JP2008025390A - Fuel injection valve - Google Patents

Fuel injection valve Download PDF

Info

Publication number
JP2008025390A
JP2008025390A JP2006196527A JP2006196527A JP2008025390A JP 2008025390 A JP2008025390 A JP 2008025390A JP 2006196527 A JP2006196527 A JP 2006196527A JP 2006196527 A JP2006196527 A JP 2006196527A JP 2008025390 A JP2008025390 A JP 2008025390A
Authority
JP
Japan
Prior art keywords
valve body
fuel
valve
fuel injection
piston
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006196527A
Other languages
Japanese (ja)
Inventor
Taishin Tani
谷  泰臣
Toru Yoshinaga
融 吉永
Tatsushi Nakajima
樹志 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2006196527A priority Critical patent/JP2008025390A/en
Publication of JP2008025390A publication Critical patent/JP2008025390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Fuel-Injection Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel injection valve simple in structure capable of suppressing the generation of deposit by discharging residual fuel in an injection part. <P>SOLUTION: A housing hole 423 is formed at the tip 425 of a valve element 42, a piston 81 having a predetermined mass and a spring 82 restoring and urging the piston 81 are disposed in the housing hole 423. When a valve seat 421 is located on a valve seat surface 415, in a flattened fuel reservoir chamber 84 formed by a flat face of the tip 425 of the valve element 42 and the flat face of the tip inside 147 of a valve body 41, the piston 81 is projected by inertial force and abutted on the tip inside 417 of the valve body 41, so that the residual fuel in the fuel reservoir chamber 84 is pushed out and the residual fuel in a plurality of inclined injection holes 414 is discharged by the pushed-out residual fuel so as to suppress the generation of deposit in the injection part 414. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は燃料噴射弁の係るもので、更には噴孔部が複数設けられ、且つ、その孔軸線が弁体の移動方向に対して外方に開く所定の角度を有している燃料噴射弁に係るもので、ガソリン直噴エンジンの燃料噴射弁に好適なものである。   The present invention relates to a fuel injection valve, and moreover, a fuel injection valve provided with a plurality of injection hole portions and having a predetermined angle that the hole axis opens outward with respect to the moving direction of the valve body. Therefore, it is suitable for a fuel injection valve of a gasoline direct injection engine.

ガソリン直噴エンジン等に使用される燃料噴射弁においては、その先端部の弁ボディがエンジンの燃焼室内の高温環境に晒される。とりわけ弁ボディに設けられている噴孔部は高温環境に晒されるため、燃料由来の炭化物がデポジットとして噴孔部の内壁に生成することによって、燃料噴射量の低下や噴霧形状の異常を引き起こすことが知られており、この対策が大きな課題となっている。   In a fuel injection valve used in a gasoline direct injection engine or the like, the valve body at the tip of the fuel injection valve is exposed to a high temperature environment in the combustion chamber of the engine. In particular, the nozzle hole provided in the valve body is exposed to a high-temperature environment, and fuel-derived carbides are generated as deposits on the inner wall of the nozzle hole, causing a decrease in fuel injection amount and abnormal spray shape. This measure is a major issue.

そこでこの課題を解決する技術として、下記特許文献1には、燃料の噴射、停止をする第1ニードル弁17の中心内部に第2ニードル弁25を設け、この第2ニードル弁25を噴孔14内に進出させ、噴孔14内の残留燃料を燃焼室4内に流出、除去する構成が記載されている。
特開平11−287169号公報
Therefore, as a technique for solving this problem, in Patent Document 1 below, a second needle valve 25 is provided in the center of the first needle valve 17 for injecting and stopping fuel, and the second needle valve 25 is provided in the injection hole 14. A configuration is described in which the fuel remaining in the injection hole 14 flows out into the combustion chamber 4 and is removed.
Japanese Patent Laid-Open No. 11-287169

しかしながら、上記特許文献1に記載の燃料噴射弁においては、通常噴孔の径は非常に小さく、この径の小さい噴孔に第2ニードル弁25を進出させるためには第2ニードル弁25の径を更に小さくしなければならず、製作上の困難さや組付け精度上の困難さがある。そのため噴孔はその径がある程度の大きさが必要とされる。   However, in the fuel injection valve described in Patent Document 1, the diameter of the normal injection hole is usually very small, and the diameter of the second needle valve 25 is required to advance the second needle valve 25 into the injection hole having the small diameter. There is a difficulty in manufacturing and assembly accuracy. Therefore, the nozzle hole needs to have a certain size.

また、噴孔14の孔軸線は第2ニードル弁25の移動方向と一致している必要があり、残留燃料を流出、除去させるニードル弁の移動方向に対してある角度を持って形成されている噴孔を有する燃料噴射弁に対しては適用できない。さらに上記特許文献1に記載の燃料噴射弁においては、第1ニードル弁17の中心内部に第2ニードル弁25を、第1ニードル弁17が閉弁すると噴孔14内に進入させる複雑な機構を必要とする。さらに、上記特許文献1に記載の燃料噴射弁においては、第1ニードル弁17の先端の形状は、窪みや突出しの状態になっており、第1ニードル弁17の閉弁によって形成されるデッドボリュウムと呼ばれる残留燃料溜り室は、複雑な空間室を形成するため、この燃料溜り室内に第2ニードル弁25が進入しても燃料溜り室内の残留燃料を十分押出すことができない。   Further, the hole axis of the injection hole 14 needs to coincide with the moving direction of the second needle valve 25, and is formed at an angle with respect to the moving direction of the needle valve that causes the residual fuel to flow out and be removed. It cannot be applied to a fuel injection valve having an injection hole. Further, in the fuel injection valve described in Patent Document 1, a complicated mechanism is provided that allows the second needle valve 25 to enter the center of the first needle valve 17 and enter the injection hole 14 when the first needle valve 17 is closed. I need. Furthermore, in the fuel injection valve described in Patent Document 1, the shape of the tip of the first needle valve 17 is in a recessed or protruding state, and dead volume formed by closing the first needle valve 17. Since the residual fuel reservoir chamber called a complex space chamber is formed, the residual fuel in the fuel reservoir chamber cannot be sufficiently extruded even if the second needle valve 25 enters the fuel reservoir chamber.

そこで発明者は、弁体(ニードル弁)が閉弁した際に形成される残留燃料溜り室内の残留燃料を強制的に押出し、この押出された燃料によって噴孔内の残留燃料を排出させることに着目した。また、残留燃料溜り室を扁平状の室にすることにより、残留燃料の押出しが十分なされることを見出した。   Therefore, the inventor forcibly pushes out the residual fuel in the residual fuel reservoir chamber formed when the valve body (needle valve) is closed, and discharges the residual fuel in the nozzle hole by the pushed fuel. Pay attention. It has also been found that the residual fuel can be pushed out sufficiently by making the residual fuel reservoir chamber a flat chamber.

本発明は、上記の点に鑑み、弁体が閉弁した際に形成される燃料溜り室の内部に残留する燃料を弁体が閉弁した際に押出す残留燃料排出手段を備えることにより、簡単な構造で噴孔部内の残留燃料を排出しデポジットの生成を抑止できる燃料噴射弁を提供することにある。   In view of the above points, the present invention includes a residual fuel discharging means for extruding the fuel remaining in the fuel reservoir chamber formed when the valve body is closed when the valve body is closed, An object of the present invention is to provide a fuel injection valve that discharges residual fuel in a nozzle hole portion with a simple structure and can suppress generation of deposits.

請求項1に係る発明では、噴孔部及び前記噴孔部の内方側に弁座面部を有する弁ボディと、先端に弁シート部を有し前記弁ボディの内部に、その軸方に移動可能にして装着された弁体と、を備え、駆動体の作動により前記弁体の前記弁シート部と前記弁ボディの前記弁座面部とが離座及び着座をすることにより、燃料を前記噴孔部から噴射及び停止を行う燃料噴射弁において、
前記弁シート部が前記弁座面部に着座した際、前記弁体の先端部と前記弁ボディの先端内側部とにより前記噴孔部と連通する燃料溜り室が形成され、前記シート部が前記弁座面部に着座した後に前記燃料溜り室の内部に残留する燃料を押出し該押出された燃料によって前記噴孔部内の残留燃料を排出させる残留燃料排出手段を備える。
In the invention which concerns on Claim 1, it has a valve body which has a valve seat surface part in the inner side of an injection hole part and the said injection hole part, and has a valve seat part in the front-end | tip, and moves to the axial direction inside the said valve body A valve body mounted in an enabled manner, and the valve seat portion of the valve body and the valve seat surface portion of the valve body are separated and seated by the operation of a driving body, whereby the fuel is injected. In the fuel injection valve that performs injection and stop from the hole,
When the valve seat portion is seated on the valve seat surface portion, a fuel reservoir chamber communicating with the nozzle hole portion is formed by the tip portion of the valve body and the tip inner side portion of the valve body, and the seat portion is the valve Residual fuel discharge means for extruding the fuel remaining in the fuel reservoir chamber after being seated on the seat surface and discharging the residual fuel in the nozzle hole by the extruded fuel is provided.

上記構成によれば、慣性突出復元機構やピエゾ素子による残留燃料排出手段で前記燃料溜り室の内部に残留する燃料を強制的に押出し、この押出された残留燃料の勢いで前記噴孔部内の残留燃料を排出させているから、従来のような噴孔部内に進入させる複雑な弁ニードル機構を必要とせず、従って、簡単な構造で前記噴孔部内の残留燃料によるデポジットの生成を抑止することができる効果を発揮する。噴孔部が複数存在する構造や噴孔部の軸線が弁体の移動方向と一致しない構造の燃料噴射弁にも適用できる。   According to the above configuration, the fuel remaining in the fuel reservoir chamber is forcibly pushed out by the residual fuel discharge means by the inertia protrusion restoration mechanism or the piezo element, and the remaining fuel in the nozzle hole portion is forced by the force of the pushed residual fuel. Since the fuel is discharged, there is no need for a complicated valve needle mechanism for entering into the injection hole portion as in the prior art. Therefore, it is possible to suppress the formation of deposits by the residual fuel in the injection hole portion with a simple structure. Demonstrate the effect you can. The present invention can also be applied to a fuel injection valve having a structure in which a plurality of injection hole portions exist or a structure in which the axis of the injection hole portion does not coincide with the moving direction of the valve body.

請求項2に係る発明では、前記弁体の開弁から閉弁に移行する際の着座直前位置においては、前記弁体の先端部は、該弁体の内部に前記残留燃料排出手段を収容させながら前記弁体と一体となって該弁体の移動方向と直交する平面を維持し、前記弁ボディの前記先端内側部は、前記弁体の前記平面と対向する平行平面に形成され、前記燃料溜り室は、前記弁体の前記平面と前記弁ボディの前記平行平面との2面によって挟まれる室であって、前記2面が前記弁体の移動方向と直交するよう扁平形状に形成され、前記弁体が着座した際においては、前記残留燃料排出手段が前記燃料溜り室内における前記弁ボディの前記先端内側部の位置まで突き出るように設ける。   In the invention according to claim 2, at the position immediately before seating when the valve body is shifted from opening to closing, the tip of the valve body allows the residual fuel discharge means to be accommodated inside the valve body. However, the plane that is integral with the valve body and orthogonal to the moving direction of the valve body is maintained, and the inner end portion of the valve body is formed in a parallel plane that faces the plane of the valve body, and the fuel The reservoir chamber is a chamber sandwiched between two surfaces of the flat surface of the valve body and the parallel plane of the valve body, and the two surfaces are formed in a flat shape so as to be orthogonal to the moving direction of the valve body, When the valve body is seated, the residual fuel discharging means is provided so as to protrude to the position of the inner end portion of the valve body in the fuel reservoir chamber.

上記構成によれば、前記弁体の開弁から閉弁に移行する際の着座直前位置においては、前記弁体の先端部に維持される前記弁体の移動方向と直交する平面と、前記弁ボディの先端内側部の平面と、を対向して平行にして前記燃料溜り室を扁平な室を形成しているから、前記弁体の移動方向と直交する扁平な燃料溜り室の形成によって噴射状態における噴流の流れを良好にして噴流微粒化を阻害させることがない。また、前記燃料溜り室が扁平な室であるため、前記残留燃料排出手段の前記扁平な燃料溜り室への突出に際し該前記燃料溜り室内の残留燃料を扁平方向に亘って一様に押出すことができる。従って、複数の噴孔部が設けられ噴孔部の孔軸線が弁体の移動方向に対して所定の角度を有している燃料噴射弁に有効である。   According to the above configuration, in a position immediately before seating when the valve body is shifted from opening to closing, a plane orthogonal to the moving direction of the valve body maintained at the tip of the valve body, and the valve Since the fuel reservoir chamber is formed as a flat chamber with the plane on the inner side of the front end of the body facing and parallel to each other, an injection state is formed by forming a flat fuel reservoir chamber orthogonal to the moving direction of the valve element The flow of the jet in the flow is improved and the jet atomization is not hindered. Further, since the fuel reservoir chamber is a flat chamber, the residual fuel in the fuel reservoir chamber is uniformly pushed out in the flat direction when the residual fuel discharge means protrudes into the flat fuel reservoir chamber. Can do. Therefore, this is effective for a fuel injection valve in which a plurality of nozzle holes are provided and the hole axis of the nozzle has a predetermined angle with respect to the moving direction of the valve body.

請求項3に係る発明では、前記残留燃料排出手段を、前記弁体の先端部の内部に設けられ、前記弁体の着座方向の移動が前記弁シート部の前記弁座面部への着座により停止した際に、慣性力によって前記燃料溜り室の内部に突出し、前記弁体の離座方向の移動に伴い復元状態を保持する慣性突出復元機構としている。   According to a third aspect of the present invention, the residual fuel discharging means is provided inside the distal end portion of the valve body, and the movement of the valve body in the seating direction is stopped by the seating of the valve seat portion on the valve seat surface portion. In this case, an inertia projecting and restoring mechanism that projects into the fuel reservoir chamber by inertia force and maintains the restored state as the valve body moves in the seating direction is provided.

上記構成によれば、前記残留燃料排出手段を、慣性を利用した突出復元機構としているから、制御するための電気的手段を必要とせず、従って、簡単な機械的構造で確実に前記噴孔部内の残留燃料を排出してデポジットの生成を抑止することができる。また、慣性突出復元機構により弁体のバウンドを吸収し阻止することができる。   According to the above configuration, since the residual fuel discharging means is a projecting restoration mechanism using inertia, no electric means for controlling is required, and therefore, the inside of the nozzle hole portion is surely secured with a simple mechanical structure. The remaining fuel can be discharged to prevent the formation of deposits. Further, the bounding of the valve body can be absorbed and prevented by the inertial protrusion restoring mechanism.

請求項4に係る発明では、前記慣性突出復元機構は、前記燃料溜り室に開口するように前記弁体に形成され、その軸線方向に深さを有する収納孔に移動可能に収納される所定の質量を持つピストンと、該ピストンの慣性突出を復元させる戻し部材とを備える。   In the invention according to claim 4, the inertial protrusion restoring mechanism is formed in the valve body so as to open to the fuel reservoir chamber, and is stored in a predetermined manner in a storage hole having a depth in the axial direction thereof. A piston having a mass; and a return member for restoring the inertial protrusion of the piston.

上記構成によれば、前記慣性突出復元機構を弁体に設けた収納孔内に移動可能に配設した所定の慣性質量を有するピストンと、該ピストンの慣性突出を復元させる戻し部材とで構成しているから、極めて構造が簡単であり、且つ確実にピストンの慣性力による燃料溜り室内へ突出及び復元を行うことができる。   According to the above configuration, the inertial protrusion restoring mechanism is constituted by a piston having a predetermined inertial mass that is movably disposed in a storage hole provided in the valve body, and a return member that restores the inertial protrusion of the piston. Therefore, the structure is extremely simple, and it is possible to reliably project and restore into the fuel reservoir chamber by the inertia force of the piston.

請求項5に係る発明では、前記戻し部材を、前記弁体の先端部に固定された基部と、該基部と前記ピストンに当接し前記ピストンを復元方向に付勢するスプリングとしている。   In the invention according to claim 5, the return member is a base fixed to the tip of the valve body, and a spring that abuts the base and the piston and biases the piston in the restoring direction.

上記構成によれば、前記戻し部材をスプリングとしているから、付勢力が確実に作用しピストンの復元を確実に行うことができる。   According to the said structure, since the said return member is made into the spring, urging | biasing force acts reliably and a piston can be decompress | restored reliably.

請求項6に係る発明では、前記戻し部材を、前記収納孔の内周部と前記ピストンの外周部との間に圧接状態で装着された弾性部材としている。   In the invention which concerns on Claim 6, the said return member is used as the elastic member with which the inner peripheral part of the said storage hole and the outer peripheral part of the said piston were mounted | worn in the press-contact state.

上記構成によれば、前記戻し部材を弾性部材としているから、構造が極めて簡単で前記ピストンの復元方向への付勢を発揮する。   According to the said structure, since the said return member is made into the elastic member, a structure is very simple and the urging | biasing to the restoring direction of the said piston is exhibited.

請求項7に係る発明では、前記弾性部材を所定の長さを有する円筒状耐熱性ゴムとしている。   In the invention according to claim 7, the elastic member is a cylindrical heat-resistant rubber having a predetermined length.

上記構成によれば、前記弾性部材を耐熱耐油性ゴムとしているから、軽量・安価で高温環境下でも使用に耐える。また、前記ゴムは所定の長さを有する円筒状であるから、前記ピストンの移動に伴い圧縮変形し、該圧縮変形により、充分な復元付勢力を発揮できる。   According to the above configuration, since the elastic member is made of heat and oil resistant rubber, it is lightweight and inexpensive and can be used even in a high temperature environment. Further, since the rubber has a cylindrical shape having a predetermined length, the rubber is compressed and deformed with the movement of the piston, and a sufficient restoring biasing force can be exhibited by the compression and deformation.

請求項8に係る発明では、前記残留燃料排出手段を、前記シート部が前記弁座面部に着座した後に通電されて伸縮振動するピエゾ素子としている。   In the invention according to claim 8, the residual fuel discharging means is a piezo element that is expanded and contracted by being energized after the seat portion is seated on the valve seat surface portion.

上記構成によれば、前記残留燃料排出手段をピエゾ素子とし電気的に制御しているから、前記燃料溜り室内の残留燃料の押出しを瞬間的且つ複数回伸縮振動を行うことができ、従って、前記噴孔部内の残留燃料の排出を確実に行うことができる。   According to the above configuration, since the residual fuel discharge means is electrically controlled as a piezo element, the residual fuel can be pushed out in the fuel reservoir chamber instantaneously and a plurality of times of expansion and contraction vibration. The residual fuel in the nozzle hole can be reliably discharged.

請求項9に係る発明では、前記ピエゾ素子を、前記収納孔内に該ピエゾ素子の伸縮方向が前記弁体の移動方向と一致するように収納している。   In the invention which concerns on Claim 9, the said piezoelectric element is accommodated in the said accommodating hole so that the expansion-contraction direction of this piezoelectric element may correspond with the moving direction of the said valve body.

上記構成によれば、前記ピエゾ素子の伸縮方向を前記弁体の移動方向と一致させているから、前記燃料溜り室内の残留燃料の押出しを効率的に行うことができる。また、前記ピエゾ素子を前記収納孔内に装着しているから、構造がコンパクトである。また、戻し部材を必要としないので、ピエゾ素子の外径の大きさを収容孔423の内径とほぼ同寸法にすることができ、燃料溜り室内の残留燃料の押出し量を多くすることができる。従って、噴孔部内の残留燃料の排出をより確実に行うことができる。   According to the above configuration, the expansion / contraction direction of the piezo element is made to coincide with the moving direction of the valve body, so that the residual fuel in the fuel reservoir chamber can be pushed out efficiently. Further, since the piezo element is mounted in the storage hole, the structure is compact. Further, since no return member is required, the outer diameter of the piezo element can be made substantially the same as the inner diameter of the accommodation hole 423, and the amount of remaining fuel pushed out in the fuel reservoir chamber can be increased. Therefore, the residual fuel in the nozzle hole can be discharged more reliably.

請求項10に係る発明では、前記残留燃料排出手段を、前記弁ボディ内に伸縮方向が前記弁体の移動方向と一致するように装着されたピエゾ素子としている。   In the invention according to claim 10, the residual fuel discharging means is a piezo element mounted in the valve body so that the expansion / contraction direction coincides with the moving direction of the valve body.

上記構成によれば、前記ピエゾ素子の伸縮振動を前記弁ボディ内に前記弁体の移動方向に複数回発生させることができ、従って、該伸縮振動によって前記弁ボディの先端に位置する前記燃料溜り室内の残留燃料を前記噴孔部へ押出すことができる。また、前記ピエゾ素子の径方向の寸法を大きくとることができ、伸縮振動を強力にすることができる。   According to the above configuration, the expansion and contraction vibration of the piezo element can be generated in the valve body a plurality of times in the movement direction of the valve body, and accordingly, the fuel reservoir located at the tip of the valve body by the expansion and contraction vibration. Residual fuel in the room can be extruded into the nozzle hole. Further, the size of the piezoelectric element in the radial direction can be increased, and the stretching vibration can be strengthened.

請求項11に係る発明では、請求項1〜10のいずれか一つに記載の燃料噴射弁を、噴孔部が複数設けられ、且つ、その孔軸線が弁体の移動方向に対して外方に開く所定の角度を有している燃料噴射弁に適用している   According to an eleventh aspect of the invention, the fuel injection valve according to any one of the first to tenth aspects is provided with a plurality of injection hole portions, and the hole axis is outward with respect to the moving direction of the valve body. Applicable to fuel injection valve having a predetermined angle opening to

上記構成によれば、噴孔部内の残留燃料の排出を前記燃料溜り室内の残留燃料のみの押出しで行う構成であるから、噴孔部が複数設けられ、或は噴孔部の孔軸線が弁体の移動方向に対して外方に開く所定の角度を有している燃料噴射弁であっても、何ら複雑な機構を必要とせず噴孔部内の残留燃料を排出することができる。   According to the above configuration, since the residual fuel in the nozzle hole is discharged by pushing only the residual fuel in the fuel reservoir chamber, a plurality of nozzle holes are provided, or the hole axis of the nozzle hole is a valve. Even if the fuel injection valve has a predetermined angle that opens outward with respect to the body movement direction, the residual fuel in the injection hole can be discharged without requiring any complicated mechanism.

請求項12に係る発明では、請求項1〜11のいずれか一つに記載の燃料噴射弁をガソリンエンジンの燃料噴射弁に適用している。   In the invention which concerns on Claim 12, the fuel injection valve as described in any one of Claims 1-11 is applied to the fuel injection valve of a gasoline engine.

上記構成によれば、前記噴孔部におけるデポジットの生成を抑止できる高品位な燃料噴射弁をガソリンエンジンに適用しているから、燃料噴射量の低下や噴霧形状の異常を引き起こすことなくガソリンエンジンを作動させることができる。   According to the above configuration, since the high-grade fuel injection valve that can suppress the generation of deposits in the nozzle hole portion is applied to the gasoline engine, the gasoline engine can be operated without causing a decrease in the fuel injection amount or an abnormality in the spray shape. Can be operated.

以下、本発明になる燃料噴射弁の実施形態を図に基づき説明する。図1、図2及び図7は、本発明の第1実施形態を示すもので、図7は全体構成断面図、図1、図2は本発明の要部を示し図7の一部拡大断面図である。図1は開弁状態、図2は閉弁状態を示す。   Embodiments of a fuel injection valve according to the present invention will be described below with reference to the drawings. 1, FIG. 2 and FIG. 7 show a first embodiment of the present invention. FIG. 7 is a cross-sectional view of the entire configuration, and FIGS. 1 and 2 show a main part of the present invention and a partially enlarged cross section of FIG. FIG. FIG. 1 shows a valve open state, and FIG. 2 shows a valve closed state.

図7において本発明になる燃料噴射弁の全体構成を説明する。本発明燃料噴射弁1は、通電によって振動作動する駆動部2と、駆動部2の作動により燃料を噴射する燃料噴射部4と、外部より高圧燃料を導入し駆動部2内を通り燃料噴射部4へ供給する燃料導入部6から構成されている。   The overall structure of the fuel injection valve according to the present invention will be described with reference to FIG. The fuel injection valve 1 of the present invention includes a drive unit 2 that vibrates by energization, a fuel injection unit 4 that injects fuel by the operation of the drive unit 2, and a fuel injection unit that introduces high-pressure fuel from outside and passes through the drive unit 2. 4 includes a fuel introduction portion 6 that supplies the fuel to the fuel cell 4.

駆動部2はハウジング21を有しており、ハウジング21の内部には駆動体としての電磁ソレノイド22が配設されている。電磁ソレノイド22にはハウジング21に組み込まれたターミナル23を通して図示しない電源より図示しないECUにより制御された電圧がパルス印加される。電磁ソレノイド22のコイル内側には円筒状のケーシング24が配設されており、ハウジング21と電気溶接により固定されている。   The drive unit 2 has a housing 21, and an electromagnetic solenoid 22 as a drive body is disposed inside the housing 21. The electromagnetic solenoid 22 is pulsed with a voltage controlled by an ECU (not shown) from a power source (not shown) through a terminal 23 incorporated in the housing 21. A cylindrical casing 24 is disposed inside the coil of the electromagnetic solenoid 22 and is fixed to the housing 21 by electric welding.

ケーシング24の内部には、中空円筒状の固定子25がケーシング24に固定され、可動鉄心26がその軸心方向に移動可能にして配設されている。戻しバネ27は固定子25の中央部の縦孔252内に間挿入され、一端は縦孔252に圧入固定されたストッパ28に当接し、他端は可動鉄心26の縦孔261の段部262に当接し、可動鉄心26を下方へ付勢している。可動鉄心26は、電磁ソレノイド22に通電されると吸引されて固定子25の下方端面部251に当接し、通電が遮断されると戻しバネ27によって固定子25の下方端面部251から乖離すなわち下方へ移動する。ストッパ28は、固定子15との固定位置を変えることにより戻しバネ27の付勢力を調整することができる。   Inside the casing 24, a hollow cylindrical stator 25 is fixed to the casing 24, and a movable iron core 26 is disposed so as to be movable in the axial direction. The return spring 27 is inserted into the vertical hole 252 at the center of the stator 25, one end abuts against a stopper 28 press-fitted into the vertical hole 252, and the other end is a step 262 of the vertical hole 261 of the movable iron core 26. The movable iron core 26 is urged downward. When the electromagnetic solenoid 22 is energized, the movable iron core 26 is attracted and comes into contact with the lower end surface portion 251 of the stator 25. When the energization is interrupted, the movable iron core 26 is separated from the lower end surface portion 251 of the stator 25 by the return spring 27. Move to. The stopper 28 can adjust the urging force of the return spring 27 by changing the fixing position with the stator 15.

燃料導入部6はフィルタボディ61を有しており、その中央部には高圧燃料が供給される燃料導入口611が設けられている。導入口611の下流側には、導入される燃料内の塵埃等を除去する燃料フィルタ62が配設されている。フィルタボディ61はケーシング24の上部端241において電気溶接により固定されている。   The fuel introduction part 6 has a filter body 61, and a fuel introduction port 611 to which high-pressure fuel is supplied is provided in the center part. A fuel filter 62 for removing dust and the like in the introduced fuel is disposed on the downstream side of the introduction port 611. The filter body 61 is fixed to the upper end 241 of the casing 24 by electric welding.

燃料噴射部4は、弁ボディ41とこの弁ボディ41の内部に移動可能にして配設された弁体42を有している。そして、弁ボディ41は、弁体42の外周に配設される第1弁ボディ411と、第1弁ボディ411の外周と先端で密着固定される第2弁ボディ412と、この第2弁ボディ412の外周と先端で密着固定される第3弁ボディ413で構成されている。第1、第2、第3弁ボディ411、412、413はそれぞれその外周で電気溶接により固定され一体化している。また、弁体42の上端部424と可動鉄心26の下端部264は電気溶接により接続固定されている。   The fuel injection unit 4 includes a valve body 41 and a valve body 42 that is arranged to be movable inside the valve body 41. The valve body 41 includes a first valve body 411 disposed on the outer periphery of the valve body 42, a second valve body 412 that is closely fixed at the outer periphery and the tip of the first valve body 411, and the second valve body. The third valve body 413 is closely fixed at the outer periphery and the tip of 412. The first, second, and third valve bodies 411, 412, and 413 are fixed and integrated by electric welding on their outer circumferences. The upper end 424 of the valve body 42 and the lower end 264 of the movable iron core 26 are connected and fixed by electric welding.

燃料導入口611から供給された高圧燃料は、フィルタ62で濾過されて固定子25の縦孔252を通り、可動鉄心26の縦孔261、横孔263を経て第1弁ボディ411と弁体42との間隙70内に供給される。   The high-pressure fuel supplied from the fuel inlet 611 is filtered by the filter 62, passes through the vertical hole 252 of the stator 25, passes through the vertical hole 261 and the horizontal hole 263 of the movable iron core 26, and the first valve body 411 and the valve body 42. Is supplied into the gap 70 between the two.

次に本発明の第1実施形態の要部を図1、図2により説明する。弁ボディ41を構成する第2弁ボディ412の下端面には複数の噴孔部414が形成されており、噴孔部414の噴孔向き即ち軸線は、弁体42の移動方向即ち軸線に対して外方に開く所定の角度を持っている。また、第2弁ボディ412の下端面における噴孔部414の内側先端部417は弁体42の移動方向と直交する水平面となっている。   Next, the main part of the first embodiment of the present invention will be described with reference to FIGS. A plurality of injection hole portions 414 are formed on the lower end surface of the second valve body 412 constituting the valve body 41, and the injection hole direction, that is, the axis line of the injection hole portion 414 is relative to the movement direction, that is, the axis line of the valve body 42. And have a certain angle that opens outward. Further, the inner front end portion 417 of the nozzle hole portion 414 on the lower end surface of the second valve body 412 is a horizontal plane orthogonal to the moving direction of the valve body 42.

弁ボディ41を構成する第1弁ボディ411の先端部で噴孔部414の内方側に弁座面部415が設けられており、この弁座面部415は弁体42の先端に形成された弁シート部421が着座するテーパ形状に形成されている。   A valve seat surface portion 415 is provided on the inner side of the nozzle hole portion 414 at the distal end portion of the first valve body 411 constituting the valve body 41, and the valve seat surface portion 415 is a valve formed at the distal end of the valve body 42. The seat portion 421 is formed in a tapered shape.

弁体42には、第1弁ボディ411の内周壁と摺動して弁体42の軸方向の移動を安定化させるガイド部422が外周の4箇所に均等配置して設けてあり、ガイド部422とガイド部422との間から間隙70に供給された燃料が流れ、弁シート部421や弁座面部415の部位に供給される。   The valve body 42 is provided with guide portions 422 that slide on the inner peripheral wall of the first valve body 411 and stabilize the movement of the valve body 42 in the axial direction at four locations on the outer periphery. The fuel supplied to the gap 70 flows between the gap 422 and the guide portion 422, and is supplied to the valve seat portion 421 and the valve seat surface portion 415.

弁体42の先端部425(下方端部)の中心内部には、先端部425に開口し、その移動方向の軸線方向に所定の深さを有する有底で断面が円形の円筒形収納孔423が形成されている。この収納孔423の内部には、所定の質量を持つ金属製の円筒形のピストン81が軸線方向に移動可能にして配設されており、その先端部は小径部811となっており、この小径部811の先端は弁体42の先端部425と同一面になっている。   A cylindrical housing hole 423 with a bottom and a circular cross-section having a predetermined depth in the axial direction of the moving direction is formed in the center of the front end portion 425 (lower end portion) of the valve body 42. Is formed. Inside the storage hole 423, a metal cylindrical piston 81 having a predetermined mass is disposed so as to be movable in the axial direction, and a tip end portion thereof is a small diameter portion 811. The tip of the portion 811 is flush with the tip 425 of the valve body 42.

収納孔423の先端の内周には、円筒リング状の基部83が圧入固定されており、この基部83の先端も弁体42の先端部425と同一面になっている。すなわち、弁体42の先端部425は、弁体42の先端、基部83の先端、ピストン81の小径部811の先端で弁体42の移動方向と直交する水平面を維持しており、弁ボディ41(第2弁ボディ412)内側先端部417の水平面と平行になっている。   A cylindrical ring-shaped base 83 is press-fitted and fixed to the inner periphery of the tip of the storage hole 423, and the tip of the base 83 is also flush with the tip 425 of the valve body 42. That is, the distal end portion 425 of the valve body 42 maintains a horizontal plane orthogonal to the moving direction of the valve body 42 at the distal end of the valve body 42, the distal end of the base 83, and the distal end of the small diameter portion 811 of the piston 81. (Second valve body 412) It is parallel to the horizontal surface of the inner front end portion 417.

また、基部83のリング状の内径部にはピストン81の小径部811の先端が位置するようにピストン81が配置収納されている。また、基部83の上方端部とピストン81の小径部811の段部812との間には、ピストン81を上方に付勢、即ちピストン81の慣性による突出を元の状態にする復元するコイル圧縮スプリング82が設けられている。なお、スプリング82の付勢力はピストン81に作用する慣性力より小さく設定されている。従って、ピストン81は、弁体42の噴孔部414方向への移動と共に同じ方向へ移動し、弁体42の停止(弁座面部415への弁シート部421の当接)によりピストン81には慣性力が作用し、その慣性力がスプリング82の付勢力より勝り、噴孔部414方向へ突出し、ピストン81が停止するとスプリング82の付勢力によって復元状態になる。そして、基部83とスプリング82で戻し部材を構成し、この戻し部材と収納孔423内のピストン81により慣性突出復元機構80を構成している。   In addition, the piston 81 is disposed and accommodated so that the tip of the small diameter portion 811 of the piston 81 is positioned in the ring-shaped inner diameter portion of the base portion 83. Further, between the upper end portion of the base portion 83 and the step portion 812 of the small diameter portion 811 of the piston 81, the piston 81 is biased upward, that is, the coil compression for restoring the protrusion due to the inertia of the piston 81 to the original state. A spring 82 is provided. Note that the biasing force of the spring 82 is set to be smaller than the inertial force acting on the piston 81. Accordingly, the piston 81 moves in the same direction as the valve body 42 moves in the direction of the nozzle hole 414, and the piston 81 is moved to the piston 81 by the stop of the valve body 42 (the contact of the valve seat 421 with the valve seat surface portion 415). An inertial force acts, and the inertial force is greater than the urging force of the spring 82 and protrudes toward the injection hole 414. When the piston 81 stops, the urging force of the spring 82 restores the state. The base 83 and the spring 82 constitute a return member, and this return member and the piston 81 in the accommodation hole 423 constitute an inertial protrusion restoring mechanism 80.

第3弁ボディ413の下端面には外方へ広がるテーパ面部416が形成してあり、噴孔部414から噴射される燃料の広がり発散を抑制し、燃料を所定の領域に噴霧させる。   A tapered surface portion 416 extending outward is formed on the lower end surface of the third valve body 413, and the spread and divergence of the fuel injected from the injection hole portion 414 is suppressed, and the fuel is sprayed to a predetermined region.

次に、上記構成になる第1実施形態の作動を説明する。図7において、図示しないECUの制御により通電即ち電圧がターミナル23を通して駆動体である電磁ソレノイド22に印加されると可動鉄心26が吸引され戻しバネ27の付勢力に抗して上方向へ移動する。可動鉄心26の移動により弁体42も上方向(反噴孔部414方向)へ移動し、弁シート部421が弁座面部415から離座し、図1に示すように間隙70内に供給されている高圧燃料が噴孔部414から噴射する。   Next, the operation of the first embodiment configured as described above will be described. In FIG. 7, when energization, that is, a voltage is applied to the electromagnetic solenoid 22 as a driving body through the terminal 23 under the control of the ECU (not shown), the movable iron core 26 is attracted and moves upward against the urging force of the return spring 27. . As the movable iron core 26 moves, the valve body 42 also moves upward (in the direction of the anti-injection hole portion 414), the valve seat portion 421 is separated from the valve seat surface portion 415, and is supplied into the gap 70 as shown in FIG. The high-pressure fuel is injected from the injection hole portion 414.

次に、電磁ソレノイド22への通電が遮断されると、戻しバネ27の付勢力により弁体42は下方向(噴孔部414方向)へ移動し、弁シート部421が弁座面部415に着座し、噴孔部414からの高圧燃料の噴射が停止される。   Next, when the electromagnetic solenoid 22 is de-energized, the valve element 42 moves downward (in the direction of the injection hole 414) by the urging force of the return spring 27, and the valve seat portion 421 is seated on the valve seat surface portion 415. Then, the injection of the high-pressure fuel from the nozzle hole portion 414 is stopped.

この弁体42の開弁から閉弁に移行する際の着座直前位置においては、弁体42の先端部425は、その弁体42の収納孔423内に弁体42と一体でピストン81を収納させながら窪みや突出しの無い平面を維持している。
弁シート部421が弁座面部415に着座した際、図2に示すように弁体42の先端部425と弁ボディ41(第1弁ボディ411、第2弁ボディ412)の先端内側部417とによって囲まれ噴孔部414と連通する燃料溜り室84(デッドボリュウム)が形成される。この燃料溜り室84は、弁体42の先端部425の平面と弁ボディ41(第1弁ボディ411、第2弁ボディ412)の先端内側部417の平行平面との2面によって挟まれる室であって、前記2面が弁体42の移動方向と直交するよう扁平形状に形成される。この扁平な燃料溜り室84は、弁体42の移動方向と直交する扁平状な室であるため噴射状態における噴流の流れを良好にして噴流微粒化を阻害させることがない。また、この燃料溜り室84の容積は噴孔部414の全容積より遥かに大きく、燃料溜り室84及び噴孔部414内に燃料が残留する。即ち、残留燃料が生じる。
In a position immediately before the seating when the valve body 42 is shifted from opening to closing, the front end portion 425 of the valve body 42 houses the piston 81 integrally with the valve body 42 in the housing hole 423 of the valve body 42. Maintaining a flat surface without dents or protrusions.
When the valve seat portion 421 is seated on the valve seat surface portion 415, as shown in FIG. 2, the distal end portion 425 of the valve body 42 and the distal end inner side portion 417 of the valve body 41 (first valve body 411, second valve body 412) A fuel reservoir chamber 84 (dead volume) surrounded by and communicating with the nozzle hole portion 414 is formed. The fuel reservoir chamber 84 is a chamber sandwiched between two planes, that is, a plane of the distal end portion 425 of the valve body 42 and a parallel plane of the distal end inner side portion 417 of the valve body 41 (first valve body 411, second valve body 412). Thus, the two surfaces are formed in a flat shape so as to be orthogonal to the moving direction of the valve body 42. Since the flat fuel reservoir chamber 84 is a flat chamber orthogonal to the moving direction of the valve element 42, the flow of the jet flow in the injection state is improved and jet atomization is not hindered. Further, the volume of the fuel reservoir 84 is much larger than the total volume of the nozzle hole 414, and fuel remains in the fuel reservoir 84 and the nozzle hole 414. That is, residual fuel is generated.

弁シート部421の弁座面部415への着座により、弁体42の噴孔部414方向への移動が停止されると、ピストン81は慣性力によって収容孔423内を噴孔部414方向へスプリング82の付勢力に抗して移動し、その小径部811が燃料溜り室84内に突出し弁ボディ41(第2弁ボディ412)の先端内側部417に当接し停止し静止慣性を保持する。なお、ピストン81は噴孔部414の内部に進出しない。ピストン81の慣性力による小径部811の燃料溜り室84内への急激な突出により、燃料溜り室84内の残留燃料が押出され、その押出された燃料が噴孔部414内の残留燃料を勢い良く外部(エンジンのシリンダー内)へ排出する。これによって噴孔部414内の残留燃料は排出されて除去される。従って、従来のような噴孔部内に進入させる複雑な弁体機構を必要とせず、噴孔部414内の残留燃料は除かれるため噴孔部414に炭化物のデポジットの生成を抑止することができると共に、燃料溜り室84内の残留燃料も押出されるため、燃料溜り室84内でのデポジットの生成も抑止される。ピストン81の燃料溜り室84内に突出する面は平坦面であるため、ピストン81の移動に対する燃料溜り室84内の残留燃料の押出し量は最大となり、効率的な押出しを行うことができる。   When the movement of the valve body 42 in the direction of the injection hole 414 is stopped by the seating of the valve seat part 421 on the valve seat surface part 415, the piston 81 springs in the accommodation hole 423 in the direction of the injection hole 414 by inertial force. The small-diameter portion 811 projects into the fuel reservoir chamber 84 and comes into contact with the tip inner portion 417 of the valve body 41 (second valve body 412) to stop and retain the stationary inertia. Note that the piston 81 does not advance into the nozzle hole portion 414. Due to the sudden protrusion of the small diameter portion 811 into the fuel reservoir chamber 84 due to the inertial force of the piston 81, the residual fuel in the fuel reservoir chamber 84 is pushed out, and the pushed fuel boosts the residual fuel in the nozzle hole portion 414. Eject well to the outside (inside the engine cylinder). As a result, the residual fuel in the nozzle hole portion 414 is discharged and removed. Therefore, a complicated valve body mechanism for entering into the injection hole portion as in the prior art is not required, and residual fuel in the injection hole portion 414 is removed, so that the generation of carbide deposits in the injection hole portion 414 can be suppressed. At the same time, since the residual fuel in the fuel reservoir 84 is also extruded, the generation of deposits in the fuel reservoir 84 is also suppressed. Since the surface of the piston 81 that protrudes into the fuel reservoir 84 is a flat surface, the amount of fuel remaining in the fuel reservoir 84 is maximized with respect to the movement of the piston 81, and efficient extrusion can be performed.

また、本発明では慣性力を利用して燃料溜り室84内の残留燃料を押出す構成であるため、噴孔部が複数存在する構造や噴孔部の孔軸線が弁体の移動方向と一致しない構造の燃料噴射弁でも適用できる。また、形成される燃料溜り室84は弁体42の移動方向と直交する扁平な室であるため、ピストン81が扁平な燃料溜り室84内に突出した際、残留燃料を扁平方向に亘って一様に押出すことができる。従って、複数の噴孔部が設けられ噴孔部の孔軸線が弁体の移動方向に対して所定の角度を有している燃料噴射弁に有効である。   Further, in the present invention, since the residual fuel in the fuel reservoir 84 is pushed out using inertial force, the structure in which a plurality of nozzle holes exist and the hole axis of the nozzle hole coincide with the moving direction of the valve body. It can also be applied to a fuel injection valve having a structure that does not. Further, the formed fuel reservoir chamber 84 is a flat chamber orthogonal to the moving direction of the valve element 42. Therefore, when the piston 81 protrudes into the flat fuel reservoir chamber 84, the residual fuel is uniformly distributed in the flat direction. Can be extruded. Therefore, this is effective for a fuel injection valve in which a plurality of nozzle holes are provided and the hole axis of the nozzle has a predetermined angle with respect to the moving direction of the valve body.

また、弁シート部421が弁座面部415へ着座すると、両者の金属当接により弁体42は弁ボディ41に対してバウンド(飛び跳ね)し反噴孔部414(上方向)へ移動しようとする。弁ボディ41の反噴孔部414へ移動は、基部83、スプリング82を経てピストン81に伝わるが、ピストン81は静止した慣性を維持しているため、その静止慣性量によって弁ボディ41の反噴孔部414へ移動は抑止され、弁ボディ41のバウンド現象を防止することができる。   Further, when the valve seat portion 421 is seated on the valve seat surface portion 415, the valve body 42 is bound (jumps) with respect to the valve body 41 due to the metal contact therebetween and tends to move to the anti-injection hole portion 414 (upward). . The movement of the valve body 41 to the anti-injection hole portion 414 is transmitted to the piston 81 through the base 83 and the spring 82. Since the piston 81 maintains a stationary inertia, the anti-injection of the valve body 41 is caused by the static inertia amount. Movement to the hole 414 is suppressed, and the bounce phenomenon of the valve body 41 can be prevented.

燃料溜り室84内へ突出し静止状態になったピストン81は、戻し部材をなすスプリング82の付勢力で収容孔423内を上方向へ移動し図1に示す状態に復元する。ピストン81の復元移動とタイミングを合わせ電磁ソレノイド22に電圧が印加され弁体42は上方向へ移動し、弁シート部421は弁座面部415から離座する。   The piston 81 that protrudes into the fuel reservoir chamber 84 and is in a stationary state moves upward in the accommodation hole 423 by the urging force of the spring 82 that forms the return member, and is restored to the state shown in FIG. A voltage is applied to the electromagnetic solenoid 22 in synchronism with the restoration movement of the piston 81, the valve body 42 moves upward, and the valve seat portion 421 is separated from the valve seat surface portion 415.

上述の第1実施形態では、慣性突出復元機構80により慣性力を利用して燃料溜り室84内の残留燃料を押出しており、この慣性突出復元機構80を、弁体42の先端に形成した収容孔423内に移動可能にして配設された慣性ピストン81と、弁体42の先端に固定された基部83と、ピストン81を復元状態に付勢するスプリング82とで戻し部材を構成している。   In the above-described first embodiment, the residual fuel in the fuel reservoir chamber 84 is pushed out using the inertial force by the inertial protrusion restoration mechanism 80, and the inertial protrusion restoration mechanism 80 is accommodated in the tip of the valve body 42. An inertia piston 81 movably disposed in the hole 423, a base 83 fixed to the tip of the valve body 42, and a spring 82 that urges the piston 81 in a restoring state constitute a return member. .

この慣性突出復元機構80は慣性力を利用した機構であるため、電気的制御は不要で、従って構造も簡単である。更に本発明においては、慣性突出復元機構80で燃料溜り室84内の残留燃料を押出すことにより噴孔部414内の残留燃料を排出する構成であるため、燃料噴射弁が複数の噴孔部414を持つ構造や、噴孔部414の孔軸線が弁体42の移動方向に対し角度を持って傾斜している構造の場合でもデポジットの生成の抑止に優れた効果を発揮する。また、前記戻し部材をスプリング82としているので、付勢力が確実に作用しピストン81の復元を確実に行うことができる。   Since this inertial protrusion restoring mechanism 80 is a mechanism using inertial force, electrical control is not required, and thus the structure is simple. Further, in the present invention, since the residual fuel in the injection hole portion 414 is discharged by pushing out the residual fuel in the fuel reservoir chamber 84 by the inertial protrusion restoring mechanism 80, the fuel injection valve has a plurality of injection hole portions. Even in the case of a structure having 414 or a structure in which the hole axis of the injection hole portion 414 is inclined at an angle with respect to the moving direction of the valve body 42, an excellent effect in suppressing the generation of deposits is exhibited. Further, since the return member is the spring 82, the urging force acts reliably and the piston 81 can be reliably restored.

次に、第2実施形態として、図3、図4によりピストン81の戻し部材の他の例を説明する。戻し部材に関し上述の第1実施形態に対して相違する特徴点を説明し、他の共通部位、構造については省略する。   Next, another example of the return member of the piston 81 will be described as a second embodiment with reference to FIGS. The features that differ from the first embodiment with respect to the return member will be described, and the other common parts and structures will be omitted.

第2実施形態では戻し部材は、所定の長さを持つ中空円筒状を呈し密着性弾力性を有する耐熱耐油性フッ素系ゴム85である。このフッ素系ゴム85は図3に示すように、収容孔423の内周部とピストン81の小径部811の外周部との間にピストン81が収容孔423の底部426に当接する状態で圧入装着されている。なお、ゴム85は耐熱耐油性シリコン系ゴムでもよく、密着性弾力性を持つ耐熱耐油性材料なら何でも良い。   In the second embodiment, the return member is a heat-resistant and oil-resistant fluorine-based rubber 85 that has a hollow cylindrical shape having a predetermined length and has adhesive elasticity. As shown in FIG. 3, the fluoro rubber 85 is press-fitted with the piston 81 in contact with the bottom 426 of the accommodation hole 423 between the inner circumference of the accommodation hole 423 and the outer circumference of the small diameter portion 811 of the piston 81. Has been. The rubber 85 may be a heat and oil resistant silicon-based rubber, and any heat and oil resistant material having adhesive elasticity can be used.

上述の第1実施形態で説明したと同様に、弁体42が噴孔部414方向に移動し、弁シート部421が弁座面部415に着座すると、弁体42の移動が停止する。弁体42の停止によりピストン81が慣性力により、その小径部811が燃料溜り室84内に突出する。   As described in the first embodiment, when the valve element 42 moves in the direction of the nozzle hole 414 and the valve seat part 421 is seated on the valve seat surface part 415, the movement of the valve element 42 stops. Due to the inertia of the piston 81 due to the stop of the valve body 42, the small diameter portion 811 protrudes into the fuel reservoir 84.

この場合、フッ素系ゴム85は所定の長さを有し圧入状態で装着されているので、ピストン81の慣性移動に対してフッ素系ゴム85自体は移動(摺動)せず、当接している段部812により圧縮作用を受け更に半径方向に膨らもうとし、収容孔423の内周部とピストン81の小径部811の外周部との圧接力が増し、より強固に保持され、復元戻し部材としての機能を発揮する。そのためゴム85はピストン81に対して反噴孔部414方向に付勢力を作用させる。なお、ゴム85等の戻し部材の弾性変形による付勢力は、ピストン81に作用する慣性力より小さく設定されている。   In this case, since the fluorinated rubber 85 has a predetermined length and is mounted in a press-fit state, the fluorinated rubber 85 itself does not move (slide) with respect to the inertial movement of the piston 81 but is in contact therewith. A compression action is applied to the stepped portion 812 to further expand in the radial direction, the pressure contact force between the inner peripheral portion of the accommodation hole 423 and the outer peripheral portion of the small diameter portion 811 of the piston 81 is increased, and the restoring return member is held more firmly. As a function. Therefore, the rubber 85 exerts an urging force on the piston 81 in the direction of the anti-injection hole 414. The urging force due to elastic deformation of the return member such as rubber 85 is set to be smaller than the inertial force acting on the piston 81.

ピストン81に作用する慣性力が戻し部材としてのゴム85の付勢力より勝り、ピストン81は燃料溜り室84内に突出しその小径部811は弁ボディ41(第2弁ボディ412)の先端内側部417に当接し停止し静止慣性を保持する。燃料溜り室84内の残留燃料を押し出し噴孔部414内の残留燃料を排出する作用は、上述の第1実施形態で説明した内容と同様である。そして、燃料溜り室84内へ突出し静止状態になったピストン81は、戻し部材をなすゴム85の付勢力で収容孔423内を上方向へ移動し図3に示す状態に復元する。   The inertial force acting on the piston 81 is greater than the urging force of the rubber 85 as the return member, and the piston 81 projects into the fuel reservoir chamber 84, and its small diameter portion 811 has a tip inner portion 417 of the valve body 41 (second valve body 412). To stop and maintain static inertia. The action of pushing out the residual fuel in the fuel reservoir chamber 84 and discharging the residual fuel in the nozzle hole part 414 is the same as that described in the first embodiment. Then, the piston 81 that protrudes into the fuel reservoir chamber 84 and is in a stationary state moves upward in the accommodation hole 423 by the urging force of the rubber 85 that forms the return member, and is restored to the state shown in FIG.

この場合、上述の弁体42のバウンド現象もゴム85を介してピストン81の静止慣性で上述の第1実施形態で説明した内容と同様に抑止される。また、本第2実施形態における戻し部材はゴム85のみで構成しているため、極めて構造が簡単であり安価となる。なお、上述の第2実施形態では戻し部材としてのゴム85は、単品で収容孔423の内周部とピストン81の小径部811の外周部との間に落下しない程度に圧入状態で装着されているが、上述の第1実施形態におけるスプリング82と基部83との構成のように、戻し部材としてのゴムを収容孔423の内周部とピストン81の小径部811の外周部との間に遊挿入し、抜止めを防止するリング状の基部を収容孔423の先端に圧入固定するようにしてもよい。   In this case, the above-described bounce phenomenon of the valve body 42 is also suppressed by the static inertia of the piston 81 through the rubber 85 in the same manner as described in the first embodiment. In addition, since the return member in the second embodiment is composed of only the rubber 85, the structure is extremely simple and inexpensive. In the second embodiment described above, the rubber 85 as the return member is mounted as a single item in a press-fit state so as not to fall between the inner peripheral portion of the accommodation hole 423 and the outer peripheral portion of the small diameter portion 811 of the piston 81. However, as in the configuration of the spring 82 and the base portion 83 in the first embodiment described above, rubber as a return member is loosened between the inner peripheral portion of the accommodation hole 423 and the outer peripheral portion of the small diameter portion 811 of the piston 81. A ring-shaped base portion that is inserted and prevented from being pulled out may be press-fitted and fixed to the tip of the accommodation hole 423.

なお、上述の第1、第2実施形態において、慣性突出復元機構80は、本発明において、弁シート部421が弁座面部415に着座した際に燃料溜り室84の内部に残留する燃料を押出して噴孔部414内の残留燃料を排出させる残留燃料排出手段をなしている。   In the first and second embodiments described above, the inertial protrusion restoring mechanism 80 pushes the fuel remaining in the fuel reservoir chamber 84 when the valve seat portion 421 is seated on the valve seat surface portion 415 in the present invention. Thus, residual fuel discharging means for discharging the residual fuel in the nozzle hole portion 414 is provided.

次に、図5により第3実施形態として、本発明における残留燃料排出手段の他の例を説明する。上述の第1、第2実施形態と共通構成、部位は省略し、相違する特徴点を説明する。弁体42の収容孔423内には、残留燃料排出手段としての圧電ピエゾ素子90が配設されている。ピエゾ素子90は弁体42の移動方向(軸方向)に所定の枚数を積み重ねてあり、その先端は弁体42の先端部425と同一水平面を維持しており、伸長した際には、その先端は弁ボディ41(第2弁ボディ412)の先端内側部417に当接するように枚数が設定してある。   Next, another example of the residual fuel discharging means in the present invention will be described as a third embodiment with reference to FIG. A common configuration and site | part are abbreviate | omitted with the above-mentioned 1st, 2nd embodiment, and the different feature point is demonstrated. In the housing hole 423 of the valve body 42, a piezoelectric piezo element 90 as a residual fuel discharging means is disposed. A predetermined number of piezo elements 90 are stacked in the moving direction (axial direction) of the valve body 42, and the tip thereof maintains the same horizontal plane as the tip portion 425 of the valve body 42. The number of sheets is set so as to abut on the tip inner portion 417 of the valve body 41 (second valve body 412).

また、ピエゾ素子90には電圧を供給するための一対の電線91が接続され、弁体42内の貫通孔427を通り燃料噴射弁1の外部の電源に接続されECU(図示せず)により制御されている。ピエゾ素子90に供給される電圧は、ECU(図示せず)で制御され電磁ソレノイド22に印加される電圧のタイミングより所定の時間遅れて印加される。すなわち、弁体42の弁シート部421が弁座面部415に着座した後所定の時間を経てピエゾ素子90に印加される。   In addition, a pair of electric wires 91 for supplying voltage is connected to the piezo element 90, is connected to a power source outside the fuel injection valve 1 through a through hole 427 in the valve body 42, and is controlled by an ECU (not shown). Has been. The voltage supplied to the piezo element 90 is applied with a predetermined time delay from the timing of the voltage applied to the electromagnetic solenoid 22 controlled by an ECU (not shown). That is, after the valve seat portion 421 of the valve body 42 is seated on the valve seat surface portion 415, it is applied to the piezo element 90 after a predetermined time.

このように構成された残留燃料排出手段としてのピエゾ素子90は、弁シート部421が弁座面部415に着座すると電圧が印加されて噴孔部414方向に伸長し、燃料溜り室84内に突出し、先端内側部417に当接する。ピエゾ素子90は噴孔部414内には進入しない。このピエゾ素子90の突出により燃料溜り室84内の残留燃料を押し出し噴孔部414内の残留燃料を排出し、噴孔部414内にデポジットが生成するのを抑止できる。また、ピエゾ素子90の伸長の速度は速く瞬間に且つ弁シート部421が弁座面部415に着座している間すなわち弁体42が閉弁している間複数回振動作動でき、燃料溜り室84内の残留燃料の押出しは確実に行われる。従って、噴孔部414内の残留燃料の排出効果も大きい。また、ピエゾ素子90の燃料溜り室84内に突出する面は平坦面であるため、ピエゾ素子90の伸長に対する燃料溜り室84内の残留燃料の押出し量は最大となり、効率的な押出しを行うことができる。   The piezoelectric element 90 as the residual fuel discharging means configured as described above is applied with a voltage when the valve seat portion 421 is seated on the valve seat surface portion 415, extends in the direction of the nozzle hole portion 414, and protrudes into the fuel reservoir chamber 84. , Abuts against the tip inner portion 417. The piezo element 90 does not enter the nozzle hole portion 414. The protrusion of the piezo element 90 pushes out the residual fuel in the fuel reservoir chamber 84 and discharges the residual fuel in the injection hole portion 414, thereby preventing the deposit from being generated in the injection hole portion 414. Further, the piezoelectric element 90 can be vibrated several times while the valve seat portion 421 is seated on the valve seat surface portion 415, that is, while the valve body 42 is closed, and the fuel reservoir 84 The residual fuel inside is reliably pushed out. Accordingly, the effect of discharging the residual fuel in the nozzle hole 414 is also great. Further, since the surface of the piezo element 90 protruding into the fuel reservoir chamber 84 is a flat surface, the amount of fuel remaining in the fuel reservoir chamber 84 with respect to the extension of the piezo element 90 is maximized, and efficient extrusion is performed. Can do.

また、第3実施形態においては、第1、第2実施形態における戻し部材を必要としないので、ピエゾ素子90の外径の大きさを収容孔423の内径とほぼ同寸法にすることができ、燃料溜り室84内の残留燃料の押出し量を多くすることができる。従って、噴孔部414内の残留燃料の排出をより確実に行うことができる。また、ピエゾ素子90の伸縮方向を弁体42の移動方向と一致しているので、燃料溜り室84内の残留燃料の押出しを効率的に行うことができる。更に、ピエゾ素子90は収納孔423内に装着しているので、コンパクトな構造である。   In the third embodiment, since the return member in the first and second embodiments is not required, the size of the outer diameter of the piezoelectric element 90 can be made substantially the same as the inner diameter of the accommodation hole 423. It is possible to increase the amount of extrusion of the residual fuel in the fuel reservoir 84. Therefore, the residual fuel in the nozzle hole 414 can be discharged more reliably. Further, since the expansion / contraction direction of the piezo element 90 coincides with the moving direction of the valve element 42, the residual fuel in the fuel reservoir chamber 84 can be pushed out efficiently. Furthermore, since the piezo element 90 is mounted in the storage hole 423, it has a compact structure.

ピエゾ素子90の所定時間の伸長が終了すると、供給電圧が遮断されピエゾ素子90は収縮し、弁体42と共に反噴孔部414方向へ移動する。   When the piezo element 90 has been extended for a predetermined time, the supply voltage is cut off, the piezo element 90 contracts, and moves together with the valve body 42 toward the counter-injection hole portion 414.

次に、図6により第4実施形態として、本発明における残留燃料排出手段の更に他の例を説明する。上述の第1、第2、第3実施形態と共通構成、部位は省略し、相違する特徴点を説明する。   Next, still another example of the residual fuel discharging means in the present invention will be described as a fourth embodiment with reference to FIG. The common features and parts of the first, second, and third embodiments described above are omitted, and different features will be described.

弁ボディ41の内部具体的には第2弁ボディ412の外周部と第3弁ボディ413の内周部との間に残留燃料排出手段としてのピエゾ素子95が配設されている。このピエゾ素子95はリング状をなし弁体42の移動方向(軸方向)に所定の枚数を積み重ねてある。ピエゾ素子95には電圧を供給するための電線(図示せず)が接続され、弁ボディ41内を通り燃料噴射弁1の外部の電源に接続されECU(図示せず)により制御されている。   Inside the valve body 41, specifically, between the outer peripheral portion of the second valve body 412 and the inner peripheral portion of the third valve body 413, a piezo element 95 is disposed as a residual fuel discharging means. This piezo element 95 has a ring shape and a predetermined number of elements are stacked in the moving direction (axial direction) of the valve body 42. An electric wire (not shown) for supplying a voltage is connected to the piezo element 95, is connected to a power supply outside the fuel injection valve 1 through the valve body 41, and is controlled by an ECU (not shown).

ピエゾ素子95に供給される電圧は、ECU(図示せず)で制御され電磁ソレノイド22に印加される電圧のタイミングより所定の時間遅れて印加される。すなわち、弁体42の弁シート部421が弁座面部415に着座した後所定の時間を経てピエゾ素子95に印加される。この場合、ピエゾ素子95に印加される電圧は、弁シート部421が弁座面部415に着座している間所定パルス数を供給するように設定されている。   The voltage supplied to the piezo element 95 is controlled by an ECU (not shown) and applied with a predetermined time delay from the timing of the voltage applied to the electromagnetic solenoid 22. That is, the valve seat portion 421 of the valve body 42 is applied to the piezo element 95 after a predetermined time after sitting on the valve seat surface portion 415. In this case, the voltage applied to the piezo element 95 is set so as to supply a predetermined number of pulses while the valve seat portion 421 is seated on the valve seat surface portion 415.

このように構成された残留燃料排出手段としてのピエゾ素子95は、弁シート部421が弁座面部415に着座すると電圧がパルス状に印加されて噴孔部414方向に伸縮振動し、この振動が弁ボディ41の先端部に伝達され燃料溜り室84内の残留燃料に振動をあたえることによって強制的に押出し、噴孔部414内の残留燃料を排出し、デポジットの生成を抑止することができる。   In the piezo element 95 as the residual fuel discharging means configured as described above, when the valve seat portion 421 is seated on the valve seat surface portion 415, a voltage is applied in a pulsed manner to expand and contract in the direction of the nozzle hole portion 414. It is transmitted to the tip end of the valve body 41 and imparts vibration to the residual fuel in the fuel reservoir chamber 84 to forcibly push out, discharge the residual fuel in the nozzle hole portion 414, and suppress the generation of deposits.

また、第4実施形態においては、ピエゾ素子95は弁体42の閉弁の間に数多くの振動を作動させることができるので、制御設定により燃料溜り室84内の残留燃料をより多く押し出すことができ、噴孔部414内のデポジットの生成を確実に抑止することができる。また、ピエゾ素子95の径方向の寸法を大きくとることができ、伸縮振動を強大にすることができる。   In the fourth embodiment, the piezo element 95 can actuate a large number of vibrations while the valve element 42 is closed, so that more residual fuel in the fuel reservoir 84 can be pushed out by the control setting. And the generation of deposits in the nozzle hole portion 414 can be reliably suppressed. Further, the size of the piezo element 95 in the radial direction can be increased, and the stretching vibration can be increased.

なお、上述の慣性突出復元機構80を構成するピストン81、スプリング82、基部83並びにピエゾ素子90、95は本発明における残留燃料排出手段をなしている。   Note that the piston 81, the spring 82, the base 83, and the piezo elements 90 and 95 constituting the inertial protrusion restoring mechanism 80 described above constitute the residual fuel discharging means in the present invention.

また、噴孔部414におけるデポジットの生成を抑止できる高品位な本発明になる燃料噴射弁1をガソリンエンジンに適用しているので、燃料噴射量の低下や噴霧形状の異常を引き起こすことなく良好にガソリンエンジンを作動することができる。なお、本発明における燃料噴射弁は上述の燃料噴射弁の構造に制限されるものではなく、噴孔部は単孔で軸線が弁体の移動方向と同方向のものであってもよく、弁体を移動させる駆動体はピエゾ素子のものでもよく、弁体の開弁、閉弁を制御する背圧式機構のものであってもよい。
更に、上述の実施形態では、本発明になる燃料噴射弁はガソリン直噴エンジンに適用される例について説明したが、ディーゼルエンジンに適用されてもよく、更に他のエンジン等の燃料噴射弁に適用してもよい。
In addition, since the high-grade fuel injection valve 1 according to the present invention that can suppress the formation of deposits in the nozzle hole portion 414 is applied to a gasoline engine, the fuel injection amount is reduced without causing a decrease in the fuel injection amount or an abnormality in the spray shape. A gasoline engine can be operated. The fuel injection valve in the present invention is not limited to the structure of the fuel injection valve described above. The injection hole portion may be a single hole and the axis may be the same as the moving direction of the valve body. The driving body that moves the body may be a piezo element or a back pressure mechanism that controls the opening and closing of the valve body.
Furthermore, although the fuel injection valve which becomes this invention demonstrated the example applied to a gasoline direct-injection engine in the above-mentioned embodiment, it may be applied to a diesel engine and is further applied to fuel injection valves, such as another engine. May be.

本発明になる燃料噴射弁の第1実施形態の要部を開弁状態で示す拡大断面図である。It is an expanded sectional view which shows the principal part of 1st Embodiment of the fuel injection valve which becomes this invention in a valve opening state. 本発明になる燃料噴射弁の第1実施形態の要部を閉弁状態で示す拡大断面図である。It is an expanded sectional view which shows the principal part of 1st Embodiment of the fuel injection valve which becomes this invention in a valve closing state. 本発明になる燃料噴射弁の第2実施形態の要部を開弁状態で示す拡大断面図である。It is an expanded sectional view which shows the principal part of 2nd Embodiment of the fuel injection valve which becomes this invention in a valve opening state. 本発明になる燃料噴射弁の第2実施形態の要部を閉弁状態で示す拡大断面図である。It is an expanded sectional view which shows the principal part of 2nd Embodiment of the fuel injection valve which becomes this invention in a valve closing state. 本発明になる燃料噴射弁の第3実施形態の要部を開弁状態で示す拡大断面図である。It is an expanded sectional view which shows the principal part of 3rd Embodiment of the fuel injection valve which becomes this invention in a valve opening state. 本発明になる燃料噴射弁の第4実施形態の要部を開弁状態で示す拡大断面図である。It is an expanded sectional view which shows the principal part of 4th Embodiment of the fuel injection valve which becomes this invention in a valve opening state. 本発明になる燃料噴射弁の第1実施形態を示す全体構成断面図である。1 is an overall cross-sectional view showing a first embodiment of a fuel injection valve according to the present invention.

符号の説明Explanation of symbols

1 燃料噴射弁
2 駆動部
4 燃料噴射部
6 燃料導入部
22 駆動体をなす電磁ソレノイド
41 弁ボディ
411 第1弁ボディ
412 第2弁ボディ
413 第3弁ボディ
414 噴孔部
415 弁座面部
417 先端内側部
42 弁体
421 弁シート部
423 収容孔
425 先端部
611 燃料導入口
80 残留燃料排出手段としての慣性突出復元機構
81 ピストン
811 小径部
82 スプリング
83 基部
85 弾性部材
90、95 残留燃料排出手段としてのピエゾ素子
DESCRIPTION OF SYMBOLS 1 Fuel injection valve 2 Drive part 4 Fuel injection part 6 Fuel introduction part 22 Electromagnetic solenoid which makes a drive body 41 Valve body 411 1st valve body 412 2nd valve body 413 3rd valve body 414 Injection hole part 415 Valve seat surface part 417 Tip Inner portion 42 Valve body 421 Valve seat portion 423 Accommodating hole 425 Tip portion 611 Fuel introduction port 80 Inertial protrusion restoring mechanism as residual fuel discharge means 81 Piston 811 Small diameter portion 82 Spring 83 Base portion 85 Elastic member 90, 95 As residual fuel discharge means Piezo element

Claims (12)

噴孔部及び前記噴孔部の内方側に弁座面部を有する弁ボディと、
先端に弁シート部を有し前記弁ボディの内部に、その軸方に移動可能にして装着された弁体と、を備え、
駆動体の作動により前記弁体の前記弁シート部と前記弁ボディの前記弁座面部とが離座及び着座をすることにより、燃料を前記噴孔部から噴射及び停止を行う燃料噴射弁において、
前記弁シート部が前記弁座面部に着座する際に前記弁体の先端部と前記弁ボディの先端内側部とにより前記噴孔部と連通する燃料溜り室が形成され、
前記弁シート部が前記弁座面部に着座した際に前記燃料溜り室の内部に残留する燃料を押出し、該押出された燃料によって前記噴孔部内の残留燃料を排出させる残留燃料排出手段を備えたことを特徴とする燃料噴弁。
A valve body having a valve seat surface portion on the inner side of the nozzle hole portion and the nozzle hole portion;
A valve body having a valve seat at the tip and mounted inside the valve body so as to be movable in the axial direction;
In a fuel injection valve that injects and stops fuel from the injection hole portion by separating and seating the valve seat portion of the valve body and the valve seat surface portion of the valve body by operation of a driving body,
When the valve seat portion is seated on the valve seat surface portion, a fuel reservoir chamber that communicates with the nozzle hole portion is formed by the distal end portion of the valve body and the inner end portion of the valve body,
When the valve seat part is seated on the valve seat surface part, the fuel remaining in the fuel reservoir chamber is pushed out, and residual fuel discharging means for discharging the residual fuel in the nozzle hole part by the pushed fuel is provided. A fuel injection valve characterized by that.
前記弁体の開弁から閉弁に移行する際の着座直前位置においては、前記弁体の先端部は、該弁体の内部に前記残留燃料排出手段を収容させながら前記弁体と一体となって該弁体の移動方向と直交する平面を維持し、前記弁ボディの前記先端内側部は、前記弁体の前記平面と対向する平行平面に形成され、
前記燃料溜り室は、前記弁体の前記平面と前記弁ボディの前記平行平面との2面によって挟まれる室であって、前記2面が前記弁体の移動方向と直交するよう扁平形状に形成され、
前記弁体が着座した際においては、前記残留燃料排出手段が前記燃料溜り室内における前記弁ボディの前記先端内側部の位置まで突き出るように設けられることを特徴とする請求項1記載の燃料噴射弁。
At the position immediately before seating when the valve body is shifted from opening to closing, the tip of the valve body is integrated with the valve body while accommodating the residual fuel discharge means inside the valve body. Maintaining a plane orthogonal to the moving direction of the valve body, the tip inner portion of the valve body is formed in a parallel plane facing the plane of the valve body,
The fuel reservoir chamber is a chamber sandwiched between two surfaces of the flat surface of the valve body and the parallel flat surface of the valve body, and the two surfaces are formed in a flat shape so as to be orthogonal to the moving direction of the valve body. And
2. The fuel injection valve according to claim 1, wherein when the valve body is seated, the residual fuel discharge means is provided so as to protrude to a position of the inner end portion of the valve body in the fuel reservoir chamber. .
前記残留燃料排出手段は、前記弁体の先端部の内部に設けられ、前記弁体の着座方向の移動が前記弁シート部の前記弁座面部への着座により停止された際に、慣性力によって前記燃料溜り室の内部に突出し、前記弁体の離座方向の移動に伴い復元状態を保持する慣性突出復元機構であることを特徴とする請求項1又は2記載の燃料噴射弁。   The residual fuel discharge means is provided inside the tip of the valve body, and when the movement of the valve body in the seating direction is stopped by the seating of the valve seat portion on the valve seat surface portion, an inertial force is used. 3. The fuel injection valve according to claim 1, wherein the fuel injection valve is an inertia protrusion recovery mechanism that protrudes into the fuel reservoir chamber and maintains a recovery state as the valve body moves in a seating direction. 前記慣性突出復元機構は、前記燃料溜り室に開口するように前記弁体の先端部に形成され、その軸線方向に深さを有する収納孔内に移動可能に収納される所定の質量を持つピストンと、前記ピストンの慣性突出を復元させる戻し部材と、を備えることを特徴とする請求項3記載の燃料噴射弁。   The inertial protrusion restoring mechanism is a piston having a predetermined mass that is formed at the distal end portion of the valve body so as to open to the fuel reservoir chamber, and is movably housed in a housing hole having a depth in the axial direction thereof. The fuel injection valve according to claim 3, further comprising: a return member that restores the inertia protrusion of the piston. 前記戻し部材は、前記弁体の先端部に固定された基部と、該基部と前記ピストンに当接し前記ピストンを復元方向に付勢するスプリングであることを特徴とする請求項4記載の燃料噴射弁。   5. The fuel injection according to claim 4, wherein the return member is a base fixed to the tip of the valve body, and a spring that abuts the base and the piston and biases the piston in a restoring direction. valve. 前記戻し部材は、前記収納孔の内周部と前記ピストンの外周部との間に圧接状態で装着された弾性部材であることを特徴とする請求項4記載の燃料噴射弁。   5. The fuel injection valve according to claim 4, wherein the return member is an elastic member mounted in a pressure contact state between an inner peripheral portion of the storage hole and an outer peripheral portion of the piston. 前記弾性部材は、所定の長さを有する円筒状の耐熱耐油性ゴムであることを特徴とする請求項6記載の燃料噴射弁。   The fuel injection valve according to claim 6, wherein the elastic member is a cylindrical heat and oil resistant rubber having a predetermined length. 前記残留燃料排出手段は、前記弁シート部が前記弁座面部に着座した後に通電されて伸縮振動するピエゾ素子であることを特徴とする請求項1又は2記載の燃料噴射弁。   3. The fuel injection valve according to claim 1, wherein the residual fuel discharging means is a piezo element that is energized and vibrates and contracts after the valve seat portion is seated on the valve seat surface portion. 前記ピエゾ素子は、前記収納孔内に該ピエゾ素子の伸縮方向が前記弁体の移動方向と一致するように収納されていることを特徴とする請求項8記載の燃料噴射弁。   9. The fuel injection valve according to claim 8, wherein the piezo element is accommodated in the accommodation hole so that an expansion / contraction direction of the piezo element coincides with a moving direction of the valve body. 前記残留燃料排出手段は、前記弁体内に伸縮方向が該弁体の移動方向と一致するように装着されたピエゾ素子であることを特徴とする請求項1記載の燃料噴射弁。   2. The fuel injection valve according to claim 1, wherein the residual fuel discharge means is a piezo element mounted in the valve body so that an expansion / contraction direction coincides with a moving direction of the valve body. 請求項1〜10のいずれか一つに記載の燃料噴射弁は、噴孔部が複数設けられ、且つ、その孔軸線が弁体の移動方向に対して外方に開く所定の角度を有している燃料噴射弁に適用されていることを特徴とする燃料噴射弁。   The fuel injection valve according to any one of claims 1 to 10, wherein a plurality of nozzle holes are provided, and the hole axis has a predetermined angle that opens outward with respect to the moving direction of the valve body. The fuel injection valve is applied to a fuel injection valve. 請求項1〜11のいずれか一つに記載の燃料噴射弁は、ガソリンエンジンの燃料噴射弁に適用されていることを特徴とする燃料噴射弁。

The fuel injection valve according to any one of claims 1 to 11, wherein the fuel injection valve is applied to a fuel injection valve of a gasoline engine.

JP2006196527A 2006-07-19 2006-07-19 Fuel injection valve Pending JP2008025390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006196527A JP2008025390A (en) 2006-07-19 2006-07-19 Fuel injection valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006196527A JP2008025390A (en) 2006-07-19 2006-07-19 Fuel injection valve

Publications (1)

Publication Number Publication Date
JP2008025390A true JP2008025390A (en) 2008-02-07

Family

ID=39116297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006196527A Pending JP2008025390A (en) 2006-07-19 2006-07-19 Fuel injection valve

Country Status (1)

Country Link
JP (1) JP2008025390A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275669A (en) * 2008-05-16 2009-11-26 Toyota Motor Corp Fuel injection device of internal combustion engine
FR3014500A1 (en) * 2013-12-09 2015-06-12 Peugeot Citroen Automobiles Sa INJECTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275669A (en) * 2008-05-16 2009-11-26 Toyota Motor Corp Fuel injection device of internal combustion engine
FR3014500A1 (en) * 2013-12-09 2015-06-12 Peugeot Citroen Automobiles Sa INJECTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE

Similar Documents

Publication Publication Date Title
JP5641035B2 (en) Fuel injection valve
US7063279B2 (en) Fuel injection valve
JP2008025390A (en) Fuel injection valve
JP2009103080A (en) Fuel injection valve
JP6976209B2 (en) Plunger pump
JP2009281346A (en) Fuel injection device
JP6695768B2 (en) Fuel pump
JP4023804B2 (en) Injector for internal combustion engine
WO2017145560A1 (en) Fuel injection device
JP6020194B2 (en) Fuel injection valve
JP2011099358A (en) Fuel injection valve
JP5462943B2 (en) Fuel injector
JP2009293512A (en) Fuel injection valve
JP4595960B2 (en) Fuel injection valve
JP2008202417A (en) Fuel injection control device of internal combustion engine
JP2006220129A (en) Fuel injection nozzle, fuel injection valve, and fuel injection device
JP6733701B2 (en) Injector
JP5051102B2 (en) Fuel injection valve
JP4239942B2 (en) Fuel injection valve
JP4900256B2 (en) Injector
JP2008025379A (en) Fuel injection valve
JP2012225185A (en) Fuel injection valve
JP6677146B2 (en) Valve structure
JP5636999B2 (en) Injector
JP5648539B2 (en) Fuel injection device