JP2008022812A - Lighting apparatus for plant growth - Google Patents

Lighting apparatus for plant growth Download PDF

Info

Publication number
JP2008022812A
JP2008022812A JP2006201655A JP2006201655A JP2008022812A JP 2008022812 A JP2008022812 A JP 2008022812A JP 2006201655 A JP2006201655 A JP 2006201655A JP 2006201655 A JP2006201655 A JP 2006201655A JP 2008022812 A JP2008022812 A JP 2008022812A
Authority
JP
Japan
Prior art keywords
infrared
plant
light source
light
plants
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006201655A
Other languages
Japanese (ja)
Inventor
Masanori Ishiwatari
正紀 石渡
Shinichi Aoki
慎一 青木
Akihide Kudo
章英 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006201655A priority Critical patent/JP2008022812A/en
Publication of JP2008022812A publication Critical patent/JP2008022812A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Cultivation Of Plants (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lighting apparatus for plant growth, with which optical damage and burn on the phylloplane of plant are controlled and simultaneously plant growth is promoted and when plants are spread on a horizontal plane and a plurality of plants exist, their growths are approximately uniformly promoted. <P>SOLUTION: The lighting apparatus for plant growth has a light source 2 and an infrared restriction plate 4 and is arranged above plants P. The infrared restriction plate 4 is arranged between the light source 2 and the plants P and limits transmission of infrared emitted from the light source 2. The infrared restriction plate 4 is constituted to minimize infrared transmittance at a part to intersect a vertical line stood on an irradiation surface 4a from the light source 2 and to raise it with the separation from the part and an infrared exposure dose to the plants P is approximately uniformly adjusted regardless of a position on an approximately horizontal plane. According to the constitution, optical damage and burn on the phylloplane of plant of the plants P are controlled and simultaneously an infrared exposure dose to promote growth of the plants P is secured by the infrared restriction plate 4. When a plurality of the plants P exist on a horizontal plane, their growth is approximately uniformly promoted. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、植物の育成を促進するため植物に光を照射する植物育成用照明装置に関する。   The present invention relates to a plant-growing lighting device that irradiates a plant with light in order to promote the growth of the plant.

従来より、植物への照射光に含まれる赤外線すなわち熱線の光量を制限する植物育成用照明装置として、例えば、光源から発せられた光線に含まれる熱線をコールドミラーで除去し、可視光のみを光伝送系に送り込み、栽培植物に近接して配置された発光体を発光させる植物栽培装置が知られている(例えば、特許文献1参照)。この装置において、上記発光体は、至近距離から植物に光線を照射すると共に、植物相互間で光線の反射及び吸収を繰り返させ、最終的に植物に吸収利用させる。この装置によれば、赤外線を除去されるので、葉面の光障害や焼けを抑制し、該装置が設置される棟内の温度上昇等を防止することができる。
特開平07−107868号公報
Conventionally, as an illuminating device for plant growth that restricts the amount of infrared rays, that is, the amount of heat rays contained in irradiation light to plants, for example, heat rays contained in light rays emitted from a light source are removed with a cold mirror to emit only visible light. There is known a plant cultivation apparatus that sends light to a transmission system and emits light emitted from a luminescent material that is arranged close to the cultivated plant (see, for example, Patent Document 1). In this apparatus, the illuminant irradiates a plant with light rays from a short distance, repeats reflection and absorption of light rays between plants, and finally causes the plants to absorb and use them. According to this apparatus, since infrared rays are removed, it is possible to suppress light damage and burns on the foliage, and to prevent temperature rise in the building where the apparatus is installed.
Japanese Patent Application Laid-Open No. 07-107868

ところで、可視光である青色光及び赤色光に加え、波長が例えば730nmである近赤外線が植物に照射されることにより、植物の光合成が促され、植物の生育が促進されるというエマーソン効果を奏するためには、植物育成用照明装置において、植物に赤外線を照射する必要が生じる。また、気温が低い場合、植物を生長に適した温度に暖めるため、熱線である赤外線を植物に照射することが求められる。しかしながら、特許文献1に記載の技術では、熱線すなわち赤外線が除去されて植物に照射されないので、葉面の光障害や焼けを抑制することはできるが、エマーソン効果を奏したり、植物の生育に適当な温度を維持したりすることにより植物の生育を促進することが困難であった。   By the way, in addition to blue light and red light, which are visible light, when a near-infrared ray having a wavelength of, for example, 730 nm is irradiated to a plant, the photosynthesis of the plant is promoted and the growth of the plant is promoted. Therefore, it is necessary to irradiate the plant with infrared rays in the plant growing lighting device. Further, when the temperature is low, in order to warm the plant to a temperature suitable for growth, it is required to irradiate the plant with infrared rays that are heat rays. However, in the technique described in Patent Document 1, since heat rays, that is, infrared rays are removed and the plant is not irradiated, it is possible to suppress light damage and burning of the foliage, but it has an Emerson effect and is suitable for plant growth. It was difficult to promote the growth of plants by maintaining a proper temperature.

また、赤外線を出射するものの、その量を制御せず、放射状に光を放射する光源が、植物育成用照明装置の照明に用いられた場合、赤外線量は距離の2乗に反比例して減少するので、光源と植物の距離によって植物が浴びる赤外線量に差異が生じる。このため、植物や苗が水平面上に拡がって複数在るとき、配置される位置によってそれらが浴びる赤外線量に差異が生じるので、複数の植物や苗を均一に生長させることが困難であった。   In addition, when a light source that emits infrared rays but does not control the amount thereof and emits light radially is used for illumination of the plant growing lighting device, the amount of infrared rays decreases in inverse proportion to the square of the distance. Therefore, a difference occurs in the amount of infrared rays that the plant receives depending on the distance between the light source and the plant. For this reason, when there are a plurality of plants and seedlings spread on the horizontal plane, the difference in the amount of infrared rays that they are exposed to depends on the position at which they are placed, so it was difficult to uniformly grow the plants and seedlings.

本発明は、上記従来の問題を解決するためになされたものであり、植物の葉面の光障害や焼けを抑制すると共に、植物の生育を促し、植物が水平面上に拡がって複数在るときに、それらの生育を略均一に促進させることができる植物育成用照明装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and suppresses light damage and burning on the leaf surface of the plant, promotes the growth of the plant, and when a plurality of plants are spread on the horizontal plane. Another object of the present invention is to provide a plant-growing lighting device that can promote the growth thereof substantially uniformly.

上記目的を達成するために請求項1の発明は、植物の育成を促進するため植物に光を照射する植物育成用照明装置において、筺体と、前記筺体の内部に配置され、光を出射する光源と、前記光源から出射された可視光及び赤外線を反射する反射板と、前記光源と植物との間に配置され、前記光源から出射された可視光及び前記反射板により反射された可視光を透過すると共に、前記光源から出射された赤外線及び前記反射板により反射された赤外線の透過量を制限し、植物に光を照射する照射面を有する赤外線制限部材と、を備え、前記赤外線制限部材は、該部材の単位面積あたりの赤外線透過率が、前記光源から前記照射面に立てた垂線と交じわる部位で最も低くなるように構成され、植物に対する赤外線の照射量が略水平面上の位置に関わらず略均一となるようにしたものである。   In order to achieve the above object, a first aspect of the present invention is a plant-growing lighting device for irradiating a plant with light in order to promote plant growth, and a light source that is arranged inside the rod and emits light. And a reflecting plate that reflects visible light and infrared light emitted from the light source, and is disposed between the light source and the plant, and transmits visible light emitted from the light source and visible light reflected by the reflecting plate. And limiting the amount of infrared light emitted from the light source and the amount of infrared light reflected by the reflecting plate, and an infrared limiting member having an irradiation surface for irradiating light to the plant, the infrared limiting member, An infrared transmittance per unit area of the member is configured to be lowest at a portion where the light beam intersects a perpendicular line standing on the irradiation surface from the light source, and the amount of infrared irradiation with respect to the plant is substantially related to the position on the horizontal plane. It is obtained as a Razz substantially uniform.

請求項2の発明は、請求項1に記載の植物育成用照明装置において、前記赤外線制限部材は、該部材の単位面積あたりの赤外線透過率が、前記光源から前記照射面に立てた垂線と交じわる部位から離れるにつれて高くなるように構成されたものである。   According to a second aspect of the present invention, in the plant-growing lighting device according to the first aspect, the infrared limiting member has an infrared transmittance per unit area of the member that intersects with a vertical line standing on the irradiation surface from the light source. It is comprised so that it may become high as it leaves | separates from the site | part which turns.

請求項3の発明は、請求項1又は請求項2に記載の植物育成用照明装置において、前記光源と前記反射板との間に配置され、該光源から出射された可視光を透過すると共に、該光源から出射された赤外線を反射する赤外線反射部材を備えたものである。   The invention of claim 3 is the plant growing lighting device according to claim 1 or 2, wherein the plant growing illumination device is disposed between the light source and the reflector, and transmits visible light emitted from the light source. An infrared reflecting member that reflects infrared light emitted from the light source is provided.

請求項1又は請求項2の発明によれば、植物の葉面の光障害や焼けを抑制できると同時に、植物の生育に必要な赤外線の照射量を確保できる。また、植物に対する赤外線の照射量が略水平面上の位置に関わらず略均一となるので、水平面上に拡がって複数在る植物の生育を略均一に促進させることができる。   According to the invention of claim 1 or claim 2, it is possible to prevent light damage and burning on the leaf surface of the plant, and at the same time, it is possible to secure an irradiation amount of infrared rays necessary for the growth of the plant. Moreover, since the irradiation amount of infrared rays with respect to the plant becomes substantially uniform regardless of the position on the horizontal plane, the growth of a plurality of plants spread on the horizontal plane can be promoted substantially uniformly.

請求項3の発明によれば、赤外線反射部材により赤外線の進行方向を変え、赤外線制限部材の赤外線透過率が高い部位に赤外線を入射させることができるので、赤外線を効率良く出射することができる。   According to the third aspect of the present invention, the traveling direction of the infrared rays can be changed by the infrared reflecting member, and the infrared rays can be incident on the portion where the infrared transmittance of the infrared limiting member is high, so that the infrared rays can be emitted efficiently.

以下、本発明の一実施形態に係る植物育成用照明装置(以下、本装置と略す)について図面を参照して説明する。図1及び図2は、本装置の要部の構成及び使用状態を示す。本装置は、植物Pの育成を促進するため植物Pに光を照射する装置であり、植物Pの上方に配置される。光が照射される植物Pは、複数株在り、例えば、1株ずつ鉢に植えられ、水平面上に散在している。また、複数株在る植物Pは、鉢に植えられておらず、水平面上に拡がって土壌に植えられていても構わない。さらに、植物Pは、複数株ではなく、1株だけ在って、水平面上に拡がって伸びていてもよい。   Hereinafter, a plant-growing lighting device (hereinafter abbreviated as this device) according to an embodiment of the present invention will be described with reference to the drawings. 1 and 2 show a configuration and a usage state of a main part of the apparatus. This device is a device that irradiates light to the plant P in order to promote the growth of the plant P, and is disposed above the plant P. There are a plurality of plants P to which light is irradiated, for example, one plant is planted in a pot and scattered on a horizontal plane. Moreover, the plant P which exists in multiple strains may not be planted in the pot, but may be spread on a horizontal surface and planted in soil. Furthermore, the plant P may exist not only in a plurality of strains but only in one strain, and may spread and extend on a horizontal plane.

本装置は、筺体1と、この筺体1の内部に配置され、光を出射する発光部21を有する光源2と、光源2から出射された可視光及び赤外線を反射する反射板3と、光源2と植物Pとの間に配置された赤外線制限板4と、光源2と反射板3との間に配置された赤外線反射板5と、を備える。反射板3は、その形状が例えば半円筒形であり、光源2をその上方から覆うように設けられ、光源2は反射板3の内方に配置されている。このように配置された反射板3は、光源2から放射されて植物Pが在る方向とは異なった方向に進む光を内面3aで反射し、その光の進行方向を植物Pが在る方向に変える。赤外線制限板4は、光源2から出射された可視光及び反射板3により反射された可視光を透過すると共に、光源2から出射された赤外線及び反射板3により反射された赤外線の透過量を制限する(赤外線制限部材)。また、赤外線反射板5は、光源2から出射された可視光を透過させると共に、光源2から出射された赤外線を反射させる(赤外線反射部材)。以下に、本装置の構成部品について詳細に説明する。なお、本実施形態において、可視光の波長は例えば400〜720nmであり、赤外線の波長は例えば720nm〜1mmである。   The apparatus includes a housing 1, a light source 2 that is disposed inside the housing 1 and has a light emitting unit 21 that emits light, a reflector 3 that reflects visible light and infrared light emitted from the light source 2, and a light source 2. And an infrared limiting plate 4 disposed between the plant P and an infrared reflecting plate 5 disposed between the light source 2 and the reflecting plate 3. The reflecting plate 3 has a semi-cylindrical shape, for example, and is provided so as to cover the light source 2 from above, and the light source 2 is disposed inside the reflecting plate 3. The reflection plate 3 arranged in this manner reflects light emitted from the light source 2 and traveling in a direction different from the direction in which the plant P is present, and is reflected by the inner surface 3a, and the traveling direction of the light is the direction in which the plant P exists. Change to The infrared limiting plate 4 transmits visible light emitted from the light source 2 and visible light reflected by the reflecting plate 3, and limits the amount of infrared light emitted from the light source 2 and reflected by the reflecting plate 3. (Infrared limiting member). Further, the infrared reflecting plate 5 transmits visible light emitted from the light source 2 and reflects infrared light emitted from the light source 2 (infrared reflecting member). Below, the component of this apparatus is demonstrated in detail. In the present embodiment, the wavelength of visible light is, for example, 400 to 720 nm, and the wavelength of infrared light is, for example, 720 nm to 1 mm.

筐体1は、下底面に開口部1aを有し、その開口部1aの開口面積は、反射板3の平面視面積と略同じである。この筐体1は、半円筒形の反射板3を覆い、開口部1aに合わせて反射板3を内部に備える。また、筐体1は、内部に配置された反射板3の強度を増し、且つ、反射板3に対する衝撃を吸収するように反射板3を支持する支持部(不図示)を備え、さらに反射板3との間に空隙を設けた外郭構造を有する。この外郭構造により、筐体1に対する衝撃を反射板3に伝わり難くすることができ、光源2からの放射熱による反射板3の温度上昇に伴って筐体1の温度が上昇することにより人が筐体1に触れたときに火傷することを防げる。筐体1の材質は、湿度の高い農業用ビニールハウスやガラスハウス内においても、錆び難く、光源2、反射板3等を保持するために十分な強度を有する必要があるので、ステンレスや表面に腐食防止のための塗装が施された鉄等が望ましい。   The housing 1 has an opening 1 a on the bottom surface, and the opening area of the opening 1 a is substantially the same as the planar view area of the reflector 3. The housing 1 covers a semi-cylindrical reflecting plate 3 and includes the reflecting plate 3 inside according to the opening 1a. The housing 1 further includes a support portion (not shown) that supports the reflection plate 3 so as to increase the strength of the reflection plate 3 disposed therein and to absorb the impact on the reflection plate 3. 3 has an outer structure in which a gap is provided. With this outer structure, it is possible to make it difficult for the impact on the housing 1 to be transmitted to the reflecting plate 3, and as the temperature of the housing 1 rises as the temperature of the reflecting plate 3 rises due to radiant heat from the light source 2, It is possible to prevent burns when the housing 1 is touched. The material of the housing 1 is not easily rusted even in a humid agricultural greenhouse or glass house and needs to have sufficient strength to hold the light source 2, the reflector 3, etc. Iron or the like that has been painted to prevent corrosion is desirable.

光源2は、光を放射する発光部21を有し、例えば、高輝度放電灯や白熱電球から成る。光源2が高輝度放電灯である場合、その発光部21は発光管から成り、光源2が高輝度放電灯である場合、その発光部21はフィラメントから成る。この光源2は、例えば横向きに設けられており、青色光、赤色光及び赤外線を含む光を放射する。この赤外線には、近赤外線及び遠赤外線が含まれる。なお、光源2は蛍光灯であってもよい。蛍光灯の表面温度は45℃を超えることがあり、植物の生育に必要な光量の赤外線を放射する。   The light source 2 includes a light emitting unit 21 that emits light, and includes, for example, a high-intensity discharge lamp or an incandescent lamp. When the light source 2 is a high-intensity discharge lamp, the light emission part 21 consists of an arc tube, and when the light source 2 is a high-intensity discharge lamp, the light emission part 21 consists of a filament. The light source 2 is provided, for example, horizontally, and emits light including blue light, red light, and infrared light. This infrared ray includes a near infrared ray and a far infrared ray. The light source 2 may be a fluorescent lamp. The surface temperature of a fluorescent lamp may exceed 45 ° C., and emits an infrared ray having a light amount necessary for plant growth.

反射板3は、その形状が上記のように半円筒形であり、反射光の光量が赤外線制限板4の上面において略均一となるように成形されている。このよう形状の反射板3は、内方に配置された光源2から放射された可視光及び赤外線を高効率で反射するものであり、横向きの光源2と平行に設けられている。なお、反射板3の形状は、半円筒に限定されず、例えば、半楕円筒、又は断面の外形が真円又は楕円の円弧となる形状であっても構わない。さらに、光源2が縦向きに設けられている場合、反射板3の形状は、下方に拡径した椀状であってもよい。   The reflection plate 3 has a semi-cylindrical shape as described above, and is shaped so that the amount of reflected light is substantially uniform on the upper surface of the infrared limiting plate 4. The reflection plate 3 having such a shape reflects the visible light and infrared rays emitted from the light source 2 disposed inward with high efficiency, and is provided in parallel with the lateral light source 2. In addition, the shape of the reflecting plate 3 is not limited to a semi-cylinder, and may be, for example, a semi-elliptical cylinder or a shape in which the outer shape of the cross section is a perfect circle or an elliptical arc. Furthermore, when the light source 2 is provided vertically, the shape of the reflecting plate 3 may be a bowl shape whose diameter is expanded downward.

また、反射板3は、重さを軽量にし、且つ、高い反射率を確保するため、例えば、アルマイト処理、蒸着めっき、研磨等により反射率が高められたアルミニウムから成る。なお、反射板3は、例えば、銀やアルミニウムの蒸着処理が行なわれた鉄、反射率を高める塗装が施された鉄、さらに、銀やアルミニウム等の蒸着処理が施されたフィルム等から成る高反射シートが貼り付けられた金属、ガラス又は樹脂等で構成されていてもよい。また、反射板3は、耐腐食性を備えさせるため、又は高強度なものとするため、例えばステンレスで構成されていても構わない。   Further, the reflecting plate 3 is made of aluminum whose reflectance is increased by, for example, anodizing, vapor deposition plating, polishing or the like in order to reduce the weight and ensure high reflectance. The reflecting plate 3 is made of, for example, iron that has been subjected to vapor deposition of silver or aluminum, iron that has been coated to increase reflectivity, and a film that has been subjected to vapor deposition of silver or aluminum. You may be comprised with the metal, glass, resin, etc. to which the reflective sheet was affixed. Further, the reflecting plate 3 may be made of, for example, stainless steel in order to provide corrosion resistance or to have high strength.

赤外線制限板4は、その平面視形状が正方形又は長方形である板状であり、可視光を高効率で透過し、且つ、赤外線の透過量を制限する部材から成る。この部材は、例えば、透明樹脂又は高熱にも耐え得る耐熱性を備えた透明ガラス等から成る基材を有し、この基材の表面には、赤外線透過量を制限するため赤外線反射材又は赤外線吸収材が塗布されるか、或いは蒸着されて赤外線反射膜又は赤外線吸収膜が製膜されている。赤外線透過量の制限は、赤外線制限板4の赤外線透過率を調整することによりなされる。この赤外線透過率の調整は、赤外線反射膜又は赤外線吸収膜の厚さ若しくは材質に基づいて行なわれる。この調整において、赤外線透過率が略零に設定され、赤外線が略全て除去されることはない。   The infrared restriction plate 4 is a plate having a square or rectangular shape in plan view, and is made of a member that transmits visible light with high efficiency and restricts the amount of infrared transmission. This member has, for example, a transparent resin or a base material made of transparent glass having heat resistance that can withstand high heat, and the surface of the base material has an infrared reflecting material or an infrared ray to limit the amount of infrared light transmitted. An absorbing material is applied or deposited to form an infrared reflecting film or an infrared absorbing film. The infrared transmission amount is limited by adjusting the infrared transmittance of the infrared limiting plate 4. The infrared transmittance is adjusted based on the thickness or material of the infrared reflecting film or infrared absorbing film. In this adjustment, the infrared transmittance is set to substantially zero, and almost all infrared rays are not removed.

赤外線制限板4の面積は、反射板3の平面視面積又は筐体1の開口部1aの面積と略同じである。また、赤外線制限板4は、反射板3の中心軸側方の端部3bと接合されて固定されているか、或いは、筐体1の開口部1aを閉塞するように配置されている。従って、光源2は、反射板3及び赤外線制限板4に囲われた空間内に位置し、赤外線制限板4は、その光源2と、本装置の下方に配置された植物Pとの間に位置することになる。この位置関係により、赤外線制限板4は、光源2から出射された可視光及び反射板3により反射された可視光を透過すると共に、光源2から出射された赤外線及び反射板3により反射された赤外線の透過量を制限する。赤外線制限板4を透過した可視光及び赤外線から成る光(実線で示す)は、赤外線制限板4の下面である照射面4aから出射され、下方の植物Pに照射される。   The area of the infrared limiting plate 4 is substantially the same as the planar view area of the reflecting plate 3 or the area of the opening 1 a of the housing 1. In addition, the infrared limiting plate 4 is bonded and fixed to the end 3 b on the side of the central axis of the reflecting plate 3, or is arranged so as to close the opening 1 a of the housing 1. Therefore, the light source 2 is located in a space surrounded by the reflector 3 and the infrared restriction plate 4, and the infrared restriction plate 4 is located between the light source 2 and the plant P disposed below the apparatus. Will do. Due to this positional relationship, the infrared limiting plate 4 transmits the visible light emitted from the light source 2 and the visible light reflected by the reflecting plate 3, and the infrared light emitted from the light source 2 and the infrared light reflected by the reflecting plate 3. Limit the amount of transmission. Visible light and infrared light (shown by solid lines) that have passed through the infrared restriction plate 4 are emitted from the irradiation surface 4a, which is the lower surface of the infrared restriction plate 4, and irradiated to the plant P below.

上記のように、赤外線制限板4において赤外線透過量が制限されるので、植物Pに対する赤外線の照射量を制限できる。従って、植物Pの葉面の光障害や焼けを抑制できる。また同時に、植物Pに照射される赤外線は赤外線制限板4において略全て除去されるのではなく、赤外線透過率の調整により、その透過量が制限されるだけであるため、植物Pの生育に必要な赤外線の照射量を確保できる。例えば、赤外線は熱線であるので、赤外線が植物Pに対して放射されることにより、植物Pに対して熱放射が行なわれる。このため、秋季や冬季のような寒い時期にいても、植物Pの温度を生育に適したものにすることができ、植物Pの生長を促進することができる。また、赤外線制限板4は、可視光と、量が制限された赤外線とを透過させ、この赤外線には近赤外線が含まれているので、可視光である青色光及び赤色光に加え、近赤外線が植物Pに照射される。このため、エマーソン効果により、植物の光合成が促し、植物の生育を促進することができる。   As described above, since the amount of infrared transmission is limited in the infrared limiting plate 4, the amount of infrared irradiation on the plant P can be limited. Therefore, it is possible to suppress light damage and burning on the leaves of the plant P. At the same time, the infrared rays irradiated to the plant P are not completely removed by the infrared restricting plate 4 but only the amount of transmission is limited by adjusting the infrared transmittance, so that it is necessary for the growth of the plant P. A sufficient amount of infrared irradiation. For example, since infrared rays are heat rays, thermal radiation is performed on the plant P when the infrared rays are emitted on the plant P. For this reason, even in cold seasons such as autumn and winter, the temperature of the plant P can be made suitable for growth, and the growth of the plant P can be promoted. Further, the infrared limiting plate 4 transmits visible light and limited amount of infrared light, and since this infrared light includes near infrared light, in addition to blue light and red light that are visible light, the near infrared light is transmitted. Is irradiated to the plant P. For this reason, the photosynthesis of a plant is promoted by the Emerson effect, and the growth of the plant can be promoted.

赤外線反射板5は、その平面視形状が正方形又は長方形の板状であり、その長さは、半円筒形の反射板3の長さと略同じである。また、赤外線反射板5は、可視光を略100%透過する透明部材から成り、この透明部材は、例えば、透明樹脂又は透明ガラスから成る基材を有し、この基材の表面には透明導電膜がスパッタリング、真空蒸着又はゾル・ゲル法により製膜されている。この透明導電膜には、スズがドープされた酸化インジウム(In(Sn))、酸化スズ(SnO)、フッ素がドープされた酸化スズ(SnO(F))、アンチモンがドープされた酸化スズ(SnO(Sb))等が含まれる。 The infrared reflecting plate 5 has a square or rectangular plate shape in plan view, and its length is substantially the same as the length of the semi-cylindrical reflecting plate 3. The infrared reflecting plate 5 is made of a transparent member that transmits substantially 100% of visible light. The transparent member has a base material made of, for example, a transparent resin or transparent glass, and a transparent conductive material is formed on the surface of the base material. The film is formed by sputtering, vacuum deposition, or sol-gel method. This transparent conductive film is doped with indium oxide doped with tin (In 2 O 3 (Sn)), tin oxide (SnO 2 ), tin oxide doped with fluorine (SnO 2 (F)), and antimony. Tin oxide (SnO 2 (Sb)) and the like.

上記形状及び構成を有する赤外線反射板5は、反射板3及び赤外線制限板4により囲われた空間内であって、且つ、光源2と反射板3との間で、光源2の上方に、反射板3と接して配置されている。このように配置された赤外線反射板5は、光源2から出射された可視光を透過すると共に、自反射板5を透過して反射板3の内面3aで反射した可視光を再度透過する。さらに、赤外線反射板5は、下底面において、光源2から出射された赤外線と、赤外線制限板4で反射された赤外線とを反射する。   The infrared reflecting plate 5 having the above shape and configuration is reflected in the space surrounded by the reflecting plate 3 and the infrared limiting plate 4 and between the light source 2 and the reflecting plate 3 above the light source 2. It is arranged in contact with the plate 3. The infrared reflecting plate 5 arranged in this way transmits visible light emitted from the light source 2, and transmits again the visible light transmitted through the self-reflecting plate 5 and reflected by the inner surface 3 a of the reflecting plate 3. Further, the infrared reflecting plate 5 reflects the infrared rays emitted from the light source 2 and the infrared rays reflected by the infrared limiting plate 4 on the lower bottom surface.

次に、図3(a)(b)を参照して、部位に応じて異なる赤外線制限板4の赤外線透過率について説明する。赤外線制限板4は、該制限板4の単位面積あたりの赤外線透過率が、光源2の発光部21から照射面4aに立てた垂線Vと交じわる部位又は該部位を含むその付近で最も低くなるように、且つ、該部位から離れるにつれて高くなるように構成される。部位によって異なるこの赤外線透過率は、光源2の発光部21との距離に応じて設定される。上記垂線Vと交わる部位は、例えば照射面4aの中心に位置する。このように赤外線制限板4の赤外線透過率は部位よって変化するように構成され、植物Pに対する赤外線の照射量は略水平面上の位置に関わらず略均一となるように赤外線透過率が調整されている。従って、植物Pが水平面上に拡がって複数在るときに、生育を促す赤外線が水平面上の位置に関わらず略均一な光量でもってそれらに照射されるので、複数の植物Pの生育を略均一に促進させることができる。なお、赤外線透過率は、赤外線制限板4の照射面4aから均一な水平照度でもって赤外線が出射されるように設定されていてもよい。   Next, with reference to FIG. 3 (a) (b), the infrared transmittance of the infrared limiting board 4 which changes according to a site | part is demonstrated. The infrared ray limiting plate 4 has the lowest infrared transmittance per unit area of the limiting plate 4 at or near the portion intersecting with the perpendicular V standing from the light emitting portion 21 of the light source 2 to the irradiation surface 4a. And is configured to become higher as the distance from the portion increases. This infrared transmittance, which varies depending on the part, is set according to the distance from the light source 21 of the light source 2. The site | part which intersects with the said perpendicular V is located in the center of the irradiation surface 4a, for example. In this way, the infrared transmittance of the infrared limiting plate 4 is configured to change depending on the part, and the infrared transmittance is adjusted so that the amount of infrared irradiation with respect to the plant P is substantially uniform regardless of the position on the horizontal plane. Yes. Therefore, when there are a plurality of plants P spread on the horizontal plane, infrared rays that promote growth are irradiated to them with a substantially uniform light amount regardless of the position on the horizontal plane, so that the growth of the plurality of plants P is substantially uniform. Can be promoted. The infrared transmittance may be set so that infrared rays are emitted from the irradiation surface 4a of the infrared restriction plate 4 with uniform horizontal illuminance.

ここで、照射面4aが長方形である赤外線制限板4において、例えば、照射面4aの中心で上記垂線Vが本制限板4と交わり、その中心から四方に赤外線透過率が変化するように設定されたものについて説明する。この赤外線制限板4において、上記垂線Vと交わる部位を含み、本制限板4の平面の縦横比と同一の縦横比を有する長方形の領域A1では、赤外線透過率がT1に設定されている。また、領域A1と中心位置が同じで、且つ、領域A1を囲む枠状であり、外郭が上記縦横比を有する長方形である領域A2においては、赤外線透過率が、T1より高い値であるT2に設定されている。同様に、領域A3、A4のそれぞれにおいても、赤外線透過率T3、T4が設定されている。これらの領域A1、A2、A3、A4が足し合わされて、一面の照射面4aとなる。上記の領域A2、A3、A4のそれぞれの内辺と外辺との距離が、短手方向又は長手方向において、同じであっても異なっていてもよい。   Here, in the infrared limiting plate 4 whose irradiation surface 4a is rectangular, for example, the perpendicular V intersects with the main limiting plate 4 at the center of the irradiation surface 4a, and the infrared transmittance is set to change in four directions from the center. I will explain what I did. In this infrared limiting plate 4, the infrared transmittance is set to T <b> 1 in a rectangular region A <b> 1 that includes a portion intersecting with the perpendicular V and has the same aspect ratio as the plane of the limiting plate 4. In the region A2, which has the same center position as the region A1 and has a frame shape surrounding the region A1, and the outer shape is a rectangle having the above aspect ratio, the infrared transmittance is T2 which is higher than T1. Is set. Similarly, infrared transmittances T3 and T4 are set in each of the regions A3 and A4. These areas A1, A2, A3, and A4 are added together to form one irradiation surface 4a. The distance between the inner side and the outer side of each of the regions A2, A3, and A4 may be the same or different in the short side direction or the long side direction.

赤外線透過率T1、T2、T3、T4の間には、T1<T2<T3<T4という式が成り立つ。上記の設定により、赤外線透過率は、照射面4aの中心から離れるに従い、短手方向又は長手方向に平行して四方に変化し、1枚の赤外線制限板4において4つの値をとる。   A formula of T1 <T2 <T3 <T4 holds between the infrared transmittances T1, T2, T3, and T4. With the above setting, the infrared transmittance changes in four directions parallel to the short side or the long side as the distance from the center of the irradiation surface 4a increases, and takes four values in one infrared limiting plate 4.

上記のように部位に応じて赤外線透過率が変化する赤外線制限板4を作製する方法には、例えば赤外線透過率を低めに設定したい部位をマスキングして、該部位に赤外線反射材又は赤外線吸収材を厚めに塗布したり、幾度も蒸着して該部位の赤外線反射膜又は赤外線吸収膜の膜厚を厚くしたり、赤外線透過率が調整された塗料を該部位に塗り重ねたりする方法がある。さらには、透明ガラス等の基材の生成時に赤外線反射材又は赤外線吸収材を練り込んで、赤外線透過率の異なる複数の基材を作製し、それらを所望の位置に並べて1枚の赤外線制限板4を作製しても構わない。   As described above, in the method of producing the infrared limiting plate 4 in which the infrared transmittance changes depending on the part, for example, a part where the infrared transmittance is desired to be set low is masked, and the infrared reflecting material or the infrared absorbing material is applied to the part. There is a method in which the film is applied thickly, vapor deposited several times to increase the thickness of the infrared reflecting film or infrared absorbing film in the part, or a paint whose infrared transmittance is adjusted is applied over the part. Furthermore, when producing a base material such as transparent glass, an infrared reflecting material or an infrared absorbing material is kneaded to prepare a plurality of base materials having different infrared transmittances, and they are arranged at a desired position to form a single infrared limiting plate. 4 may be produced.

図3(c)は、赤外線制限板4の第1の変形例を示す。第1の変形例に係る赤外線制限板4は、同図(b)に示される実施形態の構成と比較して、照射面4aから2方向にのみ赤外線透過率が変化する点で異なる。第1の変形例に係る赤外線制限板4において、上記垂線Vと交わる部位を含み、縦の長さが本制限板4と同一である長方形の領域A5では、赤外線透過率がT5に設定されている。また、領域A5を挟み、縦の長さが本制限板4と同じである長方形の領域A6、A6’においては、赤外線透過率が、T5より高い値であるT6に設定されている。   FIG. 3C shows a first modification of the infrared restriction plate 4. The infrared limiting plate 4 according to the first modification is different from the configuration of the embodiment shown in FIG. 4B in that the infrared transmittance changes only in two directions from the irradiation surface 4a. In the infrared limiting plate 4 according to the first modified example, the infrared transmittance is set to T5 in the rectangular region A5 including the portion intersecting with the perpendicular V and having the same vertical length as the limiting plate 4. Yes. In addition, in the rectangular areas A6 and A6 'whose vertical length is the same as that of the restriction plate 4 with the area A5 interposed therebetween, the infrared transmittance is set to T6 which is higher than T5.

同様に、領域A6、A5、A6’を挟む領域A7、A7’においては、赤外線透過率が、T6より高い値であるT7に設定され、さらに、領域A7、A6、A5、A6’、A7’を挟む領域A8、A8’においては、赤外線透過率が、T7より高い値であるT8に設定されている。これらの領域A8、A7、A6、A5、A6’、A7’、A8’が足し合わされて、一面の照射面4aとなる。上記の領域A8、A7、A6、A5、A6’、A7’、A8’のそれぞれの幅は、同一であっても、異なっていてもよい。   Similarly, in the regions A7, A7 ′ sandwiching the regions A6, A5, A6 ′, the infrared transmittance is set to T7 which is higher than T6, and further, the regions A7, A6, A5, A6 ′, A7 ′. In the regions A8 and A8 'sandwiching the infrared rays, the infrared transmittance is set to T8 which is a value higher than T7. These regions A8, A7, A6, A5, A6 ', A7', A8 'are added together to form one irradiation surface 4a. The widths of the regions A8, A7, A6, A5, A6 ', A7', A8 'may be the same or different.

赤外線透過率T5、T6、T7、T8の間には、T5<T6<T7<T8という式が成り立つ。上記の設定により、赤外線透過率は、照射面4aの中心から離れるに従い、短手方向に平行して2方向に変化し、1枚の赤外線制限板4において4つの値をとる。本変形例においても、植物Pの葉面の光障害や焼けを抑制できる効果と、植物Pの生育に必要な赤外線の照射量を確保できる効果と、水平面上に拡がって複数在る植物の生育を略均一に促進させることができる効果とが得られる。   A formula of T5 <T6 <T7 <T8 holds between the infrared transmittances T5, T6, T7, and T8. With the above setting, the infrared transmittance changes in two directions parallel to the short direction as the distance from the center of the irradiation surface 4a increases, and takes four values in one infrared limiting plate 4. Also in this modification, the effect which can suppress the light damage and burning of the leaf surface of the plant P, the effect which can ensure the irradiation amount of infrared rays required for the growth of the plant P, and the growth of a plurality of plants spread on the horizontal plane Can be promoted substantially uniformly.

図3(d)は、赤外線制限板4の第2の変形例を示す。第2の変形例に係る赤外線制限板4は、同図(c)に示される第1の変形例の構成と比較して、4値ではなく、部位に応じて2値の異なる赤外線透過率を有する点で異なる。第2の変形例に係る赤外線制限板4において、上記垂線Vと交わる部位を含み、縦の長さが本制限板4と同一である長方形の領域A9では、赤外線透過率がT9に設定されている。また、領域A9を挟み、縦の長さが本制限板4と同じである長方形の領域A10、A10’においては、赤外線透過率が、T9より高い値であるT10に設定されている。これらの領域A10、A9、A10’が足し合わされて、一面の照射面4aとなる。上記の領域A10、A9、A10’のそれぞれの幅は、同一であっても、異なっていてもよい。   FIG. 3D shows a second modification of the infrared restriction plate 4. The infrared limiting plate 4 according to the second modified example is different from the configuration of the first modified example shown in FIG. 3C in that the infrared transmittance of the binary value is different from the four values according to the part, not the four values. It is different in having. In the infrared limiting plate 4 according to the second modified example, the infrared transmittance is set to T9 in the rectangular region A9 including the portion intersecting with the perpendicular V and having the same vertical length as the limiting plate 4. Yes. In addition, in the rectangular regions A10 and A10 'whose vertical length is the same as that of the restriction plate 4 with the region A9 interposed therebetween, the infrared transmittance is set to T10 which is a value higher than T9. These areas A10, A9, A10 'are added together to form a single irradiation surface 4a. The widths of the regions A10, A9, A10 'may be the same or different.

赤外線透過率T9、T10の間には、T9<T10という式が成り立つ。上記の設定により、赤外線透過率は、照射面4aの中心から離れるに従い、短手方向に平行して2方向に変化し、1枚の赤外線制限板4において2つの値をとる。本変形例においても、植物Pの葉面の光障害や焼けを抑制できる効果と、植物Pの生育に必要な赤外線の照射量を確保できる効果と、水平面上に拡がって複数在る植物の生育を略均一に促進させることができる効果とが得られる。なお、赤外線制限板4の構成は、図3(b)(c)(d)に示される上記構成に限定されない。   A formula of T9 <T10 is established between the infrared transmittances T9 and T10. With the above settings, the infrared transmittance changes in two directions parallel to the short direction as the distance from the center of the irradiation surface 4a increases, and takes two values in one infrared limiting plate 4. Also in this modification, the effect which can suppress the light damage and burning of the leaf surface of the plant P, the effect which can ensure the irradiation amount of infrared rays required for the growth of the plant P, and the growth of a plurality of plants spread on the horizontal plane Can be promoted substantially uniformly. Note that the configuration of the infrared limiting plate 4 is not limited to the above-described configuration shown in FIGS. 3B, 3C, and 3D.

図4(a)(b)は、赤外線制限板4及び赤外線反射板5の有無に応じて変化する赤外線の照射量を示す。上記の通り、本装置は植物Pの上方に配置されている。このように配置された本装置において、赤外線制限板4及び赤外線反射板5が無い場合(同図(a)参照)、赤外線量は距離の2乗に反比例して減少するため、光源2の発光部21から出射されて下方の植物Pに照射される赤外線L1(ブロック矢印で示す)の照射量が光源2の真下では多くなり、その周辺では少なくなる。このため、水平面上に拡がって複数の植物Pが在るとき、位置に応じて植物Pに対する赤外線の照射量が異なり、赤外線照射量の多い植物Pが速く生長する。従って、複数の植物Pの間で、育成の速さにばらつきが生じる。なお、可視光L2(破線で示す)は、光源2から直接に、又は反射板3により反射されて水平照度が略均一とされ、植物Pに照射される。   FIGS. 4A and 4B show the irradiation amount of infrared rays that varies depending on the presence or absence of the infrared limiting plate 4 and the infrared reflecting plate 5. As described above, the present apparatus is disposed above the plant P. In the apparatus arranged as described above, when the infrared limiting plate 4 and the infrared reflecting plate 5 are not provided (see FIG. 5A), the amount of infrared rays decreases in inverse proportion to the square of the distance. The amount of irradiation of infrared rays L1 (indicated by block arrows) emitted from the unit 21 and irradiated to the plant P below is increased immediately below the light source 2 and decreased in the vicinity thereof. For this reason, when there are a plurality of plants P that spread on the horizontal plane, the amount of infrared irradiation with respect to the plant P differs depending on the position, and the plant P with a large amount of infrared irradiation grows quickly. Therefore, variation occurs in the speed of growth among the plurality of plants P. In addition, visible light L2 (shown with a broken line) is reflected from the light source 2 directly or by the reflector 3 so that the horizontal illuminance is substantially uniform, and is irradiated to the plant P.

次に、本装置において赤外線制限板4及び赤外線反射板5が設けられた場合(図4(b)参照)の赤外線照射量について説明する。まず、光源2から放射された光の光路を説明する。光源2から放射される光には可視光と赤外線とが含まれている。可視光L2(破線で示す)は、光源2から直接に、又は反射板3により反射されて水平照度が略均一とされ、植物Pに照射される。光源2から放射されて赤外線反射板5に直接到達した赤外線L3(実線で示す)は、該反射板5により反射される。また、光源2から放射されて赤外線制限板4の赤外線透過率が低い部位に到達し、該部位で反射された赤外線L4(実線で示す)は、例えば赤外線反射板5でさらに反射され、進行方向が変えられる。進行方向が変えられた赤外線L4は、赤外線制限板4の赤外線透過率が高い部位に入射する。該部位に入射した赤外線L4は、赤外線制限板4を透過する。このため、赤外線を効率良く活用して植物Pに照射することができる。さらに、筺体1内に熱がこもり難くなるため、本装置の長寿命化を図ることができる。   Next, the amount of infrared irradiation when the infrared limiting plate 4 and the infrared reflecting plate 5 are provided in the present apparatus (see FIG. 4B) will be described. First, the optical path of light emitted from the light source 2 will be described. The light emitted from the light source 2 includes visible light and infrared light. Visible light L <b> 2 (indicated by a broken line) is reflected from the light source 2 directly or by the reflecting plate 3 to make the horizontal illuminance substantially uniform, and is irradiated to the plant P. Infrared light L3 (indicated by a solid line) emitted from the light source 2 and directly reaching the infrared reflecting plate 5 is reflected by the reflecting plate 5. In addition, the infrared ray L4 (indicated by a solid line) that is emitted from the light source 2 and reaches the portion where the infrared transmittance of the infrared limiting plate 4 is low and reflected by the portion is further reflected by, for example, the infrared reflecting plate 5 and travel direction Can be changed. The infrared ray L4 whose traveling direction has been changed is incident on a portion of the infrared restriction plate 4 where the infrared transmittance is high. The infrared ray L4 incident on the part passes through the infrared restriction plate 4. For this reason, infrared rays can be efficiently utilized to irradiate the plant P. Furthermore, since heat does not easily accumulate in the housing 1, the life of the apparatus can be extended.

上述のように光源2直下の赤外線制限板4に入射した、光量の多い赤外線は量が制限されて透過される。また、光源2直下から離れたところの赤外線透過率が高い部位に入射した、光源2からの赤外線と、赤外線反射板5により反射された赤外線とは、高い透過率で透過される。このため、複数の植物Pが浴びる赤外線L1(ブロック矢印で示す)の光量を、略水平面上の位置に関わらず略均一にすることが可能になる。従って、水平面上に拡がって複数在る植物Pの生育速度を揃えることができる。   As described above, the infrared ray having a large amount of light incident on the infrared ray limiting plate 4 immediately below the light source 2 is transmitted with a limited amount. Moreover, the infrared rays from the light source 2 and the infrared rays reflected by the infrared reflecting plate 5 that are incident on a portion having a high infrared transmittance away from just below the light source 2 are transmitted with a high transmittance. For this reason, it becomes possible to make the light quantity of the infrared rays L1 (indicated by block arrows) that are exposed to the plurality of plants P substantially uniform regardless of the position on the substantially horizontal plane. Therefore, the growth rate of a plurality of plants P extending on a horizontal plane can be made uniform.

本発明は、上記のような実施形態の構成に限定されるものでなく、使用目的に応じ、様々な変形が可能である。例えば、赤外線制限板4は、該制限板4の単位面積あたりの赤外線透過率が、光源2の発光部21から上面に立てた垂線と交じわる部位又は該部位を含むその付近で最も低くなるように、且つ、該部位から離れるにつれて高くなるように構成されていてもよい。また、植物Pに照射される可視光を抑制する場合、赤外線制限板4は、ガラス等の基材に、不透明な赤外線反射材が塗布又は蒸着されたものであっても構わない。該制限板4においては、赤外線制限板4の赤外線透過率が、赤外線反射材が在る箇所と無い箇所とで部位に応じて変化する。   The present invention is not limited to the configuration of the embodiment as described above, and various modifications can be made according to the purpose of use. For example, in the infrared limiting plate 4, the infrared transmittance per unit area of the limiting plate 4 is lowest at or near a portion intersecting with a vertical line standing on the upper surface from the light emitting portion 21 of the light source 2. And it may be comprised so that it may become high as it leaves | separates from this site | part. Moreover, when suppressing the visible light with which the plant P is irradiated, the infrared limiting plate 4 may be one in which an opaque infrared reflecting material is applied or vapor-deposited on a base material such as glass. In the limiting plate 4, the infrared transmittance of the infrared limiting plate 4 varies depending on the location where the infrared reflecting material is present and where it is not.

本発明の一実施形態に係る植物育成用照明装置の分解斜視図。The disassembled perspective view of the illuminating device for plant cultivation which concerns on one Embodiment of this invention. 上記装置の断面構成及び使用状態を示す図。The figure which shows the cross-sectional structure and use condition of the said apparatus. (a)は図2の破線枠A部分の拡大図、(b)は上記装置の赤外線制限板の平面図、(c)は同制限板の第1の変形例を示す平面図、(d)は同制限板の第2の変形例を示す平面図。(A) is an enlarged view of a broken-line frame A portion in FIG. 2, (b) is a plan view of an infrared ray limiting plate of the above device, (c) is a plan view showing a first modification of the limiting plate, (d). FIG. 9 is a plan view showing a second modification of the restriction plate. (a)は上記装置に赤外線制限板及び赤外線反射板が設けられていないときの植物に対する赤外線照射量を示す図、(b)は上記装置に赤外線制限板及び赤外線反射板が設けられているときの植物に対する赤外線照射量を示す図。(A) is a figure which shows the infrared irradiation amount with respect to a plant when the said apparatus is not provided with the infrared limiting board and the infrared reflecting board, (b) is when the said apparatus is provided with the infrared limiting board and the infrared reflecting board. The figure which shows the infrared irradiation amount with respect to a plant.

符号の説明Explanation of symbols

1 筐体
2 光源
3 反射板
4 赤外線制限板(赤外線制限部材)
4a 照射面
5 赤外線反射板(赤外線反射部材)
L1、L3、L4 赤外線
L2 可視光
V 垂線
P 植物
1 Housing 2 Light source 3 Reflector 4 Infrared limiting plate (infrared limiting member)
4a Irradiation surface 5 Infrared reflector (infrared reflector)
L1, L3, L4 Infrared L2 Visible light V Normal P Plant

Claims (3)

植物の育成を促進するため植物に光を照射する植物育成用照明装置において、
筺体と、
前記筺体の内部に配置され、光を出射する光源と、
前記光源から出射された可視光及び赤外線を反射する反射板と、
前記光源と植物との間に配置され、前記光源から出射された可視光及び前記反射板により反射された可視光を透過すると共に、前記光源から出射された赤外線及び前記反射板により反射された赤外線の透過量を制限し、植物に光を照射する照射面を有する赤外線制限部材と、を備え、
前記赤外線制限部材は、該部材の単位面積あたりの赤外線透過率が、前記光源から前記照射面に立てた垂線と交じわる部位で最も低くなるように構成され、植物に対する赤外線の照射量が略水平面上の位置に関わらず略均一となるようにしたことを特徴とする植物育成用照明装置。
In the plant growth lighting device for irradiating the plant with light to promote the growth of the plant,
The body,
A light source disposed inside the housing and emitting light;
A reflector that reflects visible light and infrared light emitted from the light source;
The infrared light that is disposed between the light source and the plant, transmits visible light emitted from the light source and visible light reflected by the reflector, and is emitted from the light source and reflected by the reflector. An infrared limiting member having an irradiation surface for limiting the amount of transmission and irradiating the plant with light,
The infrared limiting member is configured such that the infrared transmittance per unit area of the member is lowest at a portion where the infrared ray intersects with a vertical line standing on the irradiation surface from the light source, and the amount of infrared irradiation on the plant is substantially reduced. A plant-growing lighting device characterized by being substantially uniform regardless of a position on a horizontal plane.
前記赤外線制限部材は、該部材の単位面積あたりの赤外線透過率が、前記光源から前記照射面に立てた垂線と交じわる部位から離れるにつれて高くなるように構成されたことを特徴とする請求項1に記載の植物育成用照明装置。   The infrared ray limiting member is configured such that an infrared transmittance per unit area of the member increases as the distance from the portion intersecting with a perpendicular line standing on the irradiation surface from the light source increases. The plant growing lighting device according to 1. 前記光源と前記反射板との間に配置され、該光源から出射された可視光を透過すると共に、該光源から出射された赤外線を反射する赤外線反射部材を備えたことを特徴とする請求項1又は請求項2に記載の植物育成用照明装置。

2. An infrared reflecting member that is disposed between the light source and the reflecting plate and transmits visible light emitted from the light source and reflects infrared light emitted from the light source. Or the illuminating device for plant cultivation of Claim 2.

JP2006201655A 2006-07-25 2006-07-25 Lighting apparatus for plant growth Withdrawn JP2008022812A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006201655A JP2008022812A (en) 2006-07-25 2006-07-25 Lighting apparatus for plant growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006201655A JP2008022812A (en) 2006-07-25 2006-07-25 Lighting apparatus for plant growth

Publications (1)

Publication Number Publication Date
JP2008022812A true JP2008022812A (en) 2008-02-07

Family

ID=39114108

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006201655A Withdrawn JP2008022812A (en) 2006-07-25 2006-07-25 Lighting apparatus for plant growth

Country Status (1)

Country Link
JP (1) JP2008022812A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170361A (en) * 2011-02-18 2012-09-10 Panasonic Corp Lighting device
WO2018087961A1 (en) * 2016-11-09 2018-05-17 ソニーセミコンダクタソリューションズ株式会社 Illuminating device and image pickup device
JP2019129364A (en) * 2018-01-23 2019-08-01 セイコーエプソン株式会社 Projection device, projection system, and control method of projection device
CN113179859A (en) * 2021-04-27 2021-07-30 平顶山高新区绿康园生态农业科技有限公司 Edible fungus planting device and culture method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012170361A (en) * 2011-02-18 2012-09-10 Panasonic Corp Lighting device
WO2018087961A1 (en) * 2016-11-09 2018-05-17 ソニーセミコンダクタソリューションズ株式会社 Illuminating device and image pickup device
JP2019129364A (en) * 2018-01-23 2019-08-01 セイコーエプソン株式会社 Projection device, projection system, and control method of projection device
CN113179859A (en) * 2021-04-27 2021-07-30 平顶山高新区绿康园生态农业科技有限公司 Edible fungus planting device and culture method

Similar Documents

Publication Publication Date Title
CN102325443B (en) Destructive insect-controlling device
JP6033458B2 (en) Lighting device for illuminating plants
JP5474125B2 (en) Lighting apparatus and lighting system using the lighting apparatus
JP2008022812A (en) Lighting apparatus for plant growth
JP5042173B2 (en) Energy saving lamp shade with uniform light distribution
JP5543903B2 (en) Pest control system
CN102770707B (en) Light fixture and shield
DE3339789C2 (en) Medical lamp
JP2018153112A (en) Lighting fixture for plants and lighting device for plants
JP5213255B2 (en) Pest control device
AU2004225784B2 (en) Light influencing element
CN207122764U (en) Light fixture
DE102010042611A1 (en) LED module and lighting device
JP5129768B2 (en) Pest control device
KR102117972B1 (en) Lighting apparatus for mosquitoes elimination
JP6663613B2 (en) Plant lighting equipment and plant lighting device
CN217382673U (en) Wide-range lighting device suitable for animals and plants
JP2007312631A (en) Device and method for inhibiting nocturnal insect pest
CN218032980U (en) Lens device for animal and plant lighting equipment
JP2017131189A (en) Lighting apparatus for plant cultivation
JP2019068797A (en) Hybrid lighting unit for plants
JP2011024504A (en) Ultraviolet radiation irradiating device for plant
RU42876U1 (en) Irradiator
CN205226903U (en) LED patch support
KR100992893B1 (en) Asymmetric indirect lighting collimators

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20091006