JP2008022711A - Lighting apparatus for plant growth - Google Patents

Lighting apparatus for plant growth Download PDF

Info

Publication number
JP2008022711A
JP2008022711A JP2006195216A JP2006195216A JP2008022711A JP 2008022711 A JP2008022711 A JP 2008022711A JP 2006195216 A JP2006195216 A JP 2006195216A JP 2006195216 A JP2006195216 A JP 2006195216A JP 2008022711 A JP2008022711 A JP 2008022711A
Authority
JP
Japan
Prior art keywords
light
light source
plant
white
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006195216A
Other languages
Japanese (ja)
Other versions
JP5010864B2 (en
Inventor
Masanori Ishiwatari
正紀 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2006195216A priority Critical patent/JP5010864B2/en
Publication of JP2008022711A publication Critical patent/JP2008022711A/en
Application granted granted Critical
Publication of JP5010864B2 publication Critical patent/JP5010864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Abstract

<P>PROBLEM TO BE SOLVED: To prolong a flowering period when flowers are in bloom in a lighting apparatus for plant growth. <P>SOLUTION: The lighting apparatus for plant growth is equipped with a light source part 3 for irradiating a plant 1 with light. The light irradiated from the light source part 3 is made to have the ratio of energy contained in light at wavelength of 450-500nm to that contained in light at wavelength of 300-800nm of ≥45%. Consequently, the plant 1 irradiated with such light is controlled in growth and is slow in flowering of bud and aging of flower in bloom is controlled. As a result, flowers are in bloom for a long period of time. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、植物の生育を制御するため、植物に対して光を照射する植物育成用照明装置に関する。   The present invention relates to a plant-growing lighting device that irradiates light to a plant in order to control the growth of the plant.

従来の植物育成用照明装置として、植物に照射する光の波長成分が制御される植物育成用蛍光ランプが知られている(例えば、特許文献1参照)。この植物育成用蛍光ランプにおいては、発光波長450〜700nmの範囲における光エネルギの強度比が、450〜500nm未満で30〜63%、500〜600nm未満で10〜20%、600〜700nmで24〜56%で、かつ青色成分(450〜500nm未満)及び赤色成分(600〜700nm)中に占める青色成分比が0.37〜0.70である。この植物育成用蛍光ランプによれば、ビタミンCと地上部新鮮重量のバランスが取れた植物を育成することができる。   As a conventional plant-growing lighting device, a plant-growing fluorescent lamp in which the wavelength component of light applied to a plant is controlled is known (for example, see Patent Document 1). In this fluorescent lamp for plant growth, the intensity ratio of light energy in the range of the emission wavelength of 450 to 700 nm is 30 to 63% when it is less than 450 to 500 nm, 10 to 20% when it is less than 500 to 600 nm, and 24 to 600 when it is 600 to 700 nm. The blue component ratio in the blue component (less than 450 to 500 nm) and the red component (600 to 700 nm) is 0.37 to 0.70. According to this fluorescent lamp for plant growth, it is possible to grow a plant in which vitamin C and the fresh weight of the above-ground part are balanced.

また、上記植物育成用蛍光ランプと同様に、出射する光の波長成分が制御される照明装置として、ケーシングの内部に配置された複数の蛍光ランプと、これらの蛍光ランプのそれぞれの発光出力及び発光時間を設定する調光手段とを備えた調光用照明装置が知られている(例えば、特許文献2参照)。この調光用照明装置においては、上記蛍光ランプのそれぞれが、可視光領域のほぼ全域を含む光の波長領域を少なくとも2つに分割した波長帯域のいずれかに光量が集中した光を発生する。このため、各波長帯域での発光出力が可変とされるので、本装置によれば、光の波長や照度を変えて行なわれる植物の育成状況の調査を簡単に実施できる。
特開2002−360067号公報 特開平10−22号公報
Similarly to the above-described fluorescent lamp for plant growth, as a lighting device in which the wavelength component of the emitted light is controlled, a plurality of fluorescent lamps arranged inside the casing, and the respective light emission outputs and light emission of these fluorescent lamps There is known a dimming illumination device including a dimming unit for setting time (see, for example, Patent Document 2). In this dimming illumination device, each of the fluorescent lamps generates light in which the amount of light is concentrated in one of the wavelength bands obtained by dividing the wavelength region of light including almost the entire visible light region into at least two. For this reason, since the light emission output in each wavelength band is variable, according to the present apparatus, it is possible to easily carry out the investigation of the plant growth state performed by changing the wavelength and illuminance of light.
JP 2002-360067 A Japanese Patent Laid-Open No. 10-22

ところで、人が植物を室内で育成したり、花が咲いている状態を観賞のために持続させたいと願ったりする場合、植物育成用照明装置から植物に照射される光が不適当であるために植物が短期で枯死することは望ましくない。また、反対に植物が勢いよく育ち過ぎることも望ましくない。特に、花卉類は、花が蕾であるときに購入され、時間の経過と共に少しずつ開花してゆく花を観賞者が観賞するものであるため、日光が積極的に照射されたときや人工光により補光が行われたときに植物の生育が促されることにより、開花が促進されると共に、花の枯れる時期が早くなり、開花期間が短くなることは望ましくない。観賞者が、咲いた花を観賞できる期間が短くなるからである。従って、花を咲かす植物の育成において望ましいことは、花を長期間咲かし続けるように植物を育成することである。しかしながら、特許文献1又は特許文献2に記載の技術では、花が咲いている開花期間を延長させることはできなかった。   By the way, when a person grows a plant indoors or wishes to maintain a flowering state for viewing, the light irradiated to the plant from the plant growing lighting device is inappropriate. In addition, it is undesirable for plants to die in a short period of time. On the other hand, it is also undesirable for the plant to grow too vigorously. In particular, flower buds are purchased when the flowers are buds, and the viewers appreciate the flowers that gradually bloom over time, so when sunlight is actively irradiated or artificial light It is not desirable that the growth of the plant is promoted when supplementary light is applied, thereby promoting flowering, leading to early flowering time and shortening the flowering period. This is because the period during which the viewer can appreciate the bloomed flowers is shortened. Therefore, it is desirable to grow plants so as to keep the flowers in bloom for a long period of time. However, the technique described in Patent Document 1 or Patent Document 2 cannot extend the flowering period in which flowers are blooming.

本発明は、上記従来の問題を解決するためになされたものであり、花の咲いている開花期間を長くすることができる植物育成用照明装置を提供することを目的とする。   The present invention has been made to solve the above-described conventional problems, and an object of the present invention is to provide a plant-growing lighting device that can lengthen the flowering period in which flowers are blooming.

上記目的を達成するために請求項1の発明は、植物の生育を調整するため、植物に対して光を照射制御する照射手段を備えた植物育成用照明装置において、前記照射手段は、植物に照射される光が、300乃至800nmの波長域の光に含まれるエネルギに対する、450乃至500nmの波長域の光に含まれるエネルギの比率が45%以上となるように波長成分を制御するものである。   In order to achieve the above object, the invention of claim 1 is directed to a plant growth lighting device comprising an irradiation means for controlling the irradiation of light to a plant in order to adjust the growth of the plant. The wavelength component is controlled so that the ratio of the energy contained in light in the wavelength region of 450 to 500 nm to the energy contained in light in the wavelength region of 300 to 800 nm is 45% or more. .

請求項2の発明は、請求項1に記載の植物育成用照明装置において、植物の頂上部付近にある生長点の高さに、地面と平行に想定され、その面積が、植物を上方から見たときの植物の大きさと略同じである仮想面において、平均の水平面照度が1000ルクス以上となるようにしたものである。   According to a second aspect of the present invention, in the plant-growing lighting device according to the first aspect, the height of the growth point in the vicinity of the top of the plant is assumed to be parallel to the ground, and the area thereof is viewed from above. In an imaginary plane that is substantially the same as the size of the plant at the time, the average illuminance on the horizontal plane is 1000 lux or more.

請求項3の発明は、請求項1又は請求項2に記載の植物育成用照明装置において、前記照射手段は、人が植物を鑑賞しているとき、照射される光のうち450乃至500nmの波長域の光の光量を、人が植物を鑑賞していないときに比べて減らすことにより、照射される光が略白色に見えるように波長成分を制御するものである。   A third aspect of the present invention is the lighting device for plant growth according to the first or second aspect, wherein the irradiating means has a wavelength of 450 to 500 nm of light irradiated when a person is viewing a plant. By reducing the amount of light in the region as compared to when the person is not appreciating the plant, the wavelength component is controlled so that the irradiated light looks almost white.

請求項1の発明によれば、エネルギ比率が上記のような光が植物に照射されると、特に、太陽光が殆ど差し込まないような環境下においては、植物の生長が抑制され、蕾の開花も遅くなる。従って、開花中の花も老化が抑制され、結果的に、花の咲いている開花期間を長くすることができる。   According to the first aspect of the present invention, when the plant is irradiated with light having the energy ratio as described above, the growth of the plant is suppressed and the flowering of the cocoon occurs especially in an environment where almost no sunlight is inserted. Will also be late. Therefore, senescence is also suppressed in the flowering flower, and as a result, the flowering period in which the flower is in bloom can be lengthened.

請求項2の発明によれば、植物の良好な生育状態を長期間維持できる。   According to invention of Claim 2, the favorable growth state of a plant can be maintained for a long time.

請求項3の発明によれば、人が植物を鑑賞するときに、観賞に適した光を植物に照射することができる。   According to invention of Claim 3, when a person appreciates a plant, the light suitable for viewing can be irradiated to a plant.

本発明の一実施形態に係る植物育成用照明装置について図面を参照して説明する。図1は、本実施形態に係る植物育成用照明装置(以下、本装置)の構成を示す。本装置は、植物1が載置される植物載置台2と、この植物載置台2上に載置された植物1の生育を制御するため、植物1に対して光を照射する光源部3と、この光源部3を支持すると共に、その下部が植物載置台2に固定された支持壁4と、本装置のモードを切り替えるためにユーザにより操作される操作部5と、タイマ6と、を備える。このタイマ6は、光源部3が点灯している明期と、光源部3が消灯している暗期とを併せて1サイクルとしたとき、このサイクルを24時間周期で一回転させるために時刻を計測するものである。光源部3は、植物載置台2上に植物1が載置されたときにその植物1の上方となる位置に設けられる。   A plant-growing lighting device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of a plant-growing lighting device (hereinafter, this device) according to the present embodiment. The apparatus includes a plant mounting table 2 on which the plant 1 is mounted, and a light source unit 3 that irradiates the plant 1 with light in order to control the growth of the plant 1 mounted on the plant mounting table 2. The light source unit 3 is supported, and a lower part thereof includes a support wall 4 fixed to the plant mounting table 2, an operation unit 5 operated by a user to switch the mode of the apparatus, and a timer 6. . When the timer 6 has a light period in which the light source unit 3 is turned on and a dark period in which the light source unit 3 is turned off in one cycle, the timer 6 is operated to rotate the cycle once every 24 hours. Is to measure. The light source unit 3 is provided at a position above the plant 1 when the plant 1 is mounted on the plant mounting table 2.

本装置のモードは、植物の生育を制御するための生育制御モードと、ユーザが植物を観賞するときに植物を演出するための観賞モードとから成り、ユーザによる操作部5の操作に基づいて切り替えられる。この操作部5は、例えばスイッチを含み、本装置のモードは、ユーザによるこのスイッチの押下げ操作に従って切り替えられる。また、操作部5は、人感センサを含み、この人感センサにより、本装置の近傍に居る人の存否を確認し、人が近傍に居る間だけ自動で本装置のモードを観賞モードに遷移させても構わない。この場合、ユーザがわざわざスイッチ等を操作する手間を省くことができる。   The mode of this apparatus consists of the growth control mode for controlling the growth of the plant and the viewing mode for producing the plant when the user views the plant, and is switched based on the operation of the operation unit 5 by the user. It is done. The operation unit 5 includes, for example, a switch, and the mode of the apparatus is switched according to a pressing operation of the switch by the user. In addition, the operation unit 5 includes a human sensor, and by using the human sensor, the presence / absence of a person in the vicinity of the apparatus is confirmed, and the mode of the apparatus is automatically switched to the viewing mode only while the person is in the vicinity. It does n’t matter. In this case, it is possible to save the user from having to operate the switch and the like.

光源部3は、本装置の現状のモードに合わせて波長成分が制御された光を出射する。例えば、光源部3は、本装置が観賞モードのとき、植物演出用の略白色の光を出射し、本装置が生育制御モードのとき、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率が45%以上となる光を出射する。この光が植物1に与える影響については後述する。なお、このような光を出射する光源部3は、植物の側方に設けられていてもよい。また、光源部3は、支持壁4ではなく、支持棒により支持されていても構わない。   The light source unit 3 emits light whose wavelength component is controlled in accordance with the current mode of the apparatus. For example, the light source unit 3 emits substantially white light for plant production when the device is in the viewing mode, and with respect to the energy contained in the light in the wavelength region of 300 to 800 nm when the device is in the growth control mode. Light with a ratio of energy contained in light in the wavelength region of 450 to 500 nm being 45% or more is emitted. The effect of this light on the plant 1 will be described later. In addition, the light source part 3 which radiate | emits such light may be provided in the side of the plant. Further, the light source unit 3 may be supported by a support bar instead of the support wall 4.

図2は、光源部3の構成を示す。同図に示される光源部3は、支持壁4により支持される光源支持台31と、この光源支持台31の同一面に取り付けられた白色光源7及び青色光源8と、を備える。白色光源7及び青色光源8から出射される光は調光制御されており、これらの光源7、8は、併せて、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率が45%以上となる光を出射する。   FIG. 2 shows the configuration of the light source unit 3. The light source unit 3 shown in the figure includes a light source support base 31 supported by a support wall 4, and a white light source 7 and a blue light source 8 attached to the same surface of the light source support base 31. The light emitted from the white light source 7 and the blue light source 8 is dimmed and controlled, and these light sources 7 and 8 have a wavelength of 450 to 500 nm with respect to the energy contained in the light in the wavelength range of 300 to 800 nm. The light in which the ratio of the energy contained in the light in the region is 45% or more is emitted.

白色光源7の個数は例えば1個であり、この白色光源7は、光源支持台31の一面の中央付近に取り付けられる。また、青色光源8の個数は、例えば4個であり、これらの青色光源8は、白色光源7を中心とする円の外周上に、互いに略90度の角度をもって配置され、光源支持台31に固定されている。上記のように配置された白色光源7は、例えば、白熱電球、白色蛍光灯、白色のメタルハライドランプ、水銀灯、白色無電極ランプ、白色発光ダイオード(白色LED)又は白色光を出射する有機EL(Electro−Luminescence)等から成る。また、青色光源8は、例えば、青色電球、青色蛍光灯、青色のメタルハライドランプ、青色無電極ランプ、青色発光ダイオード(青色LED)又は青色光を出射する有機EL等から成る。なお、白色光源7及び青色光源8の配置や個数は上記に限られない。   The number of white light sources 7 is, for example, one, and the white light source 7 is attached near the center of one surface of the light source support 31. The number of blue light sources 8 is, for example, four, and these blue light sources 8 are arranged on the outer circumference of a circle centering on the white light source 7 with an angle of approximately 90 degrees with each other. It is fixed. The white light source 7 arranged as described above is, for example, an incandescent bulb, a white fluorescent lamp, a white metal halide lamp, a mercury lamp, a white electrodeless lamp, a white light emitting diode (white LED), or an organic EL (Electro Electron) that emits white light. -Luminescence) and the like. The blue light source 8 includes, for example, a blue light bulb, a blue fluorescent lamp, a blue metal halide lamp, a blue electrodeless lamp, a blue light emitting diode (blue LED), or an organic EL that emits blue light. The arrangement and number of the white light source 7 and the blue light source 8 are not limited to the above.

図3は、本装置の電気的構成を示す。本装置は、モードを切り替えるためにユーザが操作する操作部5と、時刻を計測するタイマ6と、白色光源7を調光点灯制御する調光点灯部7aと、青色光源8を調光点灯制御する調光点灯部8aと、操作部5及びタイマ6からの信号に応じて、調光点灯部7a、8aに制御信号を送信する制御部9と、を備える。上記各部5、7a、8a、9及びタイマ6は、植物載置台2、光源支持台31又は支持壁4内に収納される。なお、タイマ6は、植物載置台2、光源支持台31又は支持壁4の外面に取り付けられていても、又は植物載置台2、光源支持台31及び支持壁4から成る本体の外部に設置されていてもよい。外部に設置される場合、タイマ6は、例えばUSB(Universal Serial Bus)ケーブル等の伝送線を介して制御部9に時刻情報を送信する。   FIG. 3 shows the electrical configuration of the apparatus. This apparatus includes an operation unit 5 operated by a user to switch modes, a timer 6 for measuring time, a dimming lighting unit 7a for dimming lighting control of the white light source 7, and a dimming lighting control for the blue light source 8. And a control unit 9 that transmits a control signal to the dimming lighting units 7a and 8a in response to signals from the operation unit 5 and the timer 6. The parts 5, 7 a, 8 a, 9 and the timer 6 are accommodated in the plant mounting table 2, the light source support table 31 or the support wall 4. The timer 6 may be attached to the outer surface of the plant mounting table 2, the light source support table 31 or the support wall 4, or may be installed outside the main body including the plant mounting table 2, the light source support table 31 and the support wall 4. It may be. When installed externally, the timer 6 transmits time information to the control unit 9 via a transmission line such as a USB (Universal Serial Bus) cable.

調光点灯部7a、8aは、調光点灯回路から成り、この調光点灯回路によりそれぞれ、白色光源7又は青色光源8の発光量を増減して制御すると共に、これらの光源7a、8aの点灯/消灯制御を行なう。発光量制御及び点灯/消灯制御は、制御部9からの制御信号に応じてなされる。なお、上記の通り、白色光源7及び青色光源8は光源部3に含まれる。   The dimming / lighting units 7a and 8a are composed of dimming / lighting circuits. The dimming / lighting circuits control the light emission amount of the white light source 7 or the blue light source 8 by increasing / decreasing the light sources 7a, 8a, respectively. / Performs extinction control. The light emission amount control and the on / off control are performed according to a control signal from the control unit 9. As described above, the white light source 7 and the blue light source 8 are included in the light source unit 3.

制御部9は、CPUを含むマイクロコンピュータ(以下、マイコンと略す)から成り、このマイコンにより、白色光源7及び青色光源8の各種制御を調光点灯部7a、8aを用いて行なう。白色光源7及び青色光源8の各種制御は、独立して行なうことが可能であり、それらの制御は、制御内容に応じた制御信号が調光点灯部7a、8aに送信されることにより行なわれる。上記の各種制御には、植物の生育を調整するための白色光源7及び青色光源8の発光量制御が含まれる。   The control unit 9 includes a microcomputer (hereinafter abbreviated as a microcomputer) including a CPU, and the microcomputer performs various controls of the white light source 7 and the blue light source 8 using the dimming lighting units 7a and 8a. Various controls of the white light source 7 and the blue light source 8 can be performed independently, and these controls are performed by transmitting a control signal corresponding to the control content to the dimming lighting units 7a and 8a. . The various controls described above include control of the amount of light emitted from the white light source 7 and the blue light source 8 for adjusting the growth of the plant.

例えば、制御部9は、ユーザが本装置のモードを生育制御モード/観賞モードに切り替えるために操作部5を操作したとき、操作部5からの信号に基づいて、白色光源7及び青色光源8の発光量をそれぞれ調光点灯部7a、8aにより制御する。この発光量の制御により、生育制御モード時には、白色光源7から出射された光と青色光源8から出射された光とが合成された光、すなわち光源部3全体から放射されて植物に照射される光において、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率が45%以上となるように波長成分の制御が行なわれる。一方、観賞モード時には、光源部3から植物1に照射される光が略白色に見えるように波長成分が制御される。光を略白色とするこの波長成分制御は、例えば2つの方法によりなされる。その1つの方法は、光源部3から照射される光のうち450乃至500nmの波長域の光の光量を、ユーザが植物1を鑑賞していないときに比べて減らすことである。このために青色光源8の発光量が低減される。もう1つの方法は、白色光源7の発光量を増加させることである。ここで、ユーザが植物を鑑賞していないときとは、本装置のモードが生育制御モードであるときのことをいう。上記のようにして、白色光源7、青色光源8、調光点灯部7a、8a及び制御部9は照明手段を成す。   For example, when the user operates the operation unit 5 to switch the mode of the apparatus to the growth control mode / viewing mode, the control unit 9 determines whether the white light source 7 and the blue light source 8 are based on the signal from the operation unit 5. The amount of light emission is controlled by the dimming lighting units 7a and 8a, respectively. By controlling the amount of emitted light, in the growth control mode, the light emitted from the white light source 7 and the light emitted from the blue light source 8 are combined, that is, emitted from the entire light source unit 3 and applied to the plant. In the light, the wavelength component is controlled so that the ratio of the energy contained in the light in the wavelength region of 450 to 500 nm to the energy contained in the light in the wavelength region of 300 to 800 nm is 45% or more. On the other hand, in the viewing mode, the wavelength component is controlled so that the light emitted from the light source unit 3 to the plant 1 looks almost white. This wavelength component control for making the light substantially white is performed by, for example, two methods. One method is to reduce the amount of light in the wavelength region of 450 to 500 nm of the light emitted from the light source unit 3 as compared to when the user is not viewing the plant 1. For this reason, the light emission amount of the blue light source 8 is reduced. Another method is to increase the light emission amount of the white light source 7. Here, the time when the user is not appreciating the plant means that the mode of the apparatus is the growth control mode. As described above, the white light source 7, the blue light source 8, the dimming / lighting units 7a and 8a, and the control unit 9 form an illumination unit.

さらに、制御部9が行なう各種制御には、白色光源7及び青色光源8の点灯/消灯制御が含まれる。この点灯/消灯制御は、タイマ6から送信される時刻情報に基づいて行なわれる。例えば、制御部9は、タイマ6により現在時刻を把握し、夜間の予め設定された時刻に白色光源7及び青色光源8を消灯する。また同様に、制御部9は、朝の予め設定された時刻に白色光源7及び青色光源8を点灯する。   Further, various controls performed by the control unit 9 include turning on / off control of the white light source 7 and the blue light source 8. This on / off control is performed based on the time information transmitted from the timer 6. For example, the control unit 9 grasps the current time by the timer 6 and turns off the white light source 7 and the blue light source 8 at a preset time at night. Similarly, the control unit 9 turns on the white light source 7 and the blue light source 8 at a preset time in the morning.

上記構成によれば、本装置は、人が植物を観賞するとき、光源部3から放射される光が略白色に見えるように波長成分を制御する機能を有するので、人が植物1を鑑賞するときに観賞に適した光を植物1に照射することができる。さらに、制御部9がタイマ6により時刻を計測し、時刻に応じて白色光源7及び青色光源8の発光量制御及び点灯/消灯制御を行なうことにより、毎日ユーザが在宅している時間帯には、観賞モード時の光を植物1に照射し、ユーザが家を空けている時間帯には、生育制御モード時の光を植物1に照射し、夜間には白色光源7及び青色光源8を消灯して植物1を休ませることが可能となる。   According to the above configuration, this apparatus has a function of controlling the wavelength component so that the light emitted from the light source unit 3 looks almost white when a person appreciates the plant. Sometimes the plant 1 can be irradiated with light suitable for viewing. Further, the control unit 9 measures the time by the timer 6 and performs the light emission amount control and the light on / off control of the white light source 7 and the blue light source 8 according to the time, so that the user is at home every day. The plant 1 is irradiated with the light in the ornamental mode, the plant 1 is irradiated with the light in the growth control mode during the time when the user leaves the house, and the white light source 7 and the blue light source 8 are turned off at night. Thus, the plant 1 can be rested.

次に、光源部3から出射された光の水平面照度について、上記の各図に図4(a)(b)を加えて説明する。調光点灯部7a、8aは、制御部9からの制御信号に基づき、光源部3から出射された光(実線矢印で示す)が、植物1の頂上部付近にある生長点と略同じ高さに想定された仮想面100において、1000ルクス以上の平均水平面照度を有するように調光制御する。この仮想面100は、地面と平行に想定され、その面積が、植物1を上方から見たときの植物1の大きさと略同じである。上記調光制御は、本装置が生育制御モードにあるときも、また本装置が観賞モードにあるときも行なわれる。なお、仮想面100の高さは、頂上部付近にある生長点と略同じ高さに限定されず、他の位置にある生長点の高さであっても、また植物の頂点の高さであってもよい。   Next, the horizontal illuminance of the light emitted from the light source unit 3 will be described with reference to FIGS. 4 (a) and 4 (b). Based on the control signal from the control unit 9, the dimming lighting units 7 a and 8 a have substantially the same height as the light emitted from the light source unit 3 (shown by solid line arrows) near the top of the plant 1. The dimming control is performed so that the virtual plane 100 assumed in the above has an average horizontal illuminance of 1000 lux or more. The virtual surface 100 is assumed to be parallel to the ground, and the area thereof is substantially the same as the size of the plant 1 when the plant 1 is viewed from above. The dimming control is performed both when the apparatus is in the growth control mode and when the apparatus is in the viewing mode. Note that the height of the virtual plane 100 is not limited to the same height as the growth point near the top, and may be the height of the growth point at another position or at the height of the top of the plant. There may be.

上記構成により、太陽光が殆ど差し込まない室内においても、上記仮想面における平均の水平面照度が1000ルクス以上であるため、植物1は、良好な生育に適した照度の光を浴びることができる。また、水平面照度が1000ルクス以上に維持されるので、植物1の枯死を防ぎ、植物1の良好な生育状態を長期間維持できる。この効果は、特に、根付きの耐陰性が高い、スパティフィラム、カーネーション、ペンタス、サルビア、ミニバラ、トルコギキョウ、キク、グロキシニア、ガーベラ、カンパニュラ、ケイトウ、アゲラタム、シクラメン、ハナキリン、ベゴニア、エキザカム、インパチェンス、セントポーリア、カランコエ、パフィオペディラム、キンギョソウ、ハイドランジア、シネラリア、カルセオラリア、ブーゲンビレア、ストック、ポットマム、プリムラ、パンジー、グズマニア、ドラセナ等の植物に顕著に表れる。   With the above configuration, the plant 1 can be exposed to light having an illuminance suitable for good growth because the average horizontal illuminance on the virtual plane is 1000 lux or more even in a room where sunlight is hardly inserted. In addition, since the illuminance on the horizontal plane is maintained at 1000 lux or higher, the plant 1 can be prevented from withering and the good growth state of the plant 1 can be maintained for a long time. This effect is especially high in the negative resistance of roots, spatiphyllum, carnation, pentas, salvia, mini rose, eustoma, chrysanthemum, gloxinia, gerbera, campanula, celosia, ageratum, cyclamen, hanakirin, begonia, exacam, impatiens, saintpaulia, kalanchoe , Paphiopedilum, snapdragon, hydrangea, cineraria, calceolaria, bougainvillea, stock, pot mum, primula, pansy, guzmania, dracaena and the like.

次に、本装置のモードが生育制御モードとなることにより得られる効果を、発明者により実施された実験の結果を参照して説明する。上述の通り、生育制御モード時には、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率が45%以上である光が植物に照射される。これまで、400〜500nmの波長域を有する青色光が植物の生長を抑制することが一般に知られているものの、400〜500nm以外の波長を有する光が青色光と同時に植物に照射される場合に、花を長期間咲かし続けることが可能な分光分布に係る知見は存在しなかった。このため、本実験においては、波長域300〜800nmの光に含まれるエネルギに対する、波長域450〜500nmの光に含まれるエネルギの比率がパラメータとされた。また、本実験においては、上記パラメータが異なる後述の各種光源により植物に対して個別に光が照射され、時間の経過に伴う開花数の変動が計測された。   Next, the effect obtained when the mode of the present apparatus becomes the growth control mode will be described with reference to the results of experiments conducted by the inventors. As described above, in the growth control mode, the plant is irradiated with light in which the ratio of the energy contained in the light in the wavelength region of 450 to 500 nm to the energy contained in the light in the wavelength region of 300 to 800 nm is 45% or more. . So far, it is generally known that blue light having a wavelength range of 400 to 500 nm suppresses the growth of plants, but when light having a wavelength other than 400 to 500 nm is irradiated on the plant simultaneously with blue light. There was no knowledge of the spectral distribution that allowed the flowers to continue to bloom for a long time. For this reason, in this experiment, the ratio of the energy contained in the light in the wavelength region 450 to 500 nm to the energy contained in the light in the wavelength region 300 to 800 nm was used as a parameter. Moreover, in this experiment, the light was individually irradiated with respect to the plant by the various light sources mentioned later with different parameters, and the change in the number of flowers with the passage of time was measured.

図5は、この実験の際に用いられた各種(ここでは、下記第1乃至第4の4種)の光源から出射される光の波長成分を示す。同図において、横軸は、光の波長(nm)を示し、縦軸は、エネルギのピーク値に対する相対値である相対エネルギを示す。各種光源のうち、2種は白色光源と青色光源とを組み合わせたものであり、その他の2種は白色光源7のみからなるものである。   FIG. 5 shows wavelength components of light emitted from various (herein, the following first to fourth types) light sources used in this experiment. In the figure, the horizontal axis indicates the wavelength (nm) of light, and the vertical axis indicates relative energy, which is a relative value with respect to the peak value of energy. Of the various light sources, two types are a combination of a white light source and a blue light source, and the other two types are composed of only the white light source 7.

本実験により使用された第1の光源は、青色蛍光灯と白色蛍光灯とを組み合わせたものであり、この光源からの出射光は、実線Aに示される波長分布を有していた。この波長分布によれば、波長が略435nmであるときに相対エネルギはピーク値を取ると共に、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率は45%となる。このエネルギの比率は、同図において、波長域450〜500nmの相対エネルギの積分値を、波長域300〜800nmの相対エネルギの積分値で除することにより算出される。上記比率を百分率で表す場合、この算出された値に100が乗じられる(以下、同様)。   The first light source used in this experiment was a combination of a blue fluorescent lamp and a white fluorescent lamp, and light emitted from this light source had a wavelength distribution indicated by a solid line A. According to this wavelength distribution, when the wavelength is approximately 435 nm, the relative energy takes a peak value, and the energy included in the light in the wavelength region of 450 to 500 nm with respect to the energy included in the light in the wavelength region of 300 to 800 nm. The ratio is 45%. In this figure, the energy ratio is calculated by dividing the integral value of relative energy in the wavelength region 450 to 500 nm by the integral value of relative energy in the wavelength region 300 to 800 nm. When the ratio is expressed as a percentage, the calculated value is multiplied by 100 (hereinafter the same).

また、第2の光源は、白色LEDのみから成るものであり、この光源からの出射光は、実線Bに示される波長分布を有していた。この波長分布によれば、波長が略460nmであるときに相対エネルギはピーク値を取ると共に、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率は52%となる。   Further, the second light source is composed of only white LEDs, and the light emitted from this light source has a wavelength distribution indicated by a solid line B. According to this wavelength distribution, when the wavelength is approximately 460 nm, the relative energy takes a peak value, and the energy included in the light in the wavelength region of 450 to 500 nm with respect to the energy included in the light in the wavelength region of 300 to 800 nm. The ratio is 52%.

また、第3の光源は、青色LEDと白色蛍光灯とを組み合わせたものであり、この光源からの出射光は、実線Cに示される波長分布を有していた。この波長分布によれば、波長が略465nmであるときに相対エネルギはピーク値を取ると共に、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率は85%となる。   The third light source is a combination of a blue LED and a white fluorescent lamp, and light emitted from the light source has a wavelength distribution indicated by a solid line C. According to this wavelength distribution, when the wavelength is approximately 465 nm, the relative energy takes a peak value, and the energy included in the light in the wavelength region of 450 to 500 nm with respect to the energy included in the light in the wavelength region of 300 to 800 nm. The ratio is 85%.

また、第4の光源は、白色蛍光灯のみから成るものであり、この光源からの出射光は、破線Dに示される波長分布を有していた。この波長分布によれば、波長が略545nmであるときに相対エネルギはピーク値を取ると共に、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率は19%となる。   Further, the fourth light source is composed of only a white fluorescent lamp, and the light emitted from this light source has a wavelength distribution indicated by a broken line D. According to this wavelength distribution, when the wavelength is approximately 545 nm, the relative energy takes a peak value, and the energy included in the light in the wavelength region of 450 to 500 nm with respect to the energy included in the light in the wavelength region of 300 to 800 nm. The ratio is 19%.

図6は、上記の各種の光源から植物に対して個別に光が照射されたときの時間経過に伴う開花数推移を示す。同図において、縦軸は、時間経過に伴って推移する開花数を実験初日の開花数で除することにより得られる値であり、開花数の相対値を示す。なお、本実験においては、植物が一般の花屋等から購入され、鉢ごとに蕾数が異なっていたため、開花数の最大値は植物育成用照明装置により光が照射される前の要件の影響が非常に大きい。このため、開花数の最大値は考察に含めない。   FIG. 6 shows changes in the number of flowers with the passage of time when light is individually applied to plants from the various light sources described above. In the figure, the vertical axis is a value obtained by dividing the number of flowering that changes over time by the number of flowering on the first day of the experiment, and indicates the relative value of the number of flowers. In this experiment, plants were purchased from general florists, etc., and the number of buds was different for each pot, so the maximum number of flowering was affected by the requirement before light was radiated by the plant growing lighting device. Very big. For this reason, the maximum number of flowering is not considered.

上記実験において、光が照射される植物として、2号サイズの鉢に入ったミニバラが用いられた。このミニバラは、サイズが300mm×500mm×500mmで、且つ、上部が開口された遮光性を有する暗箱内に、後述の各種の光源と共に設置された。この実験は、次の複数の実験区で行なわれた。
(1)暗箱の開口が蓋により覆われ、外部からの入射光が完全に遮光された暗黒区R
(2)実験室の天井に設置された蛍光灯の光が暗箱内に入光し、植物の頂上部付近の生長点と略同じ高さで水平面照度が略300ルクスとなるようにされた居室区R
(3)白色蛍光灯を含むスタンドタイプの照明器具が設置され、植物の頂上部付近の生長点と略同じ高さで水平面照度が略2300ルクスとなるようにされた白色蛍光灯区R
In the above experiment, a mini rose in a No. 2 size pot was used as a plant irradiated with light. This mini rose was installed in a dark box having a size of 300 mm × 500 mm × 500 mm and having an opening at the top, together with various light sources described later. This experiment was conducted in the following experimental sections.
(1) Dark area R 1 in which the opening of the dark box is covered with a lid and incident light from the outside is completely blocked
(2) A living room where the light from a fluorescent lamp installed on the ceiling of the laboratory enters the dark box, and is approximately the same height as the growth point near the top of the plant, with a horizontal illuminance of approximately 300 lux. Ward R 2
(3) A white fluorescent lamp section R 3 in which a stand-type lighting fixture including a white fluorescent lamp is installed and the horizontal plane illuminance is approximately 2300 lux at the same height as the growth point near the top of the plant.

(4)白色蛍光灯を含むスタンドタイプの照明器具と、青色蛍光灯を含むスタンドタイプの照明器具とがそれぞれ1台ずつ設置されると共に、白色蛍光灯の発光量が調整されて頂上部付近の生長点と略同じ高さで水平面照度が略2300ルクスとなるようにされた青色蛍光灯及び白色蛍光灯区R
(5)青色蛍光灯を含むスタンドタイプの照明器具が2台設置され、植物の頂上部付近の生長点と略同じ高さで水平面照度が略1700ルクスとなるようにされた青色蛍光灯区R
(6)白色蛍光灯を含むスタンドタイプの照明器具と、電球型に加工された青色LEDランプ6個とが設置され、植物の頂上部付近の生長点と略同じ高さで水平面照度が略2300ルクスとなるようにされた青色LED及び白色蛍光灯区R
(7)ハイパワー白色LEDを含むスタンドタイプの照明器具が設置され、植物の頂上部付近の生長点と略同じ高さで水平面照度が略1700ルクスとなるようにされた白色LED区R
(4) A stand-type lighting fixture including a white fluorescent lamp and a stand-type lighting fixture including a blue fluorescent lamp are installed one by one, and the amount of light emitted from the white fluorescent lamp is adjusted so that A blue fluorescent lamp and a white fluorescent lamp section R 4 that are approximately the same height as the growth point and have a horizontal illuminance of approximately 2300 lux.
(5) Blue fluorescent lamp section R in which two stand-type lighting fixtures including blue fluorescent lamps are installed, and the horizontal plane illuminance is approximately 1700 lux at the same height as the growth point near the top of the plant. 5
(6) A stand-type lighting fixture including a white fluorescent lamp and six blue LED lamps processed into a light bulb shape are installed, and the horizontal plane illuminance is approximately 2300 at the same height as the growth point near the top of the plant. Luxe blue LED and white fluorescent lamp R 6
(7) A white LED section R 7 in which a stand-type lighting fixture including a high-power white LED is installed and the horizontal plane illuminance is approximately 1700 lux at substantially the same height as the growth point near the top of the plant.

上記実験においては、それぞれ実験区の暗箱に、温度を制御するために箱外の空気を吸引して箱内に流入させる小型ファンが設けられた。また、上記の各種光源のそれぞれの電源が、タイマからの時刻情報に基づいて12時間のサイクルでON/OFFされることにより、明期と暗期とが人工的に再現された。   In the above experiment, a small fan that sucks air outside the box and flows it into the box in order to control the temperature was provided in each dark box of the experimental section. In addition, the light period and the dark period were artificially reproduced by turning on / off the power sources of the various light sources in a cycle of 12 hours based on the time information from the timer.

上記実験の結果、図6に示されるように、以下の項目(1)乃至(5)が確認された。
(1)暗黒区R、居室区R及び白色蛍光灯区Rでは、実験開始から5日程度で開花数が最大となった。
(2)450〜500nmの波長域の光に含まれるエネルギが300〜800nmの波長域に含まれる光のエネルギの45%程度である白色LED区Rでは、実験開始から9日程経過した後に開花数が最大となった。
(3)白色LED区Rと同様に波長域450〜500nmの光に含まれるエネルギ量が波長域300〜800nmの光に含まれるエネルギの45%以上である青色蛍光灯及び白色蛍光灯区Rと、青色蛍光灯区Rと、青色LED及び白色蛍光灯区Rとでは、白色LED区Rに比べて開花数が最大となる日がさらに3日延び、実験開始から12日程経過後に開花数が最大値に達した。
(4)暗黒区R及び居室区Rでは、実験開始日より開花数がゼロになるまでの期間が12日程度であった。
(5)白色蛍光灯区Rと、青色蛍光灯及び白色蛍光灯区Rと、青色蛍光灯区Rと、青色LED及び白色蛍光灯区Rと、白色LED区Rとでは、その期間が27日程度であった。
As a result of the experiment, the following items (1) to (5) were confirmed as shown in FIG.
(1) In the dark area R 1 , the living room area R 2 and the white fluorescent lamp area R 3 , the number of flowers reached the maximum in about 5 days from the start of the experiment.
(2) 450 to 500 nm in the white color LED ku R 7 energy contained in the light wavelength region is approximately 45% of the energy of the light included in the wavelength range of 300~800nm of flowering after a lapse about 9 days from the start of the experiment The number became the maximum.
(3) White LED ku blue fluorescent lamp energy amount contained in the light of the same wavelength-band 450~500nm and R 7 is not less than 45% of the energy contained in the light in the wavelength range 300~800nm and white fluorescent lamp ku R 4, elapsed and blue fluorescent lamp ku R 5, in the blue LED and white fluorescent lamp ku R 6, extends further 3 days day number flowering is maximum compared to the white LED Ward R 7, about 12 days from the start of the experiment Later the flowering number reached the maximum value.
(4) In the dark district R 1 and the living room district R 2 , the period from the start date of the experiment until the number of flowering became zero was about 12 days.
(5) and white fluorescent lamp ku R 3, and blue fluorescent lamps and white fluorescent lamp ku R 4, a blue fluorescent lamp ku R 5, a blue LED and white fluorescent lamp ku R 6, in the white LED Ward R 7, The period was about 27 days.

上記項目(1)乃至(3)を考察すると、植物に対して、波長域450〜500nmの光に含まれるエネルギの総和が波長域300〜800nmの光に含まれるエネルギの総和の45%以上である光を照射した場合、そうしなかった場合と比較して、開花数が最大となる日が延長されることがわかる。また、上記項目(4)及び(5)を考察すると、そのような光を出射する光源を含む上記各種光源から光を植物に照射した場合、そうしなかった場合と比べて、開花数がゼロとなるまでの期間が延長されることがわかる。   Considering the above items (1) to (3), the total energy contained in the light in the wavelength region 450 to 500 nm is 45% or more of the total energy contained in the light in the wavelength region 300 to 800 nm. It can be seen that when a certain amount of light is irradiated, the day when the number of flowering is maximized is extended compared to the case where it is not. Further, considering the items (4) and (5), when the plant is irradiated with light from the various light sources including the light source that emits such light, the number of flowering is zero as compared with the case where the light is not applied. It can be seen that the period until is extended.

従って、本装置は、波長域450〜500nmの光に含まれるエネルギが波長域300〜800nmの光に含まれるエネルギの45%以上である光を出射する光源部3を備え、この光源部3によりそのような光を植物に照射するので、太陽光が殆ど差し込まないような薄暗い環境に植物を置いた場合においても、植物の生長を抑制し、蕾の開花も遅らすことができる。従って、開花中の花も老化が抑制される。このため、大きさや美しさを維持しつつ、花の咲いている開花期間を長くすることができる。また、植物の生長が抑制されることにより、枝や葉の伸び過ぎを防げるので、これらの剪定等の煩わしい作業が不要になり、手間を減らせる。   Therefore, the present apparatus includes the light source unit 3 that emits light whose energy included in the light in the wavelength region 450 to 500 nm is 45% or more of the energy included in the light in the wavelength region 300 to 800 nm. Since the plant is irradiated with such light, even when the plant is placed in a dim environment where almost no sunlight is inserted, the growth of the plant can be suppressed and the flowering of the cocoon can be delayed. Therefore, senescence is also suppressed in the flowering flower. For this reason, the flowering period in which the flower is blooming can be lengthened while maintaining the size and beauty. Moreover, since the growth of the plant is suppressed, it is possible to prevent branches and leaves from growing too much, so that troublesome work such as pruning is unnecessary and labor can be reduced.

次に、本装置の第1の変形例について図7及び図8を参照して説明する。図7は、第1の変形例に係る光源部3の構成を示す。この光源部3は、図2に示される実施形態の構成と比較して、白色光源7の代わりに、緑色光源10及び赤色光源11を含む点で異なる。緑色光源10又は赤色光源11は、例えば、緑色又は赤色の光を出射する電球、蛍光灯、メタルハライドランプ、無電極ランプ、発光ダイオード(LED)又は有機EL等の光源から成る。青色光源8、緑色光源10及び赤色光源11はそれぞれ、例えば三角形の頂点の位置に配置され、互いに近接している。このように近接した青色光源8、緑色光源10及び赤色光源11から成る光源群20が、光源支持台31の同一表面に複数設けられている。光源群20の数は、例えば4つであり、隣り合う光源群20は互いに等間隔の距離を開けて配置されている。なお、光源群20は、光源支持台31の同一表面に散在していても構わない。また、光源群20の配置や個数は上記に限定されない。   Next, a first modification of the present apparatus will be described with reference to FIGS. FIG. 7 shows a configuration of the light source unit 3 according to the first modification. The light source unit 3 is different from the configuration of the embodiment shown in FIG. 2 in that a green light source 10 and a red light source 11 are included instead of the white light source 7. The green light source 10 or the red light source 11 includes a light source such as a light bulb, a fluorescent lamp, a metal halide lamp, an electrodeless lamp, a light emitting diode (LED), or an organic EL that emits green or red light. Each of the blue light source 8, the green light source 10, and the red light source 11 is disposed, for example, at the position of a vertex of a triangle and is close to each other. A plurality of light source groups 20 including the blue light source 8, the green light source 10, and the red light source 11 that are close to each other are provided on the same surface of the light source support base 31. The number of the light source groups 20 is four, for example, and the adjacent light source groups 20 are arranged at equal intervals from each other. Note that the light source groups 20 may be scattered on the same surface of the light source support 31. Further, the arrangement and the number of the light source groups 20 are not limited to the above.

図8は、上記光源部3を有する本装置の電気的構成を示す。本装置は、図3に示される実施形態の構成と比較して、白色光源7及びその調光点灯部7aの代わりに、緑色光源10及びその調光点灯部10aと、赤色光源11及びその調光点灯部11aを備える点で異なる。上記の通り、光源部3は、青色光源8、緑色光源10及び赤色光源11で構成される。   FIG. 8 shows an electrical configuration of the apparatus having the light source unit 3. Compared with the configuration of the embodiment shown in FIG. 3, this apparatus replaces the white light source 7 and its dimming lighting unit 7 a with the green light source 10 and its dimming lighting unit 10 a, the red light source 11 and its dimming unit. It differs by the point provided with the light lighting part 11a. As described above, the light source unit 3 includes the blue light source 8, the green light source 10, and the red light source 11.

調光点灯部10a、11aは、調光点灯回路から成り、この調光点灯回路によりそれぞれ、緑色光源10又は赤色光源11の発光量を増減して制御すると共に、これらの光源10、11の点灯/消灯制御を行なう。発光量制御及び点灯/消灯制御は、制御部9からの制御信号に応じてなされる。   The dimming / lighting units 10a and 11a are composed of dimming / lighting circuits. The dimming / lighting circuits control the light emission amount of the green light source 10 or the red light source 11 by increasing / decreasing the light sources 10 and 11 respectively. / Performs extinction control. The light emission amount control and the on / off control are performed according to a control signal from the control unit 9.

制御部9は、青色光源8、緑色光源10及び赤色光源11の各種制御を調光点灯部8a、10a、11aを用いて行なう青色光源8、緑色光源10及び赤色光源11の各種制御は、独立して行なうことが可能であり、それらの制御は、制御内容に応じた制御信号が調光点灯部8a、10a、11aに送信されることにより行なわれる。上記の各種制御には、青色光源8、緑色光源10及び赤色光源11の発光量制御が含まれる。   The control unit 9 performs various controls of the blue light source 8, the green light source 10, and the red light source 11 using the dimming lighting units 8a, 10a, and 11a, and controls the blue light source 8, the green light source 10, and the red light source 11 independently. Such control is performed by transmitting a control signal corresponding to the control content to the dimming lighting units 8a, 10a, and 11a. The various controls described above include light emission amount control of the blue light source 8, the green light source 10, and the red light source 11.

例えば、制御部9は、ユーザが本装置のモードを生育制御モード/観賞モードに切り替えるために操作部5を操作したとき、操作部5からの信号に基づいて青色光源8、緑色光源10及び赤色光源11の発光量をそれぞれ制御する。この発光量の制御により、生育制御モード時には、青色光源8、緑色光源10又は赤色光源11のそれぞれから出射された光が合成された光、すなわち光源部3全体から放射される光において、300〜800nmの波長域の光に含まれるエネルギに対する、450〜500nmの波長域の光に含まれるエネルギの比率が45%以上となるように波長成分の制御が行なわれる。一方、観賞モード時には、光源部3から植物1に照射される光が略白色に見えるように波長成分が制御される。光を略白色とするこの波長成分制御は、例えば2つの方法によりなされる。その1つの方法は、光源部3から照射される光のうち450乃至500nmの波長域の光の光量を、生育制御モード時に比べて減らすことである。このために青色光源8の発光量が低減される。もう1つの方法は、緑色光源10及び赤色光源11の発光量を増加させることである。   For example, when the user operates the operation unit 5 to switch the mode of the present apparatus to the growth control mode / viewing mode, the control unit 9 controls the blue light source 8, the green light source 10, and the red light based on the signal from the operation unit 5. The light emission amount of the light source 11 is controlled. By controlling the amount of emitted light, in the growth control mode, the light emitted from each of the blue light source 8, the green light source 10, or the red light source 11 is combined, that is, the light emitted from the entire light source unit 3 is 300 to 300- The wavelength component is controlled so that the ratio of the energy contained in the light in the wavelength region of 450 to 500 nm to the energy contained in the light in the wavelength region of 800 nm is 45% or more. On the other hand, in the viewing mode, the wavelength component is controlled so that the light emitted from the light source unit 3 to the plant 1 looks almost white. This wavelength component control for making light substantially white is performed by, for example, two methods. One method is to reduce the amount of light in the wavelength region of 450 to 500 nm out of the light emitted from the light source unit 3 as compared to that in the growth control mode. For this reason, the light emission amount of the blue light source 8 is reduced. Another method is to increase the light emission amounts of the green light source 10 and the red light source 11.

さらに、制御部9が行なう各種制御には、青色光源8、緑色光源10及び赤色光源11の点灯/消灯制御が含まれる。この点灯/消灯制御は、タイマ6から送信される時刻情報に基づいて行なわれる。例えば、制御部9は、タイマ6により現在時刻を把握し、夜間の予め設定された時刻に青色光源8、緑色光源10及び赤色光源11を消灯する。また同様に、制御部9は、朝の予め設定された時刻に青色光源8、緑色光源10及び赤色光源11を点灯する。   Further, various controls performed by the control unit 9 include turning on / off control of the blue light source 8, the green light source 10, and the red light source 11. This on / off control is performed based on the time information transmitted from the timer 6. For example, the control unit 9 recognizes the current time by the timer 6 and turns off the blue light source 8, the green light source 10, and the red light source 11 at a preset time at night. Similarly, the controller 9 turns on the blue light source 8, the green light source 10, and the red light source 11 at a preset time in the morning.

第1の変形例においても、図2及び図3に示される本装置と同様に、花を長期間咲かし続けることができる効果と、植物の良好な生育状態を長期間維持できる効果と、人が植物を鑑賞するときに、観賞に適した光を植物に照射することができる効果とが得られる。   Also in the first modified example, as in the present apparatus shown in FIG. 2 and FIG. 3, the effect of allowing a flower to continue to bloom for a long period of time, the effect of maintaining a good growth state of the plant for a long period of time, When appreciating plants, it is possible to irradiate the plants with light suitable for viewing.

次に、本装置の第2の変形例について図9及び図10を参照して説明する。図9は、第2の変形例に係る光源部3の構成を示す。この光源部3は、図2に示される実施形態の構成と比較して、青色光源8の代わりに、光学フィルタ12を含む点で異なる。この光学フィルタ12は、白色光源7と植物との間に配置され、白色光源7から出射された光を、波長域300〜800nmの光に含まれるエネルギに対する、波長域450〜500nmの光に含まれるエネルギの比率が45%以上である光にする。同図においては、白色光源7の例として白色蛍光灯を図示している。   Next, a second modification of the present apparatus will be described with reference to FIGS. FIG. 9 shows a configuration of the light source unit 3 according to the second modification. The light source unit 3 is different from the configuration of the embodiment shown in FIG. 2 in that an optical filter 12 is included instead of the blue light source 8. The optical filter 12 is disposed between the white light source 7 and the plant, and includes the light emitted from the white light source 7 in the light in the wavelength region 450 to 500 nm with respect to the energy included in the light in the wavelength region 300 to 800 nm. Light with a ratio of energy to be generated is 45% or more. In the figure, a white fluorescent lamp is illustrated as an example of the white light source 7.

図10は、上記光源部3を有する本装置の電気的構成を示す。本装置は、図3に示される実施形態の構成と比較して、青色光源8及びその調光点灯部8aの代わりに、光学フィルタ12と、この光学フィルタ12を植物と白色光源7との間で抜き差しする駆動機構から成る駆動部12aを備える。この駆動部12aは、制御部9からの制御信号に応じて光学フィルタ12を抜き差しする。上記の通り、光源部3は、白色光源7及び光学フィルタ12で構成される。   FIG. 10 shows an electrical configuration of the apparatus having the light source unit 3. Compared with the configuration of the embodiment shown in FIG. 3, the present apparatus uses an optical filter 12 instead of the blue light source 8 and its dimming / lighting unit 8 a, and the optical filter 12 between the plant and the white light source 7. The drive part 12a which consists of a drive mechanism to insert / extract by is provided. The drive unit 12 a inserts and removes the optical filter 12 in accordance with a control signal from the control unit 9. As described above, the light source unit 3 includes the white light source 7 and the optical filter 12.

制御部9は、ユーザが本装置のモードを生育制御モード/観賞モードに切り替えるために操作部5を操作したとき、操作部5からの信号に基づいて光学フィルタ12の抜き差しを駆動部12aに指示する。この指示は制御信号の送信によりなされる。駆動部12aは、該制御信号をトリガとし、生育制御モード時には、光学フィルタ12を白色光源7と植物1との間に差し込む(破線ブロックで示す)。このため、白色光源7から出射された光(破線矢印で示す)は光学フィルタ12に入射し、この光学フィルタ12を透過した光(一点破線矢印で示す)は、300〜800nmの波長域の光のエネルギ総和に対する、450〜500nmの波長域の光のエネルギ総和の比率が45%以上となる。一方、観賞モード時には、駆動部12aは、白色光源7と植物1との間に差し込まれていた光学フィルタ12をそれらの間から抜く。このため、光源部3から植物1に照射される光が白色となる。   When the user operates the operation unit 5 to switch the mode of the apparatus to the growth control mode / viewing mode, the control unit 9 instructs the drive unit 12a to insert / remove the optical filter 12 based on a signal from the operation unit 5 To do. This instruction is made by transmitting a control signal. The drive unit 12a uses the control signal as a trigger, and inserts the optical filter 12 between the white light source 7 and the plant 1 (indicated by a broken line block) in the growth control mode. For this reason, the light emitted from the white light source 7 (shown by a broken line arrow) enters the optical filter 12, and the light transmitted through the optical filter 12 (shown by a one-dot broken line arrow) is light in the wavelength range of 300 to 800 nm. The ratio of the total energy of light in the wavelength region of 450 to 500 nm to the total energy is 45% or more. On the other hand, in the viewing mode, the drive unit 12a removes the optical filter 12 inserted between the white light source 7 and the plant 1 from between them. For this reason, the light irradiated to the plant 1 from the light source part 3 turns white.

第2の変形例においても、図2及び図3に示される本装置と同様に、花を長期間咲かし続けることができる効果と、植物の良好な生育状態を長期間維持できる効果と、人が植物を鑑賞するときに、観賞に適した光を植物に照射することができる効果とが得られる。   Also in the second modified example, as in the present apparatus shown in FIGS. 2 and 3, the effect of allowing flowers to continue to bloom for a long time, the effect of maintaining a good growth state of the plant for a long time, When appreciating plants, it is possible to irradiate the plants with light suitable for viewing.

本発明は、第1及び第2の変形例を含む上記実施形態の構成に限定されるものでなく、使用目的に応じ、様々な変形が可能である。例えば、光源部3を構成する各種光源は、白色光源7、青色光源8、緑色光源10及び赤色光源11に限定されず、他の色の光を出射する光源であってもよい。また、光学フィルタ12は、駆動部12aにより自動で抜き差しされるのではなく、手動で取り外し可能に設けられていても構わない。   The present invention is not limited to the configuration of the above-described embodiment including the first and second modifications, and various modifications can be made according to the purpose of use. For example, the various light sources constituting the light source unit 3 are not limited to the white light source 7, the blue light source 8, the green light source 10, and the red light source 11, but may be light sources that emit light of other colors. Further, the optical filter 12 may be provided so as to be manually removable instead of being automatically inserted and removed by the drive unit 12a.

本発明の一実施形態に係る植物育成用照明装置の構成図。The block diagram of the illuminating device for plant cultivation which concerns on one Embodiment of this invention. 上記装置の光源部の構成図。The block diagram of the light source part of the said apparatus. 上記装置の電気的構成を示すブロック図。The block diagram which shows the electrical constitution of the said apparatus. (a)は上記装置の光源部から出射される光の水平面照度を説明するための構成図、(b)は上記装置に載置された植物を上方から見たときの平面図。(A) is a block diagram for demonstrating the horizontal surface illumination intensity of the light radiate | emitted from the light source part of the said apparatus, (b) is a top view when the plant mounted in the said apparatus is seen from upper direction. 各種光源から出射される光の波長成分を示す図。The figure which shows the wavelength component of the light radiate | emitted from various light sources. 上記各種光源により光が植物に個別に照射されたときの開花数推移を示す図。The figure which shows the flowering number transition when light is individually irradiated to the plant by the said various light sources. 上記装置の第1の変形例における光源部の構成図。The block diagram of the light source part in the 1st modification of the said apparatus. 上記装置の第1の変形例の電気的構成を示すブロック図。The block diagram which shows the electric constitution of the 1st modification of the said apparatus. 上記装置の第2の変形例における光源部の構成図。The block diagram of the light source part in the 2nd modification of the said apparatus. 上記装置の第2の変形例の電気的構成を示すブロック図。The block diagram which shows the electric constitution of the 2nd modification of the said apparatus.

符号の説明Explanation of symbols

1 植物
2 植物載置台
3 光源部
7 白色光源(照明手段)
8 青色光源(照明手段)
7a、8a 調光点灯部(照明手段)
9 制御部(照明手段)
10 緑色光源
11 赤色光源
12 光学フィルタ
100 仮想面
DESCRIPTION OF SYMBOLS 1 Plant 2 Plant mounting stand 3 Light source part 7 White light source (illumination means)
8 Blue light source (illumination means)
7a, 8a Dimming / lighting section (illumination means)
9 Control unit (lighting means)
DESCRIPTION OF SYMBOLS 10 Green light source 11 Red light source 12 Optical filter 100 Virtual surface

Claims (3)

植物の生育を調整するため、植物に対して光を照射制御する照射手段を備えた植物育成用照明装置において、
前記照射手段は、植物に照射される光が、300乃至800nmの波長域の光に含まれるエネルギに対する、450乃至500nmの波長域の光に含まれるエネルギの比率が45%以上となるように波長成分を制御することを特徴とする植物育成用照明装置。
In order to adjust the growth of the plant, in the plant growth lighting device comprising an irradiation means for controlling the irradiation of light to the plant,
The irradiating means has a wavelength such that light emitted to the plant has a ratio of energy contained in light in a wavelength region of 450 to 500 nm to energy contained in light in a wavelength region of 300 to 800 nm is 45% or more. A plant-growing lighting device characterized by controlling an ingredient.
植物の頂上部付近にある生長点の高さに、地面と平行に想定され、その面積が、植物を上方から見たときの植物の大きさと略同じである仮想面において、平均の水平面照度が1000ルクス以上となるようにしたことを特徴とする請求項1に記載の植物育成用照明装置。   The height of the growth point near the top of the plant is assumed to be parallel to the ground, and the area is approximately the same as the size of the plant when viewed from above. The plant growing lighting device according to claim 1, wherein the lighting device is 1000 lux or more. 前記照射手段は、人が植物を鑑賞しているとき、照射される光のうち450乃至500nmの波長域の光の光量を、人が植物を鑑賞していないときに比べて減らすことにより、照射される光が略白色に見えるように波長成分を制御することを特徴とする請求項1又は請求項2に記載の植物育成用照明装置。   The irradiation means performs irradiation by reducing the amount of light in the wavelength region of 450 to 500 nm of the irradiated light when a person is watching a plant compared to when the person is not watching a plant. The plant growing illumination device according to claim 1 or 2, wherein the wavelength component is controlled so that the light to be viewed looks substantially white.
JP2006195216A 2006-07-18 2006-07-18 Lighting equipment for plant growth Active JP5010864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006195216A JP5010864B2 (en) 2006-07-18 2006-07-18 Lighting equipment for plant growth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006195216A JP5010864B2 (en) 2006-07-18 2006-07-18 Lighting equipment for plant growth

Publications (2)

Publication Number Publication Date
JP2008022711A true JP2008022711A (en) 2008-02-07
JP5010864B2 JP5010864B2 (en) 2012-08-29

Family

ID=39114012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006195216A Active JP5010864B2 (en) 2006-07-18 2006-07-18 Lighting equipment for plant growth

Country Status (1)

Country Link
JP (1) JP5010864B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2086216A1 (en) 2008-02-01 2009-08-05 Sony Corporation Gradation converting device and gradation converting method
JP2009261289A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Lighting device for plant disease prevention
WO2012099281A1 (en) * 2011-01-19 2012-07-26 Cho Bong-Un Control device for led lamp using cpu
KR101176434B1 (en) 2009-10-09 2012-08-30 윤병섭 A Flowerpot with Fishhbowl
JP2012183003A (en) * 2011-03-03 2012-09-27 Fairy Plant Technology Inc Plant growth device
JP2012183014A (en) * 2011-03-04 2012-09-27 Panasonic Corp Plant disease damage preventive lighting device
JP2018201497A (en) * 2017-05-31 2018-12-27 株式会社キーストーンテクノロジー Production method of leaf vegetables and production device of leaf vegetables
CN112056169A (en) * 2020-07-24 2020-12-11 福建省中科生物股份有限公司 Method for prolonging florescence of non-bulbous herbaceous flowers in plant factory
CN112188832A (en) * 2018-05-31 2021-01-05 昕诺飞控股有限公司 Horticultural lighting device for maintaining indoor plant growth and corresponding horticultural lighting system and method
EP3669641A4 (en) * 2017-08-16 2021-04-28 Tanaka, Suiko Plant cultivation system
JP2021159018A (en) * 2020-04-01 2021-10-11 株式会社アクアデザインアマノ Illumination device for tropical plant appreciation
CN114467536A (en) * 2020-12-23 2022-05-13 深圳市朗文科技实业有限公司 Plant light filling assembled lamp

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7228152B2 (en) 2018-10-03 2023-02-24 不二精工株式会社 plant growing device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022A (en) * 1996-06-14 1998-01-06 Central Res Inst Of Electric Power Ind Device for dimming illumination
JPH10178899A (en) * 1996-12-20 1998-07-07 Matsushita Electric Ind Co Ltd Plant cultivation device, cultivation method using the same and recording medium recording the same
JP2001275488A (en) * 2000-03-31 2001-10-09 Mitsubishi Electric Corp Plant lighting apparatus
JP2002281830A (en) * 2001-03-26 2002-10-02 Techno Network Shikoku Co Ltd Light source method, and vessel for plant cultivation
JP2002360067A (en) * 2001-06-12 2002-12-17 Harison Toshiba Lighting Corp Fluorescent lamp for growing plant
JP2005192517A (en) * 2004-01-09 2005-07-21 Stanley Electric Co Ltd Method for growing plant
JP2007323848A (en) * 2006-05-30 2007-12-13 Stanley Electric Co Ltd Lighting system for growing plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1022A (en) * 1996-06-14 1998-01-06 Central Res Inst Of Electric Power Ind Device for dimming illumination
JPH10178899A (en) * 1996-12-20 1998-07-07 Matsushita Electric Ind Co Ltd Plant cultivation device, cultivation method using the same and recording medium recording the same
JP2001275488A (en) * 2000-03-31 2001-10-09 Mitsubishi Electric Corp Plant lighting apparatus
JP2002281830A (en) * 2001-03-26 2002-10-02 Techno Network Shikoku Co Ltd Light source method, and vessel for plant cultivation
JP2002360067A (en) * 2001-06-12 2002-12-17 Harison Toshiba Lighting Corp Fluorescent lamp for growing plant
JP2005192517A (en) * 2004-01-09 2005-07-21 Stanley Electric Co Ltd Method for growing plant
JP2007323848A (en) * 2006-05-30 2007-12-13 Stanley Electric Co Ltd Lighting system for growing plant

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2086216A1 (en) 2008-02-01 2009-08-05 Sony Corporation Gradation converting device and gradation converting method
JP2009261289A (en) * 2008-04-24 2009-11-12 Panasonic Electric Works Co Ltd Lighting device for plant disease prevention
KR101176434B1 (en) 2009-10-09 2012-08-30 윤병섭 A Flowerpot with Fishhbowl
WO2012099281A1 (en) * 2011-01-19 2012-07-26 Cho Bong-Un Control device for led lamp using cpu
JP2012183003A (en) * 2011-03-03 2012-09-27 Fairy Plant Technology Inc Plant growth device
JP2012183014A (en) * 2011-03-04 2012-09-27 Panasonic Corp Plant disease damage preventive lighting device
JP2018201497A (en) * 2017-05-31 2018-12-27 株式会社キーストーンテクノロジー Production method of leaf vegetables and production device of leaf vegetables
EP3669641A4 (en) * 2017-08-16 2021-04-28 Tanaka, Suiko Plant cultivation system
CN112188832A (en) * 2018-05-31 2021-01-05 昕诺飞控股有限公司 Horticultural lighting device for maintaining indoor plant growth and corresponding horticultural lighting system and method
JP2021520046A (en) * 2018-05-31 2021-08-12 シグニファイ ホールディング ビー ヴィSignify Holding B.V. Gardening lighting devices for maintaining indoor plant growth, as well as corresponding gardening lighting systems and methods
CN112188832B (en) * 2018-05-31 2023-08-29 昕诺飞控股有限公司 Gardening illumination device, system and method for maintaining indoor plant growth
US11744190B2 (en) 2018-05-31 2023-09-05 Signify Holding B.V. Horticultural lighting device for sustaining indoor plant growth as well as corresponding horticultural lighting system and method
JP2021159018A (en) * 2020-04-01 2021-10-11 株式会社アクアデザインアマノ Illumination device for tropical plant appreciation
CN112056169A (en) * 2020-07-24 2020-12-11 福建省中科生物股份有限公司 Method for prolonging florescence of non-bulbous herbaceous flowers in plant factory
CN114467536A (en) * 2020-12-23 2022-05-13 深圳市朗文科技实业有限公司 Plant light filling assembled lamp

Also Published As

Publication number Publication date
JP5010864B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
JP5010864B2 (en) Lighting equipment for plant growth
RU2369086C1 (en) Led plant spotlight
CN100477297C (en) Color temperature-regulable LED lamp
US8860311B2 (en) Lighting apparatus
JP5971623B2 (en) Light irradiation apparatus, strawberry cultivation system and strawberry cultivation method
US20060254135A1 (en) Method and apparatus for irradiation of plants using light emitting diodes
KR100944359B1 (en) A lamp for plant cultivation with multiple light sources and plant cultivation method thereby
JP5335721B2 (en) Lighting equipment for plant growth
WO2008069101A1 (en) Light source, light source system and illumination device
US20190335675A1 (en) Grow lights for horticulture
KR101451911B1 (en) Horticulture emitting diode lighting device
US20100276410A1 (en) Led lighting system and method for animal habitat
JP2007299714A (en) Lighting fixture
CN203431700U (en) Multifunctional portable LED lamp for plants
NL1040461C2 (en) Movable daylight simulating lighting apparatus.
JP4396389B2 (en) Lighting equipment for plant growth
RU2454066C2 (en) Light diode phyto-irradiator
KR20110012878A (en) Position control equipment of ceiling lamp
KR20140014498A (en) Plant cultivation device with light quality-and intensity-controllable led source
JP2008182951A (en) Multistage plant cultivation shelf and plant raising method using the same
CN202403119U (en) Led light intensity generator
KR100545332B1 (en) LED Lamp for Controlling Color Temperature and Method for Controlling Color Temperature thereof
KR20120023394A (en) Led pulse lighting system for plant growth regulation
KR200247078Y1 (en) Lighting system using various light provided by Light-Emitting Diodes for quality in pot plants and cut flowers
JP2016095998A (en) Luminaire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090407

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100701

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110407

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111219

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20120111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120529

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Ref document number: 5010864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3