JP2008021895A - Capacitor - Google Patents

Capacitor Download PDF

Info

Publication number
JP2008021895A
JP2008021895A JP2006193653A JP2006193653A JP2008021895A JP 2008021895 A JP2008021895 A JP 2008021895A JP 2006193653 A JP2006193653 A JP 2006193653A JP 2006193653 A JP2006193653 A JP 2006193653A JP 2008021895 A JP2008021895 A JP 2008021895A
Authority
JP
Japan
Prior art keywords
capacitor
thermal spraying
spraying method
dielectric
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006193653A
Other languages
Japanese (ja)
Other versions
JP4591709B2 (en
Inventor
Yuji Kimura
裕司 木村
Tama Nakano
瑞 中野
Takao Maeda
孝雄 前田
Ichiro Uehara
一郎 植原
Fumihiko Saito
文彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2006193653A priority Critical patent/JP4591709B2/en
Publication of JP2008021895A publication Critical patent/JP2008021895A/en
Application granted granted Critical
Publication of JP4591709B2 publication Critical patent/JP4591709B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a thin-shaped capacitor with a high withstand voltage whose utility value is very high on an industry in a simple and short process by a spraying method. <P>SOLUTION: In the capacitor, a dielectric layer is constituted by a rare earth element oxide formed by the spraying method, and a pair of electrodes are provided in face to face with each other through the dielectric layer. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、簡便な工程により製造することができ、高耐圧かつ薄型で、高い信頼性をもつことを特徴とする、誘電体層が希土類元素酸化物で形成されたキャパシタに関するものである。   The present invention relates to a capacitor having a dielectric layer formed of a rare earth element oxide, which can be manufactured by a simple process, has a high breakdown voltage, is thin, and has high reliability.

高耐圧の薄型キャパシタとしては、電気的特性や信頼性などの面から、チタン化合物を誘電体層として用いたセラミックスキャパシタが広く使われている。   Ceramic capacitors using a titanium compound as a dielectric layer are widely used as high-withstand-voltage thin capacitors in terms of electrical characteristics and reliability.

これらキャパシタは下記のとおり製造工程が長く、高コストである。しかも、高温の焼結工程が必要なため、樹脂やガラスなどの比較的熱に弱い基板上に直接キャパシタを形成することは不可能であった。   These capacitors have a long manufacturing process and are expensive as described below. In addition, since a high-temperature sintering process is required, it is impossible to form a capacitor directly on a relatively heat-sensitive substrate such as resin or glass.

<一般的キャパシタの製造工程>
原料粉の解砕→バインダー混合→乾燥→成型→脱脂→焼結→電極ペースト塗布→乾燥
→焼付け。
<General capacitor manufacturing process>
Crushing raw material powder → Binder mixing → Drying → Molding → Degreasing → Sintering → Applying electrode paste → Drying → Baking.

これに対し、特開2006−66854号公報(特許文献1)には、樹脂プリント基板上に溶射法によって直接キャパシタを作り込む方法が提案されている。この方法は工程も少なく、部品実装の手間も省けるという大きな利点があるものの、使われている材料は価数の変動しやすいチタン化合物やTa25及びAl23である。溶射法は比較的低酸素雰囲気下での高温溶融→噴射→急冷という変化を伴うため、これらの材料では酸素欠陥が発生してしまい、誘電特性が安定せず、絶縁耐力の低い膜になるという問題点があった。 On the other hand, Japanese Patent Laid-Open No. 2006-66854 (Patent Document 1) proposes a method of directly forming a capacitor on a resin printed board by a thermal spraying method. Although this method has a great advantage in that the number of steps is reduced and the labor of component mounting can be saved, the materials used are titanium compounds, Ta 2 O 5 and Al 2 O 3 whose valences are easily changed. The thermal spraying method involves a change of high temperature melting → injection → rapid cooling in a relatively low oxygen atmosphere, so that these materials cause oxygen defects, resulting in unstable dielectric properties and low dielectric strength films. There was a problem.

特開2006−66854号公報JP 2006-66854 A

本発明は、上記事情に鑑みなされたもので、希土類元素酸化物を誘電体材料として使用し、かつ、溶射法による簡便で短い工程にて形成される、薄型で高耐圧のキャパシタを提供することを目的とする。   The present invention has been made in view of the above circumstances, and provides a thin and high withstand voltage capacitor which uses a rare earth element oxide as a dielectric material and is formed by a simple and short process by a thermal spraying method. With the goal.

本発明者は、上記課題を解決するために、価数の変動を起こし難くかつ絶縁耐圧特性に優れた誘電体材料を探索した結果、希土類元素酸化物であれば、溶射法によってキャパシタを形成した場合でも酸素欠陥が生じず、絶縁耐力も高いことを知見して、本発明を完成した。   In order to solve the above problems, the present inventors have searched for a dielectric material that hardly changes in valence and has excellent withstand voltage characteristics. As a result, in the case of a rare earth element oxide, a capacitor is formed by a thermal spraying method. Even in this case, the present invention was completed by knowing that oxygen defects do not occur and the dielectric strength is high.

従って、本発明は、下記のキャパシタを提供する。
請求項1:
誘電体層が、溶射法によって形成された希土類元素酸化物で構成され、かつ該誘導体層を介して互いに対向する一対の電極を具備したことを特徴とするキャパシタ。
請求項2:
電極の一方又は双方が、溶射法によって形成された導電材料で構成されることを特徴とする請求項1記載のキャパシタ。
請求項3:
誘電体層の膜厚が0.3mmのときの絶縁破壊電圧が3kV以上であり、その膜厚での単位面積あたりの静電容量が0.3μF/m2以上であることを特徴とする請求項1又は2記載のキャパシタ。
請求項4:
電極が、絶縁体基材上に溶射法によって形成された構造を有する請求項1,2又は3記載のキャパシタ。
請求項5:
絶縁体基材が、ガラス、樹脂又はセラミックスからなることを特徴とする請求項4記載のキャパシタ。
請求項6:
絶縁体基材が、電気回路の一部である導体を複合化させた構造となっており、その導体と溶射による電極とが電気的に接合されていることを特徴とする請求項4又は5記載のキャパシタ。
Accordingly, the present invention provides the following capacitor.
Claim 1:
A capacitor comprising a dielectric layer made of a rare earth element oxide formed by a thermal spraying method and a pair of electrodes facing each other with the derivative layer interposed therebetween.
Claim 2:
The capacitor according to claim 1, wherein one or both of the electrodes are made of a conductive material formed by a thermal spraying method.
Claim 3:
The dielectric breakdown voltage when the thickness of the dielectric layer is 0.3 mm is 3 kV or more, and the capacitance per unit area at the thickness is 0.3 μF / m 2 or more. Item 3. The capacitor according to Item 1 or 2.
Claim 4:
The capacitor according to claim 1, 2 or 3, wherein the electrode has a structure formed on an insulating base material by a thermal spraying method.
Claim 5:
The capacitor according to claim 4, wherein the insulating base material is made of glass, resin, or ceramics.
Claim 6:
6. The insulator base material has a structure in which a conductor which is a part of an electric circuit is combined, and the conductor and an electrode by thermal spraying are electrically joined. The capacitor as described.

本発明によれば、溶射法による簡便で短い工程にて、薄型で高耐圧のキャパシタを得ることができ、産業上その利用価値は極めて高い。   According to the present invention, a thin and high withstand voltage capacitor can be obtained in a simple and short process by a thermal spraying method, and its utility value is extremely high in industry.

以下、本発明につき更に詳細に説明すると、本発明のキャパシタは、誘電体層が、溶射法によって形成された希土類元素酸化物で構成され、該誘電体層を介して互いに対向する一対の電極を具備した構造のキャパシタである。   Hereinafter, the present invention will be described in more detail. In the capacitor of the present invention, a dielectric layer is made of a rare earth element oxide formed by a thermal spraying method, and a pair of electrodes facing each other through the dielectric layer is provided. This is a capacitor having a structure.

本発明において、希土類元素としては、Sc,Y,La,Nd,Sm,Eu,Gd,Dy,Ho,Er,Tm,Yb,Luが好適であり、これらの酸化物を使用することが有効である。
希土類元素酸化物は他の酸化物と比較して酸素との結びつきが強く、高温溶融→噴射→急冷という溶射条件の下でも酸素欠陥を発生することなく安定に存在する。但し、希土類元素の中でも、CeやPr,Tbといった元素は価数が変動しやすいために、電気特性が変動しやすく、よって本用途には適用しないことが好ましい。
In the present invention, Sc, Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu are suitable as the rare earth element, and it is effective to use these oxides. is there.
Rare earth element oxides are more strongly associated with oxygen than other oxides, and exist stably without generating oxygen defects even under thermal spraying conditions of high temperature melting → injection → rapid cooling. However, among rare earth elements, elements such as Ce, Pr, and Tb tend to fluctuate in valence, so that electric characteristics are likely to fluctuate. Therefore, it is preferable not to apply to this application.

本発明のキャパシタは、第1のステップとして、基材となる電極上に溶射法によって希土類元素酸化物を溶融、噴射、堆積させて誘電体膜を形成し、第2のステップとして、希土類元素酸化物からなる誘電体膜上に対向電極として導電材料を製膜すること、更に必要により第3のステップとして、キャパシタの表面を絶縁材料で覆うことにより製造することができる。   In the capacitor of the present invention, as a first step, a dielectric film is formed by melting, spraying, and depositing a rare earth element oxide on an electrode serving as a substrate by a thermal spraying method, and as a second step, a rare earth element oxidation is performed. A conductive material can be formed on the dielectric film made of a material as a counter electrode, and if necessary, the capacitor can be manufactured by covering the surface of the capacitor with an insulating material as a third step.

ここで、基材となる電極としては、単一のキャパシタを形成する場合には、銅、真鍮、ステンレススチール、ニッケル、アルミニウム、モリブデン、タングステン等の金属などの導体で金属板や金属管を作製し、このような導電性基体を用いることができ、導電性基体それ自体を一方の電極とすることができる。また、ガラス、樹脂、セラミックス等の絶縁体にて形成し、この絶縁体基材に金属などの導体により電極を形成することができる。この電極の作製法については特に制限されるものではないが、溶射法によって形成することが好ましい。なお、このように溶射法によって電極を作製する場合、溶射膜(電極)を形成するには銅、真鍮、ステンレスチール、ニッケル、アルミニウム、モリブデン、タングステン等の平均粒子径5〜200μm、特に20〜200μmの金属粉末を使用し、厚さ10〜300μm、特に50〜200μmに形成することが好ましい。平均粒子径が上記範囲外では膜密度が低くなり、キャパシタの信頼性が低下する場合がある。また、厚さが10μmより小さいと、下地になる誘電体膜や絶縁体基材が完全に覆われずに露出する部分が生じ、キャパシタの信頼性が低下する場合があり、300μmを超えると、コストの点で問題が生じる場合がある。   Here, as a base electrode, when a single capacitor is formed, a metal plate or a metal tube is made of a conductor such as copper, brass, stainless steel, nickel, aluminum, molybdenum, tungsten, or the like. Such a conductive substrate can be used, and the conductive substrate itself can be used as one electrode. Moreover, it can form with insulators, such as glass, resin, ceramics, and can form an electrode with conductors, such as a metal, on this insulator base material. The method for producing this electrode is not particularly limited, but is preferably formed by a thermal spraying method. In addition, when producing an electrode by a thermal spraying method in this way, in order to form a sprayed film (electrode), average particle diameters, such as copper, brass, stainless steel, nickel, aluminum, molybdenum, tungsten, 5-200 micrometers, especially 20- It is preferable to use a metal powder having a thickness of 200 μm and a thickness of 10 to 300 μm, particularly 50 to 200 μm. When the average particle diameter is outside the above range, the film density is lowered, and the reliability of the capacitor may be lowered. Also, if the thickness is less than 10 μm, the exposed dielectric film or insulator base material is not completely covered, and the exposed part may occur, and the reliability of the capacitor may be reduced. When the thickness exceeds 300 μm, There may be problems in terms of cost.

更に、基材として、プリント基板等のように樹脂等の絶縁体基材上に銅等の金属による電気回路が形成されて、絶縁体基材に電気回路の一部である導体を複合化させたものを使用することもできる。このように、プリント基板などの電気回路を含む絶縁性基材上に直接キャパシタを形成する場合には、まず、導電材料を溶射法などによって基材上の必要な部分に製膜し、これを電極としてもよい。   Furthermore, as a base material, an electric circuit made of a metal such as copper is formed on an insulating base material such as a resin such as a printed circuit board, and a conductor that is a part of the electric circuit is combined with the insulating base material. Can also be used. Thus, when a capacitor is directly formed on an insulating base material including an electric circuit such as a printed circuit board, first, a conductive material is formed on a necessary portion on the base material by a thermal spraying method or the like. It may be an electrode.

本発明の第1のステップは、基材となる上記電極上に溶射法によって希土類元素酸化物を溶融、噴射、堆積させて誘電体膜を形成することである。   The first step of the present invention is to form a dielectric film by melting, spraying, and depositing a rare earth element oxide on the electrode serving as a base material by a thermal spraying method.

本発明において使用する希土類元素酸化物は、平均粒子径が5〜80μm、好ましくは10〜40μmの粉末状である。平均粒子径が5μm未満であると、粒子が十分に加速されないために誘電体膜の相対密度が90%未満となり、絶縁耐圧が低くなってしまう。80μmを超えると、プラズマ溶射のような最高温の溶射方法によっても不完全溶融状態で粒子が製膜されるため、やはり誘電体膜の相対密度が90%未満となり、絶縁耐圧が低くなってしまう。
なお、本発明において、平均粒子径は日機装製MICRTRAC FRA型粒度分布測定装置により測定した値である。
The rare earth element oxide used in the present invention is in the form of a powder having an average particle size of 5 to 80 μm, preferably 10 to 40 μm. If the average particle diameter is less than 5 μm, the particles are not sufficiently accelerated, so that the relative density of the dielectric film is less than 90%, and the withstand voltage is lowered. If the thickness exceeds 80 μm, particles are formed in an incompletely melted state even by the highest temperature spraying method such as plasma spraying, so that the relative density of the dielectric film is also less than 90% and the withstand voltage is lowered. .
In addition, in this invention, an average particle diameter is the value measured with the Nikkiso MICRACRAC FRA type particle size distribution measuring apparatus.

この場合、溶射法、溶射条件としては、公知の方法、公知の条件を採用することができ、例えばプラズマ溶射法等を採用することができるが、特に基材がプリント基板等の樹脂にて形成されている場合には、その上に誘電体層を溶射法により形成するに際し、希土類酸化物はチタン化合物などと比較して融点が高いため、フレーム溶射法などの比較的低温の溶射法よりはプラズマ溶射法のような高温の溶射法を選択したほうが、粒子が完全に溶融するために膜密度が上がりやすく、絶縁耐圧特性がより良好になる。   In this case, as the thermal spraying method and the thermal spraying conditions, a known method and known conditions can be employed, for example, a plasma spraying method can be employed. In the case where the dielectric layer is formed thereon by the thermal spraying method, the rare earth oxide has a higher melting point than that of the titanium compound and the like, so that it is less than the relatively low temperature thermal spraying method such as the flame spraying method. When a high temperature spraying method such as a plasma spraying method is selected, the particles are completely melted, so that the film density is easily increased and the withstand voltage characteristics are improved.

なお、上記溶射による誘電体膜の厚さは0.3mm以上が望ましく、所望の静電容量及び耐電圧特性によって適宜選定することができるが、通常5mm以下である。   The thickness of the dielectric film formed by thermal spraying is preferably 0.3 mm or more, and can be appropriately selected depending on desired capacitance and withstand voltage characteristics, but is usually 5 mm or less.

本発明において、上記誘電体膜は、膜厚が0.3mmのときの絶縁破壊電圧が3kV以上で、高いほど好ましいが、通常20kV以下であり、その膜厚での単位面積あたりの静電容量が0.3μF/m2以上で、この場合も高いほどよいが、通常10μF/m2以下であることが好ましい。 In the present invention, the dielectric film has a dielectric breakdown voltage of 3 kV or higher and preferably higher when the film thickness is 0.3 mm, but is usually 20 kV or lower, and the capacitance per unit area at the film thickness. Is 0.3 μF / m 2 or more, and in this case, the higher the better, but usually it is preferably 10 μF / m 2 or less.

本発明の第2のステップは、希土類元素酸化物からなる誘電体膜上に上記電極に対する対向電極として導電材料を製膜することである。   The second step of the present invention is to form a conductive material on the dielectric film made of rare earth element oxide as a counter electrode to the electrode.

対向電極の形成方法としては、同じく溶射法を用いることが好ましい。溶射法により形成された誘電体被膜の最表面は比較的荒れて疎な状態にあるが、その上から導電材料を溶射することによって、押し固め効果により誘電体層の界面部分も密度の高い状態にすることができ、絶縁耐圧特性がより良好になる。導電ペーストやメッキなどの方法では、誘電体層と電極層との間に微細な空孔ができやすく、高電圧下で使用すると空孔内で放電現象が起きるおそれがある。   Similarly, it is preferable to use a thermal spraying method as a method of forming the counter electrode. Although the outermost surface of the dielectric coating formed by thermal spraying is in a relatively rough and sparse state, the interface part of the dielectric layer is also in a high density due to the compaction effect by spraying the conductive material from above. And withstand voltage characteristics become better. In a method such as conductive paste or plating, fine holes are easily formed between the dielectric layer and the electrode layer, and when used under a high voltage, a discharge phenomenon may occur in the holes.

なお、溶射法による対向電極の作製法としては、上述した一方の電極を溶射で作製する場合と同様に操作することができ、その膜厚も10〜300μm、特に50〜200μmとすることが好ましい。   In addition, as a manufacturing method of the counter electrode by a thermal spraying method, it can operate similarly to the case where the above-mentioned one electrode is manufactured by thermal spraying, and it is preferable that the film thickness shall also be 10-300 micrometers, especially 50-200 micrometers. .

更に、必要であれば、本発明の第3のステップとして、キャパシタの表面を絶縁材料で覆うこともできる。絶縁材料としては、エポキシ樹脂などの有機絶縁材料でもよいし、Al23や希土類元素酸化物のような無機絶縁材料でもよい。これら絶縁材料によるキャパシタ表面のコーティングは、溶射法により形成することもできる。 Furthermore, if necessary, the capacitor surface can be covered with an insulating material as a third step of the present invention. The insulating material may be an organic insulating material such as an epoxy resin, or an inorganic insulating material such as Al 2 O 3 or a rare earth element oxide. The coating of the capacitor surface with these insulating materials can also be formed by thermal spraying.

なお、この絶縁材料によるコーティング層の厚さは、放電防止やキャパシタの保護ができればよく、10〜300μm程度が適当である。
上記のようにして得られた、互いに対向する一対の電極を常法により接続することにより、キャパシタを作製することができる。
The thickness of the coating layer made of this insulating material is only required to prevent discharge and protect the capacitor, and is preferably about 10 to 300 μm.
A capacitor can be fabricated by connecting a pair of electrodes facing each other obtained as described above by a conventional method.

以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記実施例に制限されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example.

〔実施例1〕
図1の工程図に示すように、電極基材として真鍮製の円筒管1を使用し、その外表面に誘電体として酸化イットリウム粉を溶射し、0.3mm厚の誘電体層2を形成した。次に、端部をマスキング3した上で誘電体層の外表面に真鍮粉を溶射し、0.1mm厚の対向電極層4を形成し、その後、マスク3を除去した。完成したキャパシタの電気的特性を測定した結果、静電容量63.8pF,絶縁破壊電圧4.8kVであった。単位面積あたりの静電容量は0.38μF/m2であり、薄型で高耐圧のキャパシタが得られた。
[Example 1]
As shown in the process diagram of FIG. 1, a brass cylindrical tube 1 was used as an electrode base material, and yttrium oxide powder was sprayed as a dielectric on the outer surface to form a dielectric layer 2 having a thickness of 0.3 mm. . Next, after masking 3 the end portion, brass powder was sprayed on the outer surface of the dielectric layer to form a counter electrode layer 4 having a thickness of 0.1 mm, and then the mask 3 was removed. As a result of measuring the electrical characteristics of the completed capacitor, the capacitance was 63.8 pF, and the dielectric breakdown voltage was 4.8 kV. The capacitance per unit area was 0.38 μF / m 2 , and a thin and high withstand voltage capacitor was obtained.

〔実施例2〕
誘電体として酸化エルビウムを用いた以外は実施例1と同様にしてキャパシタを形成した。このキャパシタの電気的特性は、静電容量81.6pF,絶縁破壊電圧5.7kVであった。単位面積あたりの静電容量は0.49μF/m2であり、薄型で高耐圧のキャパシタが得られた。
[Example 2]
A capacitor was formed in the same manner as in Example 1 except that erbium oxide was used as the dielectric. The electrical characteristics of this capacitor were a capacitance of 81.6 pF and a breakdown voltage of 5.7 kV. The capacitance per unit area was 0.49 μF / m 2 , and a thin and high withstand voltage capacitor was obtained.

〔実施例3〕
図2の工程図に示すように、電極基材としてアルミニウム製の円筒ケース5を使用し、その外表面に酸化イットリウム粉を溶射し、0.3mm厚の誘電体層6を形成した。次に、端部をマスキング7した上で誘電体層6の外表面にアルミニウム粉を溶射し、0.1mm厚の対向電極層8を形成し、その後、マスク7を除去した。完成したキャパシタの電気的特性を測定した結果、静電容量57.5pF,絶縁破壊電圧4.4kVであった。単位面積あたりの静電容量は0.39μF/m2であり、薄型で高耐圧のキャパシタが得られた。
Example 3
As shown in the process diagram of FIG. 2, a cylindrical case 5 made of aluminum was used as an electrode substrate, and yttrium oxide powder was sprayed on the outer surface to form a dielectric layer 6 having a thickness of 0.3 mm. Next, after masking 7 the edge, aluminum powder was sprayed on the outer surface of the dielectric layer 6 to form a counter electrode layer 8 having a thickness of 0.1 mm, and then the mask 7 was removed. As a result of measuring the electrical characteristics of the completed capacitor, the capacitance was 57.5 pF, and the dielectric breakdown voltage was 4.4 kV. The capacitance per unit area was 0.39 μF / m 2 , and a thin and high withstand voltage capacitor was obtained.

〔実施例4〕
図3の工程図に示すように、基材として銅張りエポキシ基板9を使用した[図3(a)]。なお、10は銅回路、11は導電ピンを示す。この基材9の一部をマスキング12した[図3(b)]上で表面に真鍮粉を溶射し、0.1mm厚の基材電極層13を形成した[図3(c)]。次に、上記マスク12の一部を除去すると共に、別途一部のマスキング14を施し[図3(d)]、基材電極層13の表面に酸化イットリウム粉を溶射し、0.3mm厚の誘電体層15を形成した[図3(e)]。次いで、一部のマスクを除去した[図3(f)]上で誘電体層15の外表面に真鍮粉を溶射し、0.1mm厚の対向電極層16を形成した[図3(g)]。更に、マスクを全て除去した[図3(h)]上で、全体に酸化イットリウム粉を溶射し、0.2mm厚の絶縁体層17を形成した[図3(i)]。形成されたキャパシタの電気的特性を測定した結果、静電容量47.7pF,絶縁破壊電圧5.1kVであった。単位面積あたりの静電容量は0.48μF/m2であり、薄型で高耐圧のキャパシタがプリント基板上に得られた。
Example 4
As shown in the process diagram of FIG. 3, a copper-clad epoxy substrate 9 was used as a substrate [FIG. 3 (a)]. Reference numeral 10 denotes a copper circuit, and 11 denotes a conductive pin. A portion of this base material 9 was masked 12 [FIG. 3B], and brass powder was sprayed on the surface to form a base electrode layer 13 having a thickness of 0.1 mm [FIG. 3C]. Next, a part of the mask 12 is removed and a part of the masking 14 is separately applied [FIG. 3 (d)], and the surface of the base electrode layer 13 is sprayed with yttrium oxide powder to obtain a thickness of 0.3 mm. A dielectric layer 15 was formed [FIG. 3 (e)]. Next, brass powder was sprayed on the outer surface of the dielectric layer 15 on a portion of the mask removed [FIG. 3 (f)] to form a counter electrode layer 16 having a thickness of 0.1 mm [FIG. 3 (g). ]. Further, after removing all the mask [FIG. 3 (h)], yttrium oxide powder was sprayed on the whole to form an insulator layer 17 having a thickness of 0.2 mm [FIG. 3 (i)]. As a result of measuring the electrical characteristics of the formed capacitor, the capacitance was 47.7 pF and the dielectric breakdown voltage was 5.1 kV. The capacitance per unit area was 0.48 μF / m 2 , and a thin and high withstand voltage capacitor was obtained on the printed circuit board.

〔比較例1〕
誘電体が酸化アルミニウムであること以外は実施例1と同様にしてキャパシタを形成した。このキャパシタの電気的特性は、静電容量43.2pF,絶縁破壊電圧2.4kVであった。単位面積あたりの静電容量は0.26μF/m2であり、静電容量,耐電圧特性の劣るキャパシタが得られた。
[Comparative Example 1]
A capacitor was formed in the same manner as in Example 1 except that the dielectric was aluminum oxide. The electrical characteristics of this capacitor were a capacitance of 43.2 pF and a dielectric breakdown voltage of 2.4 kV. The capacitance per unit area was 0.26 μF / m 2 , and a capacitor with inferior capacitance and withstand voltage characteristics was obtained.

〔比較例2〕
誘電体がチタン酸バリウムであること以外は実施例1と同様にしてキャパシタを形成した。このキャパシタの電気的特性は、1470pF,絶縁破壊電圧0.8kVであった。単位面積あたりの静電容量は8.8μF/m2であり、静電容量は高いものの、耐電圧特性の劣るキャパシタが得られた。
[Comparative Example 2]
A capacitor was formed in the same manner as in Example 1 except that the dielectric was barium titanate. The electrical characteristics of this capacitor were 1470 pF and dielectric breakdown voltage 0.8 kV. The capacitance per unit area was 8.8 μF / m 2 , and although the capacitance was high, a capacitor having inferior withstand voltage characteristics was obtained.

実施例1のキャパシタを得る工程図を示し、(a)は、実施例1の真鍮製円筒管の断面図、(b)は、実施例1の誘電体溶射後の断面図、(c)は、実施例1のマスク貼り付け後の断面図、(d)は、実施例1の導電材溶射後の断面図、(e)は、実施例1のマスク除去後の断面図である。The process figure which obtains the capacitor of Example 1 is shown, (a) is sectional drawing of the cylindrical tube made from brass of Example 1, (b) is sectional drawing after the dielectric material spraying of Example 1, (c) is Sectional drawing after mask attachment of Example 1, (d) is a sectional view after conductive material spraying of Example 1, and (e) is a sectional view after removing the mask of Example 1. FIG. 実施例3のキャパシタを得る工程図を示し、(a)は、実施例3のアルミニウム製円筒ケースの断面図、(b)は、実施例3の誘電体溶射後の断面図、(c)は、実施例3のマスク貼り付け後の断面図、(d)は、実施例3の導電材溶射後の断面図、(e)は、実施例3のマスク除去後の断面図である。The process figure which obtains the capacitor of Example 3 is shown, (a) is sectional drawing of the aluminum cylindrical case of Example 3, (b) is sectional drawing after the dielectric material spraying of Example 3, (c) is (c). Sectional drawing after mask attachment of Example 3, (d) is a sectional view after conductive material spraying of Example 3, and (e) is a sectional view after removing the mask of Example 3. 実施例4のキャパシタを得る工程図を示し、(a)は、実施例4の銅張りエポキシ基板の断面図、(b)は、実施例4のマスク貼り付け後の断面図、(c)は、実施例4の導電材溶射後の断面図、(d)は、実施例4の一部マスク除去、一部貼り付け後の断面図、(e)は、実施例4の誘電体溶射後の断面図、(f)は、実施例4の一部マスク除去後の断面図、(g)は、実施例4の導電材溶射後の断面図、(h)は、実施例4のマスク除去後の断面図、(i)は、実施例4の絶縁体溶射後の断面図である。The process figure which obtains the capacitor of Example 4 is shown, (a) is sectional drawing of the copper-clad epoxy board | substrate of Example 4, (b) is sectional drawing after masking of Example 4, (c) is Sectional view after conductive material spraying of Example 4, (d) is a sectional view after partial mask removal and partial pasting of Example 4, (e) is after dielectric spraying of Example 4 Cross-sectional view, (f) is a cross-sectional view after removing a partial mask of Example 4, (g) is a cross-sectional view after conductive material spraying of Example 4, and (h) is after removing the mask of Example 4. (I) is sectional drawing after the insulator spraying of Example 4. FIG.

符号の説明Explanation of symbols

1 真鍮製円筒管
2,6,15,17 誘電体層
3,7,12,14 マスク
4,8,13,16 電極層
5 アルミニウム製円筒ケース
9 銅張りエポキシ基板
10 銅回路
11 導電ピン
DESCRIPTION OF SYMBOLS 1 Brass cylindrical tube 2, 6, 15, 17 Dielectric layer 3, 7, 12, 14 Mask 4, 8, 13, 16 Electrode layer 5 Aluminum cylindrical case 9 Copper epoxy board 10 Copper circuit 11 Conductive pin

Claims (6)

誘電体層が、溶射法によって形成された希土類元素酸化物で構成され、かつ該誘導体層を介して互いに対向する一対の電極を具備したことを特徴とするキャパシタ。   A capacitor comprising a dielectric layer made of a rare earth element oxide formed by a thermal spraying method and a pair of electrodes facing each other with the derivative layer interposed therebetween. 電極の一方又は双方が、溶射法によって形成された導電材料で構成されることを特徴とする請求項1記載のキャパシタ。   The capacitor according to claim 1, wherein one or both of the electrodes are made of a conductive material formed by a thermal spraying method. 誘電体層の膜厚が0.3mmのときの絶縁破壊電圧が3kV以上であり、その膜厚での単位面積あたりの静電容量が0.3μF/m2以上であることを特徴とする請求項1又は2記載のキャパシタ。 The dielectric breakdown voltage when the thickness of the dielectric layer is 0.3 mm is 3 kV or more, and the capacitance per unit area at the thickness is 0.3 μF / m 2 or more. Item 3. The capacitor according to Item 1 or 2. 電極が、絶縁体基材上に溶射法によって形成された構造を有する請求項1,2又は3記載のキャパシタ。   The capacitor according to claim 1, 2 or 3, wherein the electrode has a structure formed on an insulating base material by a thermal spraying method. 絶縁体基材が、ガラス、樹脂又はセラミックスからなることを特徴とする請求項4記載のキャパシタ。   The capacitor according to claim 4, wherein the insulating base material is made of glass, resin, or ceramics. 絶縁体基材が、電気回路の一部である導体を複合化させた構造となっており、その導体と溶射による電極とが電気的に接合されていることを特徴とする請求項4又は5記載のキャパシタ。
6. The insulator base material has a structure in which a conductor which is a part of an electric circuit is combined, and the conductor and an electrode by thermal spraying are electrically joined. The capacitor as described.
JP2006193653A 2006-07-14 2006-07-14 Capacitors Expired - Fee Related JP4591709B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006193653A JP4591709B2 (en) 2006-07-14 2006-07-14 Capacitors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006193653A JP4591709B2 (en) 2006-07-14 2006-07-14 Capacitors

Publications (2)

Publication Number Publication Date
JP2008021895A true JP2008021895A (en) 2008-01-31
JP4591709B2 JP4591709B2 (en) 2010-12-01

Family

ID=39077634

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006193653A Expired - Fee Related JP4591709B2 (en) 2006-07-14 2006-07-14 Capacitors

Country Status (1)

Country Link
JP (1) JP4591709B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003934A (en) * 2008-06-20 2010-01-07 Fujitsu Ltd Method for manufacturing capacitor, structure, and capacitor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517965A (en) * 1978-07-25 1980-02-07 Matsushita Electric Ind Co Ltd Porcelain dielectric substance and method of fabricating same
JPS5886713A (en) * 1981-11-19 1983-05-24 松下電器産業株式会社 Method of producing thick film condenser
JPH07272537A (en) * 1994-03-31 1995-10-20 Tdk Corp Dielectric composite, multilayer wiring board, and laminated ceramic condenser
JP2005243890A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Laminated ceramic capacitor and manufacturing method thereof
JP2006066854A (en) * 2004-08-26 2006-03-09 Samsung Electro Mech Co Ltd Printed circuit board in which capacitor of high dielectric constant is included, and its manufacturing method
JP2007503374A (en) * 2003-08-22 2007-02-22 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceramic article having a corrosion-resistant layer, semiconductor processing apparatus incorporating the same, and method of forming the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5517965A (en) * 1978-07-25 1980-02-07 Matsushita Electric Ind Co Ltd Porcelain dielectric substance and method of fabricating same
JPS5886713A (en) * 1981-11-19 1983-05-24 松下電器産業株式会社 Method of producing thick film condenser
JPH07272537A (en) * 1994-03-31 1995-10-20 Tdk Corp Dielectric composite, multilayer wiring board, and laminated ceramic condenser
JP2007503374A (en) * 2003-08-22 2007-02-22 サン−ゴバン セラミックス アンド プラスティクス,インコーポレイティド Ceramic article having a corrosion-resistant layer, semiconductor processing apparatus incorporating the same, and method of forming the same
JP2005243890A (en) * 2004-02-26 2005-09-08 Matsushita Electric Ind Co Ltd Laminated ceramic capacitor and manufacturing method thereof
JP2006066854A (en) * 2004-08-26 2006-03-09 Samsung Electro Mech Co Ltd Printed circuit board in which capacitor of high dielectric constant is included, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010003934A (en) * 2008-06-20 2010-01-07 Fujitsu Ltd Method for manufacturing capacitor, structure, and capacitor
JP4510116B2 (en) * 2008-06-20 2010-07-21 富士通株式会社 Capacitor manufacturing method, structure, and capacitor
EP2136380B1 (en) * 2008-06-20 2016-01-06 Fujitsu Limited A spraying method for manufacturing a capacitor and capacitor obtained by the method

Also Published As

Publication number Publication date
JP4591709B2 (en) 2010-12-01

Similar Documents

Publication Publication Date Title
CN103377826B (en) Laminated ceramic electronic component and its manufacture method
US6270906B1 (en) Monolithic ceramic electronic component
JP2017191948A (en) Multilayer ceramic electronic component
JP2006310760A (en) Multilayer ceramic electronic component and its manufacturing method
JPWO2004070748A1 (en) Electronic component and manufacturing method thereof
JP6447903B2 (en) Method for manufacturing conductive paste for multilayer ceramic electronic component, method for manufacturing multilayer ceramic electronic component using this conductive paste, and method for manufacturing multilayer ceramic capacitor by this method
JP5101518B2 (en) High pressure discharge lamp and high voltage pulse generator with improved ignition capability
JP2008053488A (en) Conductive paste, electronic component, laminated ceramic capacitor, and its manufacturing method
US10193332B2 (en) ESD protection device
JP4591709B2 (en) Capacitors
CN104521079A (en) ESD protection device
JP2009117735A (en) Antistatic component, and manufacturing method thereof
JP2007081351A (en) Via paste for laminated electronic component, laminated electronic component using the same and its manufacturing method
JP5713112B2 (en) ESD protection device and manufacturing method thereof
CN111517818B (en) Composite green sheet, ceramic member, method for producing composite green sheet, and method for producing ceramic member
JP2001217137A (en) Laminated ceramic electronic component and manufacturing method therefor
JP6075447B2 (en) ESD protection device
JP2010520594A (en) High voltage pulse generator and high pressure discharge lamp with high voltage pulse generator
JP2006332236A (en) Conductive paste, laminated ceramic electronic component, and manufacturing method thereof
JP2003243249A (en) Laminated ceramic capacitor and its manufacturing method
JP2008277294A (en) Conductive particle, conductive paste, electronic component, and laminated ceramic capacitor and manufacturing method thereof
JP2006319359A (en) Electronic component and its manufacturing method
JP2002197922A (en) Conductive paste and method for manufacturing of ceramic circuit board
JP2001185322A (en) Surface mounting surge absorbing element and its manufacturing method
WO2017195414A1 (en) Ceramic electronic component and method for manufacturing ceramic electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080724

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20100818

Free format text: JAPANESE INTERMEDIATE CODE: A01

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100831

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20130924

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees