JP2008024840A - Kerosene composition - Google Patents

Kerosene composition Download PDF

Info

Publication number
JP2008024840A
JP2008024840A JP2006199550A JP2006199550A JP2008024840A JP 2008024840 A JP2008024840 A JP 2008024840A JP 2006199550 A JP2006199550 A JP 2006199550A JP 2006199550 A JP2006199550 A JP 2006199550A JP 2008024840 A JP2008024840 A JP 2008024840A
Authority
JP
Japan
Prior art keywords
kerosene
odor
less
benzene
distillation temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006199550A
Other languages
Japanese (ja)
Other versions
JP4890137B2 (en
Inventor
Kazuhisa Saito
和久 齋藤
Hiroaki Otsuka
宏明 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Cosmo Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Oil Co Ltd filed Critical Cosmo Oil Co Ltd
Priority to JP2006199550A priority Critical patent/JP4890137B2/en
Publication of JP2008024840A publication Critical patent/JP2008024840A/en
Application granted granted Critical
Publication of JP4890137B2 publication Critical patent/JP4890137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide low smell kerosene causing no uncomfortable feeling due to kerosene smell, when a user treats the kerosene, e.g., refuels an oil stove without increase of production cost. <P>SOLUTION: The kerosene composition has distillation characteristics of 135-170°C initial boiling point, 175-200°C 30% distillation temperature, 190-220°C 50% distillation temperature, 200-240°C 70% distillation temperature, 215-265°C 90% distillation temperature, 230-270°C 95% distillation temperature, wherein the composition has ≤50 mass ppm sulfur content and ≤20 vol.% aromatic hydrocarbon content, in the aromatic hydrocarbon content, the content of aromatic hydrocarbon having two and three or more rings is ≤2.0 vol.%, and in ≤175°C distillate, the rates of content of C8 and C9 benzene are ≤1 mass% 7C benzene, ≤9 mass% 8C benzene and ≤18 mass% 9C benzene and the vapor pressure is ≤5.0 kPa at 37.8°C. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、灯油に関し、詳しくは臭気の少ない低臭灯油に関する。   The present invention relates to kerosene, and more particularly to a low-odor kerosene with a low odor.

現在石油ストーブに使用されている灯油の種類と規格は、日本工業規格(JIS K 2203)に示されており、その中でも1号灯油は、家庭用の暖房機器等に広く用いられている。灯油留分は主に、原油を常圧蒸留により所定の蒸留性状となるように分留することで得られる。得られた灯油留分は、次いで水素化脱硫装置により硫黄分が所定量以下となるように水素化精製される。さらに、灯油製造過程において、ストリッパにより軽質分を蒸発させることで引火点が40℃以上となるように調整される。
このようにして得られる灯油の品質は、前述のJIS K 2203に示される規格に基づき管理されているが、実用面では規格外の品質として、石油ストーブへの給油などの灯油を取り扱う際の臭気も商品品質上重要な要素である。そのため、炭化水素臭が少ない低臭なものが望まれている。
The types and standards of kerosene currently used in oil stoves are shown in Japanese Industrial Standards (JIS K 2203). Among them, No. 1 kerosene is widely used for household heating equipment and the like. The kerosene fraction is mainly obtained by fractionating crude oil to a predetermined distillation property by atmospheric distillation. The obtained kerosene fraction is then hydrorefined by a hydrodesulfurization unit so that the sulfur content becomes a predetermined amount or less. Furthermore, in the kerosene production process, the flash point is adjusted to 40 ° C. or higher by evaporating light components with a stripper.
The quality of kerosene obtained in this way is controlled based on the standard shown in the above-mentioned JIS K 2203. However, as a non-standard quality in practice, odor when handling kerosene such as oil supply to oil stoves is handled. Is also an important factor in product quality. Therefore, a low odor with less hydrocarbon odor is desired.

上記灯油の臭気の問題を解決する方法として、灯油に消臭剤を添加する方法(例えば、特許文献1参照)や、灯油をパラフィン類で構成する方法(例えば、特許文献2参照)などがある。しかしながら、灯油に消臭剤を添加する方法では、炭化水素臭を完全に消し去ることはできないので、他の匂いを有する物質を添加して炭化水素臭をマスキングすることになる。すると灯油には当初の炭化水素臭の代わりに他の物質の香りが残る。そのため臭いに対する個人の好みの問題があり、あまり効果的ではなかった。また、灯油をパラフィン類で構成する方法では、製造コストが上昇し、価格の高い灯油になるという問題があった。   As a method for solving the above-mentioned problem of kerosene odor, there is a method of adding a deodorant to kerosene (for example, see Patent Document 1), a method of making kerosene with paraffins (for example, see Patent Document 2), and the like. . However, in the method of adding a deodorant to kerosene, the hydrocarbon odor cannot be completely removed, so that a substance having another odor is added to mask the hydrocarbon odor. The kerosene then retains the scent of other substances instead of the original hydrocarbon odor. Therefore, there was a problem of personal preference for odor and it was not very effective. In addition, the method of making kerosene with paraffins has a problem in that the manufacturing cost increases and the price of kerosene becomes high.

さらに、上記問題を改善した取扱に優れた高性能な灯油もある(例えば、特許文献3、特許文献4参照)。この灯油は、燃焼時の臭気抑制のために高沸点留分の低減と多環アロマ分量を規定すると共に、取扱時の臭気を低減するために低沸点留分の低減と全芳香族炭化水素分量を規定したものである。しかし、この灯油は、灯油としての利用可能な留分範囲を極端に狭くし、さらに灯油全体の芳香族成分を低減するため水素化処理条件を厳しくするなど製造工程を大幅に改良する必要があって、そのために製造コストが上昇し、価格の高い灯油となるという問題があった。   Furthermore, there is also a high-performance kerosene excellent in handling that has solved the above problems (see, for example, Patent Document 3 and Patent Document 4). This kerosene regulates the reduction of high-boiling fractions and the amount of polycyclic aroma in order to suppress odors during combustion, and also reduces the amount of low-boiling fractions and the amount of total aromatic hydrocarbons in order to reduce odors during handling. Is specified. However, this kerosene needed to be drastically improved in its manufacturing process, such as extremely narrowing the range of available fractions for kerosene and further tightening hydrotreating conditions to reduce the aromatic components of the kerosene as a whole. For this reason, the manufacturing cost has increased, and there has been a problem that the price of kerosene becomes high.

特公昭54−32003号公報Japanese Patent Publication No.54-32003 特開昭63−150380号公報JP-A-63-150380 特開平2−113092号公報Japanese Patent Laid-Open No. 2-113092 特開平3−182594号公報Japanese Patent Laid-Open No. 3-182594

本発明の目的は、上記従来の状況に鑑み、製造コストの増加を伴うことなく、臭気を抑制した灯油を提供することにある。   In view of the above-described conventional situation, an object of the present invention is to provide kerosene with reduced odor without increasing the manufacturing cost.

本発明者は、上記目的を達成するために鋭意検討を行った結果、灯油の炭化水素系の臭気抑制には、灯油に含まれる特定の成分の含有量と蒸気圧が大きく影響することを突き止め、その成分濃度と蒸気圧を適正化することで灯油自体の臭気を抑制することが可能になるという知見を得た。また、昨今のサルファーフリー対応された灯油においても、灯油留分中に超極微量残留する硫化水素が臭気に大きく影響することを突き止め、その超極微量残留する硫化水素を的確に除去する処理を施すことで灯油の臭気を抑制することが可能になるという知見も得て、これらの知見に基づいて本発明を完成するに至った。すなわち、本発明は、以下に示す特徴を有する灯油組成物を提供するものである。   As a result of intensive studies to achieve the above-mentioned object, the present inventor has found that the content and vapor pressure of specific components contained in kerosene greatly influence the hydrocarbon-based odor suppression of kerosene. And the knowledge that it became possible to suppress the odor of kerosene itself by optimizing the component concentration and vapor pressure. In addition, in kerosene that is compatible with sulfur-free products in recent years, we have determined that hydrogen sulfide remaining in a very small amount in kerosene fractions has a significant effect on odors, and have a process for accurately removing the hydrogen sulfide remaining in a very small amount. The knowledge that it becomes possible to suppress the odor of kerosene by applying was obtained, and the present invention was completed based on these findings. That is, the present invention provides a kerosene composition having the following characteristics.

(1)初留点135〜170℃、30%留出温度175〜200℃、50%留出温度190〜220℃、70%留出温度200〜240℃、90%留出温度215〜265℃、95%留出温度230〜270℃の蒸留性状を有し、硫黄分が50質量ppm以下であり、全芳香族炭化水素分含有量が20vol%以下であり、該全芳香族炭化水素分において2および3環以上の芳香族炭化水素分含有量が2.0vol%以下であり、かつ175℃以下の留分においてC7、C8およびC9ベンゼンの含有割合が、C7ベンゼンは1mass%以下、C8ベンゼンは9mass%以下、C9ベンゼンは18mass%以下であり、37.8℃における蒸気圧が5.0kPa以下であることを特徴とする灯油組成物。
(2)前記灯油組成物の25℃における発生ガス中の硫化水素濃度が、1volppm以下であることを特徴とする上記(1)に記載の灯油組成物。
(1) Initial distillation point 135-170 ° C, 30% distillation temperature 175-200 ° C, 50% distillation temperature 190-220 ° C, 70% distillation temperature 200-240 ° C, 90% distillation temperature 215-265 ° C 95% distillation temperature of 230 to 270 ° C., a sulfur content of 50 mass ppm or less, a total aromatic hydrocarbon content of 20 vol% or less, in the total aromatic hydrocarbon content The content of aromatic hydrocarbons of 2 and 3 or more rings is 2.0 vol% or less, and the content ratio of C7, C8 and C9 benzene in the fraction of 175 ° C. or less is 1 mass% or less for C7 benzene, C8 benzene Is 9 mass% or less, C9 benzene is 18 mass% or less, and the vapor pressure at 37.8 ° C. is 5.0 kPa or less.
(2) The kerosene composition according to (1) above, wherein the kerosene composition has a hydrogen sulfide concentration in a generated gas at 25 ° C. of 1 volppm or less.

本発明の灯油組成物は、大きな製造工程の改良などのコスト増加を伴うことなく、石油ストーブへの給油など消費者が灯油を取り扱う際に灯油臭による不快感を感じることがない低臭な灯油を提供することができて、非常に有用である。   The kerosene composition of the present invention is a low odor kerosene that does not cause discomfort due to kerosene odor when consumers handle kerosene, such as refueling an oil stove, without an increase in cost such as a large production process improvement. Can be provided and is very useful.

以下に、本発明の内容をさらに詳細に説明する。
本発明における灯油組成物の蒸留性状は、初留点135〜170℃、30%留出温度175〜200℃、50%留出温度190〜220℃、70%留出温度200〜240℃、90%留出温度215〜265℃、95%留出温度230〜270℃であり、好ましくは、初留点140〜170℃、30%留出温度180〜200℃、50%留出温度195〜220℃、70%留出温度205〜240℃、90%留出温度220〜260℃、95%留出温度240〜270℃である。初留点が170℃以下であれば、着火し難い等の問題が生じる可能性が低いため好ましい。初留点が135℃以上であれば、引火点が低くなることが少なく、JIS K 2203で定められる灯油の引火点規格値である40℃を下回る可能性が少ないため好ましい。30%留出温度が175℃以上であれば、軽質炭化水素成分を含む175℃以下の留出分が少なく灯油自体の臭気を抑えられるため好ましい。また、30%留出温度が200℃以下であれば、着火性が良好となるため好ましい。さらに、50%留出温度が220℃、70%留出温度が240℃、90%留出温度が265℃、95%留出温度が270℃以下であれば、着火しやすいため定常燃焼に至るまでに時間がかからないため好ましい。また、50%留出温度が190℃、70%留出温度が200℃、90%留出温度が215℃、95%留出温度が230℃以上であれば、芯式・放射形石油ストーブ使用時において、炎を燃焼筒の上部から出さずに、燃焼筒を赤熱した状態に保つという安定した燃焼状態を保つことができ、また消火の際も鎮火しやすいため好ましい。
Hereinafter, the contents of the present invention will be described in more detail.
The distillation properties of the kerosene composition in the present invention are as follows: initial boiling point 135-170 ° C, 30% distillation temperature 175-200 ° C, 50% distillation temperature 190-220 ° C, 70% distillation temperature 200-240 ° C, 90%. % Distillation temperature 215 to 265 ° C., 95% distillation temperature 230 to 270 ° C., preferably initial distillation point 140 to 170 ° C., 30% distillation temperature 180 to 200 ° C., 50% distillation temperature 195 to 220. C., 70% distillation temperature of 205-240.degree. C., 90% distillation temperature of 220-260.degree. C., and 95% distillation temperature of 240-270.degree. An initial boiling point of 170 ° C. or lower is preferable because it is unlikely to cause problems such as difficulty in ignition. If the initial boiling point is 135 ° C. or higher, the flash point is less likely to be low, and it is less likely that the flash point is below 40 ° C., which is the flash point standard value of kerosene defined in JIS K 2203. A 30% distillation temperature of 175 ° C. or higher is preferable because there are few distillates at 175 ° C. or lower containing light hydrocarbon components and the odor of kerosene itself can be suppressed. A 30% distillation temperature of 200 ° C. or lower is preferable because the ignitability is improved. Furthermore, if the 50% distillation temperature is 220 ° C., the 70% distillation temperature is 240 ° C., the 90% distillation temperature is 265 ° C., and the 95% distillation temperature is 270 ° C. or less, the ignition is easy and steady combustion is reached. It is preferable because it does not take time until If a 50% distillation temperature is 190 ° C, a 70% distillation temperature is 200 ° C, a 90% distillation temperature is 215 ° C, and a 95% distillation temperature is 230 ° C or higher, a core-type / radial oil stove is used. At this time, it is preferable because a stable combustion state can be maintained in which the combustion cylinder is kept in a red-heated state without letting out the flame from the upper part of the combustion cylinder, and the fire is easily extinguished when extinguishing.

また、本発明における灯油組成物に含まれる硫黄分は、50質量ppm以下、好ましくはサルファーフリーと呼ばれる10質量ppm以下であり、さらに好ましくはサルファーゼロと呼ばれる1質量ppm以下である。硫黄分を50質量ppm以下とすることで、またより低減することで、従来の灯油のように硫黄系炭化水素化合物に由来する臭気等を抑制することができ、昨今の石油製品の環境対応の見地からも好ましい。
なお、本発明における、蒸留性状はJIS K 2254の常圧法蒸留試験、硫黄分はJIS K 2541の微量電量滴定式酸化法により、それぞれ測定できる。
Moreover, the sulfur content contained in the kerosene composition in the present invention is 50 mass ppm or less, preferably 10 mass ppm or less called “sulfur free”, and more preferably 1 mass ppm or less called “sulfur zero”. By reducing the sulfur content to 50 mass ppm or less and reducing it further, it is possible to suppress odors and the like derived from sulfur-based hydrocarbon compounds like conventional kerosene. It is also preferable from the viewpoint.
In the present invention, the distillation property can be measured by the atmospheric pressure distillation test of JIS K 2254, and the sulfur content can be measured by the microcoulometric titration method of JIS K 2541.

本発明における灯油組成物では、全芳香族炭化水素分含有量が20vol%以下、好ましくは18vol%以下である。全芳香族炭化水素分が20vol%以内であれば、煙点が高いため燃焼性が不良で煤の発生につながる可能性が少なく好ましい。なお、ここでの全芳香族炭化水素分の含有割合(組成割合)は、JPI−5S−49−97「石油製品−炭化水素タイプ試験方法−高速液体クロマトグラフ法(HPLC)」に基づいて求められる。   In the kerosene composition of the present invention, the total aromatic hydrocarbon content is 20 vol% or less, preferably 18 vol% or less. If the total aromatic hydrocarbon content is within 20 vol%, the smoke point is high, and therefore the combustibility is poor and the possibility of causing soot is low, which is preferable. In addition, the content rate (composition rate) of the total aromatic hydrocarbon content here is obtained based on JPI-5S-49-97 “Petroleum products—Hydrocarbon type test method—High performance liquid chromatograph method (HPLC)” It is done.

本発明における灯油組成物では、2および3環以上の芳香族炭化水素分含有量を上記全芳香族分20vol%の内の2.0vol%以下、好ましくは1.0vol%以下とする。2および3環以上の環芳香族炭化水素分含有量が2.0vol%より少なければ、臭気が弱く、さらに燃焼性が良好なため、煤の発生につながる可能性が少ないため好ましい。
ここでの2環芳香族炭化水素分および3環以上の芳香族炭化水素分の含有割合は、上記JPI−5S−49−97に基づき求めることができる。
In the kerosene composition of the present invention, the content of aromatic hydrocarbons of 2 or more rings is 2.0 vol% or less, preferably 1.0 vol% or less of the total aromatic content of 20 vol%. If the content of the aromatic hydrocarbons of 2 or more rings is less than 2.0 vol%, the odor is weak and the combustibility is good, so there is little possibility of causing soot, which is preferable.
Here, the content ratio of the bicyclic aromatic hydrocarbon content and the tricyclic or higher aromatic hydrocarbon content can be determined based on the above-mentioned JPI-5S-49-97.

本発明における灯油組成物では、175℃以下の留分におけるC7、C8およびC9ベンゼンの含有割合を、C7ベンゼンは1mass%以下、好ましくは0.8mass%以下、C8ベンゼンは9mass%以下、好ましくは7mass%以下、C9ベンゼンは18mass%以下、好ましくは17mass%以下とする。上記特定の割合とすることが灯油自身の臭気を抑制する上で好ましい。
従来から留出温度が170℃未満の留分を多く含む場合は灯油自身の臭気が強いこと、また、芳香族炭化水素成分の含有量が多い場合も臭気が強いことが知られていた。しかし、留出温度が170℃未満の留分を多く含む場合に、単純に灯油全体中の芳香族成分含有量を少なくするだけでは、灯油の炭化水素系の臭気を抑制することが困難であることが分かった。
In the kerosene composition of the present invention, the content ratio of C7, C8 and C9 benzene in the fraction of 175 ° C. or less, C7 benzene is 1 mass% or less, preferably 0.8 mass% or less, C8 benzene is 9 mass% or less, preferably 7 mass% or less, C9 benzene is 18 mass% or less, preferably 17 mass% or less. It is preferable to set the specific ratio to suppress the odor of kerosene itself.
Conventionally, it has been known that kerosene itself has a strong odor when the distillation temperature contains a fraction of less than 170 ° C., and that the odor is strong when the content of aromatic hydrocarbon components is large. However, when the distillation temperature contains many fractions of less than 170 ° C., it is difficult to suppress the hydrocarbon-based odor of kerosene simply by reducing the aromatic component content in the entire kerosene. I understood that.

本願発明では、臭気のもととなる物質として炭素数C7〜C9の芳香族炭化水素成分を特定し、175℃以下の留分中におけるその含有割合を特定することが臭気の抑制に最も効果的であることを突き止めた。
すなわち、175℃以下の留分が多い場合でも、そのうち炭素数がC7〜C9の芳香族炭化水素成分が少なく、脂肪族炭化水素成分が多ければ、灯油自身の臭気を抑制することが出来ることが分かった。これは、臭いの種類を判別することができる限界濃度、すなわち閾値が、同じ沸点留分における芳香族炭化水素化合物よりも脂肪族炭化水素化合物の方が高いことによる、マスキング効果によるものと考えられる。
よって、これら各成分の175℃以下の留分における含有割合を、上記のように設定することで、取扱時の臭気強度が抑制され、石油ストーブなどの給油の際にも不快な石油臭気を抑制することができる。
In the present invention, it is most effective for the suppression of odor to specify an aromatic hydrocarbon component having a carbon number of C7 to C9 as a substance that causes odor and to specify its content in a fraction of 175 ° C. or lower. I found out.
That is, even when there are many fractions at 175 ° C. or less, if there are few aromatic hydrocarbon components having C7 to C9 carbon atoms and many aliphatic hydrocarbon components, the odor of kerosene itself can be suppressed. I understood. This is considered to be due to the masking effect due to the fact that the aliphatic hydrocarbon compound is higher than the aromatic hydrocarbon compound at the same boiling point fraction, that is, the threshold concentration at which the type of odor can be discriminated. .
Therefore, by setting the content ratio of these components in fractions of 175 ° C. or lower as described above, the odor intensity during handling is suppressed, and unpleasant petroleum odor is suppressed even when refueling oil stoves and the like. can do.

なお、ここでのC7ベンゼン、C8ベンゼン、C9ベンゼンの含有割合は、ガスクロマトグラフ法(GC)で分析し、JIS K 2536−2 石油製品−成分試験法(ガスクロマトグラフによる全成分の求め方)に従って解析を行い、沸点175℃である1,2,3-トリメチルベンゼン以下の全留分量を求め、さらに各C7ベンゼン類の化合物の含有量を和しC7ベンゼンとし、各C8ベンゼン類の化合物の含有量を和しC8ベンゼンとし、また各C9ベンゼン類の化合物の含有量を和しC9ベンゼンとしたのち、最終的に175℃以下の全留分量で各C7ベンゼン、C8ベンゼン、C9ベンゼンを割ることでそれぞれの含有割合が求められる。   In addition, the content rate of C7 benzene, C8 benzene, and C9 benzene here is analyzed by gas chromatograph method (GC), and it follows JIS K 2536-2 petroleum product-component test method (how to obtain all components by gas chromatograph). Analyze and calculate the total fraction below 1,2,3-trimethylbenzene with a boiling point of 175 ° C, and further add the contents of each C7 benzene compound to give C7 benzene, which contains each C8 benzene compound. After adding the amount to C8 benzene and adding the content of each C9 benzene compound to C9 benzene, finally divide each C7 benzene, C8 benzene, and C9 benzene by the total fraction of 175 ° C or less. The respective content ratios are obtained.

ここで言うC7ベンゼンとは、トルエンを示す。またC8ベンゼンとは、エチルベンゼン、o-キシレン、m-キシレン、p-キシレンのうち少なくとも1つを示し、C9ベンゼンとはiso-プロピルベンゼン、n-プロピルベンゼン、1-メチル-2-エチル-ベンゼン、1-メチル-3-エチル-ベンゼン、1-メチル-4-エチル-ベンゼン、および1,2,3-メチルベンゼン、1,2,4-メチルベンゼン、1,3,5-メチルベンゼンのうち少なくとも1つを示す。   Here, C7 benzene refers to toluene. C8 benzene is at least one of ethylbenzene, o-xylene, m-xylene, and p-xylene, and C9 benzene is iso-propylbenzene, n-propylbenzene, 1-methyl-2-ethyl-benzene. 1-methyl-3-ethyl-benzene, 1-methyl-4-ethyl-benzene, and 1,2,3-methylbenzene, 1,2,4-methylbenzene, 1,3,5-methylbenzene Show at least one.

また、本発明者は、灯油の臭気を抑制する検討を進める中で、灯油中に超極微量なppbレベルでも硫化水素が残留すると灯油組成物全体の臭気に大きく影響するという新たな知見を得た。この超極微量残留硫化水素に起因する臭気を抑制する方法として、従来以上に生成油中の硫化水素をppbレベルという低濃度下での管理を実施しながら、スチームを用いたストリッピングにより除去する方法や、苛性ソーダなどのアルカリ洗浄により除去する方法、窒素パージ操作などが挙げられ、これらの方法を実施して超極微量残留硫化水素を除去することが好ましい。   In addition, the present inventor obtained new knowledge that hydrogen sulfide remaining in kerosene greatly affects the odor of the entire kerosene composition, while studying to suppress the odor of kerosene. It was. As a method of suppressing the odor caused by this ultra-small amount of residual hydrogen sulfide, the hydrogen sulfide in the product oil is removed by stripping using steam while managing the hydrogen sulfide in the produced oil at a low concentration of ppb level. And a method of removing by alkali cleaning such as caustic soda, a nitrogen purge operation, and the like, and it is preferable to carry out these methods to remove ultra trace residual hydrogen sulfide.

そして、本発明の灯油組成物では、灯油組成物の25℃における発生ガス中の硫化水素濃度が、1volppm以下であることが臭気を抑制する上で好ましい。さらに好ましくは0.5volppm以下である。またさらに好ましくは0.2volppm以下である。このように灯油に残留する硫化水素を超極微量のppbレベルまで低減させ、灯油組成物の25℃における発生ガス中の硫化水素濃度を低減させることにより、硫黄分に由来する臭気を根絶することができる。   In the kerosene composition of the present invention, the hydrogen sulfide concentration in the generated gas at 25 ° C. of the kerosene composition is preferably 1 volppm or less from the viewpoint of suppressing odor. More preferably, it is 0.5 volppm or less. More preferably, it is 0.2 volppm or less. In this way, the hydrogen sulfide remaining in kerosene is reduced to a very low level of ppb, and the odor derived from sulfur is eradicated by reducing the hydrogen sulfide concentration in the generated gas at 25 ° C. of the kerosene composition. Can do.

なお、ここでの灯油組成物の25℃における発生ガス中の硫化水素濃度の測定は、25℃±5℃にした試料を500mlのキャップ付き1000mlガラス瓶に入れ、30秒間その瓶を激しく振った後、その瓶を静置させ、硫化水素ガス検知管(最低目盛り0.2volppm、最高目盛り2volppm)をセットしたガス吸引器にて、気相部のガスを所定量吸引し、硫化水素濃度を測定するものである。   Here, the hydrogen sulfide concentration in the generated gas at 25 ° C. of the kerosene composition here was measured after putting a sample at 25 ° C. ± 5 ° C. into a 500 ml 1000 ml glass bottle with a cap and shaking the bottle vigorously for 30 seconds. The bottle is allowed to stand, and a gas suction unit with a hydrogen sulfide gas detector tube (minimum scale: 0.2 volppm, maximum scale: 2 volppm) is used to suck a predetermined amount of gas in the gas phase and measure the hydrogen sulfide concentration. Is.

本発明における灯油組成物の37.8℃における蒸気圧は、5.0kPa以下、好ましくは、4.5kPa以下である。なお、37.8℃とは、JIS規格による蒸気圧の測定温度である。灯油組成物の37.8℃における蒸気圧を5.0kPa以下に抑えることにより、灯油組成物からの高蒸気圧成分、すなわち臭気に大きな影響を与える硫化水素分の大気への放出を抑制することが可能となり、硫黄分に由来する臭気を根絶することができる。なお、ここでの灯油組成物の37.8℃における蒸気圧は、JIS K 2258に示される原油および燃料油−蒸気圧試験方法−リード法により測定できる。   The vapor pressure at 37.8 ° C. of the kerosene composition in the present invention is 5.0 kPa or less, preferably 4.5 kPa or less. In addition, 37.8 degreeC is the measurement temperature of the vapor pressure by JIS specification. By suppressing the vapor pressure at 37.8 ° C. of the kerosene composition to 5.0 kPa or less, the high vapor pressure component from the kerosene composition, that is, the release of hydrogen sulfide, which has a great influence on odor, to the atmosphere is suppressed. It is possible to eradicate the odor derived from the sulfur content. In addition, the vapor pressure in 37.8 degreeC of a kerosene composition here can be measured by the crude oil and fuel oil-vapor pressure test method-Reed method shown by JISK2258.

本発明における灯油組成物の製造方法は特に定めるものではないが、市販溶剤の混合、あるいは本発明で規定する性状を有するように種々の原料を精製することで得ることができる。例えば、原油を常圧蒸留して得られる灯油留分やそれらを脱硫した脱硫灯油を用いることができる。さらに、直接脱硫装置から得られる直接脱硫灯油留分、および重油や残油の水素化分解により得られる灯油留分等が使用可能であり、特に限定されない。上記のように本発明の灯油組成物の製造方法は特に制限されないが、その製造に際して、前記の生成油中の硫化水素をppbレベルまで除去するためのスチームを用いたストリッピングや、苛性ソーダなどのアルカリ洗浄、または窒素によるパージングを所定時間行うことは好ましいことである。   Although the manufacturing method of the kerosene composition in this invention is not specifically defined, it can obtain by refine | purifying various raw materials so that it may have the property prescribed | regulated by mixing a commercially available solvent or this invention. For example, a kerosene fraction obtained by atmospheric distillation of crude oil or a desulfurized kerosene obtained by desulfurizing them can be used. Furthermore, a direct desulfurized kerosene fraction obtained from a direct desulfurization apparatus, a kerosene fraction obtained by hydrocracking heavy oil or residual oil, and the like can be used, and are not particularly limited. As described above, the method for producing the kerosene composition of the present invention is not particularly limited, but in its production, stripping using steam for removing hydrogen sulfide in the product oil to the ppb level, caustic soda, etc. It is preferable to perform alkali cleaning or purging with nitrogen for a predetermined time.

本発明の灯油組成物においては、必要に応じて種々の燃料油添加剤を適宜添加することができる。この燃料油添加剤としては、フェノール系、アミン系等の酸化防止剤、シッフ型化合物やチオアミド型化合物等の金属不活性剤、有機りん系化合物等の表面着火防止剤、琥珀酸イミド、ポリアルキルアミン、ポリエーテルアミン等の清浄分散剤、多価アルコールおよびそのエーテル等の氷結防止剤、有機酸のアルカリ金属やアルカリ土類金属塩、高級アルコールの硫酸エステル等の助燃剤、アニオン系界面活性剤、カチオン系界面活性剤、両性界面活性剤等の帯電防止剤、アルケニル琥珀酸エステル等の錆止め剤等、公知の燃料油添加剤が挙げられる。これらは、1種添加することも複数種組み合わせて添加することもできる。また、これらの燃料油添加剤の添加量は必要に応じて適宜設定することができる。   In the kerosene composition of the present invention, various fuel oil additives can be appropriately added as necessary. The fuel oil additives include phenolic and amine antioxidants, metal deactivators such as Schiff compounds and thioamide compounds, surface ignition inhibitors such as organophosphorus compounds, succinimides, and polyalkyls. Detergents such as amines and polyetheramines, anti-icing agents such as polyhydric alcohols and ethers thereof, organic acid alkali metals and alkaline earth metal salts, auxiliary alcohols such as higher alcohol sulfates, anionic surfactants And known fuel oil additives such as antistatic agents such as cationic surfactants and amphoteric surfactants, and rust inhibitors such as alkenyl succinates. These can be added alone or in combination. Moreover, the addition amount of these fuel oil additives can be suitably set as needed.

本発明の灯油組成物は、いわゆる民生用暖房機器、例えば各種石油ストーブ類、石油ファンヒーター類、あるいは石油式給湯器等に好ましく用いることができ、さらには直火式の食品乾燥用燃料、工業用燃料、石油発動機用燃料、ソルベント等各種用途にも好ましく使用できる。   The kerosene composition of the present invention can be preferably used for so-called consumer heaters, such as various petroleum stoves, petroleum fan heaters, or oil-type water heaters, and further, direct-fired food drying fuel, industrial It can be preferably used in various applications such as fuel for fuel, fuel for oil engines, and solvent.

以下、実施例および比較例により本発明をより詳しく説明するが、本発明はこれらの実施例に限定されるものではない。
実施例、比較例において、引火点、蒸留性状、硫黄分、煙点は、JIS K 2203に定められる方法に準拠して測定を行なった。
また、臭気試験を下記臭気強度の測定と臭気官能試験で行った。
〔臭気強度の測定〕
サンプルの灯油を1mlアルミ製皿上に採取し、容量2.5lのガラス製臭気瓶中に静置させ、室温25℃にて臭気を揮発させる。1分間後、臭気センサー(理研計器(株)製 OD−85)にて、臭気強度を観測開始し、臭気強度が安定する10分後の臭気強度を測定した。
〔臭気官能試験〕
上記臭気センサーによる臭気強度の測定に用いたのと同じ各種灯油を用いて、15名の被験者による臭気官能試験より臭気強度を求めた。この試験は、試料油を1000mlの共栓付きのガラス容器に500ml入れ、30秒間激しく振り、栓を開け5秒後に、試料の臭気を嗅ぎ、その臭気の強度を表1に示す6段階臭気強度評定尺度を用いて判定した。ここで、上記臭気センサーから得た臭気強度と、表1の6段階臭気強度評定尺度との相関関係をグラフにして図1に示した。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention in more detail, this invention is not limited to these Examples.
In Examples and Comparative Examples, the flash point, distillation properties, sulfur content, and smoke point were measured according to the method defined in JIS K 2203.
Further, the odor test was performed by the following odor intensity measurement and odor sensory test.
[Measurement of odor intensity]
A sample of kerosene is collected on a 1 ml aluminum dish and allowed to stand in a glass odor bottle with a volume of 2.5 l, and the odor is volatilized at room temperature of 25 ° C. One minute later, the odor intensity was started with an odor sensor (OD-85 manufactured by Riken Keiki Co., Ltd.), and the odor intensity 10 minutes after the odor intensity was stabilized was measured.
[Odor sensory test]
The same various kerosene used for the measurement of the odor intensity by the odor sensor was used to obtain the odor intensity from the odor sensory test by 15 subjects. In this test, 500 ml of sample oil is put into a 1000 ml glass container with a stopper, shaken vigorously for 30 seconds, the stopper is opened, and after 5 seconds, the sample is smelled, and the odor intensity is shown in Table 1. Judgment was made using a rating scale. Here, the correlation between the odor intensity obtained from the odor sensor and the 6-step odor intensity rating scale shown in Table 1 is shown as a graph in FIG.

Figure 2008024840
Figure 2008024840

なお、本発明では、臭気強度測定における臭気センサー表示1000以下、および6段階臭気強度評定尺度3以下を、目的とする低臭灯油と判定した。   In the present invention, the odor sensor display of 1000 or less in the odor intensity measurement and the 6-stage odor intensity rating scale of 3 or less were determined as the target low-odor kerosene.

実施例1
中東原油を常圧蒸留することで得られる沸点範囲149〜289℃の直留灯油留分を、WABT320℃、水素分圧5.5MPa、液空間速度(LHSV)3.0h−1の条件下での脱硫処理し、続いて窒素によるパージングを所定時間実施し、灯油の発生ガス中の硫化水素濃度を0.2volppmとした、沸点範囲148.5〜275.5℃、硫黄分6質量ppmの灯油組成物Aを得た。得られた灯油組成物Aの性状およびその臭気試験結果を表2に示す。
Example 1
A straight-run kerosene fraction having a boiling point range of 149 to 289 ° C. obtained by atmospheric distillation of Middle Eastern crude oil under the conditions of WABT 320 ° C., hydrogen partial pressure 5.5 MPa, liquid space velocity (LHSV) 3.0 h −1 Of kerosene having a boiling point range of 148.5 to 275.5 ° C. and a sulfur content of 6 mass ppm, in which purging with nitrogen was performed for a predetermined time, and the hydrogen sulfide concentration in the gas generated from kerosene was 0.2 volppm. Composition A was obtained. Table 2 shows the properties of the obtained kerosene composition A and the odor test results.

実施例2
中東原油を常圧蒸留することで得られた沸点範囲149〜289℃の灯油留分を、WABT320℃、水素分圧4.5MPa、液空間速度(LHSV)3.0h−1の条件下での脱硫処理し、続いて窒素によるパージングを所定時間実施し、灯油の発生ガス中の硫化水素濃度を0.2volppmとした、沸点範囲149.0〜273.5℃、硫黄分2質量ppmの灯油組成物Bを得た。得られた灯油組成物Bの性状およびその臭気試験結果を表2に示す。
Example 2
A kerosene fraction having a boiling range of 149 to 289 ° C. obtained by atmospheric distillation of Middle Eastern crude oil under conditions of WABT 320 ° C., hydrogen partial pressure 4.5 MPa, liquid space velocity (LHSV) 3.0 h −1 Kerosene composition having a boiling point range of 149.0 to 273.5 ° C. and a sulfur content of 2 mass ppm, desulfurization treatment, followed by purging with nitrogen for a predetermined time, and setting the hydrogen sulfide concentration in the generated gas of kerosene to 0.2 volppm Product B was obtained. Table 2 shows the properties of the obtained kerosene composition B and the odor test results.

比較例1
中東原油を常圧蒸留することで得られた沸点範囲149〜289℃の灯油留分を、WABT315℃、水素分圧5.5MPa、液空間速度(LHSV)3.0h−1の条件下での脱硫処理し、続いて窒素によるパージングを所定時間実施し、灯油の発生ガス中の硫化水素濃度を0.2volppmとした、沸点範囲159〜281℃、硫黄分10質量ppmの灯油組成物Cを得た。得られた灯油組成物Cの性状およびその臭気試験結果を表2に示す。
Comparative Example 1
A kerosene fraction having a boiling point range of 149 to 289 ° C. obtained by atmospheric distillation of Middle Eastern crude oil under conditions of WABT 315 ° C., hydrogen partial pressure 5.5 MPa, liquid space velocity (LHSV) 3.0 h −1 A kerosene composition C having a boiling point range of 159 to 281 ° C. and a sulfur content of 10 mass ppm is obtained by performing desulfurization treatment and subsequently purging with nitrogen for a predetermined time to set the hydrogen sulfide concentration in the generated gas of kerosene to 0.2 volppm. It was. The properties of the obtained kerosene composition C and the odor test results are shown in Table 2.

比較例2
実施例2と同様に原油を常圧蒸留し、同じ条件にて脱硫処理し、続いて窒素によるパージングを実施例1より若干短い時間実施し、灯油の発生ガス中の硫化水素濃度を1.0volppmとした、沸点範囲152〜260℃、硫黄分2質量ppmの灯油組成物Dを得た。得られた灯油組成物Dの性状およびその臭気試験結果を表2に示す。
Comparative Example 2
The crude oil was distilled at atmospheric pressure in the same manner as in Example 2 and desulfurized under the same conditions, followed by purging with nitrogen for a slightly shorter time than in Example 1, and the hydrogen sulfide concentration in the gas generated from kerosene was 1.0 volppm. A kerosene composition D having a boiling point range of 152 to 260 ° C. and a sulfur content of 2 mass ppm was obtained. Table 2 shows the properties of the obtained kerosene composition D and the odor test results thereof.

比較例3
中東原油を常圧蒸留することで得られた沸点範囲149〜289℃の灯油留分を、WABT320℃、水素分圧3.0MPa、液空間速度(LHSV)5.2h−1の条件下での脱硫処理し、続いて窒素によるパージングを所定時間実施し、灯油の発生ガス中の硫化水素濃度を0.2volppmとした、沸点範囲151.5〜274.0℃、硫黄分8質量ppmの灯油組成物Eを得た。得られた灯油組成物Eの性状およびその臭気試験結果を表2に示す。
Comparative Example 3
A kerosene fraction having a boiling range of 149 to 289 ° C. obtained by atmospheric distillation of Middle Eastern crude oil under conditions of WABT 320 ° C., hydrogen partial pressure 3.0 MPa, liquid space velocity (LHSV) 5.2 h −1 A kerosene composition having a boiling point range of 151.5 to 274.0 ° C. and a sulfur content of 8 mass ppm, desulfurization treatment, followed by purging with nitrogen for a predetermined time, and setting the hydrogen sulfide concentration in the generated gas of kerosene to 0.2 volppm Product E was obtained. Table 2 shows the properties of the obtained kerosene composition E and the odor test results thereof.

比較例4
比較例3と同様に原油を常圧蒸留し、同じ条件にて脱硫処理し、続いて窒素によるパージングを実施例1より短い時間実施し、灯油の発生ガス中の硫化水素濃度を2volppmとした、沸点範囲148.5〜283.0℃、硫黄分17質量ppmの灯油組成物Fを得た。得られた灯油組成物Fの性状およびその臭気試験結果を表2に示す。
Comparative Example 4
In the same manner as in Comparative Example 3, the crude oil was distilled at atmospheric pressure, desulfurized under the same conditions, and then purged with nitrogen was carried out for a shorter time than in Example 1, so that the hydrogen sulfide concentration in the gas generated from kerosene was 2 volppm. A kerosene composition F having a boiling point range of 148.5 to 283.0 ° C and a sulfur content of 17 mass ppm was obtained. The properties of the obtained kerosene composition F and the odor test results are shown in Table 2.

Figure 2008024840
Figure 2008024840

表2より分かるように、175℃以下の留分中のC7〜C9ベンゼンが低減されず、かつ、蒸気圧が高い場合は、臭気の抑制は不十分であった。さらに、全体的に芳香族成分が低減されていない場合、硫化水素濃度が高い場合は特に臭気が強く検出された。また、175℃以下の留分が実施例より少ない場合でも、175℃以下の留分中のC7〜C9ベンゼンが低減されていないと臭気の抑制は不十分であった。   As can be seen from Table 2, when the C7 to C9 benzene in the fraction of 175 ° C. or lower was not reduced and the vapor pressure was high, odor suppression was insufficient. Further, when the aromatic component was not reduced as a whole, particularly when the hydrogen sulfide concentration was high, the odor was detected strongly. Further, even when the fraction at 175 ° C. or lower was less than that of the Examples, the suppression of odor was insufficient unless C7 to C9 benzene in the fraction at 175 ° C. or lower was reduced.

各種灯油の臭気センサー表示と、6段階臭気強度評定尺度との相関関係を示すグラフである。It is a graph which shows the correlation with the odor sensor display of various kerosene, and a 6-step odor intensity rating scale.

Claims (2)

初留点135〜170℃、30%留出温度175〜200℃、50%留出温度190〜220℃、70%留出温度200〜240℃、90%留出温度215〜265℃、95%留出温度230〜270℃の蒸留性状を有し、硫黄分が50質量ppm以下であり、全芳香族炭化水素分含有量が20vol%以下であり、該全芳香族炭化水素分において2および3環以上の芳香族炭化水素分含有量が2.0vol%以下であり、かつ175℃以下の留分においてC7、C8およびC9ベンゼンの含有割合が、C7ベンゼンは1mass%以下、C8ベンゼンは9mass%以下、C9ベンゼンは18mass%以下であり、37.8℃における蒸気圧が5.0kPa以下であることを特徴とする灯油組成物。   Initial distillation point 135-170 ° C, 30% distillation temperature 175-200 ° C, 50% distillation temperature 190-220 ° C, 70% distillation temperature 200-240 ° C, 90% distillation temperature 215-265 ° C, 95% It has a distillation property at a distillation temperature of 230 to 270 ° C., has a sulfur content of 50 mass ppm or less, has a total aromatic hydrocarbon content of 20 vol% or less, and 2 and 3 in the total aromatic hydrocarbon content. The aromatic hydrocarbon content in the ring or higher is 2.0 vol% or less, and the content ratio of C7, C8 and C9 benzene in the fraction of 175 ° C. or lower is 1 mass% or less for C7 benzene and 9 mass% for C8 benzene. Hereinafter, C9 benzene is 18 mass% or less, and the vapor pressure in 37.8 degreeC is 5.0 kPa or less, The kerosene composition characterized by the above-mentioned. 前記灯油組成物の25℃における発生ガス中の硫化水素濃度が、1volppm以下であることを特徴とする請求項1に記載の灯油組成物。   The kerosene composition according to claim 1, wherein the kerosene composition has a hydrogen sulfide concentration in a generated gas at 25 ° C of 1 volppm or less.
JP2006199550A 2006-07-21 2006-07-21 Kerosene composition Active JP4890137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006199550A JP4890137B2 (en) 2006-07-21 2006-07-21 Kerosene composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006199550A JP4890137B2 (en) 2006-07-21 2006-07-21 Kerosene composition

Publications (2)

Publication Number Publication Date
JP2008024840A true JP2008024840A (en) 2008-02-07
JP4890137B2 JP4890137B2 (en) 2012-03-07

Family

ID=39115816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006199550A Active JP4890137B2 (en) 2006-07-21 2006-07-21 Kerosene composition

Country Status (1)

Country Link
JP (1) JP4890137B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215313A (en) * 2018-12-25 2019-12-19 コスモ石油株式会社 Discomfort determination method of odor of kerosene oil composition, quality control method of kerosene oil composition, and manufacturing method of kerosene oil composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150380A (en) * 1986-12-13 1988-06-23 Idemitsu Kosan Co Ltd Improved kerosene
JPH02311596A (en) * 1989-05-29 1990-12-27 Mitsubishi Oil Co Ltd Technique for removing hydrogen sulfide, light fraction, and water in stripping tower
JPH03182594A (en) * 1989-12-12 1991-08-08 Nippon Oil Co Ltd Kerosine
JP2005139383A (en) * 2003-11-10 2005-06-02 Cosmo Oil Co Ltd Fuel oil composition
JP2006117840A (en) * 2004-10-22 2006-05-11 Cosmo Oil Co Ltd Method for manufacturing deep desulfurization kerosene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63150380A (en) * 1986-12-13 1988-06-23 Idemitsu Kosan Co Ltd Improved kerosene
JPH02311596A (en) * 1989-05-29 1990-12-27 Mitsubishi Oil Co Ltd Technique for removing hydrogen sulfide, light fraction, and water in stripping tower
JPH03182594A (en) * 1989-12-12 1991-08-08 Nippon Oil Co Ltd Kerosine
JP2005139383A (en) * 2003-11-10 2005-06-02 Cosmo Oil Co Ltd Fuel oil composition
JP2006117840A (en) * 2004-10-22 2006-05-11 Cosmo Oil Co Ltd Method for manufacturing deep desulfurization kerosene

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019215313A (en) * 2018-12-25 2019-12-19 コスモ石油株式会社 Discomfort determination method of odor of kerosene oil composition, quality control method of kerosene oil composition, and manufacturing method of kerosene oil composition
JP7184631B2 (en) 2018-12-25 2022-12-06 コスモ石油株式会社 Method for producing kerosene composition

Also Published As

Publication number Publication date
JP4890137B2 (en) 2012-03-07

Similar Documents

Publication Publication Date Title
JP4563216B2 (en) Kerosene composition
JP5166686B2 (en) Kerosene composition
JP5390685B2 (en) Kerosene composition
JP5106057B2 (en) Light oil composition
JP5128633B2 (en) Kerosene composition
JP5128632B2 (en) Kerosene composition
JP4890137B2 (en) Kerosene composition
JP4739841B2 (en) Kerosene composition
JP2006206876A (en) Gasoline composition
JP2007091922A (en) Gasoline composition
JP4624135B2 (en) Kerosene composition
JP5847750B2 (en) Fuel oil composition
JP2006348186A (en) Kerosene
JP2013535530A (en) Use of alpha amino ethers to remove mercaptans from hydrocarbons
JP5319739B2 (en) Kerosene composition
JP5279421B2 (en) Kerosene composition
JP4454469B2 (en) Fuel oil composition
JP5676344B2 (en) Kerosene manufacturing method
JP2018197360A (en) Kerosene base oil material and kerosene composition
JP2006137919A (en) Light oil composition
RU2788009C2 (en) Diesel fuel with improved ignition characteristics
JP2007070569A (en) Kerosene
JP6525588B2 (en) Fuel composition
JP6389432B2 (en) Fuel composition
JP6091457B2 (en) Dewaxed light oil base material and light oil composition for cold regions containing the base material

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20071129

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111206

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R150 Certificate of patent or registration of utility model

Ref document number: 4890137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250