JP2008022877A - Magnetic resonance imaging device - Google Patents

Magnetic resonance imaging device Download PDF

Info

Publication number
JP2008022877A
JP2008022877A JP2006195175A JP2006195175A JP2008022877A JP 2008022877 A JP2008022877 A JP 2008022877A JP 2006195175 A JP2006195175 A JP 2006195175A JP 2006195175 A JP2006195175 A JP 2006195175A JP 2008022877 A JP2008022877 A JP 2008022877A
Authority
JP
Japan
Prior art keywords
magnetic field
correction
irregular
gradient
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006195175A
Other languages
Japanese (ja)
Other versions
JP4969933B2 (en
Inventor
Shoichi Miyawaki
昇一 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Healthcare Manufacturing Ltd
Original Assignee
Hitachi Medical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Medical Corp filed Critical Hitachi Medical Corp
Priority to JP2006195175A priority Critical patent/JP4969933B2/en
Publication of JP2008022877A publication Critical patent/JP2008022877A/en
Application granted granted Critical
Publication of JP4969933B2 publication Critical patent/JP4969933B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an economical magnetic resonance imaging device which can correct irregular magnetic fields such as an eddy current magnetic field and/or a residual magnetic field by a simple device constitution, simplify the correcting control of the same, and reduce image deterioration by the irregular magnetic field. <P>SOLUTION: An irregular magnetic field characteristic data of every photographing space component for correcting the irregular magnetic field induced by the impression of a gradient magnetic field is measured (S201). A primary gradient component and a polarized component of the irregular magnetic field in the photographing space are calculated out from the measured characteristic data and the average value of the primary gradient component and the polarized component are calculated out from the calculated value. The current for correcting the irregular magnetic field from the calculated average value is calculated out (S202), and the irregular magnetic field is corrected by superposing the same on a gradient magnetic field current (S203). <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、磁気共鳴イメージング装置に係り、特に、傾斜磁場を印加した際に生じる渦電流磁場や残留磁場による不整磁場に起因して発生する傾斜磁場波形の歪みや磁場変動がもたらす様々な画質劣化を防止するための前記不整磁場によって誘起される空間かつ時間的に変化する磁場を補正する技術に関する。   The present invention relates to a magnetic resonance imaging apparatus, and in particular, various image quality degradation caused by distortion of a gradient magnetic field waveform or magnetic field fluctuation caused by an eddy current magnetic field generated when a gradient magnetic field is applied or an irregular magnetic field due to a residual magnetic field. The present invention relates to a technique for correcting a spatially and temporally changing magnetic field induced by the irregular magnetic field for preventing the irregularity.

磁気共鳴イメージング装置(以下、MRI装置という)は、静磁場中に置かれた被検体に高周波磁場を印加し、それによって被検体から発生する核磁気共鳴信号を収集して画像化する装置であり、NMR信号に位置情報を付加するために、静磁場に重畳して傾斜磁場を印加する。
この傾斜磁場は、通常3軸方向の傾斜磁場が用いられ、撮影方法によって、それら傾斜磁場を印加するタイミングや傾斜磁場の波形や印加量が決められている。
A magnetic resonance imaging apparatus (hereinafter referred to as an MRI apparatus) is an apparatus that applies a high-frequency magnetic field to a subject placed in a static magnetic field, thereby collecting and imaging nuclear magnetic resonance signals generated from the subject. In order to add position information to the NMR signal, a gradient magnetic field is applied superimposed on the static magnetic field.
As the gradient magnetic field, a gradient magnetic field in the triaxial direction is usually used, and the timing of applying the gradient magnetic field, the waveform of the gradient magnetic field, and the application amount are determined by the imaging method.

このような傾斜磁場パルスを制御して断層画像を得るMRI装置において、傾斜磁場パルスの波形および印加タイミングを正確かつ柔軟に制御して所望の印加量(傾斜磁場パルス波形と時間軸との囲む面積)を印加する必要がある。   In an MRI apparatus that obtains a tomographic image by controlling such a gradient magnetic field pulse, the waveform and application timing of the gradient magnetic field pulse are controlled accurately and flexibly, and the desired application amount (the area surrounded by the gradient magnetic field pulse waveform and the time axis). ) Must be applied.

しかし、前記傾斜磁場パルスの印加によって渦電流磁場が誘起され、その原因となった傾斜磁場パルスの印加に伴って発生した後に、時間的に変動(時間依存性)し、かつ、空間的な分布(空間依存性)を有する。   However, an eddy current magnetic field is induced by the application of the gradient magnetic field pulse, and is generated along with the application of the gradient magnetic field pulse causing the change, and then temporally varies (time-dependent) and has a spatial distribution. (Spatial dependence).

また、永久磁石を用いたMRI装置では、磁気履歴(ヒステリシス)特性を持つ強磁性体を装置構造物(磁気回路)に使用するため、前記渦電流磁場の他に空間的に分布(空間依存性)する残留磁場も発生する。
この残留磁場は、傾斜磁場パルスの印加を止めても、印加した傾斜磁場パルスの波形、印加した方向、および印加履歴に応じた残留磁場が残ってしまい、その結果として撮影空間の静磁場を複雑に歪ませる。
In addition, in an MRI apparatus using a permanent magnet, a ferromagnetic material having a magnetic hysteresis (hysteresis) characteristic is used for the apparatus structure (magnetic circuit). ) Residual magnetic field is also generated.
Even if the application of the gradient magnetic field pulse is stopped, the residual magnetic field remains in accordance with the waveform of the applied gradient magnetic field pulse, the applied direction, and the application history, and as a result, the static magnetic field in the imaging space is complicated. To distort.

このようにして発生する渦電流磁場や残留磁場の不整磁場(以下、特に誤解が生じない限り、渦電流磁場や残留磁場をまとめて不整磁場と記す)によって傾斜磁場パルスの印加量を所望の値で印加できなくなり、その結果としてエコー信号強度の低下や、再構成画像上において歪みやゴースト等のアーチファクトが発生し、画質が劣化する。   The eddy current magnetic field and residual magnetic field irregular magnetic field generated in this way (unless otherwise misunderstood, the eddy current magnetic field and residual magnetic field are collectively referred to as the irregular magnetic field) and the applied amount of the gradient magnetic field pulse is set to a desired value. As a result, the echo signal intensity is lowered, and artifacts such as distortion and ghost are generated on the reconstructed image, thereby degrading the image quality.

上記不整磁場に起因する再構成画像の劣化を低減するための該不整磁場補正技術は特許文献1に開示されている。
特許文献1の補正技術は、傾斜磁場パルスを印加する方向と波形を色々変えて傾斜磁場パルスによって誘起される渦電流磁場や残留磁場の不整磁場を時間的および空間的に計測することで、不整磁場の各種依存性に関する較正データを取得し、この較正データに基づいてシムコイルや局在コイル若しくは傾斜磁場パルス発生系に対して補正電流を即時印加して補正するものである。
特開2004-261591号公報
Patent Document 1 discloses this irregular magnetic field correction technique for reducing deterioration of a reconstructed image caused by the irregular magnetic field.
The correction technique of Patent Document 1 is irregular by measuring the eddy current magnetic field induced by the gradient magnetic field pulse and the irregular magnetic field of the residual magnetic field temporally and spatially by changing the direction and waveform of applying the gradient magnetic field pulse. Calibration data relating to various magnetic field dependencies is acquired, and correction current is immediately applied to the shim coil, localized coil, or gradient magnetic field pulse generation system based on the calibration data for correction.
JP 2004-261591 A

しかし、特許文献1に開示されている渦電流磁場の補正では、理論的には計測した渦電流磁場を理想的に補正することができるが、シムコイルも含めた渦電流補正系を実装するには、非常に複雑な装置構成となるために、装置原価の上昇を招き、経済性に難点がある。   However, the correction of the eddy current magnetic field disclosed in Patent Document 1 can ideally correct the measured eddy current magnetic field, but to implement an eddy current correction system including a shim coil. However, since the device configuration is very complicated, the cost of the device is increased and there is a problem in economic efficiency.

すなわち、計測した渦電流磁場の時間・空間依存性を、例えば球面調和関数の各次数項の係数とその時間変化で表して、x,y,zの方向毎に前記渦電流磁場を補正する較正データを用意し、このデータを用いて前記方向毎に各空間成分の補正電流を求め、各空間成分に対応する不整磁場補正コイルに前記補正電流をそれぞれ供給して不整磁場を補正する。   That is, the time and space dependence of the measured eddy current magnetic field is expressed by, for example, the coefficient of each order term of the spherical harmonic function and its time change, and calibration for correcting the eddy current magnetic field in each of x, y, and z directions. Data is prepared, a correction current for each spatial component is obtained for each direction using this data, and the correction current is supplied to the irregular magnetic field correction coil corresponding to each spatial component to correct the irregular magnetic field.

この場合、不整磁場補正コイルには、球面調和関数の各次数項に準じたシムコイルを用い、さらに、MRI装置毎にカスタマイズした局在コイルを用いるので、シムコイル及び局在コイルは前記球面調和関数の各次数項に対応したものとするために該コイルは複雑化し、かつ較正データも膨大なものとなる。   In this case, as the irregular magnetic field correction coil, a shim coil according to each order term of the spherical harmonic function is used, and further, a localized coil customized for each MRI apparatus is used. In order to correspond to each order term, the coil becomes complicated and the calibration data becomes enormous.

このように、特許文献1による技術を用いて実装するには、非常に複雑な装置構成となるので、実際には前記球面調和関数の2次項以上の不良磁場成分が存在しても、撮影空間の中心で計測した1次傾斜磁場成分と空間依存性を持たない成分であるB0成分(定数項)のみを補償する場合が殆どである。   As described above, since it is a very complicated device configuration to be implemented using the technique according to Patent Document 1, even if a defective magnetic field component of the second order term or more of the spherical harmonic function actually exists, the imaging space In most cases, only the primary gradient magnetic field component measured at the center of B and the B0 component (constant term), which is a component having no spatial dependence, are compensated.

しかし、渦電流磁場の空間依存性による画質劣化は有意に存在し、撮影空間の中心付近で計測した渦電流磁場の1次傾斜磁場成分とB0成分のみを補償するだけでは不十分な場合が多い。例えば、撮影空間の中心付近では有用な画質が得られるが、中心から離れるにつれて画質が悪くなるという現象が代表的である。
このような渦電流磁場の補正の問題は、上記特許文献1に開示されている残留磁場の補正においても同様である。
However, image quality degradation due to the spatial dependence of the eddy current magnetic field exists significantly, and it is often insufficient to compensate only for the primary gradient magnetic field component and B0 component of the eddy current magnetic field measured near the center of the imaging space. . For example, a typical phenomenon is that a useful image quality is obtained near the center of the shooting space, but the image quality deteriorates as the distance from the center increases.
The problem of correcting the eddy current magnetic field is the same in the correction of the residual magnetic field disclosed in Patent Document 1.

本発明は、上記問題に鑑みて成されたものであって、不整磁場である渦電流磁場及び/又は残留磁場の補正を簡素な装置構成でその補正制御も簡素なものとし、不整磁場による画質劣化を低減して経済的な磁気共鳴イメージング装置を提供することを目的とする。   The present invention has been made in view of the above problems, and it is possible to correct an eddy current magnetic field and / or a residual magnetic field, which is an irregular magnetic field, with a simple device configuration and a simple correction control. An object is to provide an economical magnetic resonance imaging apparatus with reduced deterioration.

上記目的を達成するために、本発明に係る磁気共鳴イメージング装置は、計測空間に静磁場を与える静磁場発生手段と、スライス方向と位相エンコード方向と周波数エンコード方向のそれぞれに傾斜磁場を与える傾斜磁場発生手段と、前記傾斜磁場の印加によって誘起される不整磁場を補正する補正コイル及び撮影空間成分毎の前記不整磁場の特性データを備え、該特性データに基づいて前記補正コイルに供給する電流を制御することによって前記不整磁場を補正制御する補正磁場制御手段を備えた磁気共鳴イメージング装置において、前記補正磁場制御手段は、前記特性データから前記不整磁場の1次勾配成分と分極成分を算出する成分算出手段と、該成分算出手段で算出した1次勾配成分と分極成分の平均値を算出する平均値算出手段と、該平均値算出手段で算出した前記1次勾配成分と分極成分の平均値から前記補正コイルに供給する電流を算出する補正電流算出手段とを備えて不整磁場を補正することを特徴とする。   In order to achieve the above object, a magnetic resonance imaging apparatus according to the present invention includes a static magnetic field generating unit that applies a static magnetic field to a measurement space, and a gradient magnetic field that applies a gradient magnetic field in each of a slice direction, a phase encoding direction, and a frequency encoding direction. A generating coil, a correction coil for correcting the irregular magnetic field induced by the application of the gradient magnetic field, and characteristic data of the irregular magnetic field for each imaging space component, and a current supplied to the correction coil is controlled based on the characteristic data In the magnetic resonance imaging apparatus provided with the correction magnetic field control means for correcting and controlling the irregular magnetic field, the correction magnetic field control means calculates a first gradient component and a polarization component of the irregular magnetic field from the characteristic data. Means, an average value calculating means for calculating an average value of the primary gradient component and the polarization component calculated by the component calculating means, And correcting the irregular magnetic field and a compensation current calculation means for calculating a current supplied to the correction coils from the average value of the polarization components and calculated the primary gradient components in the average value calculating means.

上記磁気共鳴イメージング装置の成分算出手段は、前記不整磁場の補正対象となる軸と平行な方向の不整磁場の1次勾配成分と分極成分を算出する手段である。
また、上記成分算出手段は、前記特性データから励起断面領域の不整磁場データを抽出する抽出手段を備え、この抽出手段で抽出した不整磁場データから不整磁場の補正対象となる励起断面の1次勾配成分と分極成分を算出する手段であることを特徴とする。
The component calculation means of the magnetic resonance imaging apparatus is a means for calculating a primary gradient component and a polarization component of the irregular magnetic field in a direction parallel to the axis to be corrected for the irregular magnetic field.
Further, the component calculation means includes an extraction means for extracting the irregular magnetic field data of the excitation cross-sectional area from the characteristic data, and the primary gradient of the excitation cross-section to be corrected for the irregular magnetic field from the irregular magnetic field data extracted by the extraction means It is a means for calculating a component and a polarization component.

上記のように、傾斜磁場の印加によって誘起される撮影空間における不整磁場(渦電流磁場及び/又は残留磁場)の1次勾配成分と分極成分のみを用いて前記不整磁場を補正するようにしたので、従来技術よりもきめの細かい補正が可能となって、装置構成及び前記不整磁場補正制御も簡素なものとなり、不整磁場による画質劣化の低減が可能となる。   As described above, the irregular magnetic field is corrected using only the primary gradient component and the polarization component of the irregular magnetic field (eddy current magnetic field and / or residual magnetic field) in the imaging space induced by the application of the gradient magnetic field. Further, finer correction than in the prior art is possible, the apparatus configuration and the irregular magnetic field correction control are simplified, and image quality deterioration due to the irregular magnetic field can be reduced.

また、前記特性データは撮影空間に対して疎らな位置での不正磁場データであっても、前記抽出手段は、前記疎らな位置での不正磁場データから前記励起断面に近い該断面を囲む少なくとも二つの断面の不正磁場データを選択する選択手段と、この選択手段で選択した不正磁場データを用いて補間によって前記励起断面の不整データを算出する手段とを備えた構成でも良い。   In addition, even if the characteristic data is incorrect magnetic field data at a sparse position with respect to the imaging space, the extraction means surrounds at least two sections that are close to the excitation cross section from the incorrect magnetic field data at the sparse position. A configuration may be provided that includes selection means for selecting incorrect magnetic field data of one cross section and means for calculating irregular data of the excitation cross section by interpolation using the incorrect magnetic field data selected by the selection means.

このように不整磁場を補正することにより、不正磁場計測時間の短縮及び不正磁場データ量が少なくなってトータルの処理時間が短縮され、これによって撮影スループットの向上にも寄与するものとなる。   By correcting the irregular magnetic field in this way, the illegal magnetic field measurement time is reduced and the amount of illegal magnetic field data is reduced, so that the total processing time is reduced, thereby contributing to the improvement of the imaging throughput.

また、前記補正コイルは前記傾斜磁場コイルであって、前記補正電流を前記傾斜磁場コイルに流れる傾斜磁場電流に重畳して供給することを特徴とする。
このように、前記補正コイルに特別なコイルを用いる必要が無く、装置構成の簡単化を図ることが可能となる。
Further, the correction coil is the gradient magnetic field coil, and the correction current is superimposed on a gradient magnetic field current flowing through the gradient magnetic field coil.
Thus, it is not necessary to use a special coil as the correction coil, and the apparatus configuration can be simplified.

さらに、前記静磁場発生手段による静磁場を均一にするシムコイル及び/又は局在コイルを備えた磁気共鳴イメージング装置にも本発明を適用することができる。この場合は、前記補正コイルは、前記傾斜磁場コイルと前記シムコイル及び/又は局在コイルであって、前記補正電流算出手段は、この手段で算出した補正電流を前記シムコイル及び/又は局在コイルと前記傾斜磁場コイルに分担して供給するようにすれば良い。   Furthermore, the present invention can also be applied to a magnetic resonance imaging apparatus provided with shim coils and / or localized coils that make the static magnetic field generated by the static magnetic field generating means uniform. In this case, the correction coil is the gradient magnetic field coil and the shim coil and / or the localized coil, and the correction current calculating means uses the correction current calculated by the means as the shim coil and / or the localized coil. What is necessary is just to share and supply to the said gradient magnetic field coil.

本発明によれば、傾斜磁場の印加によって誘起される撮影空間における不整磁場(渦電流磁場及び/又は残留磁場)の1次勾配成分と分極成分のみを用いて前記不整磁場を補正するようにしたので、前記不整磁場の補正を簡素な装置構成でその補正制御も簡素なものとなり、不整磁場による画質劣化を低減して実用的な磁気共鳴イメージング装置の提供が可能となる。   According to the present invention, the irregular magnetic field is corrected using only the primary gradient component and the polarization component of the irregular magnetic field (eddy current magnetic field and / or residual magnetic field) in the imaging space induced by the application of the gradient magnetic field. Therefore, the correction control of the irregular magnetic field is simple and the correction control is also simple, and it is possible to provide a practical magnetic resonance imaging apparatus with reduced image quality deterioration due to the irregular magnetic field.

また、前記不整磁場の補正電流を傾斜磁場コイルに流す傾斜磁場電流に重畳して供給すること、あるいは前記傾斜磁場コイルと静磁場発生手段による静磁場を均一にするシムコイル及び/又は局在コイルとに分担して供給することにより、特別な補正コイルを必要としないので、装置構成はさらに簡素なものとなり、装置コストの低減が可能となる。   And supplying a correction current for the irregular magnetic field superimposed on a gradient magnetic field current flowing through the gradient magnetic field coil, or a shim coil and / or a localized coil for making the gradient magnetic field coil and the static magnetic field generating means uniform. Since the special correction coil is not required, the apparatus configuration can be further simplified and the apparatus cost can be reduced.

以下、本発明の実施形態を添付図面に基づいて説明する。なお、発明の実施形態を説明するための全図において、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. Note that components having the same function are denoted by the same reference symbols throughout the drawings for describing the embodiments of the invention, and the repetitive description thereof is omitted.

《MRI装置の全体構成》
最初に、本発明が適応されるMRI装置の概略を図1により説明する。
図1は本発明が適用されるMRI装置の全体構成を示すブロック図である。
このMRI装置は、NMR現象を利用して被検体の断層画像を得るもので、同図に示すように静磁場発生系1と、傾斜磁場発生系2と、送信系3と、受信系4と、信号処理系5と、シーケンサ6と、中央処理装置(CPU)7と、操作部8とを備えて構成される。
<Overall configuration of MRI system>
First, an outline of an MRI apparatus to which the present invention is applied will be described with reference to FIG.
FIG. 1 is a block diagram showing the overall configuration of an MRI apparatus to which the present invention is applied.
This MRI apparatus uses a NMR phenomenon to obtain a tomographic image of a subject, and as shown in the figure, a static magnetic field generation system 1, a gradient magnetic field generation system 2, a transmission system 3, and a reception system 4 The signal processing system 5, the sequencer 6, the central processing unit (CPU) 7, and the operation unit 8 are configured.

静磁場発生系1は、被検体9の周りの空間にその体軸方向(水平磁場方式)または体軸と直交する方向(垂直磁場方式)に均一な静磁場を発生させるもので、被検体9の周りに永久磁石方式又は常電導方式あるいは超電導方式の静磁場発生手段が配置されている。   The static magnetic field generation system 1 generates a uniform static magnetic field in a space around the subject 9 in the body axis direction (horizontal magnetic field method) or in a direction perpendicular to the body axis (vertical magnetic field method). A permanent magnet type, normal conducting type or superconducting type static magnetic field generating means is arranged around the.

傾斜磁場発生系2は、X,Y,Zの3軸方向に巻かれた傾斜磁場コイル10と、それぞれの傾斜磁場コイルを駆動する傾斜磁場電源11とから成り、後述のシーケンサ6からの命令にしたがって3軸方向のコイルの傾斜磁場電源11が駆動されることにより、それぞれの方向の傾斜磁場パルスが被検体9に印加される。   The gradient magnetic field generation system 2 includes a gradient magnetic field coil 10 wound in three axes of X, Y, and Z, and a gradient magnetic field power source 11 that drives each gradient magnetic field coil. Accordingly, when the gradient magnetic field power supply 11 of the coils in the three-axis directions is driven, gradient magnetic field pulses in the respective directions are applied to the subject 9.

より具体的には、X,Y,Zのいずれかの1方向にスライス方向傾斜磁場パルスを印加して被検体9に対するスライス面を設定し、残り2つの方向に位相エンコード方向傾斜磁場パルスと周波数エンコード方向傾斜磁場パルスを印加して、エコー信号にそれぞれの方向の位置情報をエンコードする。   More specifically, a slice direction gradient magnetic field pulse is applied in one of X, Y, and Z to set a slice plane for the subject 9, and the phase encode direction gradient magnetic field pulse and frequency are set in the remaining two directions. Encoding direction gradient magnetic field pulses are applied to encode position information in the respective directions into the echo signal.

送信系3は、被検体9の生体組織を構成する原子の原子核スピンにNMR現象を起こさせるために高周波磁場パルス(高周波のパルス状電磁波。以下、RFパルスと記す)を照射するもので、高周波発振器12と、変調器13と、高周波増幅器14と、送信側の高周波コイル15とから成る。
高周波発振器12から出力された高周波パルスをシーケンサ6からの指令によるタイミングで変調器13により振幅変調し、高周波増幅器14で増幅した後に被検体9に近接して配置された送信側の高周波コイル15に供給することにより、RFパルスが被検体9に照射される。
The transmission system 3 irradiates a high-frequency magnetic field pulse (a high-frequency pulsed electromagnetic wave, hereinafter referred to as an RF pulse) in order to cause an NMR phenomenon to occur in the nuclear spins of the atoms constituting the biological tissue of the subject 9. It comprises an oscillator 12, a modulator 13, a high frequency amplifier 14, and a high frequency coil 15 on the transmission side.
The high-frequency pulse output from the high-frequency oscillator 12 is amplitude-modulated by the modulator 13 at a timing according to a command from the sequencer 6, amplified by the high-frequency amplifier 14, and then transmitted to the high-frequency coil 15 on the transmission side arranged close to the subject 9 By supplying, the subject 9 is irradiated with the RF pulse.

受信系4は、被検体9の生体組織を構成する原子核スピンのNMR現象により放出されるエコー信号(NMR信号)を検出するもので、受信側の高周波コイル16と、増幅器17と、直交位相検波器18と、A/D変換器19とから成り、送信側の高周波コイル15から照射されたRFパルスによる被検体9の応答であるエコー信号(NMR信号)が被検体9に近接して配置された受信側の高周波コイル16で検出される。
このエコー信号は増幅器17で増幅された後、シーケンサ6からの指令によるタイミングで直交位相検波器18により直交する二系統の信号に分離され、それぞれがA/D変換器19でディジタル量に変換されてエコーデータとして信号処理系5に送られる。
The receiving system 4 detects an echo signal (NMR signal) emitted by the NMR phenomenon of the nuclear spin constituting the biological tissue of the subject 9, and receives a high-frequency coil 16 on the receiving side, an amplifier 17, and quadrature detection And an A / D converter 19, and an echo signal (NMR signal) that is a response of the subject 9 due to the RF pulse irradiated from the high-frequency coil 15 on the transmitting side is arranged close to the subject 9. It is detected by the high frequency coil 16 on the receiving side.
This echo signal is amplified by the amplifier 17 and then separated into two orthogonal signals by the quadrature detector 18 at the timing according to the command from the sequencer 6, and each is converted into a digital quantity by the A / D converter 19. And sent to the signal processing system 5 as echo data.

信号処理系5は、受信系4で検出されたエコーデータを用いて画像再構成演算を行うと共に得られた画像の表示と記録等を行うもので、エコーデータのフーリエ変換を含む画像再構成等の処理及びシーケンサ6の制御を行うCPU7と、経時的な画像解析処理及び計測を行うプログラムやその実行において用いる不変のパラメータなどを記憶するROM(読み出し専用メモリ)20と、前計測で得た計測パラメータや受信系4で検出されたエコーデータ、及び関心領域設定に用いる画像を一時保管すると共にその関心領域を設定するためのパラメータなどを記憶するRAM(随時書き込み読み出しメモリ)21と、CPU7で再構成された画像データを記録する光磁気ディスク22及び磁気ディスク24と、これらの光磁気ディスク22又は磁気ディスク24から読み出した画像データを映像化して断層画像として表示するディスプレイ23とから成る。   The signal processing system 5 performs image reconstruction calculation using the echo data detected by the reception system 4, and displays and records the obtained image, and includes image reconstruction including Fourier transformation of the echo data. CPU 7 that controls the process and sequencer 6; ROM (read-only memory) 20 that stores time-lapse image analysis processing and measurement programs and invariant parameters used in the execution; and measurement obtained in the previous measurement The RAM (Timely Write Read Memory) 21 that temporarily stores parameters and echo data detected by the receiving system 4 and the image used to set the region of interest and stores the parameters for setting the region of interest, and the CPU 7 The magneto-optical disk 22 and the magnetic disk 24 for recording the configured image data, and the image data read from the magneto-optical disk 22 or the magnetic disk 24 as video And a display 23 for displaying as a tomographic image.

シーケンサ6は、RFパルスと傾斜磁場パルスをある所定のパルスシーケンスで繰り返し印加する制御手段で、CPU7の制御で動作し、被検体9の断層画像のエコーデータ収集に必要な種々の命令を送信系3、傾斜磁場発生系2、および受信系4に送る。   The sequencer 6 is a control means that repeatedly applies an RF pulse and a gradient magnetic field pulse in a predetermined pulse sequence. The sequencer 6 operates under the control of the CPU 7 and transmits various commands necessary for collecting echo data of a tomographic image of the subject 9. 3. Send to gradient magnetic field generation system 2 and reception system 4.

操作部8は、上記信号処理系5で行う処理の制御情報を入力するもので、トラックボール又はマウス25とキーボード26を有する。
この操作部8はディスプレイ23に近接して配置され、操作者がディスプレイ23を見ながら操作部8を通してインタラクティブにMRI装置の処理を制御する。
The operation unit 8 inputs control information for processing performed by the signal processing system 5, and includes a trackball or mouse 25 and a keyboard.
The operation unit 8 is disposed in the vicinity of the display 23, and an operator interactively controls processing of the MRI apparatus through the operation unit 8 while looking at the display 23.

前記MRI装置の撮像対象核種は、臨床で普及しているものとしては、被検体の主たる構成物質である水素原子核(プロトン)である。
プロトン密度の空間分布や、励起状態の緩和時間の空間分布に関する情報を画像化することで、人体頭部、腹部、四肢等の形態または、機能を2次元もしくは3次元的に撮像する。
The radionuclide to be imaged by the MRI apparatus is a hydrogen nucleus (proton) which is a main constituent material of the subject as widely used in clinical practice.
By imaging information on the spatial distribution of proton density and the spatial distribution of relaxation time in the excited state, the form or function of the human head, abdomen, limbs, etc. is imaged two-dimensionally or three-dimensionally.

以下、上記構成のMRI装置において、公知の技術(例えば、特開平10-272120号公報、国際公開WO2004/004563号公報)を用いて渦電流及び残留磁場特性を計測し、この計測したデータに基づいて不整磁場を補正する本発明について具体的に説明する。   Hereinafter, in the MRI apparatus having the above configuration, eddy current and residual magnetic field characteristics are measured using a known technique (for example, JP-A-10-272120, International Publication WO2004 / 004563), and based on the measured data. The present invention for correcting the irregular magnetic field will be specifically described.

《第1の実施形態》
図2は、本発明の第1の実施形態による渦電流磁場及び残留磁場の補正を行う処理のフローチャートである。
<< First Embodiment >>
FIG. 2 is a flowchart of a process for correcting an eddy current magnetic field and a residual magnetic field according to the first embodiment of the present invention.

(1)渦電流磁場及び残留磁場の特性データの計測(S201)
先ず、ステップS201で上記公知の技術を用いて渦電流磁場及び残留磁場を計測し、この計測結果を用いて渦電流及び残留磁場特性を個々のMRI装置に適した形式のデータリストを作成し、これを特性データとして図1の磁気ディスク24に記憶しておく。前記特性データは、不整磁場を特徴付ける変数(時定数、振幅)を数値化したもので、この特性データは、渦電流及び残留磁場の空間依存性を撮影空間に亘って位置情報も含めて計測したものである。
(1) Measurement of characteristic data of eddy current magnetic field and residual magnetic field (S201)
First, in step S201, the eddy current magnetic field and the residual magnetic field are measured using the above-described known technique, and a data list in a format suitable for each MRI apparatus is created for the eddy current and the residual magnetic field characteristics using the measurement results. This is stored as characteristic data in the magnetic disk 24 of FIG. The characteristic data is obtained by quantifying variables (time constant, amplitude) that characterize the irregular magnetic field, and this characteristic data is obtained by measuring the spatial dependence of the eddy current and the residual magnetic field including the position information over the imaging space. Is.

前記特性データの様式は、図3の301のように3次元計測を用いて空間的に連続であっても良いし、302のように2次元計測を適当なインターバルで行って撮影空間を網羅しても良い。
また、渦電流及び残留磁場の計測に用いるMRI用ファントムも撮影空間の必要な領域を占める任意のものでよい。
The format of the characteristic data may be spatially continuous using three-dimensional measurement as shown by 301 in FIG. 3, or the imaging space is covered by performing two-dimensional measurement at appropriate intervals as shown by 302. May be.
Further, the MRI phantom used for measuring the eddy current and the residual magnetic field may be an arbitrary one that occupies a necessary area of the imaging space.

(2)渦電流磁場及び残留磁場補正値の算出(S202)
このステップS202は、本発明の第1の実施形態における要部の処理で、前記ステップS201で計測した特性データを用いて以下の処理により渦電流磁場及び残留磁場の補正値を算出する。
(2) Calculation of eddy current magnetic field and residual magnetic field correction values (S202)
This step S202 is the main processing in the first embodiment of the present invention, and the correction values of the eddy current magnetic field and the residual magnetic field are calculated by the following processing using the characteristic data measured in step S201.

先ず、渦電流磁場補正には、代表的な公知の技術である国際WO2004/004563号公報に開示されている手法を用いる。
これは、上記ステップS201の特性データの様式とした図3のX-Y平面、Y-Z平面、Z-X平面の基準3平面上の2点を用いて補正値を算出する手法で、例えば、X方向の渦電流補正値を求める場合は、Y=0におけるX-Z平面の特性データを用いる。
First, for the eddy current magnetic field correction, a technique disclosed in International WO2004 / 004563, which is a typical known technique, is used.
This is a method of calculating correction values using two points on the reference three planes of the XY plane, YZ plane, and ZX plane in FIG. 3 as the characteristic data format of step S201, for example, an eddy current in the X direction. When obtaining the correction value, the characteristic data of the XZ plane at Y = 0 is used.

すなわち、位置x、時間tiにおける磁場変化をB(x,ti)=g(ti)x+B0(ti)と仮定し、任意の2点x1、x2における磁場変化B(x1,ti)、B(x2,ti)から、(式1),(式2)を用いて1次勾配成分g(ti)と分極成分B0(ti)を算出する。
g(ti)=[B(x2,ti)−B(x1,ti)]/(x2−x1) (1)
B0(ti)=[B(x2,ti)+B(x1,ti)]/2−[g(ti)(x2+x1)] (2)
上記(式2)において、x1=−x2を満たす2点を選ぶとB0(ti)=[B(x2,ti)+B(x1,ti)]/2となりB0(ti)の計算が更に容易になる。
That is, assuming that the magnetic field change at position x and time ti is B (x, ti) = g (ti) x + B0 (ti), the magnetic field changes B (x1, ti) and B (x2 at arbitrary two points x1 and x2 , ti), the primary gradient component g (ti) and the polarization component B0 (ti) are calculated using (Expression 1) and (Expression 2).
g (ti) = [B (x2, ti) −B (x1, ti)] / (x2−x1) (1)
B0 (ti) = [B (x2, ti) + B (x1, ti)] / 2− [g (ti) (x2 + x1)] (2)
In the above (Equation 2), if two points satisfying x1 = −x2 are selected, B0 (ti) = [B (x2, ti) + B (x1, ti)] / 2 and B0 (ti) can be calculated more easily. Become.

本ステップS202における処理が従来技術と異なる点は、例としてX方向の渦電流補正値を求める場合、上記(式1)、(式2)を用いて1次勾配成分g(ti)と分極成分B0(ti)を全てのY方向についてのX-Z平面について算出し、それらの平均値を求めてこれを渦電流磁場の補正値とするところにある。
すなわち、Y方向の各位置にて求めた1次勾配成分をg(yj,ti)、分極成分をB0(yj,ti)とすると、本手法で求められる補正値は(式3),(式4)となる。

Figure 2008022877
The difference between the processing in this step S202 and the prior art is that, for example, when obtaining an eddy current correction value in the X direction, the first-order gradient component g (ti) and the polarization component using the above (Formula 1) and (Formula 2) B0 (ti) is calculated for the XZ plane in all Y directions, and an average value thereof is obtained and used as a correction value for the eddy current magnetic field.
That is, assuming that the primary gradient component obtained at each position in the Y direction is g (yj, ti) and the polarization component is B0 (yj, ti), the correction values obtained by this method are (Equation 3), (Equation 3) 4)
Figure 2008022877

同様の処理は、残留磁場補正にも適用され、且つ全ての物理軸(X, Y, Z)に対して行われる。   The same processing is applied to the residual magnetic field correction and is performed for all physical axes (X, Y, Z).

(3)補正値の転送と渦電流磁場、残留磁場の補正(S203)
上記ステップS202で求めた補正値は当該MRI装置の適当な記憶装置、例えば図1の磁気ディスク24にデータリストとして保存され、撮影前に図4に示す不整磁場補正装置30に転送される。
(3) Transfer of correction values and correction of eddy current magnetic field and residual magnetic field (S203)
The correction values obtained in step S202 are stored as a data list in an appropriate storage device of the MRI apparatus, for example, the magnetic disk 24 in FIG. 1, and transferred to the irregular magnetic field correction apparatus 30 shown in FIG. 4 before imaging.

不整磁場補正装置30は、前述の様にして求めた不整磁場の時間・空間依存性に対応して、傾斜磁場発生系2の各傾斜磁場コイル33(図1における10と同じ)に対して補正電流を即時印加して不整磁場の補正を行う。   The irregular magnetic field correction device 30 corrects each gradient magnetic field coil 33 (same as 10 in FIG. 1) of the gradient magnetic field generation system 2 in accordance with the time / space dependence of the irregular magnetic field obtained as described above. Immediately apply current to correct irregular magnetic field.

つまり、シーケンサ6によって計算された傾斜磁場パルス波形が不整磁場調整装置30の不整磁場調整装置30aに入力されると、不整磁場調整装置30aは、入力された傾斜磁場パルス波形に対応して、ステップS202で求めた補正値のデータテーブルである補正データテーブル30bに設定された補正データを参照して補正電流を計算し、各傾斜磁場コイル33に補正電流を供給して不整磁場を補正する。   That is, when the gradient magnetic field pulse waveform calculated by the sequencer 6 is input to the irregular magnetic field adjustment device 30a of the irregular magnetic field adjustment device 30, the irregular magnetic field adjustment device 30a performs steps corresponding to the input gradient magnetic field pulse waveform. The correction current is calculated with reference to the correction data set in the correction data table 30b, which is the correction value data table obtained in S202, and the correction magnetic field is supplied to each gradient magnetic field coil 33 to correct the irregular magnetic field.

実際のパルスシーケンスでは、x,y,zの各方向に傾斜磁場パルスを印加するので、各方向の傾斜磁場パルスの印加によって誘起される不整磁場が空間成分毎に重ね合わされて時間的に変化していく。従って、このような重ね合わされた不整磁場を補正するためには、x,y,zの方向毎に上記補正データを空間成分毎に用意しておき、方向毎に各空間成分の補正電流を求め、空間成分毎に求められた補正電流を傾斜磁場パルスに印加して補正する。   In an actual pulse sequence, gradient magnetic field pulses are applied in the x, y, and z directions, so that the irregular magnetic field induced by the application of gradient magnetic field pulses in each direction is superimposed for each spatial component and changes over time. To go. Therefore, in order to correct such superimposed irregular magnetic fields, the correction data is prepared for each spatial component in each of the x, y, and z directions, and a correction current for each spatial component is obtained for each direction. The correction current obtained for each spatial component is applied to the gradient magnetic field pulse for correction.

《第2の実施形態》
図5は、本発明の第2の実施形態による渦電流磁場及び残留磁場の補正を行う処理のフローチャートである。
本発明の第2の実施形態は、上記第1の実施形態のように補正値を平均化して装置固有の補正値として保持するのではなく、撮影空間の位置に応じた補正値をそのままMRI装置の記憶装置(例えば、図1の磁気ディスク24)に保持しておき、励起断面(撮影位置)に応じて前記補正値を前記記憶装置から抽出するものである。
<< Second Embodiment >>
FIG. 5 is a flowchart of a process for correcting an eddy current magnetic field and a residual magnetic field according to the second embodiment of the present invention.
The second embodiment of the present invention does not average the correction values and hold them as apparatus-specific correction values as in the first embodiment, but directly uses the MRI apparatus as the correction value according to the position of the imaging space. Is stored in the storage device (for example, the magnetic disk 24 in FIG. 1), and the correction value is extracted from the storage device in accordance with the excitation cross section (imaging position).

(1)渦電流磁場及び残留磁場の特性データの計測(S501)
上記第1の実施形態と同様に、公知の技術を用いて渦電流磁場及び残留磁場を計測し、この計測結果を用いて渦電流及び残留磁場特性を個々のMRI装置に適した形式のデータリストを作成し、これを特性データとして図1の磁気ディスク24に記憶しておく。
(1) Measurement of eddy current magnetic field and residual magnetic field characteristic data (S501)
As in the first embodiment, the eddy current magnetic field and the residual magnetic field are measured using a known technique, and the eddy current and the residual magnetic field characteristics are used for the data list in a format suitable for each MRI apparatus using the measurement result. Is stored in the magnetic disk 24 of FIG. 1 as characteristic data.

(2)不整磁場データの抽出(S502)
図1の操作部26から入力して設定した臨床計測における励起位置・幅(励起断面)と一致する領域の不整磁場データを撮影前に前記ステップS501のデータリストから抽出する。
例えば図6に示すような2次元計測の場合は、MRI装置の撮影空間に渡って予め計測しておいた補正データ602の中から励起断面601の位置に対応するデータを抽出する。
(2) Extraction of irregular magnetic field data (S502)
The irregular magnetic field data in the region matching the excitation position / width (excitation section) in the clinical measurement set by inputting from the operation unit 26 in FIG. 1 is extracted from the data list in step S501 before imaging.
For example, in the case of two-dimensional measurement as shown in FIG. 6, data corresponding to the position of the excitation section 601 is extracted from the correction data 602 measured in advance over the imaging space of the MRI apparatus.

(3)励起部位の不整磁場補正値の算出(S503)
上記ステップS502で抽出した不整磁場データの平均値を算出し、それを励起部位の不整磁場補正値とする。
この不整磁場補正値は、上記(式3),(式4)式を用いて励起断面に渡って平均化した値である。
(3) Calculation of irregular magnetic field correction value of excitation site (S503)
The average value of the irregular magnetic field data extracted in step S502 is calculated and used as the irregular magnetic field correction value of the excitation site.
This irregular magnetic field correction value is a value averaged over the excitation cross section using the above-described (formula 3) and (formula 4).

(4)補正値の転送と渦電流磁場、残留磁場の補正(S504)
上記ステップS503で求めた補正値は当該MRI装置の適当な記憶装置、例えば図1の磁気ディスク24にデータリストとして保存され、撮影前に図4に示す不整磁場補正装置30に転送される。
不整磁場補正装置30は、前述の様にして求めた不整磁場の時間・空間依存性に対応して、傾斜磁場発生系2の各傾斜磁場コイル33(図1における10と同じ)に対して補正電流を即時印加して不整磁場の補正を行う。
(4) Transfer of correction values and correction of eddy current magnetic field and residual magnetic field (S504)
The correction values obtained in step S503 are stored as a data list in an appropriate storage device of the MRI apparatus, for example, the magnetic disk 24 in FIG. 1, and transferred to the irregular magnetic field correction apparatus 30 shown in FIG. 4 before imaging.
The irregular magnetic field correction device 30 corrects each gradient magnetic field coil 33 (same as 10 in FIG. 1) of the gradient magnetic field generation system 2 in accordance with the time / space dependence of the irregular magnetic field obtained as described above. Immediately apply current to correct irregular magnetic field.

なお、上記ステップS502において、前記図6に示した602の補正データは、上記図3の301と同様、撮影空間全域に渡って計測した不正磁場データであるが、不正磁場計測時間の短縮、及び不正磁場データ量削減のために、図7の702に示すように撮影空間に対して疎らな位置での不正磁場データでも良い。
この場合、励起断面に近い不正磁場データを702から選択し、次のステップS503で前記不正磁場を補間により求めて補正値を決定する。
In step S502, the correction data 602 shown in FIG. 6 is incorrect magnetic field data measured over the entire imaging space, similar to 301 in FIG. In order to reduce the amount of illegal magnetic field data, illegal magnetic field data at a position sparse with respect to the imaging space may be used as indicated by 702 in FIG.
In this case, incorrect magnetic field data close to the excitation cross section is selected from 702, and in the next step S503, the incorrect magnetic field is obtained by interpolation to determine a correction value.

上記ステップS502、S503、S504の処理は、撮影開始前にスライス毎に行って算出した位置依存の補正値はMRI装置に恒久的に保存するものでなく、撮影毎に更新する。
また、3次元撮影の場合も、2次元撮影と同様の処理をスラブ毎に行い、励起スラブ位置に応じた補正値を算出して不整磁場を補正する。
The processing in steps S502, S503, and S504 is performed for each slice before the start of imaging, and the position-dependent correction value calculated is not permanently stored in the MRI apparatus, but is updated for each imaging.
In the case of 3D imaging, the same processing as in 2D imaging is performed for each slab, and a correction value corresponding to the excitation slab position is calculated to correct the irregular magnetic field.

以上、上記第1の実施形態及び第2の実施形態で説明したように、撮影条件に適した不整磁場である渦電流磁場及び残留磁場の補正データを適宜算出して補正磁場を補正することによって、よりきめの細かい補正が可能となる。
これによって、簡素な装置構成によりその補正制御も簡素なものとなり、不整磁場による画質劣化を低減して実用的な磁気共鳴イメージング装置を得ることが可能となる。
As described above in the first embodiment and the second embodiment, by correcting the correction magnetic field by appropriately calculating the correction data of the eddy current magnetic field and the residual magnetic field, which are irregular magnetic fields suitable for the imaging conditions, , Finer correction is possible.
Accordingly, the correction control is simplified by a simple apparatus configuration, and it is possible to obtain a practical magnetic resonance imaging apparatus by reducing image quality deterioration due to an irregular magnetic field.

なお、上記実施形態1,2では、渦電流磁場と残留磁場の両方の不整磁場を補正する例について説明したが、渦電流磁場と残留磁場の両方を補正する必要がない場合は、いずれか一方の磁場を補正すれば良い。   In the first and second embodiments, the example of correcting the irregular magnetic field of both the eddy current magnetic field and the residual magnetic field has been described. However, when it is not necessary to correct both the eddy current magnetic field and the residual magnetic field, either one of them is corrected. It is sufficient to correct the magnetic field.

さらに、本発明は、静磁場発生系による静磁場の不均一を補正するシムコイル及び/又は局在コイルを備えたMRI装置にも適用可能である。
この場合は、不整磁場調整装置30a’と補正データテーブル30b’とから成る不整磁場補正装置30’を図8のように構成し、上記第1の実施形態又は第2の実施形態で算出した補正データに基づく補正電流を傾斜磁場コイル31(図1の10)とシムコイル及び/又は局在コイル32に分担して流し、不整磁場を補正するようにしても良い。
Furthermore, the present invention can also be applied to an MRI apparatus provided with shim coils and / or localized coils that correct static magnetic field inhomogeneities due to a static magnetic field generation system.
In this case, the irregular magnetic field correction device 30 ′ composed of the irregular magnetic field adjustment device 30a ′ and the correction data table 30b ′ is configured as shown in FIG. 8, and the correction calculated in the first embodiment or the second embodiment is performed. A correction current based on the data may be distributed to the gradient magnetic field coil 31 (10 in FIG. 1) and the shim coil and / or the local coil 32 so as to correct the irregular magnetic field.

本発明が適用されるMRI装置の全体構成を示すブロック図。1 is a block diagram showing the overall configuration of an MRI apparatus to which the present invention is applied. 本発明の第1の実施形態による渦電流磁場および残留磁場の補正を行う処理のフローチャート。6 is a flowchart of processing for correcting an eddy current magnetic field and a residual magnetic field according to the first embodiment of the present invention. 渦電流磁場及び残留磁場の特性データの様式。Characteristic data format of eddy current magnetic field and residual magnetic field. 不整磁場補正系の概略図。Schematic of an irregular magnetic field correction system. 本発明の第2の実施形態による渦電流磁場および残留磁場の補正を行う処理のフローチャート。9 is a flowchart of processing for correcting an eddy current magnetic field and a residual magnetic field according to the second embodiment of the present invention. 2次元計測データから励起断面の補正データを抽出する説明図。Explanatory drawing which extracts the correction data of an excitation cross section from two-dimensional measurement data. 疎らな2次元計測データから励起断面に近い不正磁場データを選択して補正データを算出する説明図。Explanatory drawing which calculates the correction data by selecting the improper magnetic field data close to the excitation cross section from the sparse two-dimensional measurement data. シムコイルあるいは局在コイル備えたMRI装置に本発明を適用した場合の不整磁場補正系の概略図。1 is a schematic diagram of an irregular magnetic field correction system when the present invention is applied to an MRI apparatus equipped with shim coils or localized coils.

符号の説明Explanation of symbols

1 静磁場発生系、2 傾斜磁場発生系、3 送信系、4 受信系、5 信号処理系、6 シーケンサ、7 中央演算装置(CPU)、8 操作部、9 被検体、10 傾斜磁場コイル、11 傾斜磁場電源、15 高周波照射コイル、16 高周波受信コイル、20 ROM 、21 RAM 、23 ディスプレイ、24 磁気ディスク、25 トラックボール又はマウス、26 キーボード、30 不整磁場補正装置、30a 不整磁場補正調整装置、30b 補正データテーブル、31 傾斜磁場コイル、32 シムコイル及び/又は局在コイル   1 Static magnetic field generation system, 2 Gradient magnetic field generation system, 3 Transmission system, 4 Reception system, 5 Signal processing system, 6 Sequencer, 7 Central processing unit (CPU), 8 Operation unit, 9 Subject, 10 Gradient magnetic field coil, 11 Gradient magnetic field power supply, 15 high frequency irradiation coil, 16 high frequency receiving coil, 20 ROM, 21 RAM, 23 display, 24 magnetic disk, 25 trackball or mouse, 26 keyboard, 30 irregular magnetic field correction device, 30a irregular magnetic field correction adjustment device, 30b Correction data table, 31 gradient coils, 32 shim coils and / or localized coils

Claims (6)

計測空間に静磁場を与える静磁場発生手段と、スライス方向と位相エンコード方向と周波数エンコード方向のそれぞれに傾斜磁場を与える傾斜磁場発生手段と、前記傾斜磁場の印加によって誘起される不整磁場を補正する補正コイル及び撮影空間成分毎の前記不整磁場の特性データを備え、該特性データに基づいて該補正コイルに供給する電流を制御することによって前記不整磁場を補正制御する補正磁場制御手段を備えた磁気共鳴イメージング装置において、前記補正磁場制御手段は、前記特性データから前記不整磁場の1次勾配成分と分極成分を算出する成分算出手段と、該成分算出手段で算出した1次勾配成分と分極成分の平均値を算出する平均値算出手段と、該平均値算出手段で算出した前記1次勾配成分と分極成分の平均値から前記補正コイルに供給する電流を算出する補正電流算出手段とを備えて成る磁気共鳴イメージング装置。   A static magnetic field generating means for applying a static magnetic field to the measurement space, a gradient magnetic field generating means for applying a gradient magnetic field in each of the slice direction, the phase encoding direction, and the frequency encoding direction, and the irregular magnetic field induced by the application of the gradient magnetic field are corrected. Magnetic field comprising characteristic data of the irregular magnetic field for each correction coil and imaging space component, and correction magnetic field control means for correcting and controlling the irregular magnetic field by controlling a current supplied to the correction coil based on the characteristic data In the resonance imaging apparatus, the correction magnetic field control means includes: a component calculation means for calculating a primary gradient component and a polarization component of the irregular magnetic field from the characteristic data; a primary gradient component and a polarization component calculated by the component calculation means; An average value calculating means for calculating an average value, and an average value of the primary gradient component and the polarization component calculated by the average value calculating means Magnetic resonance imaging apparatus comprising a correction current calculating means for calculating a current supplied to the correction coils. 前記成分算出手段は、前記不整磁場の補正対象となる軸と平行な方向の不整磁場の1次勾配成分と分極成分を算出する手段であることを特徴とする請求項1に記載の磁気共鳴イメージング装置。   2. The magnetic resonance imaging according to claim 1, wherein the component calculating means is a means for calculating a first-order gradient component and a polarization component of an irregular magnetic field in a direction parallel to an axis to be corrected for the irregular magnetic field. apparatus. 前記成分算出手段は、前記特性データから励起断面領域の不整磁場データを抽出する抽出手段を備え、この抽出手段で抽出した不整磁場データから不整磁場の補正対象となる励起断面の1次勾配成分と分極成分を算出する手段であることを特徴とする請求項1に記載の磁気共鳴イメージング装置。   The component calculation means includes extraction means for extracting irregular magnetic field data of the excitation cross section region from the characteristic data, and a primary gradient component of the excitation cross section to be corrected for the irregular magnetic field from the irregular magnetic field data extracted by the extraction means; The magnetic resonance imaging apparatus according to claim 1, wherein the magnetic resonance imaging apparatus is a means for calculating a polarization component. 前記特性データは撮影空間に対して疎らな位置での不正磁場データであって、前記抽出手段は、前記疎らな位置での不正磁場データから前記励起断面に近い該断面を囲む少なくとも二つの断面の不正磁場データを選択する選択手段と、この選択手段で選択した不正磁場データを用いて補間によって前記励起断面の不整データを算出する手段とを備えて成る請求項3に記載の磁気共鳴イメージング装置。   The characteristic data is fraudulent magnetic field data at a sparse position with respect to the imaging space, and the extraction means includes at least two cross sections surrounding the cross section close to the excitation cross section from the fraudulent magnetic field data at the sparse position. 4. The magnetic resonance imaging apparatus according to claim 3, further comprising: selection means for selecting incorrect magnetic field data; and means for calculating irregular data of the excitation cross section by interpolation using the incorrect magnetic field data selected by the selection means. 前記補正コイルは前記傾斜磁場コイルであって、前記補正電流を前記傾斜磁場コイルに流れる傾斜磁場電流に重畳して供給して成る請求項1乃至4のいずれか1項に記載の磁気共鳴イメージング装置。   5. The magnetic resonance imaging apparatus according to claim 1, wherein the correction coil is the gradient magnetic field coil, and the correction current is supplied by being superimposed on a gradient magnetic field current flowing through the gradient magnetic field coil. 6. . さらに、前記静磁場発生手段による静磁場を均一にするシムコイル及び/又は局在コイルを備え、前記補正コイルは、前記傾斜磁場コイルと前記シムコイル及び/又は局在コイルであって、前記補正電流算出手段は、この手段で算出した補正電流を前記シムコイル及び/又は局在コイルと前記傾斜磁場コイルに分担して供給する補正電流分担手段を備えて成る請求項5に記載の磁気共鳴イメージング装置。   Further, a shim coil and / or a localized coil that makes the static magnetic field generated by the static magnetic field generating means uniform is provided, and the correction coil is the gradient magnetic field coil, the shim coil, and / or the localized coil, and calculates the correction current. 6. The magnetic resonance imaging apparatus according to claim 5, wherein the means comprises correction current sharing means for supplying the correction current calculated by the means to the shim coil and / or the localized coil and the gradient coil.
JP2006195175A 2006-07-18 2006-07-18 Magnetic resonance imaging system Active JP4969933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195175A JP4969933B2 (en) 2006-07-18 2006-07-18 Magnetic resonance imaging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195175A JP4969933B2 (en) 2006-07-18 2006-07-18 Magnetic resonance imaging system

Publications (2)

Publication Number Publication Date
JP2008022877A true JP2008022877A (en) 2008-02-07
JP4969933B2 JP4969933B2 (en) 2012-07-04

Family

ID=39114153

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195175A Active JP4969933B2 (en) 2006-07-18 2006-07-18 Magnetic resonance imaging system

Country Status (1)

Country Link
JP (1) JP4969933B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020174960A (en) * 2019-04-19 2020-10-29 株式会社日立製作所 Magnetic resonance imaging device and compensation method for erroneous magnetic field

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272120A (en) * 1996-12-30 1998-10-13 General Electric Co <Ge> Compensation method for magnetic field of magnetic resonance system
JP2004261591A (en) * 2003-02-12 2004-09-24 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP4106053B2 (en) * 2002-07-04 2008-06-25 株式会社日立メディコ Magnetic resonance imaging apparatus and eddy current compensation derivation method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10272120A (en) * 1996-12-30 1998-10-13 General Electric Co <Ge> Compensation method for magnetic field of magnetic resonance system
JP4106053B2 (en) * 2002-07-04 2008-06-25 株式会社日立メディコ Magnetic resonance imaging apparatus and eddy current compensation derivation method
JP2004261591A (en) * 2003-02-12 2004-09-24 Hitachi Medical Corp Magnetic resonance imaging apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020174960A (en) * 2019-04-19 2020-10-29 株式会社日立製作所 Magnetic resonance imaging device and compensation method for erroneous magnetic field
JP7253433B2 (en) 2019-04-19 2023-04-06 富士フイルムヘルスケア株式会社 MAGNETIC RESONANCE IMAGING APPARATUS AND ERROR MAGNETIC COMPENSATION METHOD
US11789101B2 (en) 2019-04-19 2023-10-17 Fujifilm Healthcare Corporation Magnetic resonance imaging apparatus and method of compensating for error magnetic field

Also Published As

Publication number Publication date
JP4969933B2 (en) 2012-07-04

Similar Documents

Publication Publication Date Title
US9297876B2 (en) Magnetic resonance imaging apparatus and eddy current compensation method
JP4106053B2 (en) Magnetic resonance imaging apparatus and eddy current compensation derivation method
JP2012040362A (en) Magnetic resonance imaging method, magnetic resonance imaging apparatus, and control device of magnetic resonance imaging apparatus
JP6038654B2 (en) Magnetic resonance imaging apparatus and vibration error magnetic field reduction method
JP2010508054A (en) MRIRF encoding using multiple transmit coils
JP5683984B2 (en) Magnetic resonance imaging apparatus and nonlinear distortion correction method
JP4343726B2 (en) Magnetic resonance imaging apparatus and irregular magnetic field correction method
US6586935B1 (en) Magnetic resonance image artifact correction using navigator echo information
KR20130135776A (en) Method to determine a subject-specific b1 distribution of an examination subject in a measurement volume in the magnetic resonance technique, magnetic resonance system, computer program, and electronically readable data medium
JP5808659B2 (en) Magnetic resonance imaging apparatus and T1ρ imaging method
JP5177379B2 (en) Magnetic resonance imaging system
KR101671267B1 (en) Rf pulse alignment method and rf pulse alignment device
JP2010035991A (en) Magnetic resonance imaging apparatus
JP4890945B2 (en) Magnetic resonance imaging system
JP4969933B2 (en) Magnetic resonance imaging system
JP5378149B2 (en) MRI apparatus and imaging area setting control program
JP2009142522A (en) Magnetic resonance imaging apparatus
JP6001371B2 (en) Magnetic resonance imaging system
JP2006061235A (en) Magnetic resonance imaging device
JP5186698B2 (en) Magnetic resonance imaging apparatus, image reconstruction method, and program
JP5064685B2 (en) Magnetic resonance imaging system
JP5484001B2 (en) Magnetic resonance imaging apparatus and image correction method
Schwerter et al. Advanced software and hardware control methods for improved static and dynamic B0 shimming in magnetic resonance imaging
JP2017213042A (en) Magnetic resonance imaging device and multi-channel rf pulse generation method
JP2016131847A (en) Magnetic resonance imaging apparatus and magnetic resonance imaging method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090625

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110629

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120402

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120404

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150413

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4969933

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250