JP2008025195A - Construction method of cable-stayed bridge - Google Patents

Construction method of cable-stayed bridge Download PDF

Info

Publication number
JP2008025195A
JP2008025195A JP2006198677A JP2006198677A JP2008025195A JP 2008025195 A JP2008025195 A JP 2008025195A JP 2006198677 A JP2006198677 A JP 2006198677A JP 2006198677 A JP2006198677 A JP 2006198677A JP 2008025195 A JP2008025195 A JP 2008025195A
Authority
JP
Japan
Prior art keywords
cable
girder
floor slab
stayed bridge
concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006198677A
Other languages
Japanese (ja)
Inventor
Shuji Onami
修二 大波
Akinobu Kishi
明信 岸
Masashi Sakakibara
正志 榊原
Daichi Hayashida
大地 林田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MM Bridge Co Ltd
Original Assignee
Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd filed Critical Mitsubishi Heavy Industries Bridge and Steel Structures Engineering Co Ltd
Priority to JP2006198677A priority Critical patent/JP2008025195A/en
Publication of JP2008025195A publication Critical patent/JP2008025195A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a construction method of a cable-stayed bridge, constructing a cable-stayed bridge economically even in the sea area or the mountain district. <P>SOLUTION: First, a diagonal bent is provided on a main tower 2c, and on the other hand, a girder in side span is constructed on the ground on a girder on the land elevated part. Subsequently, a floor slab 13 before placing cast-in-place concrete is constructed on the diagonal bent. The girder constructed on the ground is delivered by a push0out means, and further projected to be connected to the floor slab to which a cable 4a is temporarily connected. The floor slab on the center span side is projected and temporarily connected to the cable 4a, and cast-in-place concrete is placed on the part already temporarily connected to the cable. This work is repeated. The cable 4a is finally connected to the floor slab where the concrete is dried and solidified, and in the center span, the finally remaining girder part is integrated and connected. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、斜張橋の施工方法に関するものである。   The present invention relates to a cable-stayed bridge construction method.

一般に、斜張橋は、床版の種類としてPC床版、鋼床版が用いられる(例えば、特許文献1)。これらの床版は、工場で製作されたものを現場に搬送し、ケーブルで吊り上げ、連結していくのが一般的である。一方、現場施工のコンクリート床版が用いられる場合もある。   Generally, a PC slab and a steel slab are used as the type of floor slab for the cable stayed bridge (for example, Patent Document 1). These floor slabs are generally transported from the factory to the site, lifted with cables, and connected. On the other hand, a concrete floor slab constructed on site may be used.

特開平8−41826号公報Japanese Patent Laid-Open No. 8-41826

しかしながら、上記PC床版や鋼床版は架設重量が大きいという特徴があり、設備が大型になってしまう他、山間部や海上への搬送も容易ではなく、経済的ではないという問題点があった。また、斜張橋では、主塔部から桁を両側に張り出しながら架設するため、現場施工のコンクリート床版を採用する場合、コンクリートの搬送が容易ではなく、また、工期の長期化が問題点であった。   However, the above-mentioned PC slab and steel slab have the feature that the installation weight is large, and the equipment becomes large, and it is not easy to transport to the mountainous area or the sea, which is not economical. It was. On the cable-stayed bridge, the girders are erected from both sides of the main tower, so if concrete floor slabs are used on site, it is not easy to transport concrete, and the construction period is long. there were.

そこで、この発明は、上記に鑑みてなされたものであって、上記問題のない、底板とコンクリートからなる床版を用いた斜張橋の施工方法を提供することを目的とする。   Therefore, the present invention has been made in view of the above, and an object thereof is to provide a method for constructing a cable-stayed bridge using a floor slab made of a bottom plate and concrete, which does not have the above-mentioned problems.

上述の目的を達成するために、この発明による斜張橋の施工方法は、主塔に斜ベントが設けられる工程と、陸上高架部の桁上で側径間の桁が地組み立てされる工程と、前記斜ベントの上に現場施工コンクリート打設前の床版が架設される工程と、地組みした前記桁が送り出し手段で送り出される工程と、前記床版がさらに張り出され、それにケーブルが仮連結されると共に、側径間に送り出された前記桁と当該床版が連結される工程と、中央径間側の桁と前記床版が張り出されて、前記主塔からのケーブルに仮連結されると共に、既にケーブルに仮連結してある部分に現場施工コンクリートが打設され、これが繰り返される工程と、前記現場施工コンクリートが乾燥固化した前記床版にケーブルが本連結される工程と、中央径間で最後に残った桁部が併合連結される工程と、を含むようにしたものである。   In order to achieve the above-described object, the cable-stayed bridge construction method according to the present invention includes a step in which a main tower is provided with a diagonal vent, and a step in which a girder between side spans is assembled on a girder of an overpass. A step of laying a floor slab before placing concrete on-site on the oblique vent, a step of sending out the ground girder by a feeding means, a further extension of the floor slab, and a cable temporarily And the step of connecting the girder sent out between the side diameters and the floor slab, the girder on the central span side and the floor slab are projected, and temporarily connected to the cable from the main tower In addition, a site construction concrete is placed in a portion that has already been temporarily connected to the cable, a process in which this is repeated, a process in which the cable is permanently connected to the floor slab in which the site construction concrete has been dried and solidified, The last remaining in the span Is obtained to include the steps of girder are merged connected, the.

このように、この発明に係る斜張橋の施工方法では、陸上高架部を先に完成させることで、斜張橋に連結するアプローチ道路として使用可能となる。これにより、中央径間部にコンクリートや各種機材の供給が可能となる。また、斜ベントが斜張橋の床版を支持する構造とすることで、桁には床版荷重がかからないため、主塔からのケーブルを連結しない状態でも現場でコンクリートを打設可能となる。ケーブルの仮連結としたのは、斜ベントだけでも床版と主桁を支持可能であり、最終的な本連結ほど張力が必要ではないからである。   Thus, in the construction method of the cable-stayed bridge according to the present invention, it is possible to use it as an approach road that is connected to the cable-stayed bridge by completing the overpass part first. This makes it possible to supply concrete and various equipment to the central span. In addition, by adopting a structure in which the cable vent supports the cable slab of the cable-stayed bridge, no slab load is applied to the girders, so it is possible to place concrete on-site without connecting the cable from the main tower. The reason why the cable is temporarily connected is that the floor slab and the main girder can be supported by only the inclined vent, and tension is not required as in the final final connection.

また、つぎの発明に係る斜張橋の施工方法は、前記斜張橋の施工方法において、前記桁の張り出し架設時には、前記桁と合成床版とを、主塔基部からの吊上げと裏面搬送により、張り出し架設するようにしたものである。   In addition, the cable-stayed bridge construction method according to the next invention is the cable-stayed bridge construction method, wherein the girder and the composite floor slab are lifted from the main tower base and conveyed on the back surface when the girder is overlaid. It is designed to overhang.

上記のような施工方法では、架設重量が軽いため、小型設備で張り出し架設が可能で、工費が安価となる。また、航路の占用も少なくなる。   In the construction method as described above, since the erection weight is light, the erection can be performed with a small facility, and the construction cost is reduced. In addition, the occupancy of the route is reduced.

また、つぎの発明に係る斜張橋の施工方法では、前記斜張橋の施工方法において、橋脚部にも斜ベントを設けるようにしたものである。   In the cable-stayed bridge construction method according to the next invention, the cable pier is provided with a cable vent in the cable-stayed bridge construction method.

地組した桁を送り出しする場合に、橋脚間の距離が長いと桁の支持間隔が長くなるため、当該桁に補強が必要となる。橋脚部に斜ベントを設置すると、送り出し時の支持間隔が短くなり、桁の補強を不要とすることが出来る。   When sending out a built-up girder, if the distance between the piers is long, the support interval of the girder becomes long, so that the girder needs to be reinforced. If a diagonal vent is installed on the bridge pier, the support interval at the time of delivery will be shortened, making it unnecessary to reinforce the girder.

この発明に係る斜張橋の施工方法によれば、斜張橋設置箇所が海上部や山岳部であっても、現場施工のコンクリートを利用するので、架設時の床版が軽く、搬送が容易となり、経済的となる。また、コンクリートを現場での打設自体も、この発明に係る施工方法であれば至極合理的に打設可能で、これにより、斜張橋を構築可能となる。   According to the cable-stayed bridge construction method according to the present invention, even when the cable-stayed bridge is installed on the sea or in a mountainous area, the concrete used in the construction is used, so the floor slab at the time of construction is light and easy to carry. It becomes economical. Moreover, concrete can be placed on site in a very reasonable manner by using the construction method according to the present invention, whereby a cable-stayed bridge can be constructed.

以下、この発明につき図面を参照しつつ詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が容易に想定できるものが含まれるものとする。   Hereinafter, the present invention will be described in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. The constituent elements in the following embodiments include those that can be easily assumed by those skilled in the art.

図1は、本発明により施工された斜張橋の全体を示す正面図である。斜張橋1は、主塔2からのケーブル4が床版3に対して斜めに張設される橋である。床版3は、下部の主桁5と共に橋の姿勢を保持する。橋脚は、中間橋脚6、または端橋脚7と必要箇所に設けられる。なお、同図は陸上高架部8の間の海上に斜張橋が設置される場合を示すが、山岳部でも基本的に同様である。   FIG. 1 is a front view showing the entire cable-stayed bridge constructed according to the present invention. The cable-stayed bridge 1 is a bridge in which the cable 4 from the main tower 2 is stretched obliquely with respect to the floor slab 3. The floor slab 3 holds the bridge posture together with the lower main girder 5. The pier is provided at the intermediate pier 6 or the end pier 7 and a necessary place. The figure shows the case where a cable-stayed bridge is installed on the sea between the overpass sections 8, but basically the same is true in mountainous areas.

図2は、この発明の実施例に係る斜張橋の施工方法(ステップ1)を示す説明図である。説明を容易にするため、この施工工程をステップ1とする。この工程では、まず、陸上高架部8の端橋脚7、橋脚6、および主塔2bの基礎が設けられる。陸上高架部8では、一般的な施工方法で、桁も設置される。このように、この発明に係る施工方法では、陸上高架部を先に完成させることで、斜張橋に連結するアプローチ道路として使用可能となる。これにより、後述するコンクリートや各種機材の供給が可能となる。   FIG. 2 is an explanatory view showing a cable-stayed bridge construction method (step 1) according to an embodiment of the present invention. This construction process is referred to as step 1 for easy explanation. In this step, first, the foundations of the end bridge pier 7, the pier 6 and the main tower 2 b of the land overpass 8 are provided. In the land overpass part 8, a girder is also installed by a general construction method. As described above, the construction method according to the present invention can be used as an approach road connected to a cable-stayed bridge by first completing the overpass. This makes it possible to supply concrete and various equipment described later.

図3は、この発明の実施例に係る斜張橋の施工方法(ステップ2)を示す説明図である。この施工工程をステップ2とする。この工程では、主塔2bを継ぎ伸ばすと共に、当該主塔2bに斜ベント9を設ける。斜ベント9は、海上の台船に設置されるクレーン等を用いて主塔2b周りに鋼材を設置することにより設けられる。このとき、陸上高架部8では、桁上で側径間の桁を地組み立てしておく。当該桁は合成床版、鋼床版、またはコンクリートPC床版等のいずれでもよい。   FIG. 3 is an explanatory view showing a cable-stayed bridge construction method (step 2) according to an embodiment of the present invention. This construction process is called step 2. In this step, the main tower 2b is stretched and the inclined vent 9 is provided in the main tower 2b. The inclined vent 9 is provided by installing a steel material around the main tower 2b using a crane or the like installed on a marine carrier. At this time, in the land overpass part 8, the girder between the side diameters is assembled on the girder. The girder may be a synthetic slab, a steel slab, or a concrete PC slab.

上記のように、斜ベント9が斜張橋の床版を支持する構造とすることで、無応力状態で床版へコンクリート打設が可能となる。つまり、桁には床版荷重がかからないため、主塔からのケーブルを連結しない状態でもコンクリートを打設可能となる。   As described above, with the structure in which the inclined vent 9 supports the floor slab of the cable-stayed bridge, it is possible to place concrete on the floor slab without stress. That is, since the floor slab load is not applied to the girders, it is possible to place concrete even when the cable from the main tower is not connected.

図4−1は、この発明の実施例に係る斜張橋の施工方法(ステップ3)を示す説明図である。この施工工程をステップ3とする。この工程では、主塔2b周りの斜ベント9の上に主桁12とそれに接合する床版13を架設する。床版13への現場施工コンクリートの打設は、この時点ではまだ必要ない。一方、中間橋脚6に昇降設備と送り装置14を載せ、陸上高架部8から、地組みした桁11を当該昇降設備と送り装置14の先端を利用して移動台車15等の押し出し手段で送り出す。なお、送り出す桁11は、送り出し架設時の荷重に耐える断面とする。たとえば、桁断面構造を2主鈑桁構造とする。   4-1 is explanatory drawing which shows the construction method (step 3) of a cable-stayed bridge concerning the Example of this invention. This construction process is referred to as step 3. In this step, a main girder 12 and a floor slab 13 joined thereto are installed on the inclined vent 9 around the main tower 2b. It is not yet necessary to place concrete on site slab 13 at this point. On the other hand, the lifting equipment and the feeding device 14 are placed on the intermediate bridge pier 6, and the assembled girder 11 is sent from the overpass 8 by the pushing means such as the movable carriage 15 using the lifting equipment and the tip of the feeding device 14. The delivery girder 11 has a cross section capable of withstanding the load during delivery construction. For example, the girder cross-sectional structure is a two main girder structure.

図4−2は、橋脚6に斜ベント9を設置した例を示す説明図である。地組した桁11を送り出しする場合に、橋脚間の距離が長いと桁の支持間隔が長くなるため、当該桁11に補強が必要となる。斜ベント9を設置すると、送り出し時の支持間隔が短くなり、当該桁11の補強を不要とすることが出来る。   4-2 is explanatory drawing which shows the example which installed the inclined vent 9 in the bridge pier 6. FIG. When the ground beam 11 is sent out, if the distance between the piers is long, the support interval of the beam becomes long, so that the beam 11 needs to be reinforced. When the inclined vent 9 is installed, the support interval at the time of feeding is shortened, and the reinforcement of the girder 11 can be made unnecessary.

図5は、この発明の実施例に係る斜張橋の施工方法(ステップ4)を示す説明図である。この施工工程をステップ4とする。この工程では、継ぎ伸ばした主塔2cを中心とする床版13と主桁12を張り出し、それにケーブル4aを仮連結する。仮としたのは、斜ベントだけでも床版13と主桁12を支持可能であり、張力は基本的に不要だからである。側径間に送り出された桁11は、昇降設備と送り装置14を下げることにより、上記床版13と主桁12に連結される。なお、陸上高架部8では、桁11の降下を支える吊下げ設備等のクレーンを載せて準備する。   FIG. 5 is an explanatory view showing a cable-stayed bridge construction method (step 4) according to the embodiment of the present invention. This construction process is referred to as step 4. In this process, the floor slab 13 and the main girder 12 centering on the stretched main tower 2c are extended, and the cable 4a is temporarily connected thereto. The reason is that the floor slab 13 and the main girder 12 can be supported only by the inclined vent, and tension is basically unnecessary. The girder 11 fed between the side diameters is connected to the floor slab 13 and the main girder 12 by lowering the lifting equipment and the feeding device 14. In addition, in the onshore overhead part 8, it prepares by mounting cranes, such as suspension equipment which supports the fall of the girder 11. FIG.

図6は、この発明の実施例に係る斜張橋の施工方法(ステップ5)を示す説明図である。この施工工程をステップ5とする。この工程では、中央径間側の主桁20a、床版20bを張り出して、継ぎ伸ばした主塔2を中心としてケーブル4bに仮連結すると共に、既にケーブル4aに仮連結してある部分(図の斜線部分)に現場施工コンクリートを打設する。当該打設には、陸上高架部8から側径間桁を通行可能となったので、コンクリート搬送車16を用いればよい。ケーブル定着部は、コンクリート部を先行打設しておくか、または鋼部材とする。   FIG. 6 is an explanatory view showing a cable-stayed bridge construction method (step 5) according to the embodiment of the present invention. This construction process is called step 5. In this process, the main girder 20a and the floor slab 20b on the center span side are overhanged and temporarily connected to the cable 4b with the main tower 2 stretched as the center, and the part that has already been temporarily connected to the cable 4a (shown in the figure). Site construction concrete is placed in the shaded area. For this placement, the concrete carrier 16 may be used because the side span girder can be passed from the land overpass portion 8. The cable fixing portion is formed by placing a concrete portion in advance or a steel member.

張り出し架設した床版にはケーブル1本〜2本分ずつ、次々に現場施工のコンクリートをサイクル打設していき、これを繰り返す。打設区分のコンクリート自重は、ケーブルが鉛直荷重、桁が橋軸方向荷重を負担する。なお、中央径間側の主桁20a、床版20bの張り出しには、桁と床版を搭載した台船29を主塔部桁下に設置し、桁の裏面に設けられる吊上げ、裏面軌条設備30で架設も可能である。このようにすれば、架設重量が軽いため、小型設備で実現可能となるので、工費が安価となり、また、航路の占用も少なくなる。なお、山岳部では台船の代わりにトレーラー等を用いるが、主塔付近のみの搬入となるため、搬入道路は少なくてすむ。   On the overhanging floor slab, one or two cables for each site are cycled one after another, and this is repeated. In the concrete weight of the placement section, the cable bears the vertical load and the girder bears the load in the bridge axis direction. In order to overhang the main girder 20a and floor slab 20b on the center span side, a base boat 29 equipped with the girder and floor slab is installed under the main tower girder, and the lifting and back surface rail equipment provided on the back of the girder 30 can be installed. In this case, since the installation weight is light, it can be realized with a small facility, so that the construction cost is low and the occupation of the channel is reduced. In mountainous areas, trailers are used instead of trolleys, but only the vicinity of the main tower is used, so fewer roads are required.

図7は、この発明の実施例に係る斜張橋の施工方法(ステップ6)を示す説明図である。この施工工程をステップ6とする。この工程は、最終段階で、現場施工のコンクリートが所定強度に達した床版へケーブルを本連結し、斜ベントを解体する。中央径間で最後に残った桁部17では、図6で示したように、台船29を主塔部桁下に設置し、桁の裏面に設けられる吊上げ、裏面軌条設備30で架設することができる。または、図7のように端部18の吊上げ設備等のクレーンで、台船19から桁を引き上げて、最終的に中央径間部の桁を併合連結してもよい。   FIG. 7 is an explanatory view showing a cable-stayed bridge construction method (step 6) according to the embodiment of the present invention. This construction process is referred to as step 6. In this process, at the final stage, the cable is fully connected to the floor slab where the concrete on site has reached a predetermined strength, and the oblique vent is disassembled. In the last remaining girder portion 17 between the center spans, as shown in FIG. 6, the carriage 29 is installed under the main tower girder, and is installed by lifting and rear surface rail equipment 30 provided on the back surface of the girder. Can do. Alternatively, as shown in FIG. 7, the girder may be pulled up from the carriage 19 with a crane such as a lifting facility at the end 18, and finally the girder at the central span may be merged and connected.

図8は、この施工方法で用いることができる合成床版の例を示す斜視図である。合成床版21は、たとえば、底鋼板22にスタッドジベル23、および一次コンクリート梁24で構成される。一次コンクリート梁24は、工場で打設、乾燥固化させておく。なお、一次コンクリート梁の代わりに鋼板リブを用いてもよい。そして、これらを橋軸方向に短いユニットとして現場に搬送し、桁の上に架設する。このとき重量が軽いことから、架設用のクレーンは小型のものでよい。その後、鉄筋26の配筋作業、現場施工コンクリート27を打設し、地覆・高欄28を端部に付設する。なお、一次コンクリート梁24は、図示したような梁とすることで、上面がフラットになり、コンクリート打設前に、コンクリート搬送車などの施工車両も通行可能となる。   FIG. 8 is a perspective view showing an example of a synthetic floor slab that can be used in this construction method. The composite floor slab 21 includes, for example, a bottom steel plate 22, a stud diver 23, and a primary concrete beam 24. The primary concrete beam 24 is placed in a factory and dried and solidified. In addition, you may use a steel plate rib instead of a primary concrete beam. These are then transported to the site as a short unit in the direction of the bridge axis and installed on the girder. Since the weight is light at this time, the crane for construction may be small. Thereafter, the reinforcing bar 26 is placed and the concrete 27 for construction on site is placed, and the ground cover / railway 28 is attached to the end. The primary concrete beam 24 has a flat top surface by being made as shown in the figure, so that a construction vehicle such as a concrete conveyance vehicle can pass before placing concrete.

以上説明したように、この発明に係る斜張橋の施工方法によれば、斜張橋設置箇所が海上部や山岳部であっても、床版が軽いので搬送が容易で、経済的となる。また、コンクリートを現場で打設する際も、コンクリート搬送車が容易に打設箇所に到達できる。また、コンクリート乾燥固化を待ってケーブル本張設という工程を繰り返し、現場施工のコンクリートを利用する床版を用いて至極合理的に斜張橋を構築可能となる。   As described above, according to the cable-stayed bridge construction method according to the present invention, even if the cable-stayed bridge is installed at the sea or mountain, the floor slab is light and therefore easy to transport and economical. . Also, when placing concrete on site, the concrete transporter can easily reach the placement site. In addition, after the concrete is dried and solidified, the cable main tensioning process is repeated, and it becomes possible to construct a cable-stayed bridge extremely reasonably using a floor slab that uses concrete on site construction.

以上のように、本発明にかかる斜張橋の施工方法は、海上部や山岳部に設置される斜張橋の構築に有用である。   As described above, the cable-stayed bridge construction method according to the present invention is useful for the construction of cable-stayed bridges installed on the sea or in mountainous areas.

本発明により施工された斜張橋の全体を示す正面図である。It is a front view which shows the whole cable-stayed bridge constructed by this invention. 斜張橋の施工方法(ステップ1)を示す説明図である。It is explanatory drawing which shows the construction method (step 1) of a cable-stayed bridge. 斜張橋の施工方法(ステップ2)を示す説明図である。It is explanatory drawing which shows the construction method (step 2) of a cable-stayed bridge. 斜張橋の施工方法(ステップ3)を示す説明図である。It is explanatory drawing which shows the construction method (step 3) of a cable-stayed bridge. 斜張橋の中間橋脚にも斜ベントを設ける例を示す説明図である。It is explanatory drawing which shows the example which provides a diagonal vent also in the intermediate pier of a cable-stayed bridge. 斜張橋の施工方法(ステップ4)を示す説明図である。It is explanatory drawing which shows the construction method (step 4) of a cable-stayed bridge. 斜張橋の施工方法(ステップ5)を示す説明図である。It is explanatory drawing which shows the construction method (step 5) of a cable-stayed bridge. 斜張橋の施工方法(ステップ6)を示す説明図である。It is explanatory drawing which shows the construction method (step 6) of a cable-stayed bridge. 合成床版の例を示す斜視図である。It is a perspective view which shows the example of a synthetic floor slab.

符号の説明Explanation of symbols

1 斜張橋
2、2b、2c 主塔
3 床版
4、4a、4b ケーブル
5 主桁
6 中間橋脚
7 端部橋脚
8 陸上高架部
9 斜ベント
11、12、20a 主桁
13、20b、21 床版
14 昇降設備および送り装置
15 移動台車
16 コンクリート搬送車
17 桁部
18 端部
19、29 台船
22 下鋼板
23 スタッドジベル
24 一次コンクリート梁
25 打継板
26 鉄筋
27 現場施工コンクリート
28 高欄
30 吊上げ、裏面搬送装置
1 Cable-stayed bridge 2, 2b, 2c Main tower 3 Floor slab 4, 4a, 4b Cable 5 Main girder 6 Middle bridge pier 7 End pier 8 Overpass section 9 Oblique vent 11, 12, 20a Main girder 13, 20b, 21 Floor Plate 14 Lifting equipment and feeding device 15 Moving cart 16 Concrete transport vehicle 17 Girder portion 18 End portion 19, 29 Cargo boat 22 Lower steel plate 23 Stud gibber 24 Primary concrete beam 25 Joint plate 26 Reinforcement 27 On-site construction concrete 28 Rail 30 Lifting, Back side transfer device

Claims (3)

主塔に斜ベントが設けられる工程と、
陸上高架部の桁上で側径間の桁が地組み立てされる工程と、
前記斜ベントの上に現場施工コンクリート打設前の床版が架設される工程と、
地組みした前記桁が送り出し手段で送り出される工程と、
前記床版がさらに張り出され、それにケーブルが仮連結されると共に、側径間に送り出された前記桁と当該床版が連結される工程と、
中央径間側の桁と前記床版が張り出されて、前記主塔からのケーブルに仮連結されると共に、既にケーブルに仮連結してある部分に現場施工コンクリートが打設され、これが繰り返される工程と、
前記現場施工コンクリートが乾燥固化した前記床版にケーブルが本連結される工程と、
中央径間で最後に残った桁部が併合連結される工程と、
を含むことを特徴とする斜張橋の施工方法。
A process in which an inclined vent is provided in the main tower;
A process in which the girder between the side diameters is assembled on the girder of the overpass,
A step of laying a floor slab before placing concrete on site on the inclined vent;
A step of sending out the grounded girder by a sending means;
The floor slab is further overhanged, and a cable is temporarily connected thereto, and the girder fed between the side diameters and the floor slab are connected,
The girder on the center span side and the floor slab are overhanged and temporarily connected to the cable from the main tower, and on-site construction concrete is placed in a portion that is already temporarily connected to the cable, and this is repeated. Process,
A step in which a cable is permanently connected to the floor slab from which the on-site construction concrete has been dried and solidified;
A process in which the last remaining girder is merged and connected between the center spans;
Construction method of cable-stayed bridge characterized by including.
前記桁の張り出し架設時には、前記桁と合成床版とを、主塔基部からの吊上げと裏面搬送により、張り出し架設することを特徴とする請求項1に記載の斜張橋の施工方法。   The construction method of a cable-stayed bridge according to claim 1, wherein, when the girder is stretched, the girder and the composite floor slab are stretched and hung by lifting from the base of the main tower and conveying the back surface. 橋脚部にも斜ベントを設けることを特徴とする請求項1または2に記載の斜張橋の施工方法。   3. A cable-stayed bridge construction method according to claim 1 or 2, wherein a diagonal vent is also provided in the pier.
JP2006198677A 2006-07-20 2006-07-20 Construction method of cable-stayed bridge Pending JP2008025195A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006198677A JP2008025195A (en) 2006-07-20 2006-07-20 Construction method of cable-stayed bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006198677A JP2008025195A (en) 2006-07-20 2006-07-20 Construction method of cable-stayed bridge

Publications (1)

Publication Number Publication Date
JP2008025195A true JP2008025195A (en) 2008-02-07

Family

ID=39116119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006198677A Pending JP2008025195A (en) 2006-07-20 2006-07-20 Construction method of cable-stayed bridge

Country Status (1)

Country Link
JP (1) JP2008025195A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191458A (en) * 2008-02-12 2009-08-27 Jfe Engineering Corp Construction apparatus for bridge, construction method for floor slab, and construction method for bridge
KR100986116B1 (en) 2009-10-06 2010-10-07 노윤근 Prestressed concrete slab bridge equipped with a fixed column in the pc strand and this construction technique
KR101208470B1 (en) 2010-05-06 2012-12-05 정상희 The bridge construction technique for which a construction cable was used
KR101373169B1 (en) 2012-11-29 2014-03-13 지에스건설 주식회사 Tention typed cable-stayed bridge construction method using hybrid decksegment
CN106884384A (en) * 2017-03-01 2017-06-23 贵州桥梁建设集团有限责任公司 A kind of mountain area steel-concrete composite beam cable-stayed bridge erection crane method
CN112695637A (en) * 2020-12-24 2021-04-23 云南交投公路建设第二工程有限公司 Tower beam temporary consolidation supporting structure easy to unload quickly and manufacturing and construction process
CN113136784A (en) * 2021-04-16 2021-07-20 上海市政工程设计研究总院(集团)有限公司 Composite main beam cable-stayed bridge
CN113914226A (en) * 2021-10-29 2022-01-11 安徽省公路桥梁工程有限公司 Synchronous construction method for main beam of main tower of multi-sector transversely-inclined stay cable
CN114775431A (en) * 2022-04-13 2022-07-22 中交路桥建设有限公司 Assembling and sliding support for large-tonnage steel cross beam of cable-stayed bridge cable tower
CN114837097A (en) * 2022-06-10 2022-08-02 中铁十二局集团第三工程有限公司 Cable-stayed bridge construction method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191458A (en) * 2008-02-12 2009-08-27 Jfe Engineering Corp Construction apparatus for bridge, construction method for floor slab, and construction method for bridge
KR100986116B1 (en) 2009-10-06 2010-10-07 노윤근 Prestressed concrete slab bridge equipped with a fixed column in the pc strand and this construction technique
KR101208470B1 (en) 2010-05-06 2012-12-05 정상희 The bridge construction technique for which a construction cable was used
KR101373169B1 (en) 2012-11-29 2014-03-13 지에스건설 주식회사 Tention typed cable-stayed bridge construction method using hybrid decksegment
CN106884384A (en) * 2017-03-01 2017-06-23 贵州桥梁建设集团有限责任公司 A kind of mountain area steel-concrete composite beam cable-stayed bridge erection crane method
CN112695637A (en) * 2020-12-24 2021-04-23 云南交投公路建设第二工程有限公司 Tower beam temporary consolidation supporting structure easy to unload quickly and manufacturing and construction process
CN112695637B (en) * 2020-12-24 2022-11-29 云南交投公路建设第二工程有限公司 Tower beam temporary consolidation supporting structure easy to unload quickly and manufacturing and construction process
CN113136784A (en) * 2021-04-16 2021-07-20 上海市政工程设计研究总院(集团)有限公司 Composite main beam cable-stayed bridge
CN113914226A (en) * 2021-10-29 2022-01-11 安徽省公路桥梁工程有限公司 Synchronous construction method for main beam of main tower of multi-sector transversely-inclined stay cable
CN114775431A (en) * 2022-04-13 2022-07-22 中交路桥建设有限公司 Assembling and sliding support for large-tonnage steel cross beam of cable-stayed bridge cable tower
CN114837097A (en) * 2022-06-10 2022-08-02 中铁十二局集团第三工程有限公司 Cable-stayed bridge construction method

Similar Documents

Publication Publication Date Title
JP2008025195A (en) Construction method of cable-stayed bridge
CN102182147B (en) Steel box girder erection method
JP2018053496A (en) Bridge girder erection method for multiple span continuous bridge
US20160160457A1 (en) Light-Weight Temporary Bridge System and Building Method thereof
CN104727227B (en) A kind of whole segmental erection method of uncovered lattice girder steel of half-through steel box tied arch bridge
JP6180376B2 (en) Main girder provision method in composite girder floor slab replacement method, composite girder floor slab replacement method, and main girder provision structure in composite girder floor slab replacement method
JP2912222B2 (en) Bridge girder construction method
US6684793B2 (en) Viaduct for a railway line or the like
JP3440422B2 (en) Bridge construction method and bridge construction device
JP2021031884A (en) Bridge upper structure removal method
CN102367650A (en) Construction method of steel pipe arch bridge
CN104018426A (en) Steel truss installation method
KR101404481B1 (en) Bridge construction method using road decking panel at limited space for girder manufacturing
JP4033871B2 (en) How to build a bridge girder
JP4056540B2 (en) Bridge girder construction method
JP2963879B2 (en) Bridge girder
JP7017927B2 (en) Steel bridge widening erection equipment and steel bridge widening erection method
JP6944900B2 (en) Construction method of linear structure
JP2006028733A (en) Launching erection method for bridge girder
CN105088962A (en) Integrated hoisting method for corrugated steel web part
JPH11269825A (en) Installation method of bridge girder and lifting equipment
CN114775432B (en) Splicing bracket of large-tonnage steel-concrete combined beam of cable-stayed bridge cable tower
CN114703757B (en) Multifunctional bracket for steel cross beam of cable-stayed bridge and assembly method of steel cross beam
CN217536681U (en) Assembling support of large-tonnage steel-concrete combined cross beam of cable-stayed bridge cable tower
JPH08151607A (en) Method of carrying precast block for bridge