JP2008025362A - マイクロポンプ - Google Patents

マイクロポンプ Download PDF

Info

Publication number
JP2008025362A
JP2008025362A JP2006195501A JP2006195501A JP2008025362A JP 2008025362 A JP2008025362 A JP 2008025362A JP 2006195501 A JP2006195501 A JP 2006195501A JP 2006195501 A JP2006195501 A JP 2006195501A JP 2008025362 A JP2008025362 A JP 2008025362A
Authority
JP
Japan
Prior art keywords
resist
circulation path
etching
path
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006195501A
Other languages
English (en)
Inventor
Hisaaki Oguchi
寿明 小口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2006195501A priority Critical patent/JP2008025362A/ja
Publication of JP2008025362A publication Critical patent/JP2008025362A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】極めてシンプルな構造で、小型化が容易に可能で、高い耐久性を有するマイクロポンプを提供する。
【解決手段】駆動回路DR(図1)は、不図示のセンサにより磁性体の2つの微小球4の位置を検出し、それより時計回り方向に離れた電磁石5A、5Dを選択して励磁する。すると、電磁石5A、5Dから発生した磁力により、磁性体である微小球4が付勢され、時計回りに移動しようとする。残りの微小球3は磁力の影響を受けないので、微小球4に押されて同方向に移動する。循環路R内の微小球3,4が全て同方向に移動すると、その内部の流体もつれて同方向に移動するようになる。これにより、供給路Iから取り込んだ流体を、排出路Oから排出することが可能となる。
【選択図】図3

Description

本発明は、微量の液体を圧送するマイクロポンプに関する。
近年、微量な流体を制御するニーズが高まり、特に化学やバイオ分野においては微小流路の内部に微量な液体を流すことで分析を可能にするために、微細加工技術を用いて作製される微小流路やマイクロポンプなどの研究が試みられている。例えば特許文献1には、ダイヤフラムを電磁的に駆動することで、流体を圧送する小型のポンプが開示されている。
特開2006−22656号公報
ところで、近年、燃料電池やμ−TASなどチップ上に微細な流路を作製し、その流路内部に流体の流れを発生させるための小型ポンプの開発が活発に行われている。このような流体の流れを発生させるための機構として、従来より静電気やピエゾによる基板の変形や動作を用いたもの、MEMS技術により作製したダイヤフラムを可動変位させるポンプ、微小なモータの駆動力を利用したポンプなどが考えられている。
しかし、以上のようなポンプの構造を採用して、更なる小型化を図ろうとしても、素子の構造が複雑であるために技術的にも容易でないという問題点があり、更に大量生産にも不向きである。また、個々のポンプがもつ問題点の一例として以下があげられる。
(1)モータを用いたポンプでは、ポンプ力が大きいが小型化が特に難しい。
(2)ダイヤフラム型のポンプでは、強いポンピング力を発生できず、粘度が大きな油などの流体を攪拌することができない。又、ダイヤフラムの耐久性にも問題がある。
本発明は、以上にあげた従来の不都合な点からなる課題を解決するものであり、極めてシンプルな構造で、小型化が容易に可能で、高い耐久性を有するマイクロポンプを提供することを目的とする。
本発明のマイクロポンプは、
流体の供給路及び排出路に連結された循環路を有するハウジングと、
前記循環路内を移動可能に配置された磁性体の物体及び非磁性体の物体と、
前記循環路に沿って配置された複数の電磁石と、
前記磁性体の物体に近い電磁石に電力を供給することにより、発生した磁力により前記磁性体の物体を、前記非磁性体の物体と共に、前記循環路内で所定の方向に移動させることにより、前記供給路から前記循環路を介して前記排出路へと流体を導くようになっていることを特徴とする。
本発明のマイクロポンプは、前記磁性体の物体に近い電磁石に電力を供給することにより、発生した磁力により前記磁性体の物体を、前記非磁性体の物体と共に、前記循環路内で所定の方向に移動させることにより、前記供給路から前記循環路を介して前記排出路へと流体を導くようになっているので、モータやダイヤフラム等を用いることなく流体の圧送が可能であり、極めてシンプルな構造で、小型化が容易に可能で、高い耐久性を有するものである。
より具体的には、比較的駆動力の大きな磁気力を用いて、磁性体の物体を循環路内で循環移動させることで流体の流れを発生する極めて簡易なポンプの構造とすることができ、例えば半導体プロセス技術をもちいて循環路を形成すると容易に大量生産が可能となる。
更に、本発明に係るマイクロバルブに用いるハウジングに、MEMS(Micro Electro Mechanical System)技術を利用して循環路を作製する場合、ガラスやシリコン基板、PDMS(poly−dimethylsiloxane)、セラミック材料を筐体の素材として、その表面に微小な溝を作製し、蓋とハウジングの貼り合わせを行うことで一体型のハウジングを形成し、最後に電磁石を取り付けることで簡単に構造の製作が可能であり、微細化、高い耐圧構造を極めて安価に実現できる上に、種々の材料を用いた設計が可能であるため耐薬品性にも優れた幅広い材料設計ができる。
また、本発明に係るマイクロポンプにおいては、例えば循環路内を移動する物体として微小球を用いた簡素な構成とでき、弾性支持部が存在しないために耐久信頼性が高く、磁力により微小球を移動するだけでポンプの動作が可能であり、循環路と微小球との間の摩擦力が小さいため、省エネに優れ安定した流体の供給を行うことが可能である。なお、微小球に限らず微小円筒(これらを総称して微小体という)であっても良い。
前記循環路は、前記ハウジングの素材にエッチングマスクとレジストとをこの順序で形成した後に、露光と現像とにより前記レジストの一部を除去し、更にエッチング処理により前記レジストと前記エッチングマスクとを除去することにより形成されると好ましい。
前記循環路は、前記ハウジングの素材に膜材料とエッチングマスクとレジストとをこの順序で形成した後に、露光と現像により前記レジストの一部を除去し、更にエッチング処理により前記レジストと前記エッチングマスクと前記膜材料の一部とを除去することにより形成されると好ましい。
前記循環路は、前記ハウジングの素材にレジストを形成した後に、露光と現像とにより前記レジストの一部を除去することにより形成されると好ましい。
前記循環路は、金型を用いて形成されると好ましい。
次に、本発明の実施の形態を図面を参照して説明する。図1は、本実施の形態にかかるマイクロポンプの側面断面図である。図2は、図1の構成をII-II線で切断して矢印方向に見た図である。
図1、2において、ブロック状のハウジング本体1は、平面である上面1aに、断面が半円形状などの環状の溝1bを形成している。ハウジング本体1の素材としては、ガラス基板、シリコン基板、PDMS(poly-dimethylsiloxane)、セラミック基板などを用いることができる。ガラス基板上に溝1bを作製する場合は、ガラス基板上に光硬化樹脂または熱硬化樹脂、レジスト類や、ポリミドなどをスピンコートすることによって膜を形成して、露光、現像、エッチングなどを経て微小溝を作製する。そのほかにも、基板本体のウェットエッチング、RIEによるドライエッチングなどを用いて流路をエッチングするための各種加工手法を用いて作製してもよい。
一方、ハウジング1と同様な素材から形成できる板状の蓋部材2は、平面である下面2aに、溝1bに対応して断面が半円形状などの環状の溝2bを形成している。ハウジング本体1に蓋部材2を重ね合わせたとき、溝1b、2bが対向することで、環状の循環路Rが形成されることとなる。ハウジング本体1と蓋部材2とでハウジングを構成する。
蓋部材3は、ハウジング本体1に対して、接着剤、フッ酸を用いた接合、陽極接合、機械的な固定などをもちいて貼り合わせを行い、循環路Rを外気から孤立させる機能を有するが、高圧流体を流す必要がなければ特に機械固定をする必要はない。尚、循環路Rに対して接線方向に接続するようにして、直線状の供給路Iと排出路Oとが同様な手法で形成され、外部に対して開口している。
かかる循環路R内には、それぞれ供給路Iと排出路Oより大きい径を有している、例えば11個の非磁性体の微小球3と、1個の磁性体の微小球4とが転動自在に配置されている。微小球4としては強磁性材料を含む鉄球などを用いてもよいし、表面を保護するために各種メッキ、蒸着や表面処理加工などを行ってよい。微小球3としては、磁性材料以外の金属や樹脂、セラミックなどを用いることができる。尚、微小球3,4の径は数μmオーダーまで小さくできる。
蓋部材2の上面には、循環路Rに沿って例えば6つの電磁石5A〜5Fが周方向に等間隔に配置されている。電磁石5A〜5Fは、駆動回路DRにより選択的に駆動され、励磁されるようになっている。
本実施の形態の動作について説明する。図3は、マイクロポンプの動作を示す図2と同様な図である。供給路Iは流体の供給源、排出路Oは流体の供給部に接続されている。まず、図3(a)において、駆動回路DR(図1)は、不図示のセンサにより磁性体の微小球4(ハッチングで示す)の位置を検出し、それより時計回り方向に離れた電磁石5Aを選択して励磁する。すると、電磁石5Aから発生した磁力により、磁性体である微小球4が付勢され、時計回りに移動しようとする。残りの微小球3は磁力の影響を受けないので、微小球4に押されて同方向に移動する。循環路R内の微小球3,4が全て同方向に回転移動すると、その内部の流体もつれて同方向に移動するようになる。これにより、供給路Iから取り込んだ流体を、排出路Oから排出することが可能となる。
続いて図3(b)において、駆動回路DR(図1)は、磁性体の微小球4が電磁石5Aに接近したことを検出したときは、電磁石5Aの励磁を停止して、それより時計回り方向に隣り合う電磁石5Bを選択して励磁する。すると、電磁石5Bから発生した磁力により、磁性体である微小球4が同方向に付勢され、電磁石5Aを通り過ぎて他の微小球3と共に更に時計回りに移動しようとする。
更に図3(c)において、駆動回路DR(図1)は、磁性体の微小球4が電磁石5Bに接近したことを検出したときは、電磁石5Bの励磁を停止して、それより時計回り方向に隣り合う電磁石5Cを選択して励磁する。すると、電磁石5Cから発生した磁力により、磁性体である微小球4が同方向に付勢され、電磁石5Bを通り過ぎて他の微小球3と共に更に時計回りに移動しようとする。以上の制御を繰り返すことで、微小球3、4を連続的に回転移動させることができ、流体の連続圧送が可能となる。
図4は、別な実施の形態にかかるマイクロポンプの動作を示す図2と同様な図である。本実施の形態においては、循環路R内に、例えば10個の非磁性体の微小球3と、180度位相で2個の磁性体の微小球4とが転動自在に配置されている。それ以外の構成については上述の実施の形態と同様であるため説明を省略する。
本実施の形態の動作を説明すると、図4(a)において、駆動回路DR(図1)は、不図示のセンサにより磁性体の2つの微小球4、4の位置を検出し、それぞれ時計回り方向に離れた電磁石5A、5Dを選択して励磁する。すると、電磁石5A、5Dから発生した磁力により、磁性体である微小球4、4が付勢され、時計回りに移動しようとする。残りの微小球3は磁力の影響を受けないので、微小球4に押されて同方向に移動する。循環路R内の微小球3,4が全て同方向に移動すると、その内部の流体もつれて同方向に移動するようになる。これにより、供給路Iから取り込んだ流体を、排出路Oから排出することが可能となる。
続いて図4(b)において、駆動回路DR(図1)は、磁性体の微小球4、4が電磁石5A、5Dに接近したことを検出したときは、電磁石5A、5Dの励磁を停止して、それより時計回り方向に隣り合う電磁石5B,5Eを選択して励磁する。すると、電磁石5B,5Eから発生した磁力により、磁性体である微小球4、4が同方向に付勢され、電磁石5A、5Dを通り過ぎて他の微小球3と共に更に時計回りに移動しようとする。
更に図4(c)において、駆動回路DR(図1)は、磁性体の微小球4、4が電磁石5B,5Eに接近したことを検出したときは、電磁石5B,5Eの励磁を停止して、それより時計回り方向に隣り合う電磁石5C,5Fを選択して励磁する。すると、電磁石5C,5Fから発生した磁力により、磁性体である微小球4、4が同方向に付勢され、電磁石5B,5Eを通り過ぎて他の微小球3と共に更に時計回りに移動しようとする。以上の制御を繰り返すことで、微小球3、4を連続的に回転移動させることができ、流体の連続圧送が可能となる。本実施の形態によれば、2個の微小球4が同時に付勢されるので、回転速度が約2倍となり流体の高速圧送が可能となる。
図5は、本実施の形態の変形例を示す図1と同様な図である。図5(a)に示す変形例においては、ハウジング本体1の上面1aにのみ環状の溝1bが形成され、蓋部材2の下面には環状の溝が形成されていない。これに対し、図5(b)に示す変形例においては、蓋部材2の下面2aにのみ環状の溝2bが形成され、ハウジング本体1の上面には環状の溝が形成されていない。
更に、図5(c)に示す変形例においては、蓋部材2の上面に電磁石5A〜5Fを配置する代わりに、薄厚のハウジング本体1の下面に、電磁石5A〜5Fを配置している。又、図5(d)に示す変形例においては、蓋部材2の上面に電磁石5A〜5Fを配置する代わりに、ハウジング1と蓋部材2の側面に凹部1c、2cを全周にわたって形成し、組み付け時に凹部1c、2cで形成される環状の空間内に電磁石5A〜5Fを埋設配置している。更に、図5(e)に示す変形例においては、蓋部材2の上面に電磁石5A〜5Fを配置する代わりに、ハウジング1と蓋部材2の側面に対向して、その外方に外部の電磁石5A〜5Fを配置している。
次に、ハウジング1(又は蓋部材2)に、循環路を構成する微細な溝1b(又は2b)を形成する方法について説明する。かかる形成方法としては、以下の3つがあげられる。以下、ハウジング又は蓋部材の素材を基板Sと呼ぶこととする。
(1)エッチング流路加工法:
これは、基板Sに、ウエットエッチングまたはドライエッチングを用いて循環路用の微細な溝Sgを加工する方法である。図6に、エッチング流路加工法のプロセスフローを示す。まずエッチング部分以外を保護するためのエッチングマスク層EMとして、クロムなどを真空蒸着やスパックリングなどにより基板Sの上面に成膜する(図6(a)参照)。次にスピンコートによりレジストRSを、エッチングマスク層EMの上面に均一の厚さで被覆する(図6(b)参照)。その後、フォトリソグラフィーやその他の露光技術により(例えば中央が最も露光量が高くそこから離れるにつれて漸次露光量が低下するようにして)、微細な溝1bの形状にレジストのRSパターニング(パターン転写)を行った後(図6(c)参照)、エッチングマスク層EMをエッチングし(図6(d)参照)、基板Sのエッチングを行い(図6(e)参照)、最終的には、不要なエッチングマスク層EMとレジストRSを除去して、基板Sに断面が半円形状の微細な溝Sgの形成を行う。収容部も同様にして形成できる。
エッチング流路加工法に用いる材料構成の実施例を以下に示す。
(実施例1)基板:石英又はガラス/エッチングマスク:Cr等/レジスト:フォトレジスト/マスクのエッチング液:Crエッチャント/基板エッチング:フッ酸溶液(ウエットエッチング)
(実施例2)基板:シリコン/エッチングマスク:SiO2+Cr等/レジスト:フォトレジスト/マスクのエッチング液:Crエッチャント(硝酸二アンモニウムセリウム+過塩素酸)、SiO2エッチャント(フッ酸緩衝溶液)/基板エッチング:KOH又はTMAHを用いたウェットエッチング、又はSF6を用いたドライエッチング、プラズマエッチング、RIEエッチング)
(2)膜材料を用いた流路加工法:
これは、基板に成膜した膜材料に流路用の微細な溝を加工する方法である。図7、8に膜材料を用いた流路加工法のプロセスフローを示す。本手法は、感光性の膜材料を露光することで微細な溝を形成できるi)感光材料を使用する場合と、ii)基板上の膜材料をエッチングで加工する非感光性材料を使用した場合などがある。
i)感光材料を使用する場合は、基板S上にフォトレジストPRを塗布し(図7(a)参照)、フォトリソグラフィーやその他の露光技術でパターニングし(図7(b)参照)、更に現像することで一部のフォトレジストPRを除去して微細な溝Sgを形成することができる(図7(c)参照)。
ii)非感光材料を使用する場合は、図6を参照して説明したエッチング流路加工法に類似した作製方法を用いる。より具体的には、膜材料PRとエッチングマスクEMとレジストRSを、この順序で基板Sの上面に成膜する(図8(a)参照)。次に、フォトリソグラフィーやその他の露光技術により、微細な溝Sgの形状にレジストのRSパターニング(パターン転写)を行った後(図8(b)参照)、エッチングマスク層EMをエッチングし(図8(c)参照)、膜材料PRのエッチングを行い(図8(d)参照)、最終的には、不要なエッチングマスク層EMとレジストRSを除去して、膜材料PRに微細な溝Sgの形成を行う。収容部も同様にして形成できる。
膜材料を用いた流路加工法に用いる材料構成の実施例を以下に示す。なお、基板としてはガラス又はシリコンを用いることができるが、材料を特定せず非磁性材料であれば様々なものが使用できる。特に、膜材料にシリコンを用いる場合は、SOI基板を使用することもできる。
(感光材料を使用する実施例1)膜材料:光硬化樹脂、厚膜レジスト又は感光性ポリミド
(非感光材料を使用する実施例2)膜材料:SiO2ガラス等/レジスト:フォトレジスト/エッチングマスク:Cr等/膜のエッチング:フッ酸溶液(ウエットエッチング)
(非感光材料を使用する実施例3)膜材料:ポリミド等/レジスト:フォトレジスト/エッチングマスク:Cr、SiO2等/膜のエッチング:KOH又はTMAHを用いたウェットエッチング)
(非感光材料を使用する実施例4)膜材料:レジスト等/レジスト:フォトレジスト/エッチングマスク:SiO2等/膜のエッチング:O2ガスを用いたドライエッチング
(非感光材料を使用する実施例5)膜材料:シリコン等/レジスト:フォトレジスト/エッチングマスク:Cr、SiO2等/膜のエッチング:KOH又はTMAHを用いたウェットエッチング、又はSF6を用いたドライエッチング
なお、SiO2エッチャントはフッ酸緩衝溶液であり、シリコン基板のエッチングは、KOH又はTMAHを用いたウェットエッチング、又はSF6を用いたドライエッチングが好適である。膜材料を用いた流路加工法においては、流路の深さが膜材料の膜厚より浅く加工されていてもよい。
(3)金型を用いた成形による流路加工法:
これは、流路用の微細な溝のパターンを転写するために準備した金型を利用して、金型の表面形状に相反する形状を転写することで流路用の微細な溝を作製する手法であるが、これは大量生産に適している。PDMS(poly‐dimethylsiloxane)やシリコンゴムなどを金型の上で成型する成型手法とプラスチックに圧力をかけて金型に押しつけて成形する成形手法によってもよい。
図9は、金型からPDMSに微細な溝を形成するプロセスフローを示す図である。図9(a)において、微細な溝に対応する凸部を有する金型Mを製造する。続いて、図9(b)に示すように、金型Mの凸部によりPDMS上に微細溝Sgを転写形成する。更に図9(c)に示すように、金型MよりPDMSを離型させることで、微細溝Sgを有するハウジング等を形成できる。
図10は、金型から樹脂に微細な溝を形成するプロセスフローを示す図である。図10(a)において、微細な溝に対応する凸部を有する金型Mを製造する。続いて、図10(b)に示すように、金型Mの凸部上に溶融した樹脂PLをかぶせることで、微細溝Sgを転写形成する。更に樹脂PLが固化した後に、図10(c)に示すように、金型Mより樹脂PLを離型させることで、微細溝Sgを有するハウジング等を形成できる。
以上述べた本実施の形態のマイクロポンプは、油などの粘度の高い流体を圧送するのに使用でき(この場合は、粘度の大きな流体は、ヒータなどを備えてチップ全体を加熱することにより流体を加熱してもよい。)、また燃料電池用のメタノール搬送ポンプとして使用でき、更に細胞培養など、養分を含んだ流体を搬送するために使用でき、また医療分野における薬液の注入ポンプとして使用でき、更にバイオチップ、μ−TAS用の流体搬送小型ポンプとして使用できるが、これ以外に種々の用途に用いることができる。
以上、本発明を実施の形態を参照して説明してきたが、本発明は上記実施の形態に限定して解釈されるべきではなく、適宜変更・改良が可能であることはもちろんである。
本実施の形態にかかるマイクロポンプの側面断面図である。 図1の構成をII-II線で切断して矢印方向に見た図である。 マイクロポンプの動作を示す図2と同様な図である。 別な実施の形態にかかるマイクロポンプの動作を示す図2と同様な図である。 本実施の形態の変形例を示す図1と同様な図である。 エッチング流路加工法のプロセスフローを示す図である。 感光性の膜材料を用いた流路加工法のプロセスフローを示す図である。 非感光性の膜材料を用いた流路加工法のプロセスフローを示す図である。 金型からPDMSに微細な溝を形成するプロセスフローを示す図である。 金型から樹脂に微細な溝を形成するプロセスフローを示す図である。
符号の説明
1 ハウジング本体
1a 上面
1b 溝
1c 凹部
2 蓋部材
2a 下面
2b 溝
3 非磁性体の微小球
4 磁性体の微小球
5A〜5F 電磁石
DR 駆動回路
I 供給路
O 排出路
R 循環路

Claims (5)

  1. 流体の供給路及び排出路に連結された循環路を有するハウジングと、
    前記循環路内を移動可能に配置された磁性体の物体及び非磁性体の物体と、
    前記循環路に沿って配置された複数の電磁石と、
    前記磁性体の物体に近い電磁石に電力を供給することにより、発生した磁力により前記磁性体の物体を、前記非磁性体の物体と共に、前記循環路内で所定の方向に移動させることにより、前記供給路から前記循環路を介して前記排出路へと流体を導くようになっていることを特徴とするマイクロポンプ。
  2. 前記循環路は、前記ハウジングの素材にエッチングマスクとレジストとをこの順序で形成した後に、露光と現像とにより前記レジストの一部を除去し、更にエッチング処理により前記レジストと前記エッチングマスクとを除去することにより形成されることを特徴とする請求項1に記載のマイクロポンプ。
  3. 前記循環路は、前記ハウジングの素材に膜材料とエッチングマスクとレジストとをこの順序で形成した後に、露光と現像により前記レジストの一部を除去し、更にエッチング処理により前記レジストと前記エッチングマスクと前記膜材料の一部とを除去することにより形成されることを特徴とする請求項1に記載のマイクロポンプ。
  4. 前記循環路は、前記ハウジングの素材にレジストを形成した後に、露光と現像とにより前記レジストの一部を除去することにより形成されることを特徴とする請求項1に記載のマイクロポンプ。
  5. 前記循環路は、金型を用いて形成されることを特徴とする請求項1に記載のマイクロポンプ。
JP2006195501A 2006-07-18 2006-07-18 マイクロポンプ Pending JP2008025362A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195501A JP2008025362A (ja) 2006-07-18 2006-07-18 マイクロポンプ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195501A JP2008025362A (ja) 2006-07-18 2006-07-18 マイクロポンプ

Publications (1)

Publication Number Publication Date
JP2008025362A true JP2008025362A (ja) 2008-02-07

Family

ID=39116275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195501A Pending JP2008025362A (ja) 2006-07-18 2006-07-18 マイクロポンプ

Country Status (1)

Country Link
JP (1) JP2008025362A (ja)

Similar Documents

Publication Publication Date Title
US6607362B2 (en) Micro paddle wheel pump for precise pumping, mixing, dispensing, and valving of blood and reagents
Rahbar et al. Fabrication process for electromagnetic actuators compatible with polymer based microfluidic devices
EP2179279B1 (en) Device for controlling fluid motion into micro/nanochannels by means of surface acoustic waves
WO2010141326A1 (en) Fluidic devices with diaphragm valves
Lee et al. Bidirectional pumping properties of a peristaltic piezoelectric micropump with simple design and chemical resistance
Rahbar et al. Design, fabrication and characterization of an arrayable all-polymer microfluidic valve employing highly magnetic rare-earth composite polymer
Huang et al. Microfabricated capped channels for biomolecular motor-based transport
Dharmatilleke et al. Three-Dimensional Silicone Device Fabrication and Interconnection Scheme for Microfluidic Applications Using Sacrificial Wax Layers
Mao et al. A micro vertically-allocated SU-8 check valve and its characteristics
US20050045539A1 (en) Control device and method for controlling liquid droplets
US20120024389A1 (en) Integrated electromagnetic actuator, in particular electromagnetic micro-pump for a microfluidic device based on mems technology, and manufacturing process
Nagel et al. Magnetically actuated micropumps using an Fe-PDMS composite membrane
JP2008025362A (ja) マイクロポンプ
JP2007255433A (ja) 流量調整器
Dehghan et al. Fabrication of peristaltic electromagnetic micropumps using the SLA 3D printing method from a novel magnetic nano-composite material
JP2008008347A (ja) マイクロバルブ
Hesketh et al. Microvalve for fuel cells and miniature gas chromatographic system
KR100403969B1 (ko) 자성유체를 이용한 구동기 및 그 구동기의 제작방법
US20100327211A1 (en) Method for the production of micro/nanofluidic devices for flow control and resulting device
Thuillier et al. Development of a low cost hybrid Si/PDMS multi-layered pneumatic microvalve
CN110345050B (zh) 一种单一阀门控制和驱动的微泵
Li et al. Solid micromechanical valves fabricated with in situ UV-LIGA assembled nickel
Tanaka et al. Assembly and simple demonstration of a micropump installing PDMS-based thin membranes as flexible micro check valves
Kim et al. Nonlithographic fabrication of inflatable and deflatable polydimethylsiloxane (PDMS) micro-channels for magnetic actuation
JP2007046721A (ja) 一方向弁