be used. Therefore, there is little temperature dependency from low temperature to high temperature, and the damper performance can be made constant.

弁体を圧力室側に設けると共にこの弁体を温度変化に応じて弾性係数が変化する材料で形成することにより実現した。   This was realized by providing the valve body on the pressure chamber side and forming the valve body from a material whose elastic coefficient changes according to the temperature change.

図は、本発明の実施例1に係るダンパー装置で、図1は正面視断面説明図、図2は同上要部を示す正面視断面拡大説明図である。   FIG. 1 is a front sectional view illustrating a damper device according to a first embodiment of the present invention, and FIG. 2 is a front sectional enlarged explanatory view showing the main part of the same.

図1のように、この実施例1からなるダンパー装置E1は、ピストン10と弁体20とシリンダ30とを備えている。   As shown in FIG. 1, the damper device E <b> 1 according to the first embodiment includes a piston 10, a valve body 20, and a cylinder 30.

シリンダ30は、シリコンオイル等の粘性を有する作動液体Qを封入して液体室31が形成されており、この液体室31内を圧力室50側と非圧力室60側とに区画するよう、ピストン10がピストン・ロッド17を介して移動可能に挿入されている。   The cylinder 30 is filled with a working fluid Q having a viscosity such as silicon oil to form a liquid chamber 31, and a piston is formed so as to partition the liquid chamber 31 into a pressure chamber 50 side and a non-pressure chamber 60 side. 10 is inserted through a piston rod 17 so as to be movable.

ピストン10には、圧力室50側及び非圧力室60側間の作動液体Qの流通を許容する流通路11が、ピストン10を軸方向に貫通して左右2本設けられており、このピストン10の圧力室50側端面12には、ピストン10の中央部から外周縁に向かう円錐状の傾斜面からなるバルブシート13が形成されている。   The piston 10 is provided with two right and left flow passages 11 that allow the working liquid Q to flow between the pressure chamber 50 side and the non-pressure chamber 60 side, penetrating the piston 10 in the axial direction. The pressure seat 50 side end surface 12 is formed with a valve seat 13 having a conical inclined surface from the central portion of the piston 10 toward the outer peripheral edge.

前記弁体20は、ゴムやプラスチック等弾性体により成形され、ピストン10の圧力室50側に凸設されたガイドバー10aに、軸方向移動可能に設けられている。 特にこの実施例において前記弁体20は、温度変化に応じて弾性係数が変化する材料で形成されている。すなわち、弁体20の常温での弾性係数を、所定のダンパー効果が得られるように設定しておけば、温度が上昇すると、上昇した温度に対応して弾性係数が低下し、弁体20が常温の時と比較して撓み易くなり、温度が下降すると、下降した温度に対応して弾性係数が上昇し、弁体20が常温の時と比較して撓みにくくなる。   The valve body 20 is formed of an elastic body such as rubber or plastic, and is provided on a guide bar 10a protruding from the piston 10 on the pressure chamber 50 side so as to be movable in the axial direction. In particular, in this embodiment, the valve body 20 is made of a material whose elastic coefficient changes according to a temperature change. That is, if the elastic modulus at normal temperature of the valve body 20 is set so that a predetermined damper effect can be obtained, when the temperature increases, the elastic coefficient decreases corresponding to the increased temperature, and the valve body 20 It becomes easier to bend as compared to the normal temperature, and when the temperature is lowered, the elastic modulus increases corresponding to the lowered temperature, and the valve body 20 is less likely to bend than the normal temperature.

一方、作動液体Qの粘度は、常温での粘度と比較して、温度が上昇すると低くなって流動性は向上し、温度が下降すると高くなって流動性は低下する。   On the other hand, the viscosity of the working liquid Q becomes lower as the temperature rises and the fluidity improves as the temperature rises, and the viscosity becomes higher and the fluidity lowers as the temperature falls.

従って、常温時においてピストン10を圧力室50側に移動すると、弁体20が作動液体Qの圧力により非圧力室60側に撓み、各流通路11を閉鎖し所定のダンパー効果を得ることができるように、ピストン10の前記傾斜面からなるバルブシート13を設定すると共に、弁体20の前記弾性係数を設定しておけば、
温度が上昇すると、温度上昇に対応して作動液体Qの粘度は、常温での粘度と比較して低下し流動性は向上して粘性抵抗は低下するが、上述したように、弁体20が常温の時と比較して撓み易くなり、常温時と同等のダンパー効果を得ることができる。つまり、温度が上昇すると、作動液体Qは流動性が向上し粘性抵抗が低下して常温時と比較してダンパー効果は低下するが、弁体20が常温時と比較して撓み易くなり、常温時よりも迅速にピストン10の傾斜面からなるバルブシート13に形成されている作動液体Qの流通路11を閉鎖するので、常温時と同等のダンパー効果を得ることができるように、作動液体Qの流量を微調整することができる。
Therefore, when the piston 10 is moved to the pressure chamber 50 side at normal temperature, the valve body 20 is bent to the non-pressure chamber 60 side by the pressure of the working liquid Q, and each flow passage 11 is closed to obtain a predetermined damper effect. As described above, if the valve seat 13 made of the inclined surface of the piston 10 is set and the elastic coefficient of the valve body 20 is set,
When the temperature rises, the viscosity of the working liquid Q decreases as compared with the viscosity at normal temperature and the fluidity improves and the viscosity resistance decreases corresponding to the temperature rise. It becomes easy to bend compared with the time of normal temperature, and the damper effect equivalent to the time of normal temperature can be acquired. That is, when the temperature rises, the working liquid Q is improved in fluidity and the viscous resistance is lowered, and the damper effect is lowered as compared with that at normal temperature. However, the valve body 20 is more easily bent than at normal temperature. Since the flow path 11 of the working liquid Q formed in the valve seat 13 formed of the inclined surface of the piston 10 is closed more quickly than the time, the working liquid Q can be obtained so that a damper effect equivalent to that at normal temperature can be obtained. Can be finely adjusted.

温度が下降すると、温度下降に対応して作動液体Qの粘度は、常温での粘度と比較して上昇し流動性は低下して粘性抵抗は向上するが、上述したように、弁体20が常温の時と比較して撓みにくくなり、常温時と同等のダンパー効果を得ることができる。つまり、温度が下降すると、作動液体Qは流動性が低下し粘性抵抗が上昇して常温時と比較してダンパー効果は向上するが、弁体20が常温時と比較して撓みにくくなり、常温時よりもゆっくりとピストン10の傾斜面13に形成されている作動液体Qの流通路11を閉鎖していくので、常温時と同等のダンパー効果を得ることができるように、作動液体Qの流量を微調整することができる。   When the temperature decreases, the viscosity of the working liquid Q increases in comparison with the viscosity at normal temperature and the fluidity decreases and the viscosity resistance increases corresponding to the temperature decrease. It becomes difficult to bend compared with the case of normal temperature, and the damper effect equivalent to the normal temperature can be obtained. That is, when the temperature is lowered, the working liquid Q is decreased in fluidity and viscosity resistance is increased, and the damper effect is improved as compared with that at normal temperature. Since the flow path 11 of the working liquid Q formed on the inclined surface 13 of the piston 10 is closed more slowly than the time, the flow rate of the working liquid Q can be obtained so that a damper effect equivalent to that at normal temperature can be obtained. Can be fine-tuned.

上述したように、この実施例では作動液体Qの温度変化に対応し温度環境の変化に自動的に対応して所定のダンパー効果を確実に得ることができる。従って、低温から高温まで温度依存性が少なく、ダンパー性能を一定化することができる。   As described above, in this embodiment, a predetermined damper effect can be reliably obtained in response to a change in temperature of the working liquid Q and automatically in response to a change in temperature environment. Therefore, there is little temperature dependency from low temperature to high temperature, and the damper performance can be made constant.

なお、前記ピストン10の前記傾斜面13の斜度θは、前記作動液体Qの温度が変化しても、弁体20の前述した機能と相俟ってほぼ一定のダンパー効果を得ることができるよう形成されており、弁体20は、作動液体Qの圧力が作用しない時は、温度の変化に左右されることなく常時平板状すなわちフラットな形状に復元し、フラットな形状を保持できるようにしてある。   In addition, the inclination θ of the inclined surface 13 of the piston 10 can obtain a substantially constant damper effect in combination with the above-described function of the valve body 20 even when the temperature of the working liquid Q changes. When the pressure of the working liquid Q does not act, the valve body 20 is always restored to a flat plate shape, that is, a flat shape without being affected by a change in temperature, so that the flat shape can be maintained. It is.

この実施例においては、−25°C〜70°Cまで前記フラット特性を有する材料で弁体20が成形されている。   In this embodiment, the valve body 20 is formed of a material having the above-described flat characteristics from −25 ° C. to 70 ° C.

また、ピストン10を非圧力室60側に移動すると、非圧力室60内の作動液体Qが流通路11を通過して圧力室50側に移動し、この移動圧力で弁体20を圧力室50側に押し開き、非圧力室60内の作動液体Qが流通路11を通過して圧力室50側に移動しピストン10を容易に元の状態に復帰することができる。   When the piston 10 is moved to the non-pressure chamber 60 side, the working liquid Q in the non-pressure chamber 60 passes through the flow passage 11 and moves to the pressure chamber 50 side, and the valve body 20 is moved to the pressure chamber 50 by this moving pressure. The working liquid Q in the non-pressure chamber 60 moves to the pressure chamber 50 side through the flow passage 11 and can easily return the piston 10 to the original state.

前記シリンダ30の非圧力室60内には、この非圧力室60内の圧力変動に対応して弾性変形する弾性膜40が配置されている。 この弾性膜40は、メンブレンと称されているゴム膜で構成され、前記シリンダ30内に挿入されたガイド32に、図示したように取り付けられ、その弾性変形により非圧力室60と圧力室50との間の作動液体Qの流通を良好化し、ダンパー装置E1の性能向上に貢献している。   In the non-pressure chamber 60 of the cylinder 30, an elastic film 40 that is elastically deformed corresponding to the pressure fluctuation in the non-pressure chamber 60 is disposed. The elastic film 40 is made of a rubber film called a membrane, and is attached to a guide 32 inserted into the cylinder 30 as shown in the figure. Due to its elastic deformation, the non-pressure chamber 60, the pressure chamber 50, Has improved the flow of the working liquid Q between the two and contributes to the improvement of the performance of the damper device E1.

また、シリンダ30の前記弾性膜40を収納した部分には、図示したように通気口33が設けられている。従って、弾性膜40の周囲を大気圧化でき、一層前記弾性膜40の効果を助長することができる。   In addition, a vent 33 is provided in the portion of the cylinder 30 that houses the elastic film 40 as shown in the figure. Therefore, the pressure around the elastic film 40 can be increased to atmospheric pressure, and the effect of the elastic film 40 can be further promoted.

なお、図において34はキャップで、中央部に前記ピストン・ロッド17の挿通孔34aが設けられており、前記シリンダ30の開放端30aに、この開放端30aを閉鎖するように取り付けられている。   In the figure, reference numeral 34 denotes a cap, which is provided with an insertion hole 34a for the piston rod 17 in the center, and is attached to the open end 30a of the cylinder 30 so as to close the open end 30a.

前記ガイド32は、正面視断面形状が略倒H状に形成されており、前記シリンダ30の開放端30a側に形成された収容段部30b内に嵌装されている。そして、このガイド32の中心部に軸方向に設けられた挿通孔32aには、前記ピストン・ロッド17が摺動自在に挿通され、さらに、前記キャップ34側に設けられた周溝32b内にはパッキン35が収容され、前記シリンダ30内の作動液体Qがピストン・ロッド17の周囲から機外に漏洩するのを阻止できるようにしてある。   The guide 32 is formed in a substantially inverted H shape in front sectional view, and is fitted in an accommodation step portion 30 b formed on the open end 30 a side of the cylinder 30. The piston rod 17 is slidably inserted into an insertion hole 32a provided in the axial direction at the center of the guide 32, and is further inserted into a circumferential groove 32b provided on the cap 34 side. A packing 35 is accommodated so that the working liquid Q in the cylinder 30 can be prevented from leaking from the periphery of the piston rod 17 to the outside of the machine.

また、前記ガイド32の中央部に軸方向に形成された周状凹部32c内には、前記弾性膜40が収容され、この弾性膜40の左右の周状端部41及び42は、前記ガイド32の左右のフランジ部32d及び32eの周囲に設けられた凹溝32f及び32g内に固定されており、弾性膜40の内側周に形成される空間32hは、右側フランジ部32eに形成された連通孔32jによって前記非圧力室60と連通し、弾性膜40の外側周とシリンダ30の内側周との間に形成された空間32kは、前記通気口33によって外気と連通している。   The elastic film 40 is accommodated in a circumferential recess 32c formed in the axial direction at the center of the guide 32. The left and right circumferential ends 41 and 42 of the elastic film 40 are connected to the guide 32. The left and right flange portions 32d and 32e are fixed in recessed grooves 32f and 32g, and the space 32h formed on the inner periphery of the elastic membrane 40 is a communication hole formed in the right flange portion 32e. A space 32k formed between the outer circumference of the elastic membrane 40 and the inner circumference of the cylinder 30 communicates with the outside air through the vent hole 33.

ピストン・ロッド17に制御対象物から入力があると、ピストン・ロッド17からピストン10に力が伝達され、ピストン10が圧力室50側に移動する。   When there is an input from the control object to the piston rod 17, the force is transmitted from the piston rod 17 to the piston 10, and the piston 10 moves to the pressure chamber 50 side.

すると、前記弁体20が作動液体Qの圧力により非圧力室60側に撓み、各流通路11を閉鎖し、動圧抵抗によりピストン10に抗力が付与されてその動きが制限され、入力された衝撃が緩和される。   Then, the valve body 20 is deflected to the non-pressure chamber 60 side by the pressure of the working liquid Q, each flow passage 11 is closed, a drag is applied to the piston 10 by the dynamic pressure resistance, and the movement is limited and input. Impact is alleviated.

ピストン・ロッド17に対する制御対象物からの入力が無くなると共に、ピストン10を非圧力室60側に移動すると、非圧力室60内の作動液体Qが流通路11を通過して圧力室50側に移動し、この移動圧力で弁体20を圧力室50側に押し開き、非圧力室60内の作動液体Qが流通路11を通過して圧力室50側に移動しピストン10を容易に元の状態に復帰する。   When there is no input from the controlled object to the piston rod 17 and the piston 10 is moved to the non-pressure chamber 60 side, the working liquid Q in the non-pressure chamber 60 passes through the flow passage 11 and moves to the pressure chamber 50 side. Then, with this moving pressure, the valve body 20 is pushed open to the pressure chamber 50 side, the working liquid Q in the non-pressure chamber 60 passes through the flow passage 11 and moves to the pressure chamber 50 side, and the piston 10 is easily moved to the original state. Return to.

図3は本発明の実施例2に係るダンパー装置E2の要部を示す正面視断面拡大説明図である。   FIG. 3 is a front sectional enlarged explanatory view showing a main part of the damper device E2 according to the second embodiment of the present invention.

この実施例2に係るダンパー装置E2も主たる構成及び効果は、前述した実施例1のダンパー装置E1と略同一であるので、本実施例2の特徴とする構成と、その奏する効果のみ説明する。
前記実施例1において、ピストン10の圧力室50側端面12には、ピストン10の中央部から外周縁に向かう円錐状の傾斜面からなるバルブシート13が形成されているが、この実施例2では、段付き傾斜面からなるバルブシート14が形成されている。この段付き傾斜面からなるバルブシート14は、ピストン10の中央部側に傾斜角度θaの第1傾斜面14aと、この第1傾斜面14aの外周側に連続して形成された傾斜角度θbの第2傾斜面14bとから構成されている。
Since the main structure and effect of the damper device E2 according to the second embodiment are substantially the same as those of the damper device E1 of the first embodiment described above, only the structure that is characteristic of the second embodiment and the effects thereof will be described.
In the first embodiment, the pressure seat 50 side end surface 12 of the piston 10 is formed with a valve seat 13 having a conical inclined surface from the central portion of the piston 10 toward the outer peripheral edge. A valve seat 14 having a stepped inclined surface is formed. The valve seat 14 composed of this stepped inclined surface has a first inclined surface 14a having an inclination angle θa on the central portion side of the piston 10 and an inclination angle θb formed continuously on the outer peripheral side of the first inclined surface 14a. It is comprised from the 2nd inclined surface 14b.

この実施例2では、傾斜角度θa<傾斜角度θbに設定してあり、第1傾斜面14aと第2傾斜面14bとの境界周縁は前記各流通路11の開口部中心付近に位置させてある。従って、ピストン10を圧力室50側に移動すると、弁体20が作動液体Qの圧力により非圧力室60側に撓み、まず傾斜角度θaが小さい第1傾斜面14aに、弁体20の一部が当接し各流通路11のピストン10の中央側を閉鎖し、閉鎖した面積に対応したダンパー効果を得ることができ、さらにピストン10の圧力室50側への移動が加速され、作動液体Qの圧力が上昇すると、弁体20がさらに撓み、傾斜角度θbが大きい第2傾斜面14bに当接し、各流通路11全体を閉鎖して大きなダンパー効果を得ることができるように、作動液体Qの流量を微調整することができる。   In the second embodiment, the inclination angle θa <the inclination angle θb is set, and the boundary edge between the first inclined surface 14a and the second inclined surface 14b is positioned in the vicinity of the center of the opening of each flow passage 11. . Accordingly, when the piston 10 is moved to the pressure chamber 50 side, the valve body 20 is deflected to the non-pressure chamber 60 side by the pressure of the working liquid Q, and first, a part of the valve body 20 is formed on the first inclined surface 14a having a small inclination angle θa. Is brought into contact with each other to close the central side of the piston 10 of each flow passage 11, and a damper effect corresponding to the closed area can be obtained. Further, the movement of the piston 10 toward the pressure chamber 50 is accelerated, and the working liquid Q When the pressure rises, the valve body 20 further bends, comes into contact with the second inclined surface 14b having a large inclination angle θb, and closes each of the flow passages 11 to obtain a large damper effect. The flow rate can be finely adjusted.

このようにピストン10の圧力室50側端面12に段付き傾斜面からなるバルブシート14を形成すると、ピストン10の圧力室50側への移動に起因する圧力室50内の圧力上昇値が小さい場合でも、敏感に反応して適切なダンパー効果を得ることができ、圧力上昇値が大きい場合でも、適切なダンパー効果を得ることができる。   Thus, when the valve seat 14 which consists of a stepped inclined surface is formed in the pressure chamber 50 side end surface 12 of the piston 10, when the pressure rise value in the pressure chamber 50 resulting from the movement to the pressure chamber 50 side of the piston 10 is small However, an appropriate damper effect can be obtained by reacting sensitively, and an appropriate damper effect can be obtained even when the pressure increase value is large.

図4は本発明の実施例3に係るダンパー装置E3の要部を示す正面視断面拡大説明図である。   FIG. 4 is a front cross-sectional enlarged explanatory view showing a main part of a damper device E3 according to Embodiment 3 of the present invention.

この実施例3に係るダンパー装置E3も主たる構成及び効果は、前述した実施例1のダンパー装置E1と略同一であるので、本実施例3の特徴とする構成と、その奏する効果のみ説明する。
実施例3において、ピストン10の圧力室50側端面12には、ピストン10の中央部から外周縁に向かう湾曲面からなる傾斜面を有するバルブシート15が形成されている。
Since the main configuration and effect of the damper device E3 according to the third embodiment are substantially the same as those of the damper device E1 of the first embodiment described above, only the configuration characteristic of the third embodiment and the effects achieved by the third embodiment will be described.
In the third embodiment, a valve seat 15 having an inclined surface composed of a curved surface from the central portion of the piston 10 toward the outer peripheral edge is formed on the end surface 12 of the piston 10 on the pressure chamber 50 side.

この実施例3では、湾曲面からなる傾斜面を有するバルブシート15が形成されていので、結局ピストン10の中央部付近の傾斜角度は小さくなり、外周側に至るに従って傾斜角度を大きくできることになる。   In the third embodiment, since the valve seat 15 having an inclined surface made of a curved surface is formed, the inclination angle near the central portion of the piston 10 is eventually reduced, and the inclination angle can be increased toward the outer peripheral side.

従って、ピストン10を圧力室50側に移動すると、弁体20が作動液体Qの圧力により非圧力室60側に撓み、まず傾斜角度が小さい中央部付近に、弁体20の一部が当接し各流通路11のピストン10の中央側を閉鎖し、閉鎖した面積に対応したダンパー効果を得ることができ、さらにピストン10の圧力室50側への移動が加速され、作動液体Qの圧力が上昇すると、弁体20がさらに撓み、傾斜角度が大きい外周側に当接し、各流通路11全体を閉鎖して大きなダンパー効果を得ることができるように、作動液体Qの流量を微調整することができる。   Therefore, when the piston 10 is moved to the pressure chamber 50 side, the valve body 20 is deflected to the non-pressure chamber 60 side by the pressure of the working liquid Q, and first, a part of the valve body 20 comes into contact with the central portion having a small inclination angle. The center side of the piston 10 in each flow passage 11 is closed, and a damper effect corresponding to the closed area can be obtained. Further, the movement of the piston 10 toward the pressure chamber 50 is accelerated, and the pressure of the working liquid Q increases. Then, the flow rate of the working liquid Q can be finely adjusted so that the valve body 20 is further bent, abuts against the outer peripheral side having a large inclination angle, and each flow passage 11 is closed to obtain a large damper effect. it can.

このようにピストン10の圧力室50側端面12に湾曲面からなる傾斜面を有するバルブシート15を形成すると、ピストン10の圧力室50側への移動に起因する圧力室50内の圧力上昇値が小さい場合でも、敏感に反応して適切なダンパー効果を得ることができ、圧力上昇値が大きい場合でも、適切なダンパー効果を得ることができる。   When the valve seat 15 having the inclined surface formed of the curved surface is formed on the pressure chamber 50 side end surface 12 of the piston 10 in this way, the pressure increase value in the pressure chamber 50 due to the movement of the piston 10 toward the pressure chamber 50 is increased. Even when the pressure is small, it can react sensitively to obtain an appropriate damper effect, and even when the pressure increase value is large, an appropriate damper effect can be obtained.

図5は本発明の実施例4に係るダンパー装置E4の要部を示す正面視断面拡大説明図である。   FIG. 5 is a front cross-sectional enlarged explanatory view showing a main part of a damper device E4 according to Embodiment 4 of the present invention.

この実施例4に係るダンパー装置E4も主たる構成及び効果は、前述した実施例1に係るダンパー装置E1と略同一であるので、本実施例4の特徴とする構成と、その奏する効果のみ説明する。
実施例4では弁体20を複数枚重合して用いている。
(1)同一サイズ、同一性能の弁体
(2)肉厚が異なる弁体
(3)直径が異なる弁体
(4)1〜3の組み合わせから成る弁体
等を必要に応じて選定し複数枚重合して構成されている。
Since the main configuration and effect of the damper device E4 according to the fourth embodiment are substantially the same as those of the damper device E1 according to the first embodiment described above, only the characteristic configuration of the fourth embodiment and the effects achieved by the fourth embodiment will be described. .
In Example 4, a plurality of valve bodies 20 are superposed and used.
(1) Valve body with the same size and performance (2) Valve body with different thickness (3) Valve body with a combination of valve bodies (4) 1-3 with different diameters, etc. It is composed by polymerization.

従って、予め上述したような弁体を多数準備して置き、これらを適宜組み合わせることで、必要な性能のダンパー装置を容易に得ることができる。   Therefore, by preparing a large number of valve bodies as described above and combining them appropriately, a damper device having the required performance can be easily obtained.

例えば、図5に示すようにピストン10側に、直径がAmmで肉厚がTmmの既存の弁体21を配置し、この外側に、前記弁体21よりも小さく直径がAammで肉厚がTtmmの、既存の弁体22を重合して弁体20を構成すると、前記弁体21の肉厚をTmm+Ttmmとした新規製造の弁体と略同等の機能を持つ弁体を得ることができ、弁体を新規に製造する場合と比較して大幅なコストダウンを図ることができる。   For example, as shown in FIG. 5, an existing valve element 21 having a diameter of Amm and a thickness of Tmm is disposed on the piston 10 side, and on the outside thereof, the diameter is smaller than the valve element 21 and the diameter is Aamm and the thickness is Ttmm. When the valve body 20 is formed by superposing the existing valve body 22, a valve body having a function substantially equivalent to that of a newly manufactured valve body in which the thickness of the valve body 21 is Tmm + Ttmm can be obtained. Compared with the case where a body is newly manufactured, a significant cost reduction can be achieved.

図6は本発明の実施例5に係るダンパー装置E5の要部を示す正面視断面拡大説明図である。   FIG. 6 is a front sectional enlarged explanatory view showing a main part of a damper device E5 according to Embodiment 5 of the present invention.

この実施例5に係るダンパー装置E5も主たる構成及び効果は、前述した実施例1に係るダンパー装置E1と略同一であるので、本実施例5の特徴とする構成と、その奏する効果のみ説明する。
この実施例5で、前記ピストン10の圧力室50側端面12には、他の実施例のように傾斜面からなるバルブシートが形成されておらず平坦な面からなるバルブシート16で構成されており、前記弁体20は、平坦なピストン10の圧力室50側に凸設されたガイドバー10aに、スペーサ70を介して軸方向移動可能に設けられている。すなわち、弁体20はスペーサ70の肉厚寸法だけピストン10の平坦面からなるバルブシート16から離間して取り付けられていることになり、前述した他の実施例と同様にピストン10の圧力室50側の面との間に隙間Kが形成されることになる。
Since the main configuration and effect of the damper device E5 according to the fifth embodiment are substantially the same as those of the damper device E1 according to the first embodiment described above, only the characteristic configuration of the fifth embodiment and the effects achieved by the fifth embodiment will be described. .
In the fifth embodiment, the end face 12 on the pressure chamber 50 side of the piston 10 is not formed with a valve seat having an inclined surface as in the other embodiments, but is configured by a valve seat 16 having a flat surface. The valve body 20 is provided on a guide bar 10 a protruding from the flat piston 10 on the pressure chamber 50 side so as to be movable in the axial direction via a spacer 70. That is, the valve body 20 is mounted apart from the valve seat 16 formed of the flat surface of the piston 10 by the thickness of the spacer 70, and the pressure chamber 50 of the piston 10 is the same as in the other embodiments described above. A gap K is formed with the side surface.

従って、ピストン10を圧力室50側に移動すると、弁体20が作動液体Qの圧力により非圧力室60側に撓んで弁体20の一部が当接し各流通路11の一部を閉鎖し、閉鎖した面積に対応したダンパー効果を得ることができ、さらにピストン10の圧力室50側への移動が加速され、作動液体Qの圧力が上昇すると、弁体20がさらに撓んで各流通路11全体を閉鎖して大きなダンパー効果を得ることができるように、作動液体Qの流量を微調整することができる。   Therefore, when the piston 10 is moved to the pressure chamber 50 side, the valve body 20 is deflected to the non-pressure chamber 60 side by the pressure of the working liquid Q, a part of the valve body 20 comes into contact, and a part of each flow passage 11 is closed. A damper effect corresponding to the closed area can be obtained, and when the movement of the piston 10 toward the pressure chamber 50 is accelerated and the pressure of the working liquid Q rises, the valve body 20 is further bent and each flow passage 11 is bent. The flow rate of the working liquid Q can be finely adjusted so that the whole can be closed and a large damper effect can be obtained.

前記スペーサ70の肉厚寸法を適宜選定することで、必要な性能のダンパー装置を容易に得ることができる。   By appropriately selecting the thickness of the spacer 70, a damper device having the required performance can be easily obtained.

本発明の実施例1に係るダンパー装置E1を示す正面視断面説明図である。It is front view cross-section explanatory drawing which shows the damper apparatus E1 which concerns on Example 1 of this invention. 同上要部を示す正面視断面拡大説明図である。It is front view cross-section enlarged explanatory drawing which shows a principal part same as the above. 本発明の実施例2に係るダンパー装置E2の要部を示す正面視断面拡大説明図である。It is front view cross-section enlarged explanatory drawing which shows the principal part of the damper apparatus E2 which concerns on Example 2 of this invention. 本発明の実施例3に係るダンパー装置E3の要部を示す正面視断面拡大説明図である。It is front view cross-section expansion explanatory drawing which shows the principal part of the damper apparatus E3 which concerns on Example 3 of this invention. 本発明の実施例4に係るダンパー装置E4の要部を示す正面視断面拡大説明図である。It is front view cross-section expansion explanatory drawing which shows the principal part of the damper apparatus E4 which concerns on Example 4 of this invention. 本発明の実施例5に係るダンパー装置E5の要部を示す正面視断面拡大説明図である。It is front view cross-section expansion explanatory drawing which shows the principal part of the damper apparatus E5 which concerns on Example 5 of this invention.

符号の説明Explanation of symbols

10 ピストン
11 流通路
12 ピストンの端面
13 傾斜面からなるバルブシート
14 段付き傾斜面からなるバルブシート
15 湾曲面からなるバルブシート
16 平坦面からなるバルブシート
θ 傾斜角
20 弁体
t 弁体の肉厚
D 弁体の直径
30 シリンダ
31 液体室
50 圧力室
60 非圧力室側
Q 作動液体
10 piston
11 Flow passage 12 End face of piston
DESCRIPTION OF SYMBOLS 13 Valve seat which consists of inclined surfaces 14 Valve seat which consists of stepped inclined surfaces 15 Valve seat which consists of curved surfaces 16 Valve seat which consists of flat surfaces θ Inclination angle 20 Valve body
t Valve body thickness D Valve body diameter 30 Cylinder 31 Liquid chamber 50 Pressure chamber 60 Non-pressure chamber side
Q Working liquid

Claims (5)

作動液体を封入して液体室を形成するシリンダと、
前記液体室内を圧力室側と非圧力室側とに区画し移動可能に配置されたピストンと、
前記ピストンは前記圧力室側及び非圧力室側間の作動液体の流通を許容する流通路を有すると共に撓むことで前記流通路を開閉可能な弁体を備えたダンパー装置において、
前記弁体を、前記圧力室側に設けると共に該弁体を温度変化に応じて弾性係数が変化する材料で形成した
ことを特徴とするダンパー装置。
A cylinder for enclosing the working liquid to form a liquid chamber;
A piston that divides the liquid chamber into a pressure chamber side and a non-pressure chamber side and is movably disposed;
In the damper device provided with a valve body capable of opening and closing the flow passage by bending while having a flow passage allowing the working liquid to flow between the pressure chamber side and the non-pressure chamber side,
The damper device is characterized in that the valve body is provided on the pressure chamber side and the valve body is formed of a material whose elastic coefficient changes according to a temperature change.
請求項1記載のダンパー装置であって、
前記ピストンの圧力室側端面に、該ピストンの中央部から外周縁に向かう傾斜面からなるバルブシートを備えたことを特徴とするダンパー装置。
The damper device according to claim 1,
A damper device comprising a valve seat having an inclined surface extending from a central portion of the piston toward an outer peripheral edge on a pressure chamber side end surface of the piston.
請求項2記載のダンパー装置であって、
前記前記ピストンの前記バルブシートは、円錐面又は段付き円錐面あるいわ湾曲面に形成したことを特徴とするダンパー装置。
The damper device according to claim 2, wherein
The damper device according to claim 1, wherein the valve seat of the piston is formed in a conical surface or a stepped conical surface or a so-called curved surface.
請求項1〜3の何れかに記載のダンパー装置であって、
前記弁体は、複数重合したことを特徴とするダンパー装置。
The damper device according to any one of claims 1 to 3,
A damper device in which a plurality of the valve bodies are superposed.
請求項1記載のダンパー装置であって、
前記弁体は、平坦なピストンのバルブシートに対しスペーサを介して設けたことを特徴とするダンパー装置。
The damper device according to claim 1,
The damper device is characterized in that the valve body is provided via a spacer with respect to a flat piston valve seat.
JP2006198723A 2006-07-20 2006-07-20 Damper device Active JP4969170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198723A JP4969170B2 (en) 2006-07-20 2006-07-20 Damper device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198723A JP4969170B2 (en) 2006-07-20 2006-07-20 Damper device

Publications (2)

Publication Number Publication Date
JP2008025713A true JP2008025713A (en) 2008-02-07
JP4969170B2 JP4969170B2 (en) 2012-07-04

Family

ID=39116544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198723A Active JP4969170B2 (en) 2006-07-20 2006-07-20 Damper device

Country Status (1)

Country Link
JP (1) JP4969170B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009270597A (en) * 2008-05-01 2009-11-19 Fuji Latex Kk Damper device
JP2009268517A (en) * 2008-04-30 2009-11-19 Oiles Ind Co Ltd Damper and vehicle seat equipped with the damper
JP2010180966A (en) * 2009-02-06 2010-08-19 Fuji Latex Kk Shock absorber
JP2010216531A (en) * 2009-03-16 2010-09-30 Fuji Latex Kk Shock absorber
WO2012114943A1 (en) * 2011-02-21 2012-08-30 株式会社ニフコ Damper

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148590U (en) * 1974-10-08 1976-04-12
JPS5592944U (en) * 1978-12-21 1980-06-27
JPH0471834U (en) * 1990-10-29 1992-06-25
JPH11190378A (en) * 1997-10-01 1999-07-13 Stabilus Gas spring having temperature compensation capacity
JP2000136840A (en) * 1998-11-02 2000-05-16 Matsushita Electric Ind Co Ltd Damper device
JP2006138330A (en) * 2004-11-10 2006-06-01 Kayaba Ind Co Ltd Hydraulic shock absorber

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5148590U (en) * 1974-10-08 1976-04-12
JPS5592944U (en) * 1978-12-21 1980-06-27
JPH0471834U (en) * 1990-10-29 1992-06-25
JPH11190378A (en) * 1997-10-01 1999-07-13 Stabilus Gas spring having temperature compensation capacity
JP2000136840A (en) * 1998-11-02 2000-05-16 Matsushita Electric Ind Co Ltd Damper device
JP2006138330A (en) * 2004-11-10 2006-06-01 Kayaba Ind Co Ltd Hydraulic shock absorber

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009268517A (en) * 2008-04-30 2009-11-19 Oiles Ind Co Ltd Damper and vehicle seat equipped with the damper
JP2009270597A (en) * 2008-05-01 2009-11-19 Fuji Latex Kk Damper device
JP2010180966A (en) * 2009-02-06 2010-08-19 Fuji Latex Kk Shock absorber
JP2010216531A (en) * 2009-03-16 2010-09-30 Fuji Latex Kk Shock absorber
WO2012114943A1 (en) * 2011-02-21 2012-08-30 株式会社ニフコ Damper
CN103384779A (en) * 2011-02-21 2013-11-06 株式会社利富高 Damper
CN103384779B (en) * 2011-02-21 2015-08-12 株式会社利富高 Buffer

Also Published As

Publication number Publication date
JP4969170B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
JP4969170B2 (en) Damper device
US20190368569A1 (en) Shock absorber
JP6505510B2 (en) Pressure buffer
KR20090131665A (en) Damper device
ITTO20090681A1 (en) PASSIVE FLOW CONTROL VALVE AND SHOCK ABSORBER WITH ADJUSTABLE DAMPING INCLUDING SUCH VALVE
JP2008303927A (en) Piston
US11988265B2 (en) Shock absorber
JP2005188693A (en) Damper
US10626946B2 (en) Damper
JP4884790B2 (en) shock absorber
JP4453000B2 (en) Hydraulic shock absorber
JP2011069424A (en) Damper device
JP5284595B2 (en) Buffer valve structure
JP5281523B2 (en) Valve structure
EP3333446A1 (en) Valve structure for buffer
JP4999712B2 (en) shock absorber
JP5063456B2 (en) Damper device
WO2016013129A1 (en) Piston and damper
JP2010054009A (en) Shock absorber
JP2007107994A (en) Bourdon tube pressure gage
KR101936531B1 (en) Pneumatic brake booster
WO2011021501A1 (en) Damper device
JP6065648B2 (en) Differential pressure valve
JP2009243664A (en) Damper device
JP2008002611A (en) Shock absorber

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120403

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250